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Abstract

Any n-vertex 3-graph with minimum codegree at least bn/3c must have a spanning tight com-
ponent, but immediately below this threshold it is possible for no tight component to span more
than d2n/3e vertices. Motivated by this observation, we ask which co-degree forces a spanning tight
component of any given size. The corresponding function seems to have infinitely many discontinu-
ities towards the origin, making it hard to analyse, but we provide upper and lower bounds, which
asymptotically converge as the function nears the origin.

1 Introduction

This paper addresses the extremal question of which minimum codegree forces a tight component con-
taining at least a certain proportion of the vertices of a 3-uniform hypergraph.

Figure 1: Our upper (blue, if colour is shown) and lower (red) bounds on f3(x). These bounds coincide
for x ∈

{
5
21

}
∪
[

8
27 , 1

]
.
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A k-graph is a hypergraph H, every edge of which consists of k vertices; we will concentrate on the
case k = 3. We say that two edges of H touch if they share k − 1 vertices. The tight components of H
are the equivalence classes of edges under the transitive closure of this relation. Equivalently, two edges
are in the same tight component if and only if the hypergraph contains a tight walk between them, that
is, a chain of edges where each edge has the maximum possible overlap with the next. A special case
of tight walks are tight paths, which were introduced by Katona and Kierstead [9] and are one of the
most natural generalisations of paths to hypergraphs. Tight paths or cycles feature in many works on
hypergraphs, for example [12, 7, 1]. Consequently, tight components are a natural generalisation of the
notion of the components of a graph. The property of hypergraph connectivity, that is, having a tight
component covering all (k − 1)-tuples, was studied by Kahle and Pittel [8], and is closely related to the
earlier definition of homological connectivity by Linial and Meshulam [11]. The emergence and size of
the giant tight component was analysed by Cooley, Kang and Person [4] and Cooley, Kang and Koch [3].
Our interest in tight components was motivated by our work with Narayanan on the minimum codegree
required for a spanning surface [6], in which the absence of a spanning tight component is the main
obstacle.

The codegree of a (k − 1)-tuple of vertices is the number of edges containing that tuple. We write
δk−1(H) for the minimum codegree over all (k − 1)-tuples of H.

Definition 1. We define a function fk(x) : [0, 1]→ [0, 1] by letting fk(x) be the largest real number such
that every n-vertex k-graph with minimum codegree at least xn−O(1) has a tight component meeting at
least fk(x)n of its vertices. (Omitting the −O(1) term in this definition changes fr only slightly: from
left-continuous to right-continuous.)

The function f2 is easy to analyse. Any n-vertex graph G with δ(G) ≥ bn/mc can have at most
m− 1 components, so one of them meets at least dn/(m− 1))e vertices. Conversely, if k < bn/mc there
is a graph with m components meeting bn/mc or dn/me vertices which has minimum degree at least k.
Thus f2(x) = 1

b1/xc .

In this paper we analyse f3; we provide upper and lower bounds as shown in Figure 1. These bounds
become asymptotically tight as x→ 0. Our upper bounds are based on the existence of finite projective
planes of certain orders.

It turns out that f3 is discontinuous at x = 1/3. We conjecture that it has infinitely many disconti-
nuities. The higher functions fk, k > 3 might be much harder to analyse.

Problem 1. Provide asymptotic formulae for fk, when k > 3.

2 Spanning tight components

First we note that a minimum codegree of bn/3c is sufficient to force a spanning tight component, as
shown below. This fact was pointed out to us by Richard Mycroft (private communication). This bound
is best possible as proved by the following example. Consider the 3-graph whose vertices are partitioned
into three sets V0, V1, V2, of as equal sizes as possible, with all edges consisting of three vertices in Vi or
of two vertices in Vi and one in Vi+1, for some i ∈ Z3. Each tight component only meets vertices in two
parts, so is far from spanning, yet the minimum codegree is bn/3c − 1.

Proposition 2 (R. Mycroft (private communication)). Any 3-graph H on n vertices with minimum
codegree at least bn/3c has at most two tight components.

Proof. Suppose not. Let Kn denote the complete graph on the vertices of H. Colour the hyperedges of
H according to the tight component they are in, and give each edge e = uv of Kn the colour of those
hyperedges of H which contain {u, v}.

First, we show that no triangle of Kn has more than two colours. If xy, yz and zx are different
colours then consider the sets of vertices A,B,C which can be used to extend xy, yz, zx respectively
to hyperedges. Every vertex in A has two edges of the first colour to {x, y, z}, etc., so these sets are
disjoint from each other and {x, y, z}. But each has size at least bn/3c, so we have n ≥ 3 + 3bn/3c, a
contradiction.

Second, we show that no vertex meets three colours. If v does, say red, green and blue, let R
(respectively, G or B) be the sets of vertices connected to v by red (respectively, green or blue) edges.
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These are disjoint, but if vx is any red edge then there are at least bn/3c vertices which extend it to a
red hyperedge, so |R| ≥ 1 + bn/3c. The same applies to G and B, so |R|+ |G|+ |B| > n, contradiction.

Now consider any vertex v which meets edges of two colours (this trivially exists), say red and blue.
Let R be the set of all vertices with red edges to v, and define B similarly. R and B partition V − v.
By assumption, a third colour, green, is used somewhere; it cannot be between R and B as there are no
3-coloured triangles, so it is within R, say. If xy is such an edge then vx extends to bn/3c red hyperedges
and xy extends to bn/3c green hyperedges. Each of the vertices which extends one of these two is in R
(if vxz is a red hyperedge then vz is red; if xyz is green then z 6∈ B since that would create a 3-coloured
triangle). So |R| ≥ 2 + 2bn/3c and as before |B| ≥ 1 + bn/3c, giving a contradiction.

Corollary 3 (R. Mycroft (private communication)). Any 3-graph H on n vertices with δ2(H) ≥ bn/3c
has a spanning tight component.

Proof. If the first tight component does not meet some vertex x then for each other vertex y, the edges
containing x and y must belong to the other tight component, which therefore meets all vertices.

The example given above shows that reducing the minimum codegree condition even by 1 allows
hypergraphs where no tight component meets more than d2n/3e vertices. This is the motivation for
Question 1: we have shown that f3(x) = 1 for all x > 1/3, but f3(1/3) ≤ 2/3.

We will show that a minimum codegree of n/r − O(1) implies that some tight component meets at
least n/(r− 2)−O(1) vertices for each integer r ≥ 3. We also show that this is almost best possible: for
infinitely many values of r there are hypergraphs with minimum codegree (1/r −O(r−3))n in which no
tight component meets more than (1/(r − 2)−O(r−3))n vertices.

3 Upper bounds

In this section we give a construction based on finite projective planes. A finite projective plane of order
s is an arrangement of points and lines such that each point lies on s+ 1 lines, each line contains s+ 1
points, each pair of points is contained in a unique line, and each pair of lines meet in a unique point.
Such a structure is known to exist whenever s is a prime power. Bruck and Ryser [2] proved that if s ≡ 1
(mod 4) or s ≡ 2 (mod 4), and s is not the sum of two squares, then no projective plane exists. The
existence of a projective plane of order 10 was ruled out by extensive computer analysis, completed by
Lam, Thiel and Swiercz [10], but for every other value of s which is neither a prime power nor ruled out
by the Bruck–Ryser result, it is an open question. We will consider a projection as a hypergraph, where
the vertices are the points and the edges are the lines.

Let tc(H) denote the number of vertices of the largest tight component of the 3-graph H.

Theorem 4. For each r ≥ 3 for which a projective plane of order r − 2 exists, and any n, there exists
an n-vertex 3-graph H satisfying

δ2(H) =

(
r − 3 + 2

r−1
r2 − 3r + 3

)
n−O(1) and

tc(H) =

(
r − 1

r2 − 3r + 3

)
n+O(1) .

Remark. In fact, provided r2 − 3r + 3 | n, we do not need the +O(1) term in the latter expression.

Proof. Let Pr−2 be a finite projective plane of order r − 2; this is an (r − 1)-uniform hypergraph with
r2− 3r+ 3 vertices v1, . . . , vr2−3r+3 and r2− 3r+ 3 edges, with each vertex having degree r− 1 and each
pair of vertices contained in exactly one edge. Associate each edge with a different colour.

Colour the complete graph Kn on n vertices as follows. Divide the vertices as evenly as possible into
r2 − 3r + 3 classes C1, . . . , Cr2−3r+3. For each class Ci, using the r − 1 colours corresponding to the
edges of Pr−2 meeting vi, colour the edges within Ci such that for each vertex the numbers of incident
edges of each colour are as equal as possible. Colour each edge between two classes Ci and Cj , where
i 6= j, according to the unique edge of Pr−2 which contains vi and vj . Figure 2 shows such a colouring
for r = 4.
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Figure 2: A construction based on P2.

Now define a hypergraph H on the vertex set of Kn, whose edges are the monochromatic triangles
of this colouring of Kn. If we give edges of H the same colour as the corresponding triangle, each
tight component is monochromatic, and each colour touches r − 1 classes Ci, so for large n each tight
component has at most as many vertices as the r − 1 largest classes. It is easy to see that each colour
corresponds to at most one tight component, so we have

tc(H) =
r − 1

r2 − 3r + 3
n+O(1) .

Fix a pair of vertices x, y ∈ V (H), and let e be the edge of Pr−2 corresponding to the colour of xy. The
degree dH(x, y) is the number of hyperedges of H containing both x, y. If x and y are in the same class,
all vertices in the other r−2 classes corresponding to vertices of e all form monochromatic triangles with
x, y, so we have

dH(x, y) ≥ r − 2

r2 − 3r + 3
n+O(1) .

If x ∈ Ci and y ∈ Cj with i 6= j, then all vertices in the other r − 3 classes corresponding to vertices of
e form monochromatic triangles with x, y, as do the vertices in Ci with an appropriately coloured edge
to x, and those in Cj with an appropriately coloured edge to y. In total, we have

dH(x, y) =
r − 2 + 2

r−1
r2 − 3r + 3

n+O(1) .

Thus we have

δ2(H) ≥ min

(
r − 2

r2 − 3r + 3
,
r − 3 + 2

r−1
r2 − 3r + 3

)
n+O(1) .

For r = 3 the two bounds coincide, and for r > 3 the latter is smaller, giving the required equality.
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Remark. Writing s = r2−3r+3
r−3+ 2

r−1

, we have r2−3r+3
r−1 = s− 2 +O(r−3) = s− 2 +O(s−3). Thus we have, for

infinitely many values of s, hypergraphs with minimum codegree n/s − O(1) and no tight component
meeting more than (1/(s− 2) +O(s−3))n vertices.

4 Lower bounds

Next we give a lower bound which is close to the upper bound of the previous section for large r.
We will use the following result of Füredi on fractional matchings in hypergraphs [5]. A matching in
a hypergraph H is a set of disjoint edges, and the matching number ν(H) is the maximum size of a
matching in H. A fractional matching is a weight function w : E(H) → [0, 1] such that

∑
e3v w(e) ≤ 1

for each v ∈ V (H), and the fractional matching number ν∗(H) is the maximum of
∑

e∈E(H) w(e) over
all fractional matchings.

Theorem 5 (Füredi [5]). Let H be a hypergraph with edges of size at most k which does not contain p+1
vertex-disjoint projective planes of order k−1, for some k ≥ 3 and p ≥ 0. Then ν∗(H) ≤ (k−1)ν(H)+p/k.

We write ∆1(H) for the maximum vertex degree of a hypergraph H.

Corollary 6. If H is a k-uniform multi-hypergraph for which any two edges intersect then

∆1(H) ≥ e(H)

k − 1 + p/k
,

where p = 1 if a projective plane of order k − 1 exists, and p = 0 otherwise. Further, if k ≥ 3 and

∆1(H) > e(H)
k−1 then the underlying simple graph is a projective plane

Proof. If k = 2 then either there is a vertex in every edge or H has only three vertices; in the latter case
the average degree is 2e(H)/3. If k ≥ 3 we may apply Theorem 5 to the underlying simple hypergraph
H′. Since H′ is intersecting, ν(H′) = 1, and so ν∗(H) ≤ k − 1 + p/k. Let w(e) be the number of copies
of e in the multi-hypergraph H, divided by ∆1(H). Clearly, for each v ∈ V (H),∑

e3v
w(e) =

dH(v)

∆1(H)
≤ 1 ,

so w is a fractional matching for H′. Thus,

k − 1 + p/k ≥
∑

e∈E(H′)

w(e) =
e(H)

∆1(H)
,

giving the required bound. If k ≥ 3 and ν∗(H′) > k − 1 then H′ contains a projective plane, and, since
it is intersecting, no other edges.

Theorem 7. Fix an integer r ≥ 3. Suppose H is a 3-uniform hypergraph on n vertices with δ2(H) ≥
(1− ε)n/r, where 0 ≤ ε < 1

r+1 . Then

tc(H) ≥

{
min{(1− 3ε), 2/3}n if r = 3

(1− 3ε)
n

r − 2
otherwise.

(1)

Proof. Again, we colour the edges of the complete graph on the same vertex set. Give xy the colour
of the tight component containing edges of the form xyz. Fix a vertex x. If x meets an edge xy of a
particular colour in the graph, there are at least δ2(H) edges of the form xyz in H which are in the
corresponding tight component. Thus if x meets an edge of a certain colour, it meets at least δ2(H) such
edges. Since ε < 1/(r+ 1), δ2(H) > n/(r+ 1), so the number of tight components meeting a vertex x is
at most r. We distinguish three cases, as follows.

Case 1. Some vertex meets at most r − 2 tight components.

In this case, these r − 2 components must between them cover all the vertices, so at least one must
meet at least n/(r − 2) vertices.
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Case 2. Every vertex meets exactly r − 1 tight components.

We define an auxiliary multi-hypergraph F as follows. The vertices of F correspond to tight compo-
nents of H. The edges of F correspond to vertices of H; an edge ev of F corresponding to a vertex v of
H contains the r − 1 vertices of F corresponding to tight components which meet v. Thus F is (r − 1)-
uniform and e(F) = n. Any two edges of F intersect: eu and ev both contain the vertex corresponding
to the tight component containing edges of the form uvw. If r = 3, by Corollary 6, such an F has a
vertex meeting at least 2n/3 edges, and hence H has a tight component meeting this many vertices. If
r > 3, by Corollary 6, either F has a vertex meeting at least n/(r − 2) edges or its underlying simple
hypergraph F ′ is a projective plane of order r − 2; in the latter case some vertex of F meets at least

1
r−2+1/(r−1)n edges. Note that

1

r − 2 + 1/(r − 1)
=

(
1− 1

r2 − 3r + 3

)
1

r − 2
.

Claim 1. If F ′ is a projective plane of order r − 2 then ε ≥ r−3
(r−1)(r2−3r+3) .

Proof of Claim 1. If F ′ is a projective plane of order r − 2, then note that its edges give a partition,
C1, . . . , Cr2−3r+3 say, of the vertices of H so that any two vertices in the same class are in exactly the
same tight components. Each class meets r− 1 tight components, and each pair of classes have a single
tight component in common. Colour each pair of vertices of H according to the tight component the
edges containing that pair are in.

We choose a pair of vertices (x, y) as follows: choose uniformly at random between the ordered pairs
(i, j) ∈ [r2 − 3r + 3]2 which satisfy i 6= j, and choose (independently and uniformly at random) x ∈ Ci

and y ∈ Cj . Fix a vertex z and consider P(xyz ∈ E(H)). If z ∈ Ck we have

P(xyz ∈ E(H)) = P((xyz ∈ E(H)) ∧ (k 6∈ {i, j})) + P((xyz ∈ E(H)) ∧ (k ∈ {i, j}))
≤ P(wiwjwk ∈ E(F ′′)) + 2P((k = i) ∧ (col(xy) = col(xz))) . (2)

Now

P(wiwjwk ∈ E(F ′′)) =
(r − 1)

(
r−2
2

)(
r2−3r+3

2

)
=

r − 3

r2 − 3r + 3
, (3)

and

P((k = i) ∧ (col(xy) = col(xz))) <
1

r2 − 3r + 3
· r − 2

r2 − 3r + 2

=
1

(r − 1)(r2 − 3r + 3)
, (4)

since given i = k, col(xy) depends only on j, and for each choice of x (other than x = z) there are r− 2
choices of j which give col(xy) = col(xz).

Thus, by (2), (3) and (4), we have

δ2(H) ≤ E(dH(x, y))

<
r − 3 + 2

r−1
r2 − 3r + 3

n

=

(
1− r − 3

(r − 1)(r2 − 3r + 3)

)
n

r
,

as required. This completes the proof of Claim 1. �

The desired result follows in this case, since if ε ≥ r−3
(r−1)(r2−3r+3) and r ≥ 4 then 3ε ≥ 1

r2−3r+3 .

Case 3. Neither of the above two cases apply.
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In this case, some vertex x meets exactly r tight components. Divide the remaining n − 1 vertices
into classes A1, . . . , Ar of sizes a1, . . . , ar, according to which tight component edges containing a given
vertex and x are in. Note that ai ≥ δ2(H) ≥ (1 − ε)n/r for each i ∈ [r]. If these are the only tight
components then, since each vertex is met by at least r − 1 of them, some component meets at least
n(r− 1)/r vertices. So we may assume that there is another tight component B which does not meet x.
Suppose B meets bi vertices in Ai for each i, and in total meets b vertices. Write S = {i ∈ [r] : bi > 0}.

If |S| ≤ 2 then the codegree of any pair which is in an edge of B and meets all the (at most 2) parts,
is at most

∑
i∈S(ai − δ2(H)) ≤

∑
i∈[r](ai − δ2(H)) ≤ nε < n/(r+ 1) < δ2(H), giving a contradiction. So

we may assume |S| ≥ 3.

Claim 2. For each pair i, j ∈ S,

3δ2(H) ≤ b− bi − bj + ai + aj . (5)

Proof of Claim 2. First, suppose that there are vertices vi ∈ Ai and vj ∈ Aj such that edges containing
vi, vj are in B. Then the codegree of this pair is at most

∑
S3k 6=i,j bk + (ai − δ2(H)) + (aj − δ2(H)),

since only the bk vertices in Ak which meet B can form an edge with vi, vj if k 6= i, j, and only the
vertices w ∈ Ai for which there is no edge of the form xwvi are available (and similarly for Aj). Since
the codegree of x, vi is at least δ2(H), and all vertices which complete an edge with x, vi lie in Ai, at most
ai − δ2(H) vertices are available to form edges with vi, vj . Rearranging, and noting that

∑
k∈S bk = b,

gives the desired inequality.
Secondly, suppose that no such vertices exist. For every k 6= i, j such that there exist vertices vi ∈ Ai

and vk ∈ Ak which can be extended to an edge of B (write Si for the set of such k), similar reasoning
gives 3δ2(H) ≤ b − bi − bj − bk + ai + ak, since no vertex from Aj can extend the pair vi, vk to an
edge. If none of these gives the desired inequality, we must have ak − aj > bk for each k ∈ Si. For any
l ∈ S \ {i, j}, picking vl in B and Al, the pair vi, vl must have codegree at most∑

k∈Si\{l}

bk + (ai − δ2(H)) + (al − δ2(H)) <
∑

k∈Si\{l}

(ak − aj) + (ai − δ2(H)) + (ak − δ2(H))

≤
∑

k∈Si∪{i}

(
ak − (1− ε)n

r

)

≤
∑
k∈[r]

(
ak − (1− ε)n

r

)
= nε< n/(r + 1) < δ2(H) ,

a contradiction. This completes the proof of Claim 2. �

Now, averaging inequality (5) over all pairs i 6= j ∈ S we get

3δ2(H) ≤ b− 2(|S| − 1)b

|S|(|S| − 1)
+

2(n− (r − |S|)δ2(H))

|S|
=
r − s− 2

r − s
b+

2n− 2sδ2(H)

r − s
,

where s = r − |S|. Rearranging this (noting that r − s− 2 > 0) gives

b ≥ (3r − s)δ2(H)− 2n

r − s− 2

≥ (3r − s)(1− ε)n− 2nr

r(r − s− 2)
.

It suffices to show that
(3r − s)(1− ε)n− 2nr

r(r − s− 2)
≥ (1− 3ε)n

r − 2
,

or equivalently
(r − 2)

(
(3r − s)(1− ε)− 2r

)
≥ r(r − s− 2)(1− 3ε) .

But
(r − 2)

(
(3r − s)(1− ε)− 2r

)
− r(r − s− 2)(1− 3ε) = 2s(1− (r + 1)ε) > 0 ,

as required.
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We stated Theorem 7 for the range of ε for which the proof works. However, in this range we also
have δ2(H) ≥ (1− ε)n

r >
n

r+1 and so, by Theorem 7 for r + 1, tc(H) ≥ n
r−1 . This gives a better bound

than (1) for ε > 1
3r−3 . Consequently we have the following lower bounds for f3(x):

f3(x) ≥



1 if x > 1
3 ;

2
3 if 8

27 ≤ x ≤
1
3 ;

9x− 2 if 5
18 ≤ x ≤

8
27 ;

1
r−1 if 1

r+1 ≤ x ≤
(
3r−4
3r−3

)
1
r where r ≥ 3 ;

3rx−2
r−2 if

(
3r−4
3r−3

)
1
r ≤ x ≤

1
r where r ≥ 4 .

Conversely, Theorem 4 gives the following upper bounds. Let (ri)i≥0 be the sequence of integers such
that ri − 2 is a prime power or 0, i.e. the sequence that begins 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 15, . . . , and let

qi =
ri−3+ 2

ri−1

r2i−3ri+3
Then for every i ≥ 0 we have

f3(x) ≤ ri − 1

r2i − 3ri + 3
for x ∈ (qi+1, qi]

(the case i = 0 being the trivial upper bound f3(x) ≤ 1).
Figure 1 shows our upper and lower bounds. The bounds coincide for x ∈

{
5
21

}
∪
[

8
27 , 1

]
.
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