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Abstract

Let {DM}M≥0 be the n-vertex random directed graph process, where D0 is the empty directed
graph on n vertices, and subsequent directed graphs in the sequence are obtained by the addition of
a new directed edge uniformly at random. For each ε > 0, we show that, almost surely, any directed
graph DM with minimum in- and out-degree at least 1 is not only Hamiltonian (as shown by Frieze),
but remains Hamiltonian when edges are removed, as long as at most (1/2 − ε) of both the in- and
out-edges incident to each vertex are removed. We say such a directed graph is (1/2 − ε)-resiliently
Hamiltonian. Furthermore, for each ε > 0, we show that, almost surely, each directed graph DM in
the sequence is not (1/2 + ε)-resiliently Hamiltonian.

This improves a result of Ferber, Nenadov, Noever, Peter and Škorić, who showed, for each ε > 0,
that the binomial random directed graph D(n, p) is almost surely (1/2− ε)-resiliently Hamiltonian if
p = ω(log8 n/n).

1 Introduction

One of the most studied properties of graphs is that of Hamiltonicity, the property that a graph contains
a cycle through every vertex, known as a Hamilton cycle. The natural extremal function for Hamiltonicity
was studied by Dirac [8], whose celebrated theorem demonstrates that any graph with n ≥ 3 vertices and
minimum degree at least n/2 is Hamiltonian. An early question of Erdős and Rényi [9] in the study of
the binomial random graph G(n, p), where edges among n vertices are chosen independently at random
with probability p, asked when such a graph is likely to be Hamiltonian. After work by Pósa [27] and
Korshunov [20], this was determined independently by Komlós and Szemerédi [19] and Bollobás [6], who
proved that if p = (log n+log log n+ω(1))/n, then G(n, p) is Hamiltonian with probability 1−o(1). We say
here that G(n, p) is almost surely Hamiltonian. This is best possible, for if p = (log n+log log n−ω(1))/n,
then G(n, p) almost surely has vertices of degree 0 or 1, and as such is clearly not Hamiltonian.

In fact, in G(n, p), Hamiltonicity is almost surely concurrent with the property that every vertex
has at least two neighbours [1]. This is most precisely shown by the following beautiful result, proved
independently by Bollobás [7] and Ajtai, Komlós and Szemerédi [1]. Consider the n-vertex random graph
process G0, . . . , G(n

2)
, where G0 is an empty graph on n vertices and each subsequent graph in the sequence

is formed by the addition of a non-edge uniformly at random. Almost surely, the first graph in the sequence
with minimum degree at least 2 is Hamiltonian [1, 7]. Furthermore, we can strengthen this by showing
that, in almost every random graph process, every graph with minimum degree at least 2 is not only
Hamiltonian, but remains so despite the removal of any set of edges, subject only to a simple condition
on the edges removed. That is, it is resiliently Hamiltonian.

The general study of resilience in random graphs, initiated by Sudakov and Vu [31] in 2008, has
developed into an active area of research (see, for example, [4, 5, 13, 21, 22, 31] and the survey [30]). We
study the resilience of a graph G with respect to some property P using the following definition.

Definition 1.1. A graph G is α-resilient with respect to the property P if, for any H ⊂ G with dH(v) ≤
αdG(v) for each v ∈ V (G), G−H has property P.

Note that Dirac’s theorem is exactly that the complete graph on n ≥ 3 vertices is (1/2)-resiliently
Hamiltonian. A natural generalisation to random graphs is to ask how resiliently Hamiltonian a typical
random graph is. This was the subject of series of results (see [31, 13, 5]), before, in a key breakthrough,
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Lee and Sudakov [22] showed that, if p = ω(log n/n), then G(n, p) is almost surely (1/2− o(1))-resiliently
Hamiltonian. Here, the constant 1/2 is best possible as such a random graph can typically be disconnected
while removing only (1/2 + o(1)) of the edges around any one vertex. However, the bound on p can be
improved slightly, and the result made best-possible by considering the resilience of Hamiltonicity in the
random graph process. Indeed, independently, the author [24] and Nenadov, Steger and Trujić [25], showed
that in almost every n-vertex random graph process, each Hamiltonian graph is (1/2 − o(1))-resiliently
Hamiltonian. In this paper, we prove the corresponding result for the random directed graph process.

A Hamilton cycle in a directed graph (digraph) is a cycle through every vertex whose edges are
oriented in the same direction around the cycle. The corresponding result to Dirac’s theorem was shown
by Ghouila-Houri [14], who proved that every digraph on n ≥ 3 edges with minimum in- and out-degree at
least n/2 contains a Hamilton cycle. The binomial random digraph D(n, p) has n vertices and each possible
edge chosen independently at random with probability p. The techniques for studying Hamiltonicity in
G(n, p) do not immediately translate to the directed case, but an elegant general coupling argument of
McDiarmid [23] shows that, if p = (log n+ log log n+ω(1))/n, then D(n, p) is almost surely Hamiltonian.
However, the natural local impediment to Hamiltonicity in D(n, p) is that every vertex must have in- and
out-degree at least 1. This almost surely holds if p = (log n + ω(1))/n, and almost surely does not if
p = (log n− ω(1))/n.

Frieze [12] showed that, if p = (log n + ω(1))/n, then D(n, p) is almost surely Hamiltonian, and
gave a corresponding result for the random digraph process. In the n-vertex random digraph process
D0, D1, . . . , Dn(n−1), D0 is the empty digraph on n vertices, and each subsequent digraph in the sequence
is obtained by the addition of a new directed edge uniformly at random. Frieze [12] showed that, in
almost every n-vertex random digraph process, every digraph with minimum in- and out-degree at least
1 is Hamiltonian.

To study resilience in directed graphs, we use the corresponding definition to resilience in graphs, as
follows.

Definition 1.2. A directed graph D is α-resilient with respect to the property P if, for any H ⊂ D with
djH(v) ≤ αdjD(v) for each v ∈ V (D) and j ∈ {+,−}, D −H has property P.

Hefetz, Steger and Sudakov [17] showed that, if p� log n/
√
n, thenD(n, p) is almost surely (1/2−o(1))-

resiliently Hamiltonian. As with the undirected case, the constant 1/2 here is tight, but the bound on p is
rather loose. Ferber, Nenadov, Noever, Peter and Škorić [11] showed that, if p = ω(log8 n/n), then D(n, p)
is almost surely (1/2− o(1))-resiliently Hamiltonian. Here, we will make a best-possible improvement to
the bound on p, and bring the known resilience of Hamiltonicity in random digraphs into line with that
known for random graphs, as follows.

Theorem 1.3. Let ε > 0. In almost every n-vertex random directed graph process D0, D1, . . . , Dn(n−1),
the following is true for each 0 ≤ M ≤ n(n − 1). If δ±(DM ) ≥ 1, then DM is (1/2 − ε)-resiliently
Hamiltonian, but not (1/2 + ε)-resiliently Hamiltonian.

Standard techniques easily infer from Theorem 1.3 that, if p = (log n + ω(1))/n, then D(n, p) is almost
surely (1/2− o(1))-resiliently Hamiltonian (see, for example, Section 7).

The constant 1/2 in Theorem 1.3 arises from the following. Almost surely, if D(n, p) has minimum
in- and out-degree at least 1, then it can be disconnected into two roughly equal halves by deleting only
a little over half of the in- and out-edges at each vertex. This is easy to show when p = ω(log n/n), and,
with a little care, it is possible to show in almost every random digraph process for each digraph DM

with δ±(DM ) ≥ 1 (see Section 7.6). Thus, it is relatively straightforward to demonstrate the limits of the
resilience of Hamiltonicity required for Theorem 1.3.

On the other hand, if we remove only at most a proportion (1/2− ε) of the in- and out-edges around
each vertex, then we cannot disconnect the digraph D. In fact, we typically must retain two key properties.
Firstly, if two large equal-sized vertex sets are chosen disjointly at random, then there is likely to be a
matching directed from the first into the second. Secondly, given a small collection of pairs of vertices
disjoint from a random small vertex subset, we can use the vertex subset to connect the pairs into a
directed cycle. The first property allows us, by taking a sequence of random sets, to cover most of a
typical random digraph by relatively few directed paths. The second property then allows us to join these
paths together into a directed cycle, using a reserved random small set of vertices. This may, of course,
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not cover all the vertices, and hence we use the absorbing method. This is described in detail in Section 2,
but, in short, we note that the key behind our progress compared to Ferber, Nenadov, Noever, Peter and
Škorić [11], who used the same broad outline, is in our construction of the reservoir. In particular, each
vertex in the reservoir is created by contracting a short directed path to create a new vertex. A Hamilton
cycle in this altered digraph is found, before the contractions are undone to create a Hamilton cycle in
the orginal digraph. This allows the use of a larger reservoir, and in combination with an adaptation of
path connection methods by Glebov, Krivelevich and Johannsen [15] to the directed graph setting (see
Section 4), and the careful division of vertex sets using the Local Lemma (see Section 3), makes the
improvements required to show Theorem 1.3.

In the rest of this section, we detail our notation. In Section 2, we give a sketch of our proof followed
by an outline of the rest of the paper.

1.1 Notation

A digraph D has vertex set V (D) and edge set E(D), and we set |D| = |V (D)| and e(D) = |E(D)|.
For any set A ⊂ V (D), we set N+

D (A) = {v ∈ V (D) \ A : ∃u ∈ A s.t. −→uv ∈ E(D)} and N−D (A) = {v ∈
V (D) \ A : ∃u ∈ A s.t. −→vu ∈ E(D)}. We say N+

D (A) is the out-neighbourhood of A and N−D (A) is the

in-neighbourhood of A. Where A is a single vertex v, we let dj(v) = |N j
D(v)| for each j ∈ {+,−}. Given

a set of edges E, we let V (E) be the set of vertices contained in these edges. For any disjoint vertex sets
A and B in a digraph D, and each j ∈ {+,−}, e+

D(A,B) is the number of edges directed from A to B
in D, and e−D(A,B) = e+

D(B,A). Where it is clear from context, we often drop the digraph D from the
subscript. For a digraph D, ∆−(D), ∆+(D), δ−(D) and δ+(D) are the maximum in- and out-degree and
the minimum in- and out-degree of D respectively. For any vertex set A in a digraph D, the digraph D[A]
has vertex set A and edges exactly those in D contained within A.

For convenience, we consider paths to have an inherent order, and thus treat them as an ordered
sequence of vertices. In this sequence, we allow vertices to repeat consecutively without consequence. For
example, if a path P has start vertex u and end vertex v, then we consider uPv to be the same path as

P . Given a path P ,
←−
P is the path on the same vertices as P but with the vertex order reversed. In a

digraph D, for any disjoint vertex sets A and B, a matching from A into B is a set of |A| independent
edges oriented from A into B.

Where we use ± in an expression, we mean that this holds with ± replaced by both + and −. We use
log for the natural logarithm and, for each k ≥ 2, we use log[k] n to refer to the kth iterated logarithm of
n, so that, for example, log[3] n = log log log n. In our proofs we need use log[3] n, but we use up to log[7] n
for convenience as a sequence of slowly growing functions of n. For each integer k, we let [k] = {1, . . . , k}.

We use common asymptotic notation to relate functions of n, as follows. If f = O(g) or g = Ω(f), then
there exists a constant C such that f(n) ≤ Cg(n) for every n ∈ N. When the implicit constant C depends
on ε, we will denote this in the subscript, using, for example f = Oε(g). If f = ω(g) or g = o(f), for the
non-zero function g, then f(n)/g(n) → ∞ as n → ∞. When, for example, Ω(f) is used in expressions,
we mean that this can be replaced by some function g = Ω(f) so that the expression holds. Many of
our lemmas hold for n ≥ n0(ε), for some function n0 depending on ε. In the proofs we do not mention
this explicitly, but only note that we take ‘n sufficiently large’ where our argument requires n to be large.
Similarly, when f = ω(g) or f = o(g) we mean that this is true for each fixed ε. If f = O(g) and g = O(f),
then we say that f = Θ(g).

For clarity of presentation we do not include floor and ceiling symbols where they are not crucial.

2 Outline and proof of a key lemma

2.1 Proof sketch and outline

Pseudorandom digraphs. We will build a Hamilton cycle in any sufficiently large digraph which
satisfies certain pseudorandom properties, before showing that random digraphs resiliently contain such
a digraph. These properties are defined precisely in Definition 2.1, but, roughly speaking, they say the
following, where, in our more informal discussion, we say a set expands if its in- and out-neighbourhood
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is comfortably larger than the set itself. The exact parameters of the expansion we use are found in
Definition 2.1.

• The minimum and maximum in- and out-degrees are bounded (see A1).

• Small sets with many incident edges expand well (see A2 and A3).

• Medium-sized sets expand to more than one half of the vertex set (see A4).

The first two properties are naturally resilient (if the minimum degree bounds are reduced by an
appropriate factor). The third condition is naturally almost surely (1/2 − o(1))-resilient in D(n, p) if
p = ω(1/n). Typically, here, medium-sized sets will expand to almost all of the vertex set. Then,
removing at most (1/2− ε) of the in- and out-degrees around any vertex will only reduce the size of the
in- and out-neighbourhood by at most a factor of (1/2− ε/2), so the third condition holds resiliently.

Boosting the minimum degrees. As we consider every Hamiltonian digraph in the random digraph
process, we work with digraphs with very low minimum in- or out-degree. However, we use a natural
modification to increase the minimum degree when there are a small number of vertices with low in- or
out-degree. After the removal of edges, we take each low degree vertex and assign it both an in- and out-
neighbour, before deleting the low degree vertex and merging its assigned in-neighbour into its assigned
out-neighbour (see Definition 2.5). This creates the pseudorandom digraph in which we find a Hamilton
cycle. Taking this cycle, undoing the merging, and putting the low degree vertices between their assigned
neighbours, creates a Hamilton cycle in the original digraph.

Hamilton cycles in pseudorandom digraphs. We create a Hamilton cycle in a pseudorandom digraph
D using the same broad outline as Ferber, Nenadov, Noever, Peter and Škorić [11]. We use the absorbing
method, first given as a general method by Rödl, Ruciński and Szemerédi [28]. We find a directed path P
in D in combination with a reservoir R in V (D) \ V (P ), so that, given any subset of vertices R′ ⊂ R, we
can find a directed path with vertex set V (P ) ∪ R′ and the same start and end vertices as P . Dividing
the vertices V (D) \ (V (P )∪R) in the digraph into equal sized sets at random, we find matchings between
them to create a small number of directed paths which cover the remaining vertices. Using vertices in R,
we then join these paths into a directed cycle with P – say the cycle is Q. This gives a cycle covering
all the vertices except for R \ V (Q). Using the absorbing property we then find a path with vertex set
V (P ) ∪ (R \ V (Q)) and the same end vertices as P , and replace P with this path in Q to get a Hamilton
cycle.

The improvements we make from the methods of Ferber, Nenadov, Noever, Peter and Škorić [11] come
from three areas, as follows.

• We use a more efficient absorbing structure so that the reservoir may have size Ω(n log n/ log[2] n).
Our reservoir in fact consists of disjoint directed paths, not vertices. We contract these paths into
vertices in the obvious manner, and use these vertices as the reservoir. We then find a Hamilton
cycle in the modified digraph, before replacing each contracted vertex by its original path to get a
Hamilton cycle in the original digraph.

• To construct absorbers and join paths into a cycle we develop and use a directed graph version of
some path connection techniques by Glebov, Krivelevich and Johannsen [15]

• We use the local lemma to randomly partition the vertex set into subsets and find matchings between
them.

The first area represents the major innovation of this paper, while the subsequent two areas require
quite a few technicalities. Due to this, we structure the paper so that the most important part of the
argument appears first, in the rest of this section.

Outline. In the rest of this section, we define our notion of pseudorandomness precisely, before defining
a good partition. We then prove a key lemma, Lemma 2.7, that says any digraph with a good partition is
Hamiltonian. This allows us to give the most important part of our argument, before embarking on the
more technical aspects. Finally, we cover some useful results from the literature.
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In Section 3, we give our use of the local lemma to find useful vertex partitions. In Section 4, we give
a digraph version of techniques by Glebov, Krivelevich and Johannsen [15] for finding connecting paths.
In Section 5, we divide the vertex set into subsets and find matchings between them in order to cover
most of the digraph with a small number of directed paths. In Section 6, we combine this all to show that
any sufficiently large pseudorandom digraph has a good partition. Finally, then, in Section 7, we find the
pseudorandom properties in a random digraph needed to prove Theorem 1.3, and also show the required
limits of resilience.

2.2 Pseudorandom digraphs and good partitions

We will begin by defining a (d, ε)-pseudorandom digraph, and a good partition of a digraph. A good
partition is defined essentially as one with the properties needed to carry through our construction of a
directed Hamilton cycle. On the other hand, the properties of a pseudorandom digraph more naturally
reflect those of a typical random digraph. For example, for each ε > 0, if p = ω(log n/n), then D(n, p) is
typically (d, ε)-pseudorandom with d = pn/2 log n.

Definition 2.1. An n-vertex digraph D is (d, ε)-pseudorandom if the following properties hold with

m = n log[3] n/d log n.

A1 δ±(D) ≥ d log n and ∆±(D) ≤ 106d log n.

A2 For each j ∈ {+,−} and any disjoint sets A,B ⊂ V (D), with |A| ≤ 2m, and, for each v ∈ A,

dj(v,B) ≥ d log[2] n/ log[4] n, we have |B| ≥ 10|A|.

A3 For each j ∈ {+,−} and any disjoint sets A,B ⊂ V (D), with |A| ≤ 2m, and, for each v ∈ A,
dj(v,B) ≥ d(log n)2/3, we have |B| ≥ (log n)1/3|A|.

A4 Every set A ⊂ V (D) with |A| = m satisfies |N±(A)| ≥ (1/2 + ε)n.

We will show that every sufficiently large pseudorandom digraph is Hamiltonian, as follows.

Theorem 2.2. For each ε > 0, there exists some n0 = n0(ε) such that, for every d ≥ 10−5, every
(d, ε)-pseudorandom digraph with at least n0 vertices is Hamiltonian.

To show this, we will show that any sufficiently large pseudorandom digraph has a good partition (see
Lemma 6.2). This definition requires that directed cycles be found through particular edges. For this,
we define the following weak and strong connection properties, where the key difference is that the latter
property allows a cycle to be found through particular edges in a given order.

Definition 2.3. A vertex set U in a digraph D is weakly connected if, for any independent set E of
directed edges in the complete digraph with vertex set U , there is a directed cycle in D+E which contains
every edge in E.

Definition 2.4. A vertex set U in a digraph D is strongly connected if, for any ` and any independent
set E = {e1, . . . , e`} of directed edges in the complete digraph with vertex set U , there is a directed cycle
in D + E which contains the edges e1, . . . , e` in that order.

We also merge vertices using the following definition.

Definition 2.5. In a digraph D, we merge a vertex x into a vertex y by deleting x and y and creating a
new vertex z with in-neighbourhood N−D (x) \ {y} and out-neighbourhood N+

D (y) \ {x}.

Using these definitions, we define a good partition as follows.

Definition 2.6. In a digraph D, a vertex partition V (D) = A ∪ B1 ∪ B2 ∪ R1 ∪ R2 ∪ R3 ∪ R4 is an
(`, r)-good partition if the following hold.

B1 Any set U ⊂ V (D) \A with |U | ≤ 4r is strongly connected in D[A ∪ U ].
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B2 If B′ ⊂ V (D) contains B1 ∪ B2, and u, v ∈ B′ \ (B1 ∪ B2) with u 6= v, then there is a collection of
at most ` disjoint directed paths with length at least 1 in D+−→uv which cover B′ exactly, each start
and end in B2, and one of which contains the edge −→uv.

B3 There are matchings M1, M2 and M3 from R2 into R1, R2 into R3 and R4 into R3 in D, respectively,
and |Ri| = r for each i ∈ [4], so that the following holds.

B4 Let f : R1 → R4 be such that, for each v ∈ R1, f(v) and v are the end vertices of an alternating
path in M1 ∪M2 ∪M3. Merge each vertex v ∈ R1 into f(v) in D to get the digraph D′. Let R
be the set of merged vertices in D′. Then, any set U ⊂ B2 with |U | ≤ 2` is weakly connected in
D′[R ∪ U ].

If a digraph has an (`, r)-good partition for some `, r > 0, then we say D has a good partition.

We now give the main part of our argument, showing that any digraph with a good partition is
Hamiltonian.

Lemma 2.7. Any digraph with a good partition is Hamiltonian.

Proof. Let D be a digraph and let V (D) = A ∪ B1 ∪ B2 ∪ R1 ∪ R2 ∪ R3 ∪ R4 be an (`, r)-good partition
of D, for some integers `, r > 0. Using B3, find a matching from R2 into R1, R2 into R3 and R4 into R3,
so that B4 holds. Use these matchings to label vertices so that R1 = {x1, . . . , xr}, R2 = {u1, . . . , ur},
R3 = {v1, . . . , vr} and R4 = {y1, . . . , yr}, and, for each i ∈ [r], −−→uixi,−−→uivi,−−→yivi ∈ E(D).

By B1 applied with E = {−−→uixi,−−→yivi : i ∈ [r]}, we can find disjoint directed paths Pi and Qi, i ∈ [r−1],
and Pr, in D[A ∪ V (E)] so that

u1x1P1y1v1Q1u2x2P2y2v2Q2 . . . urxrPryrvr (1)

is a directed u1, vr-path in D (see Figure 1). Note that, for each i ∈ [r], if xiPiyi is removed from the
path in (1), then, as −−→uivi ∈ E(D), this is still a directed u1, vr-path in D.

u1 v1

x1 y1P1

Q1 ur vr

xr yrPr

ui vi

xi yiPi

Qi

Figure 1: The directed path in (1), with the additional edges −−→uivi, i ∈ [r], in grey.

Let R = R1 ∪ R2 ∪ R3 ∪ R4. Let A′ be the set of vertices in A ∪ R not appearing in (1). Note that,
in fact, A′ ⊂ A. By B2, we can find some m ∈ [`] and vertices and directed paths siSiti, i ∈ [m], so that
{siSiti : i ∈ [m]} is a set of disjoint directed paths in D+−−→u1vr with length at least 1 which exactly covers
A′ ∪ B1 ∪ B2 ∪ {u1, vr} and for which {si, ti : i ∈ [m]} ⊂ B2, and so that S1 contains the edge −−→u1vr. Say
that S1 = S′1u1vrS

′′
1 . Thus, the following set of paths forms a partition of A′ ∪B1 ∪B2 ∪ {u1, vr}.

{s1S
′
1u1} ∪ {vrS′′1 t1} ∪ {siSiti : 2 ≤ i ≤ m} (2)

Furthermore, then, the following paths form a partition of V (D) (as depicted in Figure 2).

{s1S
′
1u1} ∪ {vrS′′1 t1} ∪ {siSiti : 2 ≤ i ≤ m} ∪ {xiPiyi : i ∈ [r]} ∪ {viQiui+1 : 1 ≤ i < r} (3)

Let D′ be the digraph formed from D by, for each i ∈ [r], merging xi into yi to get the vertex zi. Let

R′ = {zi : i ∈ [r]}. Let E′ = {−→siti : i ∈ [m]}. By B4, there are disjoint directed paths T1, . . . , Tm in
D′[R′ ∪ V (E′)] and a bijection f : [m]→ [m] with f(1) = 1 so that

t1T1sf(2)tf(2)T2sf(3)tf(3)T3 . . . sf(m)tf(m)Tms1

is a directed path in D′[R′ ∪ V (E′)] + E′.
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u1 v1

x1 y1P1

Q1 ur vr

xr yrPr

ui vi

xi yiPi

Qi

S′′1S′1

s1 t1

s2 t2

s3 t3

s4 t4

S2

S3

S4

V (D)

Figure 2: The partition of V (D) given by the paths in (3). It remains to connect the si, ti-paths in some
order using some of the paths xjPjyj , j ∈ [r], to find a directed Hamilton cycle.

For each i ∈ [m], replace each vertex zj , j ∈ [r], of Ti by the corresponding directed path xjPjyj and
call the resulting path T ′i . Note that, from the definition of D′, T ′i is a directed path in D. Thus, the path

t1T
′
1sf(2)tf(2)T

′
2sf(3)tf(3)T

′
3 . . . sf(m)tf(m)T

′
ms1

is a directed path in D + E′. Replacing each edge siti, 2 ≤ i ≤ m with the directed path siSiti, and
adding the paths vrS

′′
1 t1 and s1S

′
1u1, we get that

C1 := vrS
′′
1 t1T

′
1sf(2)Sf(2)tf(2)T

′
2sf(3)tf(3)T

′
3 . . . sf(m)Sf(m)tf(m)T

′
ms1S

′
1u1 (4)

is a directed path in D. As the paths in (2) form a partition of A′ ∪B1 ∪B2 ∪ {u1, vr}, P1 has vertex set
A′ ∪ B1 ∪ B2 ∪ {u1, vr} with some sets V (xjPjyj) added (those appearing in some path T ′i ). Using the
definition of A′, then, the path C1 contains every vertex not in the path in (1) as well as u1 and vr, and
the vertices in V (xjPjyj) for some j ∈ [r].

For each j ∈ [r], if xjPjyj is contained in C1, then let Zj be the empty path on no vertices, and
otherwise let Zj be xjPjyj . Thus, the path

C2 := u1Z1v1Q1u2Z2v2Q2 . . . urZrvr (5)

is the path in (1) with some paths xiPiyi, i ∈ [r], removed, which, by construction, is a directed path.
The path C2 contains exactly the vertices in the path in (1) except for those appearing in C1, as well as
u1 and vr. Thus, as the path C1 contains all the vertices not in the path (1), the two paths C1 and C2

form a cycle with vertex set V (D), as required.

2.3 Preliminaries

We will use the following well-known version of Chernoff’s lemma (see, for example, [18, Corollary 2.3]).

Lemma 2.8. If X is a binomial variable with standard parameters n and p, denoted X = Bin(n, p), and
ε satisfies 0 < ε ≤ 3/2, then

P(|X − EX| ≥ εEX) ≤ 2 exp
(
−ε2EX/3

)
.

To find a matching from one set into another, we will use the following simple proposition (for undi-
rected graphs).

Proposition 2.9. Let G be a bipartite graph with vertex classes A and B with size n each, such that, for
each U ⊂ A or U ⊂ B with |U | ≤ dn/2e, |N(U)| ≥ |U |. Then, there is a matching from A to B in G.
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Proof. Let U ⊂ A with dn/2e < |U | ≤ n. By considering a subset U ′ ⊂ U with size dn/2e, we have that
|N(U)| ≥ |N(U ′)| ≥ dn/2e. Thus, |B \N(U)| ≤ n−dn/2e = bn/2c, so that, by the property in the lemma,
|N(B \N(U))| ≥ |B \N(U)|. Thus, as there are no edges between U and B \N(U), we have

|U | ≤ n− |N(B \N(U))| ≤ n− |B \N(U)| = n− (n− |N(U)|),

and therefore |N(U)| ≥ |U |. By the property in the lemma, this is also true for all U ⊂ A with |U | ≤ dn/2e.
Thus, Hall’s matching condition is satisfied, and there is a matching from A into B.

3 Set division using the local lemma

We will take vertex partitions using the following version of the Erdős-Lovász Local Lemma, due to
Lovász [29, Theorem 1.1].

Theorem 3.1. Let A1, . . . , An be events in a probability space Ω with dependence graph G. Suppose there
exist 0 < x1, . . . , xn < 1 such that, for each i ∈ [n],

P(Ai) ≤ xi
∏

j:ij∈E(G)

(1− xj).

Then, no such event Ai occurs with strictly positive probability.

Through the following lemma, we use Theorem 3.1 as follows. Given a vertex set A in a digraph, where
every vertex has plenty of in- and out-neighbours in A, we partition A so that every vertex has at least
some in- and out-neighbours in each subset in the partition. We use this in a similar manner to Hefetz,
Krivelevich and Szabó [16] on their work on the sharp threshold of certain spanning trees in G(n, p).

Lemma 3.2. Let `,m, n, δ,∆ ∈ N with ` ≤ log n, and let ε > 0. Let D be a digraph with n vertices and
A ⊂ V (D) so that the following hold.

C1 For each v ∈ V (D), d±(v,A) ≥ δ and d±(v) ≤ ∆.

C2 For each U ⊂ V (D) with |U | = m, |N±(U,A)| ≥ (1/2 + ε)|A|.

Let a = |A|, and suppose that ai, i ∈ [`], are integers with
∑
i∈[`] ai ≤ a such that the following hold for

each i ∈ [`].

D1
ε2a2i
a ≥ 103`3

D2
ε2a2i
a · exp( aiδ24a ) ≥ 105`3n

D3 exp( aiδ24a ) ≥ 320`∆2

D4 ε2ai
103 ≥ m log( enm )

Then, there are disjoint sets A1, . . . , A` ⊂ A such that |Ai| = ai for each i ∈ [`] and the following hold.

E1 For each v ∈ V (D) and i ∈ [`], aiδ/4a ≤ d±(v,A) ≤ 4ai∆/a.

E2 For each U ⊂ V (D), with |U | = m, and i ∈ [`], |N±(U,Ai)| ≥ (1/2 + ε/2)ai.

Proof. Without loss of generality, assume that a1 ≥ a2 ≥ . . . ≥ a`. Let p = εa`/10`a. For each i ∈ [`], let

pi = (ai/a)− p ≥ (1− ε/10)ai/a. (6)

Let

p0 = min

{
1−

∑
i∈[`]

pi, (`+ 1)p

}
≤ (`+ 1)p ≤ εa`

5a

(6)

≤ p`. (7)
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Noting that
∑`
i=0 pi ≤ 1, pick random disjoint sets

B0, B1, B2, . . . , B` ⊂ A

so that, for each vertex v ∈ V (D), P(v ∈ Bi) = pi for each 0 ≤ i ≤ `, and whether v appears in one of the
sets, and which set it appears in, is independent of the location of all the other vertices in D.

We will show, using Theorem 3.1, that with positive probability the partition satisfies the following
properties.

F1 For each i ∈ [`], |Bi| ≤ ai, and | ∪`i=0 Bi| ≥
∑
i∈[`] ai.

F2 Every subset U ⊂ V (D) with |U | = m satisfies |N±(U,Bi)| ≥ (1/2 + ε/2)ai for each i ∈ [`].

F3 For each v ∈ V (D) and i ∈ [`], aiδ/4a ≤ d±(v,Bi) ≤ 2ai∆/a.

F4 For each v ∈ V (D), d±(v,B0) ≤ 2a`∆/a.

This will be sufficient to prove the lemma. Indeed, there will thus exist some partition in which F1–F4
hold. Let then A1, . . . , A` ⊂ A be disjoint subsets such that Bi ⊂ Ai ⊂ Bi ∪ B0 and |Ai| = ai hold for
each i ∈ [`]; this is possible by F1. As E1 follows from F3 and F4, and E2 follows from F2, we have the
required partition.

Let then B be the event that F1 or F2 does not hold. For each v ∈ V (D), let B(v) be the event that
F3 or F4 does not hold for v. Let

qB = 1/2 and q = 40` exp(−a`δ/24a).

Note that each event B(v) has some dependence on B and at most 4∆2 other events B(v′).
We will show the following two claims.

Claim 1. For each v ∈ V (D), P(B(v)) ≤ q(1− qB)(1− q)4∆2

.

Claim 2. P(B) ≤ qB(1− q)n.

Thus, by Theorem 3.1 and Claims 1 and 2, with positive probability some partition exists for which
no event B or B(v), v ∈ V (D), holds, and thus for which F1–F4 hold, as required. It remains then to
prove the two claims.

Proof of Claim 1. Let v ∈ V (D), j ∈ {+,−} and d = dj(v,A), so that, by C1, δ ≤ d ≤ ∆. For each
i ∈ [`], noting that, by (6), ai/2a ≤ pi ≤ ai/a, we have, using Lemma 2.8, that

P(dj(v,Bi) /∈ (aiδ/4a, 2ai∆/a)) ≤ P(|dj(v,Bi)− pid| > pid/2)

≤ 2 exp(−pid/12) ≤ 2 exp(−aiδ/24a) ≤ 2 exp(−a`δ/24a). (8)

As, by (7), p0 ≤ p`, we also have that

P(dj(v,B0) > 2a`∆/a) ≤ P(dj(v,B`) > 2a`∆/a)
(8)

≤ 2 exp(−a`δ/24a).

Thus, for each v ∈ V (D), we have P(B(v)) ≤ 4(` + 1) exp(−a`δ/24a) ≤ q/5. By D3, we have that
4q∆2 ≤ 1/2. Thus, as qB = 1/2,

P(B(v)) ≤ q · (1− qB) · (1− 4q∆2) ≤ q · (1− qB) · (1− q)4∆2

.

We will prove Claim 2 using two further claims.

Claim 3. P(F1 holds) ≤ 4` exp(−ε2a2
`/102`2a).
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Proof of Claim 3. By (6) and Lemma 2.8, for each i ∈ [`],

P(|Bi| > ai) = P(|Bi| − pia > pa) = P(|Bi| − pia > (p/pi) · pia) ≤ 2 exp(−(p/pi)
2 · pia/3)

= 2 exp(−p2a/3pi) ≤ 2 exp(−p2a/3) = 2 exp(−ε2a2
`/102`2a). (9)

Note that, for each v ∈ A, by (6) and (7)

P(v ∈ ∪`i=0Bi) =
∑̀
i=0

pi = min

{
1,
(∑
i∈[`]

ai
a

)
+ p

}
=: p̄.

If p̄ = 1, then, with probability 1, |∪`i=0Bi| = a ≥
∑
i∈[`] ai, as required, so assume that p̄ = (

∑
i∈[`] ai/a)+

p. Then, by Lemma 2.8,

P
(
| ∪`i=0 Bi| <

∑
i∈[`]

ai

)
≤ P

(
| ∪`i=0 Bi| − p̄a < −pa

)
= P(| ∪`i=0 Bi| − p̄a < −p(p̄a)/p̄)

≤ 2 exp(−(p/p̄)2 · (p̄a)/3) ≤ 2 exp(−p2a/3) = 2 exp(−ε2a2
`/102`2a). (10)

Thus, the claim follows from (10) and, for each i ∈ [`], (9).

Claim 4. For each U ⊂ V (D) with |U | = m, i ∈ [`], and j ∈ {+,−},

P(|N j(U,Bi)| < (1/2 + ε/2)ai) ≤ 2 exp(−ε2ai/400).

Proof of Claim 4. Let U ⊂ V (D) with |U | = m, i ∈ [`], and j ∈ {+,−}, and take U ′ = N j(U,A). By C2,
|U ′| ≥ (1/2 + ε)a, so that

E|U ′ ∩Bi|
(6)

≥ (1/2 + ε)a · (1− ε/10)ai/a ≥ (1/2 + 3ε/4)ai ≥
1/2 + ε/2

1− ε/8
ai.

Thus, we have both E|U ′ ∩Bi| ≥ ai/2 and (1/2 + ε/2)ai ≤ (1− ε/8)E|U ′ ∩Bi|. Therefore, by Lemma 2.8,

P(|U ′∩Bi| < (1/2+ε/2)ai) ≤ 2 exp(−(ε/8)2 ·E|U ′∩Bi|/3) ≤ 2 exp(−(ε/8)2 ·ai/6) ≤ 2 exp(−ε2ai/400).

With these two claims, we can now prove Claim 2, as follows.

Proof of Claim 2. By Claim 3 and Claim 4, and taking into account that there are at most
(
n
m

)
≤ (en/m)m

subsets with size m of V (D), we have

P(B) ≤ 4` exp

(
− ε2a2

`

102`2a

)
+ 4` ·

(en
m

)m
· exp

(
−ε

2a`
400

)
D4
≤ 4` exp

(
− ε2a2

`

102`2a

)
+ 4` exp

(
−ε

2a`
103

)
≤ 8` exp

(
− ε2a2

`

103`2a

)
.

As q ≤ 1/2 and qB = 1/2, we have qB(1− q)n ≥ e−2qn/2. Therefore, for Claim 2, it is sufficient to show
that

8` exp

(
− ε2a2

`

102`2a

)
≤ e−2qn/2,

or, equivalently,
ε2a2

`

102`2a
− log(16`) ≥ 2qn.

By D1, then, it is sufficient to show that

ε2a2
`

102`2a
≥ 4qn.

However, as q = 40` exp(−a`δ/24a), this holds directly from D2. .
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4 Path connection in pseudorandom digraphs

In order to connect edges into a cycle, we develop a directed version of techniques of Glebov, Krivelevich
and Johannsen [15]. In [15], a concept of (d,m)-extendability is defined and used to find trees in any
graph with certain expansion properties. In short, when a tree S is (d,m)-extendable in a graph G and
v ∈ V (S), then, subject to certain simple conditions, we can add a leaf to v in S so that the subsequent
tree remains (d,m)-extendable. As shown in [15], this gives a flexible framework for embedding trees, but
also allows paths to be found between vertex sets in (d,m)-extendable graphs. This latter property is
what we want, except we will adapt this to work with directed graphs.

To do this, we work with two bipartite graphs, H1 and H2 say, with the same vertex classes, A1 and
A2 say. When we apply the results to a digraph D, H1 will typically be the edges in D directed from A1

into A2 (with the directions removed) while H2 will be the edges in D directed from A2 into A1. If the
edges of a path alternate between H1 and H2 then this will be a directed path in the digraph.

To define our version of extendability we need the following definition.

Definition 4.1. Given a forest S, an edge e ∈ E(S) and a vertex set X ⊂ V (S) with exactly one vertex
in each tree in S, let d(e,X) be the distance of the shortest path from any vertex in e to any vertex in X.

Our extendable subgraph S will be a forest, and we use the set X to record which edges of S are in
each graph – they will alternate between H1 and H2 working out from X. We define extendability in a
pair of bipartite graphs as follows.

Definition 4.2. Suppose that H1 and H2 are two bipartite graphs with the same vertex classes A1 and
A2, and that S is a forest containing X ⊂ V (S) ∩ A1 in which exactly one vertex in each tree in S is in
X. For each i ∈ [2], let Si be the subgraph of S with edge set {e ∈ E(S) : d(e,X) ≡ i+ 1 mod 2}.

Then, we say (S,X) is (d,m)-extendable in (H1, H2) if the following hold.

G1 ∆(S) ≤ d.

G2 For each i ∈ [2], Si ⊂ Hi.

G3 For each i ∈ [2] and U ⊂ Ai with 0 < |U | ≤ 2m,

|NHi
(U) \ V (S)| ≥ d|U | − eSi

(U,A3−i).

G4 For each i ∈ [2] and U ⊂ Ai with |U | ≥ m, |NHi
(U)| ≥ |A3−i|/2.

Given a (d,m)-extendable forest that is not too large, we can add an edge to any vertex with degree
less than d in the forest while remaining (d,m)-extendable, as follows.

Lemma 4.3. Let d ≥ 2 and m ≥ 1. Suppose that H1 and H2 are two bipartite graphs with the same
vertex classes A1 and A2, and that S is a forest containing X ⊂ V (S)∩A1 in which exactly one vertex in
each tree in S is in X. Suppose that (S,X) is (d,m)-extendable in (H1, H2), and

|S| ≤ min{|A1|, |A2|}/2− 2dm− 2. (11)

Then, for each i ∈ [2] and x ∈ V (S)∩Ai with dS(x) < d, there exists some y ∈ NHi(x) \ V (S) so that
(S + xy,X) is (d,m)-extendable in (H1, H2).

Proof. Suppose, to the contrary that there is some i ∈ [2] and x ∈ V (S)∩Ai with dS(x) < d for which no
such y exists. For each y ∈ NHi

(x) \ V (S), G1, G2 and G4 for (S + xy,X) to be (d,m)-extendable in
(H1, H2) hold directly from the same statements for the extendability of (S,X) and as y ∈ NHi

(x)\V (S).
Furthermore, as V (S + xy) ∩Ai = V (S) ∩Ai, G3 for the index 3− i holds for (S + xy,X).

Therefore, for each y ∈ NHi(x) \ V (S), there is some set Uy ⊂ Ai such that |Uy| ≤ 2m and

|NHi(Uy) \ V (S + xy)| < d|Uy| − eSi+xy(Uy, A3−i). (12)
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From simple set relations and the extendability of (S,X) in (H1, H2), we have, for each y ∈ NHi(x)\V (S),
that

|NHi
(Uy) \ V (S + xy)|+ 1{y∈NHi

(Uy)} = |NHi
(Uy) \ V (S)|

G3
≥ d|Uy| − eSi

(Uy, A3−i)

= d|Uy| − eSi+xy(Uy, A3−i) + 1{x∈Uy}. (13)

Thus, as (12) holds, we must have that 1{y∈NHi
(Uy)} = 1, 1{x∈Uy} = 0, and that equality holds throughout

(13). That is, we have the following.

G5 For each y ∈ NHi
(x) \ V (S), we have y ∈ NHi

(Uy), |NHi
(Uy) \ V (S)| = d|Uy| − eSi

(Uy, A3−i) and
x /∈ Uy.

We will now show that, in fact, each such Uy must have size at most m, using the following claim.

Claim 5. If U ⊂ Ai and m ≤ |U | ≤ 2m, then |NHi
(U) \ V (S + xy)| > d|U |.

Proof of Claim 5. Let U ⊂ Ai with m ≤ |U | ≤ 2m. Then, from G4 and (11), we have

|NHi
(U) \ V (S + xy)| ≥ |A3−i|/2− |S| − 1 ≥ 2dm+ 1 > d|U |.

Thus, by (12) and Claim 5, for each y ∈ NHi
(x) \ V (S), we have |Uy| < m.

Claim 6. For each Y ⊂ NHi(x) \ V (S), | ∪y∈Y Uy| < m and

|NHi(∪y∈Y Uy) \ V (S)| = d| ∪y∈Y Uy| − eSi(∪y∈Y Uy, A3−i).

Proof of Claim 6. We prove this by induction on |Y |. We know this to be true if |Y | = 1 by G5, so
assume that |Y | > 1, and, picking y0 ∈ Y , that the claim is true for Y ′ := Y \ {y0} and {y0}. Note first
that | ∪y∈Y Uy| ≤ | ∪y∈Y ′ Uy| + |Uy0 | ≤ 2m. Then, by the induction hypothesis and simple set relations
(in particular, that, for all sets A,B in a graph G, |N(A∪B)|+ |N(A∩B)| ≤ |N(A)|+ |N(B)|), we have

|NHi
(∪y∈Y Uy) \ V (S)|+ |NHi

((∪y∈Y ′Uy) ∩ Uy0) \ V (S)|
≤ |NHi

(∪y∈Y ′Uy) \ V (S)|+ |NHi
(Uy0) \ V (S)|

= d| ∪y∈Y ′ Uy| − eSi
(∪y∈Y ′Uy, A3−i) + d|Uy0 | − eSi

(Uy0 , A3−i)

= d| ∪y∈Y Uy|+ d|(∪y∈Y ′Uy) ∩ Uy0 | − eSi
(∪y∈Y Uy, A3−i)− eSi

((∪y∈Y ′Uy) ∩ Uy0 , A3−i). (14)

Now, by G3 applied to (∪y∈Y ′Uy) ∩ Uy0 (noting that this also holds if the set is empty), we have that

|NHi
((∪y∈Y ′Uy) ∩ Uy0) \ V (S)| ≥ d|(∪y∈Y ′Uy) ∩ Uy0 | − eSi

((∪y∈Y ′Uy) ∩ Uy0 , A3−i).

Therefore, in combination with (14), we have

|NHi
(∪y∈Y Uy) \ V (S)| ≤ d| ∪y∈Y Uy| − eSi

(∪y∈Y Uy, A3−i). (15)

Thus, from G3 applied to ∪y∈Y Uy, we have that equality holds in (15), as required. By Claim 5, we also
then have that | ∪y∈Y Uy| < m.

From Claim 6 with Y = NHi(x) \ V (S), we have | ∪y∈Y Uy| < m and

|NHi(∪y∈Y Uy) \ V (S)| = d| ∪y∈Y Uy| − eSi(∪y∈Y Uy, A3−i). (16)

By G5, we have y ∈ NHi(Uy) for each y ∈ Y = NHi(x) \ V (S), and thus

|NHi((∪y∈Y Uy) ∪ {x}) \ V (S)| = |NHi(∪y∈Y Uy) \ V (S)|. (17)

As, by G5, x /∈ Uy for each y ∈ Y , and dS(x) < d, we have

d|(∪y∈Y Uy) ∪ {x}| − eSi((∪y∈Y Uy) ∪ {x}, A3−i) > d| ∪y∈Y Uy| − eSi(∪y∈Y Uy, A3−i). (18)

12



Combining (16), (17) and (18), we have

d|(∪y∈Y Uy) ∪ {x}| − eSi
((∪y∈Y Uy) ∪ {x}, A3−i) > |NHi

((∪y∈Y Uy) ∪ {x}) \ V (S)|.

As |(∪y∈Y Uy)∪{x}| < m+ 1 ≤ 2m, this contradicts G3 in definition of the (d,m)-extendability of (S,X)
in (H1, H2). Thus, some such y as required by the lemma must exist.

Applying Lemma 4.3 repeatedly, we can build an extendable copy of a tree, as follows.

Lemma 4.4. Let d ≥ 2 and m ≥ 1. Let A1 and A2 be disjoint sets and let X ⊂ A1 and X ′ ⊂ X. Let T
be a forest containing X, in which each component has exactly one vertex in X and each vertex in X ′ has
degree 0. Let Tx, x ∈ X ′, be vertex disjoint trees with maximum degree at most d such that Tx contains
x. Let T ′ = ∪x∈X′Tx. Let H1 and H2 be bipartite graphs with vertex classes A1 and A2. Suppose (T,X)
is (d,m)-extendable in (H1, H2) and that

|T |+ |T ′| ≤ min{|A1|, |A2|}/2− 2dm− 1. (19)

Then, there is a copy S of T ′ so that each vertex x ∈ X ′ is copied to itself, V (T ) ∩ V (S) = X ′, and
(T + S,X) is (d,m)-extendable in (H1, H2).

Proof. We will prove this by induction on |E(T ′)|. If |E(T ′)| = 0, then let S be the forest with vertex
set X ′ and no edges, noting this satisfies the lemma as T + S = T . Suppose then that |E(T ′)| ≥ 1. Pick
x0 ∈ X ′ with |E(Tx0)| ≥ 1, let y0 be a leaf of Tx0 which is not equal to x0 and let z0 be the neighbour of
y0 in Tx0 . By the induction hypothesis, there is some copy S′ ⊂ H1 ∪H2 of T ′ − y0 such that x is copied
to x, for each x ∈ X ′, V (T ) ∩ V (S′) = X ′, and (T + S′, X) is (d,m)-extendable in (H1, H2).

Let z′0 be the copy of z0 in S′. Suppose z′0 ∈ A1, where the case where z′0 ∈ A2 follows similarly. As
Tx0

has maximum degree at most d, the degree of z0 in S′ is at most d− 1. By (19),

|T + S′| ≤ |T |+ |T ′| − 1 ≤ min{|A1|, |A2|}/2− 2dm− 2.

Thus, by Lemma 4.3, there is some vertex y′0 in A2 \V (T +S′) so that z′0y
′
0 ∈ E(H1) and, if S := S′+z′0y

′
0,

(T + S,X) is (d,m)-extendable in (H1, H2). Noting that V (T ) ∩ V (S) = V (T ) ∩ V (S′) = X ′, and S is a
copy of T ′ in which each vertex in X ′ is copied to itself, completes the proof.

A critical part of the method used by Glebov, Krivelevich and Johannsen [15] is that not only can we
add a leaf and remain (d,m)-extendable, but we can also remove a leaf and remain (d,m)-extendable, as
follows.

Proposition 4.5. Suppose that H1 and H2 are two bipartite graphs with the same vertex classes A1 and
A2, and that S is a forest containing X ⊂ V (S)∩A1 in which exactly one vertex in each tree in S is in X.
Suppose i ∈ [2], x ∈ V (S) ∩Ai and y ∈ A3−i \ V (S) so that (S + xy,X) is (d,m)-extendable in (H1, H2).

Then, (S,X) is (d,m)-extendable in (H1, H2).

Proof. That G1, G2 and G4 hold for (S,X) to be (d,m)-extendable in (H1, H2) follows directly from
the same conditions for the (d,m)-extendability of (S + xy,X), so we need only check G3.

For each j ∈ [2], let Sj be the subgraph of S with edge set {e ∈ E(S) : d(e,X) ≡ j + 1 mod 2} and
let S′j be the subgraph of S + xy with edge set {e ∈ E(S + xy) : d(e,X) ≡ j + 1 mod 2}. Note that
S′i = Si + xy and S′3−i = S3−i.

Let U ⊂ Ai with 0 < |U | ≤ 2m. If x /∈ U , then, as (S + xy,X) is (d,m)-extendable in (H1, H2),

|NHi(U) \ V (S)| ≥ |NHi(U) \ V (S + xy)|
≥ d|U | − eSi+xy(U,A3−i)

= d|U | − eSi(U,A3−i).

On the other hand, if x ∈ U , then y ∈ NHi
(U), so that

|NHi
(U) \ V (S)| = |NHi

(U) \ V (S + xy)|+ 1

≥ d|U | − eSi+xy(U,A3−i) + 1

= d|U | − eSi
(U,A3−i).
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Finally, let U ⊂ A3−i with 0 < |U | ≤ 2m, then, as y ∈ A3−i, and S′3−i = S3−i,

|NH3−i
(U) \ V (S)| = |NH3−i

(U) \ V (S + xy)|
≥ d|U | − eS′3−i

(U,A3−i)

= d|U | − eS3−i
(U,A3−i).

Thus, G3 holds so that (S,X) is (d,m)-extendable in (H1, H2).

4.1 Path connections

We will now build paths between vertex sets, using the work in this section so far. The next lemma is
the key lemma we use to show weak and strong connectivity in pseudorandom digraphs. We work with
two extendable forests S and T in two vertex disjoint pairs of bipartite graphs (G1, G2) and (H1, H2).
Given vertex sets X ′ ⊂ V (S) and Y ′ ⊂ V (T ), we add a (d − 1)-ary tree disjointly to each vertex in X ′

and Y ′ while retaining the respective extendability properties. The resulting trees attached to X ′ and Y ′

are, together, very large, and this will allow us to connect two trees from X ′ and Y ′ respectively using
another set Z. This allows us to find a path from a vertex in X ′ to a vertex in Y ′ which initially alternates
between edges in G1 and G2, then passes through Z, before alternating between edges in H1 and H2. The
edges in these graphs will be chosen so that this will correspond to a directed path in our initial digraph.
Crucially, we can then use Lemma 4.5 to remove the vertices we added but did not use in this connection,
while remaining extendable. This allows us to efficiently repeat the argument to find more connections.

We emphasise again that this is a fairly direct adaptation of the work of Glebov, Krivelevich and
Johannsen [15], only in a form applicable to digraphs.

Lemma 4.6. Let m ≥ 1, d ≥ 3 and k satisfy k = dlogm/ log(d − 1)e, and let 0 ≤ j ≤ k. Let G be a
graph containing the disjoint vertex sets A1, A2, B1, B2 and Z. Let X ⊂ A1 and Y ⊂ B1. Let S and T
be forests so that there is exactly one vertex of X and Y in each component respectively, and so that

|S|, |T | ≤ 1

2
min{|A1|, |A2|, |B1|, |B2|} − 10dm− 1. (20)

Let G1 and G2 be bipartite subgraphs of G with vertex classes A1 and A2 so that (S,X) is (d,m)-
extendable in (G1, G2). Let H1 and H2 be bipartite subgraphs of G with vertex classes B1 and B2 so that
(T, Y ) is (d,m)-extendable in (H1, H2).

For any U ⊂ A1 ∪ A2 or U ⊂ B1 ∪ B2 with |U | = m, suppose that |NG(U,Z)| > |Z|/2. Suppose that
X ′ ⊂ X and Y ′ ⊂ Y with |X ′|, |Y ′| ≥ m/(d−1)j are sets of vertices with degree 0 in S and T respectively.
Then, there are some x ∈ X ′, y ∈ Y ′, x0 ∈ A1 ∪ A2 and y0 ∈ B1 ∪ B2 and paths P ⊂ G1 ∪ G2 and
Q ⊂ H1 ∪H2 such that the following hold.

• P is an x, x0-path with length at most j and no vertices in V (S) \ {x}, and (S + P,X) is (d,m)-
extendable in (G1, G2).

• Q is a y, y0-path with length at most j and no vertices in V (T ) \ {y}, and (T + Q,Y ) is (d,m)-
extendable in (H1, H2).

• NG(x0) ∩NG(y0) ∩ Z 6= ∅.

Proof. By removing vertices from X ′ and Y ′ if necessary, assume that |X ′| = |Y ′| = dm/(d − 1)je. Let
Sx, x ∈ X ′, be a collection of disjoint (d−1)-ary trees with depth j so that Sx has root x for each x ∈ X ′,
and let S′ = ∪x∈X′Sx. Let Ty, y ∈ Y ′, be a collection of disjoint (d− 1)-ary trees with depth j so that Ty
has root y for each y ∈ Y ′, and let T ′ = ∪y∈Y ′Ty.

Note that, by (20), |S′| ≤ 4md ≤ min{|A1|, |A2|}/2− 2dm− 1− |S|. Therefore, by Lemma 4.4, there
is a copy S′′ of S′ such that x is copied to x for each x ∈ X ′ and (S + S′′, X) is (d,m)-extendable in
(G1, G2). Similarly, by Lemma 4.4, there is a copy T ′′ of T ′ such that y is copied to y for each y ∈ Y ′ and
(T + T ′′, Y ) is (d,m)-extendable in (H1, H2).

Noting that |S′′|, |T ′′| ≥ m, we can find some x0 ∈ V (S′′) and y0 ∈ V (T ′′) such that NG(x0)∩NG(y0)∩
Z 6= ∅. Let x be the vertex in X ′ for which there is a path, P say, in S′′ with length at most j from x
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to x0. Note that, by iteratively removing leaves not in X, S + S′′ can be turned into S + P . Thus, by
repeated application of Lemma 4.5, we have that (S + P,X) is (d,m)-extendable in (G1, G2).

Similarly, there is a y, y0-path, Q say, in T ′′ with length at most j, so that (T + Q,Y ) is (d,m)-
extendable in (H1, H2). Thus, the vertices x, y, x0, y0 and paths P and Q satisfy the requirements in the
lemma.

4.2 Strong connection in pseudorandom digraphs

We now use Lemma 4.6 to show a strong connection property in pseudorandom digraphs. We first use
Lemma 3.2 to find the sets to which we can then apply Lemma 4.6. In our application, we connect pairs
of vertices with paths of length O(log n/ log[2] n).

Theorem 4.7. For each ε > 0, there exists n0 = n0(ε) such that the following holds for every d ≥ 10−5

and n ≥ n0. Let D be an n-vertex (d, ε)-pseudorandom digraph containing a set A with |A| ≥ n/ log[3] n

and in which the following hold with m = n log[3] n/d log n.

1. For each v ∈ V (D), d±(v,A) ≥ d(log n)3/4.

2. For each U ⊂ V (D) with |U | = m, |N±(U,A)| ≥ (1/2 + ε/2)|A|.

Then, any set V ⊂ V (D) \A with

|V | ≤ |A| log[2] n

log n · log[7] n

is strongly connected in D[A ∪ V ].

Proof. Let a = b|A|/5c, δ = d(log n)3/4 and ∆ = 106d log n so that, for each v ∈ V (D), d±(v,A) ≥ δ,
and, by A1 in the definition of (d, ε)-pseudorandomness, we have ∆±(D) ≤ ∆. We will now check the
conditions D1–D4 to apply Lemma 3.2 with δ, ∆, m, n unchanged, ` = 5, a1 = . . . = a5 = a and ε/2 in
place of ε. We have, for D1–D4 in turn, that

ε2a2

4|A|
= Ωε(a) = ω(1),

ε2a2

4|A|
· exp

(
aδ

24|A|

)
≥ ε2a2

4|A|
· exp

(
δ

200

)
= Ωε

(
n

log[3] n
· exp

(
d(log n)3/4

200

))
= ω(n),

exp

(
aδ

24|A|

)
≥ exp

(
δ

200

)
= exp(Ω(d(log n)3/4)) = ω(d2 log2 n) = ω(∆2),

and, as log(en/m) = O(log(d log n)),

ε2a

4 · 103
= Ωε(a) = Ωε

(
n

log[3] n

)
= Ωε

(
m · d log n

(log[3] n)2

)
= ω(m · log(d log n)) = ω

(
m · log

(en
m

))
.

Thus, by Lemma 3.2, for sufficiently large n, there are disjoint vertex sets A′1, A2, B
′
1, B2, Z in A, each

with size a, such that

H1 For each v ∈ V (D) and B ∈ {A′1, A2, B
′
1, B2, Z}, d±(v,B) ≥ aδ/4|A| ≥ d(log n)3/4/40.

H2 For each U ⊂ V (D) with |U | = m and B ∈ {A′1, A2, B
′
1, B2, Z}, |N±(U,B)| ≥ (1/2 + ε/4)|B|.

Now, let

`0 :=
|A| log[2] n

log n · log[7] n
. (21)

and take an arbitrary set E = {−−→yixi : i ∈ [`]} of ` ≤ `0 vertex disjoint edges in the complete digraph with
vertex set V (D) \A. To show the lemma, it is sufficient to find a directed cycle in D[A∪V (E)] +E which
contains the edges −−→y1x1, . . . ,

−−→y`x` in order.
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Let X = {x1, . . . , x`} and Y = {y1, . . . y`}. Let G1 and G2 be the bipartite (undirected) graphs with
vertex set A1 := A′1∪X and A2 and the edges in D from A1 to A2 and A2 to A1 respectively, but without
their directions. Let H1 and H2 be the bipartite (undirected) graphs with vertex set B1 := B′1 ∪ Y and
B2 and the edges in D from B2 to B1 and B1 to B2 respectively, again without their directions. Let G
have vertex set A∪X ∪ Y and consist of the edges in G1, G2, H1, H2 as well as the edges from A1 ∪A2 to
Z and Z to B1 ∪ B2. Let d0 = (log n)1/3 and note that d0m = o(a). Let IX and IY respectively be the
graphs with vertex set X and Y which each have no edges.

Claim 7. For sufficiently large n, (IX , X) is (d0,m)-extendable in (G1, G2) and (IY , Y ) is (d0,m)-
extendable in (H1, H2).

Proof of Claim 7. We will show that (IX , X) is (d0,m)-extendable in (G1, G2). That (IY , Y ) is (d0,m)-
extendable in (H1, H2) follows similarly. Note that G1 and G2 in Definition 4.2 are immediate as IX and
IY have no edges. Furthermore, from H2, for each U ⊂ A2 with |U | ≥ m, we have

|NG2
(U) \X| = |N+

D (U,A1 \X)| = |N+
D (U,A′1)| ≥ (1/2 + ε/4)|A′1| = (1/2 + ε/4)(|A1| − |X|) > |A1|/2,

where we have used that |X| = ` = o(a). Thus, as for each U ⊂ A1 with |U | ≥ m we have, from H2, that
|NG1

(U)| = |N+
D (U,A2)| > |A2|/2, we have that G4 holds.

Let U ⊂ A1 with 0 < |U | ≤ 2m. Each vertex in U has at least d(log n)3/4/40 ≥ d(log n)2/3 out-
neighbours in A2 in D by H1, for sufficiently large n. Thus, as A2 ∩X = ∅, by A3 in the definition of
(d, ε)-pseudorandomness, we have

|NG1
(U,A2 \X)| = |N+

D (U,A2)| ≥ d0|U |. (22)

Furthermore, for each U ⊂ A2 with 0 < |U | ≤ 2m, each vertex in U has at least d(log n)3/4/40 ≥ d(log n)2/3

out-neighbours in A′1 in D by H1, for sufficiently large n. Thus, by A3 in the definition of (d, ε)-
pseudorandomness, we have

|NG2(U,A1 \X)| = |N+
D (U,A′1)| ≥ d0|U |. (23)

In combination, (22) and (23) show that G3 holds to complete the proof of the (d0,m)-extendability of
(IX , X) in (G1, G2).

Let

k =

⌈
logm

log(d0 − 1)

⌉
= O

(
log n

log[2] n

)
(21)
= o

(
a

`0

)
. (24)

Take a maximal set I ⊂ [`] for which there is a vertex disjoint set of directed paths Pi ⊂ G1 ∪ G2 and
Qi ⊂ H1∪H2, i ∈ I, with length at most k each and distinct vertices zi, i ∈ I, in Z such that the following
hold (with addition modulo ` in the indices).

I1 For each i ∈ I, Pi is a path with start vertex xi and no vertices in X \ {xi}, and (IX +
∑
i∈I Pi, X)

is (d0,m)-extendable in (G1, G2).

I2 For each i ∈ I, Qi is a path with start vertex yi+1 and no vertices in Y \{yi+1}, and (IY +
∑
i∈I Qi, Y )

is (d0,m)-extendable in (H1, H2).

I3 For each i ∈ I, Pizi
←−
Qi is a directed xi, yi+1-path in D.

Note that, by Claim 7, I = ∅ satisfies I1–I3, so that such a set I exists.

If I = [`], then, by I3,
∑
i∈I(yixiPizi

←−
Q i) is a directed cycle in E +D[A ∪ V (E)] containing the edges

yixi, i ∈ I, in order, as required. Thus, assume for contradiction that there is some j ∈ [`] \ I.
Let the paths Pi and Qi, and disjoint vertices zi, i ∈ I, satisfy the conditions above. Let Z ′ =

Z \ (∪i∈Izi), and note that |Z ′| ≥ |Z| − `. Thus, by H2, the definition of G, and as ` ≤ `0 = o(a), we
have the following.

I4 For any U ⊂ A1 ∪ A2 or U ⊂ B1 ∪ B2 with |U | = m, we have |NG(U,Z ′)| ≥ (1/2 + ε/4)|Z| − ` >
|Z|/2 ≥ |Z ′|/2.
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Let S = IX +
∑
i∈I Pi and T = IY +

∑
i∈I Qi, so that, by I1 and I2, (S,X) and (T, Y ) are (d0,m)-

extendable in (G1, G2) and (H1, H2) respectively. Note that, by (24), as d0m = o(a), we have

|S|, |T | ≤ `(k + 1) = o(a) = o

(
1

2
min{|A1|, |A2|, |B1|, |B2|} − 10dm0 − 1

)
. (25)

Thus, by (24), (25) and I4, we can apply Lemma 4.6 with X ′ = {xj} and Y ′ = {yj} to get vertices
x′ ∈ A1∪A2, y′ ∈ B1∪B2 and zj ∈ Z ′ and paths Pj ⊂ G1∪G2 and Qj ⊂ H1∪H2 such that the following
hold.

J1 Pj is an xj , x
′-path with length at most k and no vertices in V (S) \ {xj}, and (S + Pj , X) is

(d0,m)-extendable in (G1, G2).

J2 Qj is a yj , y
′-path with length at most k and no vertices in V (T ) \ {yj}, and (T +Qj , Y ) is (d0,m)-

extendable in (H1, H2).

J3 x′zj , zjy
′ ∈ E(G).

Note that, by the definition of (d0,m)-extendability, for each i, the ith edge of Pj , counting from xj is in
Gi mod 2. Thus, by the choice of the graphs G1 and G2, Pj is a directed path in D. Similarly, Qj is, when

reversed, a directed path in D. By J3, and the choice of G, then, Pjzj
←−
Qj is a directed xjyj-path in D.

Then, Pi, Qi and zi, i ∈ I ∪ {j}, satisfy I1–I3, contradicting the maximality of I.

4.3 Weak connection in pseudorandom digraphs

We now use Lemma 4.6 to connect edges into a cycle using directed paths with, on average, length O(1)

(see Theorem 4.8), rather than the (potential) length Ωε(log n/ log[2] n) used in Theorem 4.7. For this to
be feasible we remove the restriction that the original edges appear in the cycle in a specified order – this
is the difference between weak and strong connection (see Definitions 2.3 and 2.4).

Similarly to the proof of Theorem 4.7, we prove Theorem 4.8 by first applying Lemma 3.2 to find sets
before, for any appropriate set of edges E, selecting a maximal set of paths satisfying some conditions.
Lemma 4.6 will then show that we have as many paths as possible, and thus have the cycle we need.
However, for discussion it is more convenient to think about finding paths one-by-one, each time connecting
two of the edges in E and moving closer to the cycle. At the start, there are many potential pairs of edges
we could connect together, allowing us to apply Lemma 4.6 with initially large sets X ′ and Y ′. When we
have connected most of the edges into a cycle we will need to use longer paths, but we will still have, on
average, used short paths.

Theorem 4.8. For each ε > 0, there exists n0 = n0(ε) such that the following holds for every d ≥ 10−5

and n ≥ n0. Let D be an n-vertex (d, ε)-pseudorandom digraph containing disjoint vertex sets A and V
so that

n log[2] n

log n · log[4] n
≤ |A| ≤ n(log[2] n)3

log n
(26)

and |V | ≤ |A|/ log[6] n, and the following hold with m = n log[3] n/d log n.

1. For each v ∈ A ∪ V , d±(v,A) ≥ 40d log[2] n/ log[4] n and d±(v,A ∪ V ) ≤ d(log[2] n)3.

2. For each U ⊂ A ∪ V with |U | = m, |N±(U,A)| ≥ (1/2 + ε/8)|A|.

Then, V is weakly connected in D[A ∪ V ].

Proof. Let a = b|A|/5c, δ = 40d log[2] n/ log[4] n, ∆ = d(log[2] n)3 and n′ = |A ∪ V | ≤ 6a. We will now
check the conditions D1–D4 to apply Lemma 3.2 to D[A ∪ V ] with n′ in place of n, δ, ∆, m unchanged,
` = 5, a1 = . . . = a5 = a and ε/4 in place of ε. For sufficiently large n, we have for D1–D3 in turn that(ε

8

)2

· a
2

|A|
= Ωε(a) = ω(1),
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(ε
8

)2

· a
2

|A|
· exp

(
δa

24|A|

)
= Ωε

(
a · exp

(
d log[2] n

5 log[4] n

))
= ω(a) = ω(n′),

and

exp

(
δa

24|A|

)
= exp

(
Ω

(
d log[2] n

log[4] n

))
= ω(d2(log[2] n)6) = ω(∆2).

Using (26), for D4, note that, as n′ ≤ 6a ≤ 6n(log[2] n)3/ log n, log(en′/m) = O(log(d log[2] n)), and hence

(ε
8

)2

· a

103
= Ωε(a)

(26)
= Ωε

(
n log[2] n

log n · log[4] n

)
= Ωε

(
m · d log[2] n

log[3] n · log[4] n

)
= ω

(
m · log

(
en′

m

))
.

Thus, by Lemma 3.2, for sufficiently large n, there are disjoint vertex sets A′1, A2, B
′
1, B2, Z in A, each

with size a, such that

K1 For each v ∈ V (D) and B ∈ {A′1, A2, B
′
1, B2, Z}, d±(v,B) ≥ d log[2] n/ log[4] n.

K2 For each U ⊂ V (D) with |U | = m and B ∈ {A′1, A2, B
′
1, B2, Z}, |N±(U,B)| ≥ (1/2 + ε/16)|B|.

Now, take an arbitrary set E = {−−→yixi : i ∈ [`]} of ` ≤ |V |/2 = o(a) vertex disjoint edges in the complete
digraph with vertex set V . To show the lemma, it is sufficient to find a directed cycle in D[A∪V (E)] +E
which contains the edges −−→y1x1, . . . ,

−−→y`x` in any order.
Let X = {x1, . . . , x`} and Y = {y1, . . . y`}. Let G1 and G2 be the bipartite (undirected) graphs with

vertex set A1 := A′1∪X and A2 and the edges in D from A1 to A2 and A2 to A1 respectively, but without
their directions. Let H1 and H2 be the bipartite (undirected) graphs with vertex set B1 := B′1 ∪ Y and
B2 and the edges in D from B2 to B1 and B1 to B2 respectively. Let G have vertex set A ∪X ∪ Y and
consist of the edges in G1, G2, H1, H2 as well as the edges from A1 ∪ A2 to Z and Z to B1 ∪ B2, again
without their directions. Let IX and IY respectively be the graphs with vertex set X and Y which each
have no edges. Let d0 = 10.

Claim 8. For sufficiently large n, (IX , X) is (d0,m)-extendable in (G1, G2) and (IY , Y ) is (d0,m)-
extendable in (H1, H2).

Proof of Claim 8. We will show that (IX , X) is (d0,m)-extendable in (G1, G2). That (IY , Y ) is (d0,m)-
extendable in (H1, H2) follows similarly. Note that G1 and G2 in Definition 4.2 hold as IX and IY have
no edges. Furthermore, from K2, we have, for each U ⊂ A2 with |U | ≥ m, that

|NG2
(U,A1) \X| = |N+

D (U,A′1)| ≥ (1/2 + ε/8)|A′1| > |A1|/2,

where we have used that |X| = |A1| − |A′1| = o(a). Thus, as, for each U ⊂ A1 with |U | ≥ m, we have,
from K2, that |NG1

(U,A2)| = |N+
D (U,A2)| > |A2|/2, we have that G4 holds.

Let U ⊂ A1 with 0 < |U | ≤ 2m. By K1, for sufficiently large n, each vertex in U has at least

d log[2] n/ log[4] n out-neighbours in A2 in D. Thus, as A2 ∩ X = ∅, by A3 in the definition of (d, ε)-
pseudorandomness, we have

|NG1
(U,A2 \X)| = |N+

D (U,A2)| ≥ d0|U |. (27)

Furthermore, for sufficiently large n, for each U ⊂ A2 with 0 < |U | ≤ 2m, each vertex in U has

at least d log[2] n/ log[4] n out-neighbours in A′1 in D by K1. Thus, by A3 in the definition of (d, ε)-
pseudorandomness, we have

|NG2
(U,A1 \X)| = |N+

D (U,A′1)| ≥ d0|U |. (28)

In combination, (27) and (28) show that G3 holds to complete the proof of the (d0,m)-extendability of
(IX , X) in (G1, G2).
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We will now cover the edges −−→yixi, i ∈ [`], using as few directed paths as possible, subject to some
conditions (L1–L4 below). We will then use Lemma 4.6 to show that in fact we have one directed path.
Applying Lemma 4.6 again will then allow us to complete this path into a cycle.

To govern the length of the covering paths, we use a function g defined as follows. For each r ∈ [`], let

g(r) =

r∑
i=1

⌈
log

(
4m

`+ 1− i

)/
log(d0 − 1)

⌉
. (29)

As before, let IX and IY be the graphs with no edges and vertex sets X and Y respectively.
Now, for the smallest possible r ∈ [`], find vertex disjoint directed paths Ri, i ∈ [r], in D[A∪V (E)]+E

satisfying the following properties.

L1 Each edge −−→yixi appears in some path Rj , j ∈ [r].

L2 In total, the paths Ri, i ∈ [r], have length at most `+ 4 · g(`− r) and contain at most `− r vertices
in Z.

L3 Each path Ri, i ∈ [r], starts with some vertex yj and ends with some vertex xj′ .

L4 Letting P and Q be the graphs of the edges in the paths Ri which appear (without their directions)
in G1 ∪G2 and H1 ∪H2 respectively, (IX +P,X) is (d0,m)-extendable in (G1, G2) and (IY +Q,Y )
is (d0,m)-extendable in (H1, H2).

Note that the ` paths consisting of just the edges −−→yixi, i ∈ [`], satisfy these properties, so such an r and
such paths Ri, i ∈ [r], exist.

We will show, by contradiction, that r = 1. Let us assume then that r ≥ 2. Let r′ = br/2c ≥ 1. Let
X ′ be a set of r′ end vertices of some of the paths Ri, i ∈ [r], and let Y ′ be a set of r′ start vertices of
some of the paths Ri, i ∈ [r], so that no path Ri, i ∈ [r], has a vertex in both X ′ and Y ′. This is possible
as 2r′ ≤ r. Note that, by L3, X ′ ⊂ X and Y ′ ⊂ Y . Furthermore, each vertex in X ′ appears only in some
edge in E in the paths Ri, i ∈ [r], and therefore has degree 0 in IX + P . Similarly, each vertex in Y ′ has
degree 0 in IY +Q.

We will apply Lemma 4.6 to IX +P and IY +Q, so we need a bound on their size, which we get from
the following claim.

Claim 9.

g(`) =
∑̀
i=1

⌈
log

(
4m

`+ 1− i

)/
log(d0 − 1)

⌉
= o(a)

Proof of Claim 9. For any positive integer s ≥ 2 and each i ∈ [`], if s = dlog (4m/(`+ 1− i))/ log(d0 − 1)e,
then

(d0 − 1)s−1 <
4m

`+ 1− i
≤ (d0 − 1)s,

and thus

`+ 1− 4m

(d0 − 1)s−1
< i ≤ `+ 1− 4m

(d0 − 1)s
.

Certainly, there are at most 1 + 4m/(d0 − 1)s−1 integers which satisfy this.

Thus, we have, as ` ≤ |V |/2 ≤ |A|/ log[6] n = o(a), that

g(`)
(29)
=
∑̀
i=1

⌈
log

(
4m

`+ 1− i

)/
log(d0 − 1)

⌉
≤ `+

dlog(4m)/ log(d0−1)e∑
s=2

(
1 +

4m

(d0 − 1)s−1

)
· s

≤ `+

⌈
log(4m)

log(d0 − 1)

⌉2

+ 4m ·
∞∑
s=2

s

(d0 − 1)s−1

≤ `+ log2 n+ 4m ·O(1) = o(a).
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As ` = o(a), by Claim 9 and L2, we have

|IX + P |+ |IY +Q| ≤ 3`+

r∑
i=1

4

⌈
log

(
4m

`+ 1− i

)/
log(d0 − 1)

⌉
= o(a).

Let Z ′ = Z \ (∪i∈[r]V (Ri)), noting that, by L2, K2 and the definition of G, and as ` = o(a), we have,
for sufficiently large n, that

K2’ For each U ⊂ A1 ∪A2 and U ⊂ B1 ∪B2 with |U | = m, |NG(U,Z ′)| ≥ (1/2 + ε/8)|Z| − ` > |Z ′|/2.

Let k′ = dlog(4m/r)/ log(d0 − 1)e, so that

g(`− r + 1) = g(`− r) + k′, (30)

and |X ′| = |Y ′| = r′ ≥ r/2 ≥ 2m/(d0 − 1)k
′
. Thus, as d0m = o(a) by (26), by Lemma 4.6, there are some

j, j′ ∈ [`], vertices x′ ∈ A1 ∪ A2 and y′ ∈ B1 ∪ B2, and paths P ′ ⊂ G1 ∪G2 and Q′ ⊂ H1 ∪H2 such that
the following hold.

M1 xj ∈ X ′ and yj′ ∈ Y ′.

M2 P ′ is an xj , x
′-path with length at most k′, no vertices in (X ∪ V (P )) \ {xj}, and for which (IX +

P + P ′, X) is (d0,m)-extendable in (G1, G2).

M3 Q′ is a yj′ , y
′-path with length at most k′ and no vertices in (Y ∪V (Q))\{yj′}, and (IY +Q+Q′, Y )

is (d0,m)-extendable in (H1, H2).

M4 NG(x′) ∩NG(y′) ∩ Z ′ 6= ∅.

Note that, by definition of the (d0,m)-extendability, the ith edge of P ′, counting from xj is in Gi mod 2.
Thus, by the choice of the graphs G1 and G2, P ′ is a directed xj , x

′-path in D. Similarly, Q′ is, when
reversed, a directed yj′ , y

′-path in D. Using M4, and noting that, by the choice of G,

NG(x′) ∩NG(y′) ∩ Z ′ = N+
D (x′) ∩N−D (y′) ∩ Z ′,

select a vertex z ∈ Z ′ such that P ′z
←−
Q′ is a directed xjyj′ -path in D.

Note that, by M1 and the choice of X ′ and Y ′, xj is the end vertex of a path different to the path
of which yj′ is the start vertex. Assume, then, by relabelling if necessary, that xj is the end vertex of
Rr−1 and yj′ is the start vertex of Rr. We will show that the r − 1 paths R′i = Ri, i ∈ [r − 2], and

R′r−1 = Rr−1P
′z
←−
Q′Rr satisfy L1–L4, contradicting the definition of r.

By M2 and M3, the choice of Z ′, and as the paths Ri, i ∈ [r], are vertex disjoint, the paths R′i,
i ∈ [r − 1], are vertex disjoint. By L1 for the paths Ri, i ∈ [r], and as the paths R′i contain the paths Ri,
L1 holds for the paths R′i, i ∈ [r− 1]. Each path R′i shares a start vertex with some path Ri′ and an end
vertex with some (potentially different) path Ri′′ , and therefore, as L3 holds for the paths Ri, i ∈ [r], L3
holds for the paths R′i, i ∈ [r − 1].

Note that P + P ′ and Q+Q′ are exactly the graphs of edges in the paths R′i which appear (without
direction) in G1 ∪G2 and H1 ∪H2 respectively. Thus, L4 holds for the paths R′i, i ∈ [r − 1], by M2 and
M3.

The paths R′i, i ∈ [r−1], contain one additional vertex in Z compared to the paths Ri, i ∈ [r], so that,
in total, they have at most `− (r− 1) vertices in Z by L2 for the paths Ri. As P ′ and Q′ have length at
most k′, we have, by L2 for the paths Ri again, that the paths R′i have total length at most

`+ 4g(`− r) + 2k′ + 2 ≤ `+ 4g(`− r) + 4k′
(30)

≤ `+ 4g(`− r + 1).

Therefore, L2 holds for the paths R′i, i ∈ [r− 1]. This completes the proof that L1–L4 hold for the paths
R′i, i ∈ [r − 1], contradicting the choice of r.

Therefore, we have that r = 1. That is, with relabelling, there is a single path R in D[A ∪ V (E)] +E
containing each edge in E, with start vertex y1 and end vertex x2, with length at most o(a) (using Claim 9)
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and at most ` vertices in Z such that the following holds. If R′ and R′′ are the the graphs of edges in the
paths R which appear (without direction) in G1 ∪ G2 and H1 ∪ H2 respectively, then (IX + R′, X) and
(IY +R′′, Y ) are (d0,m) extendable in (G1, G2) and (H1, H2) respectively.

Let Z ′′ = Z \ V (R), and note that, as |Z ∩ V (R)| ≤ ` = o(a), for sufficiently large n, by K2, we have
that

K2” For each U ⊂ A1 ∪A2 and U ⊂ B1 ∪B2 with |U | = m, |NG(U,Z ′′)| ≥ (1/2 + ε/8)|Z| − ` > |Z ′′|/2.

Let k = dlog(2m)/ log(d0 − 1)e. By Claim 9, L2 and L4, and as d0m = o(a), for sufficiently large n, by
Lemma 4.6 there are vertices x′′ ∈ A1 ∪A2 and y′′ ∈ B1 ∪B2 and paths P ′′ ⊂ G1 ∪G2 and Q′′ ⊂ H1 ∪H2

such that the following hold.

N1 P ′′ is an x2, x
′′-path with length at most k and no vertices in V (R)\{x2}, and for which (IX +R′+

P ′′, X) is (d0,m)-extendable in (G1, G2).

N2 Q′′ is a y1, y
′′-path with length at most k and no vertices in V (R) \ {y1}, and (IY +R′′ +Q′′, Y ) is

(d0,m)-extendable in (H1, H2).

N3 NG(x′′) ∩NG(y′′) ∩ Z ′ 6= ∅.

Note that, by the definition of (d0,m)-extendability, the ith edge of P ′′, counting from x2 is in Gi mod 2.
Thus, by the choice of the graphs G1 and G2, P ′′ is a directed x2, x

′′-path in D. Similarly, Q′′ is, when
reversed, a directed y′′, y1-path in D. Using N3, and noting that, by the choice of G,

NG(x′′) ∩NG(y′′) ∩ Z ′′ = N+
D (x′′) ∩N−D (y′′) ∩ Z ′′,

select a vertex z′ ∈ Z ′′ such that P ′′z′
←−
Q′′ is a directed x2y1-path in D[A ∪ V ].

Therefore, RP ′′z′
←−
Q′′ is a directed cycle in D[A ∪ V ] + E containing each edge in E, as required.

5 Covering vertices with directed paths

To cover most of the vertices with few directed paths we divide the vertex sets into random sets using the
local lemma and then find matchings between the sets. It would be nice to do this in one application of
Lemma 3.2, however this is not possible. Essentially, this would attempt to track the in- and out-degrees
of all vertices into each random set, which is too much for our methods. (Specifically, the maximum
degree conditions are too weak for D3 in Lemma 3.2 to hold.) However, for each vertex we only need to
track its in- and out-degree into the sets we want to match it with. We therefore apply Lemma 3.2 in
two rounds. First, we divide the digraph into medium-sized sets. Next, we take smaller subdigraphs and
apply Lemma 3.2 to them, so that we track the in- and out-degrees of fewer vertices in each division. (The
subdigraph has stronger maximum degree conditions, so that D3 will hold.) This divides the medium-sized
sets into the size we want.

Lemma 5.1. For each ε > 0, there exists n0 = n0(ε) such that the following holds for every d ≥ 10−5

and n ≥ n0. Suppose an n-vertex (d, ε)-pseudorandom digraph D contains a set B with |B| ≥ n/2 such

that the following hold with m = n log[3] n/d log n.

O1 For each v ∈ V (D), d±(v,B) ≥ d log n/8.

O2 For each U ⊂ V (D) with |U | = m, |N±(U,B)| ≥ (1/2 + ε/2)|B|.

Then, there is a collection of at most n log[2] n/(20 log n · log[5] n) directed paths (with single vertices

permitted) which partition B, so that any vertex v ∈ V (D) has at most d(log[2] n)2 in- or out-neighbours
among their start and end vertices.

Proof. Let ` = n log[2] n/(50 log n · log[5] n) and k = b|B|/`c. Noting that k = Θ(log n · log[5] n/ log[2] n),

take integers r and k1, . . . , kr such that log[2] n ≤ ki ≤ 2 log[2] n and
∑
i∈[r] ki = k, and note that, for

sufficiently large n, r ≤ log n. We will now check that the conditions D1–D4 hold for an application of
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Lemma 3.2 with ai = ki` for each 2 ≤ i ≤ r and a1 = |B| − a2 − . . . − ar ≥ k1`. Note that if these
conditions hold for k1`, then they also hold for a1 ≥ k`.

Let ∆ = 106d log n, so that from the definition of a (d, ε)-pseudorandom digraph, we have ∆±(D) ≤ ∆.
Let δ = d log n/8, so that, for each v ∈ V (D), d±(v,B) ≥ δ by O1. For D1, note that, for each i ∈ [r],(ε

4

)2

· (ki`)
2

|B|
= Ωε

(
n

log2 n

)
= ω(r3).

Now, for each i ∈ [r], note that

δ(ki`)

24|B|
≥ d log n · (ki`)

192n
= Ωε

(
dki log[2] n

log[5] n

)
= ω

(
d log[2] n

)
. (31)

For D2, then, for each i ∈ [r] and sufficiently large n, we have(ε
2

)2

· (ki`)
2

|B|
· exp

(
δ(ki`)

24|B|

)
(31)

≥ ε2`2

4n
· exp

(
ω
(
d log[2] n

))
= Ωε

(
n

log2 n
· log6 n

)
= ω(nr3).

Furthermore, for D3, for each i ∈ [r], as r ≤ log n and ∆ = 106d log n, we have

exp

(
δ(ki`)

24|B|

)
(31)
= exp

(
ω(d log[2] n)

)
= ω(r∆2).

Finally, as log(en/m) = O(log(d log n)), we have, for each i ∈ [r],(ε
2

)2

· ki`
103

= Ωε

(
n(log[2] n)2

log n · log[5] n

)
= Ωε

(
m · d(log[2] n)2

log[3] n · log[5] n

)
= ω

(
m log

(en
m

))
.

Thus, for sufficiently large n, by Lemma 3.2, we can take disjoint sets B1, . . . , Br in B so that

P1 For each 2 ≤ i ≤ r, |Bi| = ki`, and k1` ≤ |B1| = |B| − a2 − . . .− ar ≤ (k1 + 1)`.

P2 For each i ∈ [r] and v ∈ B,

δki`

4|B|
≤ d±(v,Bi) ≤

4∆(ki + 1)`

|B|
≤ 16∆ki`

n
= o(d(log[2] n)2).

P3 For each U ⊂ B with |U | = m, we have |N±(U,Bi)| ≥ (1/2 + ε/4)|U |.

The directed paths we find will all start and end in B1 ∪Br, so that, by P2, for sufficiently large n, every
vertex in B has at most d(log[2] n)2 in- and out-neighbours among these vertices.

Let D1 = D[B1 ∪B2], Dr = D[Br−1 ∪Br], and, for each 2 ≤ i ≤ r − 1, let Di = D[Bi−1 ∪Bi ∪Bi+1].
For each i ∈ [r], let

ni = |Di| ≤ 3ki`+ ` ≤ n(log[2] n)2

log n
≤ m · d(log[2] n)2. (32)

Let ∆̄ = d(log[2] n)2/2, so that, by P2, for sufficiently large n, ∆(Di) ≤ ∆̄ for each i ∈ [r].

Let d0 = d log[2] n/ log[4] n, so that exp(d0) = ω(ki∆̄
2) for each i ∈ [r]. Furthermore, for each i ∈ [r],

let δi = δki`/4|B|, so that, by P2, for each v ∈ V (Di),

d±(v,Bi) ≥
δki`

4|B|
= δi ≥

(d log n) · ki · `
32n

≥ dki log[2] n

104 log[5] n
= ω(kid0). (33)

We will now check the conditions D1–D4 to apply Lemma 3.2 with ε/4 in place of ε to the set Bi in
the digraph Di, for each i ∈ [r], to find, in Bi, ki disjoint sets with size `. Note that, for each i ∈ [r],
|Bi| ≤ ki`+ `. First, for D1, we have, for each i ∈ [r],(ε

4

)2

· `2

ki`+ `
= Ωε

(
`

ki

)
= ω

(
n

log2 n

)
= ω(k3

i ).
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Secondly, for D2, we have, for each i ∈ [r],(ε
4

)2

· `2

ki`+ `
· exp

(
`δi

24(ki`+ `)

)
= Ωε

(
`

ki
· exp

(
δi

48ki

))
(33)
= Ωε

(
n

log n · log[5] n
exp (d0)

)
= Ωε

(
n

log n
· (log[2] n)6

)
(32)
= ω(nik

3
i ).

Furthermore, for D3, we have, for each i ∈ [r],

exp

(
`δi

24(ki`+ `)

)
(33)
= Ωε (exp (d0)) = ω(ki∆̄

2).

Finally, for D4, for each i ∈ [r], by (32), we have log(eni/m) = O(log(d log[2] n)), we have

(ε
4

)2

· `

103
= Ωε

(
n log[2] n

log n · log[5] n

)
= Ωε

(
m · d log[2] n

log[5] n · log[3] n

)
= ω

(
m log

(eni
m

))
.

Thus, for sufficiently large n, by Lemma 3.2 applied to the set Bi in the digraph Di, for each i ∈ [r], we
can find in Bi disjoint sets Bi,1, . . . , Bi,ki so that the following hold.

Q1 For each i ∈ [r] and j ∈ [ki], |Bi,j | = `.

Q2 For each i ∈ [r] and v ∈ V (Di), d
±(v,Bi) ≥ δi`/4(ki`+ `) ≥ d0 (using (33)).

Q3 For each i ∈ [r] and U ⊂ V (Di) with |U | = m, we have |N±(U,Bi)| ≥ (1/2 + ε/8)|Bi|.

Note that, for 2 ≤ i ≤ r, the sets Bi,1, . . . , Bi,ki partition Bi, and the sets B1,1, . . . , B1,k1 cover all but at
most ` vertices in B1.

Recall that
∑
i∈[r] ki = k. Relabelling the sets B1,1, . . . , B1,k1 , B2,1, . . . , B2,k2 , . . . , Br,1, . . . , Br,kr as

C1, . . . , Ck respectively, from Q1–Q3, we have that |Ci| = ` for each i ∈ [k] and the following hold.

R1 For each 1 ≤ i ≤ k − 1 and v ∈ Ci, d+(v, Ci+1) ≥ d0.

R2 For each 2 ≤ i ≤ k and v ∈ Ci, d−(v, Ci−1) ≥ d0.

R3 For each 1 ≤ i ≤ k−1 and U ⊂ Ci withm ≤ |U | ≤ d`/2e, we have |N+(U,Ci+1)| ≥ (1/2+ε/8)` ≥ |U |.

R4 For each 2 ≤ i ≤ k and U ⊂ Ci with m ≤ |U | ≤ d`/2e, we have |N−(U,Ci−1)| ≥ (1/2 + ε/8)` ≥ |U |.

By R1, R2 and A2 in the definition of (d, ε)-pseudorandomness, the following hold.

R1’ For each 1 ≤ i ≤ r − 1 and U ⊂ Ci with |U | ≤ m, |N+(U,Ci+1)| ≥ |U |.

R2’ For each 2 ≤ i ≤ r and U ⊂ Ci with |U | ≤ m, |N−(U,Ci−1)| ≥ |U |.

Thus, for each i ∈ [r − 1], by R1’, R2’, R3, R4 and Proposition 2.9 applied to the bipartite graph
between Ci and Ci+1 with (undirected) edges those directed from Ci to Ci+1 in D, there is a matching
from Ci into Ci+1 in D. Combining such matchings gives ` vertex disjoint paths covering C1 ∪ . . . ∪ Ck.
These paths start in B1 and end in Br, and cover all the vertices in B except for |B1|−k1` ≤ ` vertices in
B1. Taking these paths with the uncovered vertices in B1, to get at most 2` paths, thus gives the required
partition of B.

We wish to cover most of our digraph with few paths, all of which end in a certain subset B2, in order
to have B2 in the definition of a good partition. To do this, we use Lemma 5.1 to cover the vertices outside
of B2 with few paths, and then use Lemma 3.2 in the same way as before to find directed paths covering
B2. By matching the end vertices of the paths outside B2 into some of the start vertices of the paths in
B2, and similarly attaching the start vertices of the paths outside B2 into some of the end vertices of the
paths in B2, we will get a set of paths which start and end in B2.
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Lemma 5.2. For each ε > 0, there exists n0 = n0(ε) such that the following holds for every d ≥ 10−5

and n ≥ n0. Suppose an n-vertex (d, ε)-pseudorandom digraph D contains disjoint sets B1 and B2 such
that the following hold with

d0 =
d log[2] n

log[4] n
, ` =

n log[2] n

log n · log[5] n
, and k = log[2] n.

P1 |B1| ≥ n/2 and |B2| = k`.

P2 For each v ∈ V (D), d±(v,B1) ≥ d log n/8 and, for each U ⊂ V (D) with |U | = m, |N±(U,B1)| ≥
(1/2 + ε/2)|B1|.

P3 For each v ∈ V (D), 4d0k ≤ d±(v,B2) ≤ d(log[2] n)2 and, for each U ⊂ V (D) with |U | = m,
|N±(U,B2)| ≥ (1/2 + ε/4)|B2|.

Then, for any set V ⊂ V (D) \ (B1 ∪B2) with |V | ≤ ε|B1|/20− 2 and u, v ∈ V (D) \ (V ∪B1 ∪B2), there
is a set of at most ` directed paths with length at least 1 which partition V ∪ B1 ∪ B2 ∪ {u, v}, each start
and end in B2, and one of which contains −→uv.

Proof. Let B = V ∪B1 ∪ {u, v} and note, that, by P2, as |V ∪ {u, v}| ≤ ε|B|/20, we have the following.

S1 For each U ⊂ V (D) with |U | = m, we have |N±(U,B)| ≥ (1/2 + ε/2)|B1| ≥ (1/2 + ε/4)|B|.

S2 For each v ∈ V (D), we have d±(v,B) ≥ d log n/8.

Thus, by S1, S2, P1 and Lemma 5.1, there is a collection of directed paths P1, . . . , Pr, for some r ≤ `/20,
in D which partition B (allowing single vertices as paths) and so that every vertex in D has at most

d(log[2] n)2 in- and out-neighbours among their start and end vertices. Let Pr+1 be the path with length
1 consisting of the edge −→uv. For each i ∈ [r + 1], label vertices so that Pi is an xi, yi-path (noting that
we may have xi = yi). Let X = {x1, . . . , xr+1} and Y = {y1, . . . , yr+1}, and let D′ be the digraph on the
vertex set B2 ∪X ∪ Y whose edges are the edges in D[B2 ∪X ∪ Y ] with at least one vertex in B2.

Note that every vertex has at most (log[2] n)2 + 2 in- or out-neighbours in X ∪ Y . Combining this

with P3, letting ∆̄ = d(log[2] n)3, we have, for sufficiently large n, that ∆±(D′) ≤ ∆̄. Furthermore,

let k1 = k and n1 = |D′|, so that n1 ≤ 2k1`, log[2] n ≤ k1 ≤ 2 log[2] n and, for each v ∈ V (D′),
d±(v,B2) ≥ 4k1d0 by P3. The conditions D1–D4 for an application of Lemma 3.2 to D′ to partition B2

into k sets with size ` hold very similarly to the same conditions in the second application of this lemma
in the proof of Lemma 5.1 (from (32) onwards) – all that differs is a factor of 50 in the value of `.

Thus, for sufficiently large n, by Lemma 3.2 there is a partition C1 ∪ . . .∪Ck of B2 such that |Ci| = `
for each i ∈ [`], and the following hold.

T1 For each i ∈ [`] and U ⊂ V (D′) with |U | = m, we have |N±(U,Ci)| ≥ (1/2 + ε/8)|Ci|.

T2 For each v ∈ V (D′) and i ∈ [`], we have d±(v, Ci) ≥ 4kd0 · `/4k` = d0.

Similarly to the reasoning in the proof of Lemma 5.1, for each i ∈ [k− 1], there is a matching from Ci
into Ci+1. Combine these matchings to get directed paths Qi, i ∈ [`], which cover B2. Similarly to the
reasoning in the proof of Lemma 5.1, by T1 and T2, for each U ⊂ X we have |N−(U,Ck)| ≥ |U |, and for
each U ⊂ Y we have |N+(U,C1)| ≥ |U |. Note that here it is important that |X| ≤ |Ck|/2 and |Y | ≤ |C1|/2.
Thus, as Hall’s matching condition is satisfied, we can find vertex disjoint edges ei, i ∈ [r + 1], directed
from Y into C1, and vertex disjoint edges fi, i ∈ [r + 1] directed from Ck into X. Renaming if necessary,
assume that, for each i ∈ [r + 1], xi ∈ fi and yi ∈ ei.

Note that combining the paths Qi, i ∈ [`], and paths Pi + ei + fi, i ∈ [r + 1], gives a collection of at
most ` directed paths and cycles in D which cover V ∪B1 ∪B2 ∪ {u, v} and so that each path starts and
ends in B2, each cycle contains some path Qi, and as the edge −→uv is contained in Pr+1, it is contained in
one path or cycle. Breaking an edge in some Qi in each cycle, gives then the required set of paths.
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6 Finding an (`, r)-good partition

To find a good partition of a pseudorandom digraph, we first apply Lemma 3.2 twice to find the necessary
sets for the good partition and record the properties we get, as follows.

Lemma 6.1. For each ε > 0, there exists n0 = n0(ε) such that the following holds for every d ≥ 10−5

and n ≥ n0 with

k = log[2] n, ` =
n log[2] n

log n · log[5] n
, d0 =

d log[2] n

log[4] n
, m =

n log[3] n

d log n
, and r =

n log[2] n

log n · log[6] n
.

Every n-vertex (d, ε)-pseudorandom digraph D has a partition V (D) = A ∪B1 ∪B2 ∪R1 ∪R2 ∪R3 ∪R4

such that the following hold.

U1 |A| = εn/40, |B2| = k` and |R1| = |R2| = |R3| = |R4| = r.

U2 For each v ∈ V (D), d±(v,A) ≥ d(log n)3/4 and, for each U ⊂ V (D) with |U | = m, |N±(U,A)| ≥
(1/2 + ε/2)|A|.

U3 For each v ∈ V (D), d±(v,B1) ≥ d log n/8 and, for each U ⊂ V (D) with |U | = m, |N±(U,B1)| ≥
(1/2 + ε/2)|B1|.

U4 For each v ∈ V (D), 4d0k ≤ d±(v,B2) ≤ d(log[2] n)2 and, for each U ⊂ V (D) with |U | = m,
|N±(U,B2)| ≥ (1/2 + ε/4)|B2|.

U5 For each v ∈ B2 ∪ R1 ∪ R2 ∪ R3 ∪ R4 and i ∈ [4], d±(v,Ri) ≥ 40d0, and, for each U ⊂ B2 ∪ R1 ∪
R2 ∪R3 ∪R4 with |U | = m, |N±(U,Ri)| ≥ (1/2 + ε/4)|Ri|.

Proof. We will apply Lemma 3.2 twice, again so that the second application may be with a stronger
maximum degree condition. First, we will check the conditions D1–D4 for an application of Lemma 3.2
to find a partition V (D) = A ∪B1 ∪B′2 ∪B′3. Let

a1 =
εn

40
, a3 = (1− ε/5)k`, a4 =

εk`

5
+ 4r, and a2 = n− a1 − a3 − a4 ≥

n

2
, (34)

where the last inequality follows for sufficiently large n. Let δ = d log n and ∆ = 106d log n. From the
definition of (d, ε)-pseudorandomness, we have that δ±(D) ≥ δ and ∆±(D) ≤ ∆.

Note that a1, a2, a3 ≥ a4, so that we need only check D1–D4 for a4. First, for D1, we have

ε2a2
4

n
= Ωε

(
n

log2 n

)
= ω(1). (35)

Note that k`δ/n = ω(d log[2] n). Thus, for D2, we have

ε2a2
4

n
· exp

(
a4δ

24n

)
(35)
= Ωε

(
n

log2 n
· exp

(
εk`δ

103n

))
=

n

log2 n
· exp

(
ω(d log[2] n)

)
= ω(n).

Furthermore, for D3, we have

exp

(
a4δ

24n

)
≥ exp

(
εk`δ

103n

)
= exp

(
ω(d log[2] n)

)
= ω(d2 log2 n) = ω(∆2).

Finally, we have that log(en/m) = O(log(d log n)), so that, for D4,

ε2a4

103
= Ωε(k`) = Ωε

(
n(log[2] n)2

log n · log[5] n

)
= Ωε

(
m · d(log[2] n)2

log[3] n · log[5] n

)
= ω

(
m · log

(en
m

))
.

As a1 = εn/40, a1δ/4n = εd log n/160 = ω(d(log n)3/4). As a2 ≥ n/2, a2δ/4n ≥ d log n/8. Therefore,
for sufficiently large n, by Lemma 3.2, V (D) has a partition A ∪B1 ∪B′2 ∪B′3 so that |A| = a1 = εn/40,
|B1| = a2, |B′2| = a3 = (1−ε/5)k`, |B′3| = a4 = εk`/5+4r, and U2 and U3 hold along with the following.
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V1 For each v ∈ V (D), a3δ/4n ≤ d±(v,B′2) ≤ 4a3∆/n, and, for each U ⊂ V (D) with |U | = m,
|N±(U,B′2)| ≥ (1/2 + ε/2)|B′2|.

V2 For each v ∈ V (D), a4δ/4n ≤ d±(v,B′3) ≤ 4a4∆/n, and, for each U ⊂ V (D) with |U | = m,
|N±(U,B′3)| ≥ (1/2 + ε/2)|B′3|.

Let D′ = D[B′2 ∪ B′3]. Let n′ = |D′| = a3 + a4 = k` + 4r ≤ 2k`, for sufficiently large n, and let

∆̄ = d(log[2] n)2. Note that

4(a3 + a4)∆

n
≤ 8k`∆

n
= O

(
d(log[2] n)2

log[5] n

)
= o(∆̄). (36)

Thus, by V1 and V2, for sufficiently large n we have ∆(D′) ≤ ∆̄. Using (34), let

δ′ =
a4δ

4n
≥ εk`δ

20n
= Ωε

(
k` · d log[2] n

r log[6] n

)
= Ωε

(
k`

r
· d0 log[4] n

log[6] n

)
= ω

(
k`

r
· d0

)
. (37)

By V2, for each v ∈ V (D′), we have d±(v,B′3) ≥ δ′.
We will now check the conditions D1–D4 to apply Lemma 3.2 to D′ to get 4 sets, R1, R2, R3 and R4

in B′3, each with size r. First, for D1, as n′ ≤ 2k`, we have(ε
2

)2

· r
2

n′
= Ωε

(
n

log2 n

)
= ω(1).

Next, for D2, we have, as n′ ≤ 2k`,

(ε
2

)2

· r
2

n′
· exp

(
rδ′

24n′

)
= Ωε

(
n′ ·

( r
k`

)2

· exp

(
rδ′

24k`

))
(37)
= Ωε

(
n′ ·

(
1

log[2] n

)2

· exp (ω(d0))

)
= ω(n′).

Furthermore, for D3, we have

exp

(
rδ′

24n′

)
≥ exp

(
rδ′

24k`

)
(37)
= exp (ω(d0)) = ω(∆̄2).

Finally, we have that log(en′/m) ≤ log(ek`/m) = O(log(d log[2] n)), so that

(ε
2

)2

· r

103
= Ωε

(
n log[2] n

log n · log[6] n

)
= Ωε

(
m · d log[2] n

log[3] n · log[6] n

)
= ω

(
m · log

(
en′

m

))
.

Thus, by Lemma 3.2 and (37), for sufficiently large n, there are disjoint sets R1, R2, R3, R4 in B′3 so
that the following holds.

V3 For each v ∈ B′2 ∪ B′3 and i ∈ [4], d±(v,Ri) ≥ 40d0, and, for each U ⊂ B′2 ∪ B′3 with |U | = m,
|N±(U,Ri)| ≥ (1/2 + ε/4)|Ri|.

Let B2 = (B′2 ∪B′3) \ (R1 ∪R2 ∪R3 ∪R4), so that |B2| = a3 + a3− 4r = k`. Note that we have chosen our
set sizes so that U1 holds. Note further that B′2 ⊂ B2, so that, by V1, for each U ⊂ V (D) with |U | = m,

|N±(U,B2)| ≥ (1/2 + ε/2)|B′2| = (1/2 + ε/2)(1− ε/5)k` ≥ (1/2 + ε/4)|B2|. (38)

By V1, V2, (36) and (37), and for each v ∈ V (D) we have, for sufficiently large n, 4d0k ≤ d±(v,B2) ≤ ∆̄.
Therefore, in combination with (38), we have that U4 holds.

Finally, by V3, we have that U5 holds. This completes the proof that U1–U5 hold, so we have found
the partition as required.

We now combine the work in the last few sections to find good partitions.
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Lemma 6.2. For each ε > 0, there exists n0 = n0(ε) such that the following holds for every d ≥ 10−5.
Every (d, ε)-pseudorandom digraph D with at least n0 vertices has a good partition.

Proof. Let

k = log[2] n, ` =
n log[2] n

log n · log[5] n
, d0 =

d log[2] n

log[4] n
, m =

n log[3] n

d log n
, and r =

n log[2] n

log n · log[6] n
.

Let D be an n-vertex (d, ε)-pseudorandom digraph. Letting n be sufficiently large, by Lemma 6.1 we can
find a partition V (D) = A ∪B1 ∪B2 ∪R1 ∪R2 ∪R3 ∪R4 such that U1–U5 hold. By Theorem 4.7, U1
and U2, and observing that

r = O

(
|A| · log[2] n

log n · log[6] n

)
= o

(
|A| · log[2] n

log n · log[7] n

)
,

we have, for sufficiently large n, that B1 holds in Definition 2.6. By Lemma 5.2, U3 and U4, and as
|A ∪R1 ∪R2 ∪R3 ∪R4| ≤ εn/40 + 4r, for sufficiently large n we have that B2 holds in Definition 2.6.

Using U5 and A2, by the simple reasoning at the end of the proof of Lemma 5.1, the conditions in
Proposition 2.9 hold for the edges directed from Ri into Rj for any j 6= i. Therefore, we can find matchings
M1, M2 and M3 from R2 into R1, R2 into R3 and R4 into R3 in D, respectively.

Let f : R1 → R4 come from the matchings M1, M2, and M3, and suppose each vertex v ∈ R1 is
merged into f(v) in D to get the digraph D′ (as in B4). Let R be the set of merged vertices in D′. By
U5, we have that the following hold.

W1 For each v ∈ R ∪B2, we have d+
D(v,R) = d+

D(v,R1) ≥ 40d0 and d−D′(v,R) = d−D(v,R4) ≥ 40d0.

W2 For each U ⊂ R ∪ B2, with |U | = m, we have |N+
D′(U,R)| ≥ |N+

D (U,R1)| − 1 ≥ (1/2 + ε/8)r and
|N−D′(U,R)| ≥ |N−D (U,R4)| − 1 ≥ (1/2 + ε/8)r.

Note that

` = O

(
r log[6] n

log[5] n

)
= o

(
r

log[6] n

)
.

Thus, for sufficiently large n, for any V ⊂ B2 with |V | ≤ 2`, by Theorem 4.8, W1 and W2, V is weakly
connected in D′[R ∪ V ]. Therefore, B3 and B4 hold in Definition 2.6.

Therefore, B1–B4 hold for the partition V (D) = A ∪ B1 ∪ B2 ∪ R1 ∪ R2 ∪ R3 ∪ R4, and thus D has
an (`, r)-good partition.

Theorem 2.2 now follows immediately from Lemma 2.7 and Lemma 6.2.

7 Pseudorandomness of random digraphs

In this section, we study the pseudorandom properties of digraphs in the random digraph process, allowing
us then to apply Theorem 2.2 to prove Theorem 1.3. This section is organised as follows. First, in
Section 7.1, we give some simple results on maximum and minimum in- and out-degree, to later show
that A1 resiliently holds in Definition 2.1. Next, in Section 7.2, with A4 in mind, we give a simple result
concerning the edges between sets. Then, in Section 7.3, we prove a result showing expansion will follow
from minimum degree conditions (Lemma 7.6), which will allow us to show that A2 and A3 hold. In
Section 7.4, we then study the vertices with low in- and out-degree in the digraphs early in the random
digraph process. After recording together all the properties we use, in Section 7.5 we then prove the
resilience of Hamiltonicity in the random digraph process needed for Theorem 1.3. Finally, in Section 7.6,
we study the limits of the resilience of Hamiltonicity to complete the proof of Theorem 1.3.

It will often be convenient to show that properties are likely in D(n, p), before inferring these properties
are also likely in the random digraph process. Let Dn,M be the random digraph with n vertices and M
edges, chosen uniformly at random from all such digraphs. Note that, in the n-vertex random digraph
process D0, D1, . . . , Dn(n−1), for each 0 ≤M ≤ n(n−1), DM is distributed as Dn,M . We use the following
standard proposition to relate Dn,M and D(n, p) (see, for example, [3, 26]).
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Proposition 7.1. Let P be a digraph property and let p = M/n(n − 1). If M = M(n) → ∞ is any
function such that M(1− p)→∞, then, for sufficiently large n,

P(Dn,M satisfies P) ≤ 5
√
M · P(D(n, p) satisfies P).

7.1 Maximum and minimum degree

We will use the following standard result, which implies that, almost surely, each digraph DM in the
n-vertex random digraph process with M ≤ n(log n− log[2] n) is not Hamiltonian.

Lemma 7.2. (See [10]) If M = n(log n− log[2] n), then, D = Dn,M almost surely satisfies δ+(D) = 0 or
δ−(D) = 0.

When M ≥ 50n log n, each digraph DM in the random digraph process will likely have well-bounded
minimum and maximum degrees, as follows.

Lemma 7.3. In almost every n-vertex random digraph process D0, D1, . . . , Dn(n−1), if M ≥ 50n log n,
then δ±(DM ) ≥M/2n and ∆±(DM ) ≤ 2M/n.

Proof. For each M ≥ 50n log n, let pM = M/n(n − 1) and D̄M = D(n, pM ). For each v ∈ V (D) and
j ∈ {+,−}, E(dj

D̄M
(v)) = (n− 1)pM = M/n ≥ 50 log n, so that, by Lemma 2.8,

P(dj
D̄M

(v) < M/2n or dj
D̄M

(v) > 2M/n) ≤ 2 exp(−50 log n/12) = o(n−4).

Therefore, by a union bound, with probability 1− o(n−3), δ±(D̄M ) ≥M/2n and ∆±(D̄M ) ≤ 2M/n.
Now, for 50n log n ≤M ≤ n(n−1)− log n, by Proposition 7.1, with probability 1−o(n−2), δ±(DM ) ≥

M/2n and ∆±(DM ) ≥ 2M/n. Thus, by a union bound, this property almost surely holds for each
50n log n ≤ M ≤ n(n − 1) − log n in the random digraph process. Finally, note that, for each M ≥
n(n−1)−log n, δ±(DM ) ≥ n−1−log n ≥M/2n, for sufficiently large n, and ∆±(DM ) ≤ n−1 ≤ 2M/n.

We also need a maximum in- and out-degree condition earlier in the random digraph process, as follows.

Lemma 7.4. For each n log n/2 ≤M ≤ 50n log n, if D = Dn,M , then P(∆±(D) ≤ 100M/n) = 1−o(n−2).
Furthermore, then, in almost every n-vertex random digraph process D0, D1, . . . , Dn(n−1), every digraph
DM with M ≥ n log n/2 has ∆±(D) ≤ 100M/n.

Proof. The required bounds on the maximum in- and out-degree almost surely hold for each M ≥ 50n log n
by Lemma 7.3. For each n log n/2 ≤M ≤ 50n log n, let pM = M/n(n− 1) and D̄M = D(n, pM ). For each
v ∈ V (D) and j ∈ {+,−}, we have

P
(
dj
D̄M

(v) ≥ 100M

n

)
≤
(

n− 1

100M/n

)
p

100M/n
M ≤

(
enpM

100M/n

)100M/n

≤
( e

50

)100M/n

= o(n−4).

Therefore, with probability 1−o(n−3), ∆±(D̄M ) ≤ 100M/n. Thus, by Proposition 7.1, for each n log n/2 ≤
M ≤ 50n log n, with probability 1−o(n−2), ∆±(Dn,M ) ≤ 100M/n, as required. Finally, by a union bound,
this property almost surely holds for each n log n/2 ≤M ≤ 50n log n in the random digraph process.

7.2 Edges between sets

We will use the following simple proposition on the typical number of edges between sets in D(n, p).

Proposition 7.5. Let ε > 0, p ≥ 1/n and m = log[4] n/p. Then, with probability 1− o(n−3) in D(n, p),
if sets A,B ⊂ V (DM ) are disjoint with |A| ≥ m/2 and |B| ≥ n/3, then

(1− ε)p|A||B| ≤ e±(A,B) ≤ (1 + ε)p|A||B|.

Proof. For each such A and B, and each j ∈ {0, 1}, ej(A,B) is a binomial random variable with expectation
p|A||B|. Thus, by Lemma 2.8, we have

P(|ej(A,B)− p|A||B|| > εp|A||B|) ≤ 2 exp(−ε2p|A||B|/3) ≤ 2 exp(−ε2n log[4] n/18) = 2 exp(−ω(n)).

There are at most 2(2n)2 choices for j ∈ {0, 1} and such sets A and B. Thus, by a union bound, the
property in the proposition holds with probability 1− o(n−3).
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7.3 Expansion from minimum degree conditions

We now prove a lemma used to show both A2 and A3 in Definition 2.1. The proof follows a section of
the proof by Alon, Krivelevich and Sudakov of Lemma 3.1 in [2].

Lemma 7.6. Let

p ≥ log n

10n
, d =

p(n− 1)

2 · 103 log n
≥ 10−5, m =

n log[3] n

d log n
and f(n) = o(log[3] n).

Then, with probability 1−o(n−3), in D = D(n, p), for any two disjoint sets A,B ⊂ [n], with |A| ≤ 4m, and

any integer k with 1 ≤ k ≤ n/8m, and any j ∈ {+,−}, if ejD(A,B) ≥ dk|A| log[2] n/f(n), then |B| ≥ k|A|.

Proof. For each k ∈ [n/8m], let dk = dk log[2] n/f(n). If D does not have the property in the lemma then
there is some k ≤ n/8m, j ∈ {+,−} and two disjoint sets A,B ⊂ V (D), where |A| ≤ 4m, |B| = k|A| and
djD(A,B) ≥ dk|A| (adding vertices to B if necessary to get equality). For each r ∈ [4m], let pr,k be the
probability no two such sets occur with |A| = r ≤ 4m (noting this does not depend on j). Then,

pr,k ≤
(
n

r

)(
n

kr

)(
kr2

dkr

)
pdkr

≤

(
en

r

(en
kr

)k (ekrp
dk

)dk)r

≤

((en
r

)2k
(
ekrp

dk

)dk)r

=

((
e2knp

dk

)2k (
ekrp

dk

)dk−2k
)r

. (39)

Now,
e2knp

dk
=
e2np · f(n)

d log[2] n
= O

(
log n · f(n)

log[2] n

)
= o(log n). (40)

Furthermore,

ekrp

dk
=
erp · f(n)

d log[2] n
= O

(
r log n · f(n)

n log[2] n

)
= o

(
r · log[3] n · f(n)

md · log[2] n

)
= o

(
r

md · (log[2] n)1/2

)
. (41)

For sufficiently large n, we have dk ≥ 4k. Therefore, by (39), (40) and (41), we have, for sufficiently large
n,

pr,k ≤

log2k n

(
r

md · (log[2] n)1/2

)dk/2r

=

log2 n

(
r

md · (log[2] n)1/2

)dk/2kkr

. (42)

If r <
√
n, then r/md = O(log n/

√
n), and hence, as dk = ω(k) and kr ≥ 1, pr,k = o(n−4).

If r ≥
√
n, then, as r ≤ 4m, we have, for large n, by (42), that

pr,k ≤

log2 n

(
4

d · (log[2] n)1/2

)d log[2] n/2f(n)
kr

≤

(
log2 n · exp

(
−d log[2] n · log[3] n

8f(n)

))kr
.

As d = Ω(1) and f(n) = o(log[3] n), we have that, for sufficiently large n, pr,k ≤ 2−kr ≤ 2−k
√
n = o(n−4).

Therefore, 2
∑
r,k pr,k = o(m · (n/2m) · n−4) = o(n−3). Thus, the probability for some j, r and k that

such a pair A, B exists is o(n−3).
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7.4 Low degree vertices

We will treat vertices with low in-degree or out-degree separately. We will use that, typically, no vertex
will have both low in-degree and low out-degree in the digraphs we consider.

Proposition 7.7. In almost every n-vertex random digraph process D0, D1, . . . , Dn(n−1), if M ≥ 9n log n/10,

then, for all v ∈ V (DM ), d+
DM

(v) + d−DM
(v) ≥ 2M/103n.

Proof. Note that in almost every random digraph process this property holds for M ≥ 50n log n by
Lemma 7.3, so we need only show this almost surely holds for every 9n log n/10 ≤M ≤ 50n log n.

Let p = 7 log n/8n, D = D(n, p) and d = log n/10. Note that 20 ≤ e3. For each v ∈ V (D), the
probability that d+

D(v) + d−D(v) ≤ d is at most

d∑
i=0

(
2n− 2

i

)
pi(1− p)2n−2−i ≤

d∑
i=0

(
2enp

i

)i
e−p(2n−2−i) ≤ e−pn(2−o(1)) ·

d∑
i=0

(
2e log n

i

)i
≤ (d+ 1) · e−pn(2−o(1)) ·

(
2e log n

d

)d
≤ 2d · e−(7/4−o(1)) logn · (20e)

logn/10

≤ 2d · e−(7/4−2/5−o(1)) logn = o(n−1).

Thus, by a union bound, almost surely, for each v ∈ V (D), d+
D(v) + d−D(v) ≥ d.

An easy application of Lemma 2.8 demonstrates that D almost surely has at most 9n log n/10 edges.
Furthermore, the property – P say – that, for each v ∈ V (D), d+

D(v)+d−D(v) ≥ d, is an increasing property.
Thus, we have, with M0 = 9n log n/10,

1− o(1) = P(D(n, p) ∈ P) ≤ P(e(D(n, p)) > M0) + P(Dn,M0
∈ P) = o(1) + P(Dn,M0

∈ P).

Hence, we have P(Dn,M0
∈ P) = 1− o(1). Therefore, almost surely, if M0 = 9n log n/10 ≤M ≤ 50n log n,

then, for every v ∈ V (DM ), d+
DM

(v) + d−DM
(v) ≥ d = log n/10 ≥ 2M/103n.

We will collect the vertices of low in- or out-degree in the random digraph into a set S. We use the
following definition to record that there will typically be no vertices in S which are close together (in a
graph-theoretic sense).

Definition 7.8. For a vertex set S in a digraph D, an S-path is a path with length at most 4 in D (with
any orientation on the edges) starting and ending in S. An S-cycle is a cycle with length at most 4 in
D (with any orientations on the edges, and a cycle with length 2 permitted if it consists of two distinct
edges) which contains a vertex in S.

We wish to show that, in almost every n-vertex random digraph process, each digraph DM with
9n log n/10 ≤ M ≤ 50 log n has no S-paths or S-cycles, when S is the set of vertices with low in- or
out-degree, and S is a small set (see Lemma 7.11). To do this, we cannot show this is likely for each
such digraph and then take a union bound, as the property is not sufficiently likely. Instead, we start by
showing that this property is likely in a certain random digraph D(n, p).

Lemma 7.9. If p = 7 log n/8n, then, almost surely, the following holds for D = D(n, p) with S = {v ∈
V (D) : d+(v) < log n/20 or d−(v) < log n/20}. There are no S-paths or S-cycles and |S| ≤ n1/3.

Proof. Let d = log n/20. We have

E|S| ≤ n ·
d∑
i=0

2

(
n− 1

i

)
pi(1− p)n−1−i ≤ 2n(d+ 1) ·

(enp
d

)d
· e−(1−o(1))np

≤ n log n · (20e)
d · e−(7/8−o(1)) logn ≤ log n · e4d · e(1/8+o(1)) logn

= log n · e(1/5+1/8+o(1)) logn = o(n1/3).

Thus, by Markov’s inequality, we almost surely have that |S| ≤ n1/3.
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Let X be the number of S-paths in D(n, p) and note that 20 ≤ e3. Then,

EX ≤
(
n

2

) 2∑
k=0

(2p)k+1nk ·
2d∑
i=0

4

(
2n

i

)
pi(1− p)2n−5−i ≤ n(2np)3 · (2d+ 1) · 4

(
2enp

2d

)2d

e−(2−o(1))np

= O
(
n log4 n · (20e)2de−(2−o(1))np

)
= O(n log4 n · exp(8d− (7/4− o(1)) log n)

= O(n log4 n · exp(5 log n/4)) = o(1).

Thus, almost surely, there are no S-paths in D.
Let Y be the number of S-cycles in D(n, p). Then, similarly,

EY ≤ n ·
3∑
k=1

(2p)k+1nk ·
d∑
i=0

2

(
n

i

)
pi(1− p)n−3−i = O

(
(np)4 · (d+ 1) ·

(enp
d

)d
· e−(1−o(1))np

)
= O

(
log5 n · (20e)

d · e−(7/8−o(1)) logn
)

= O
(
log5 n · exp(4d− (7/8− o(1)) log n)

)
= o(1).

Thus, almost surely, there are no S-cycles in D.

Lemma 7.9 shows only that a property exists with probability 1−o(1), so we cannot use Proposition 7.1
as we did before. However, we can easily show that the property holds for some useful digraph in the
random digraph process, as follows.

Corollary 7.10. There exists some M0 = M0(n) with n log n/2 ≤ M0 ≤ 9n log n/10 such that the
following almost surely holds for D = Dn,M0

with S = {v ∈ V (D) : d+(v) < log n/20 or d−(v) >
log n/20}. There are no S-paths or S-cycles and |S| ≤ n1/3.

Proof. Let p = 7 log n/8n, N0 = n log n/2 and N1 = 9n log n/10. By a simple application of Lemma 2.8,
we have that, almost surely, N0 ≤ e(D(n, p)) ≤ N1. Thus, if P is the property of digraphs satisfying the
condition in the corollary, then

P(D(n, p) ∈ P) =

n(n−1)∑
M=0

P(Dn,M ∈ P) · P(e(D(n, p) = M)

≤ P(e(D(n, p)) /∈ (N0, . . . , N1)) +

N1∑
M=N0

P(Dn,M ∈ P) · P(e(D(n, p)) = M)

≤ o(1) +

(
sup

N0≤M≤N1

P(Dn,M ∈ P)

)
·

N1∑
M=N0

P(e(D(n, p)) = M)

≤ o(1) + sup
N0≤M≤N1

P(Dn,M ∈ P).

Thus, as P(D(n, p) ∈ P) = 1 − o(1), we must have supN0≤M≤N1
P(Dn,M ∈ P) = 1 − o(1). Choosing M0

to maximise P(Dn,M0
∈ P) subject to N0 ≤M0 ≤ N1 thus gives the result.

Next, by starting with the digraph Dn,M0
from Corollary 7.10, we show that if O(n log n) random

edges are added then it is likely that no short paths between the vertices with small in- or out-degree are
created. This will give us the following lemma.

Lemma 7.11. Almost surely, in the n-vertex random digraph process D0, D1, . . . , Dn(n−1), the follow-

ing holds for each M with 9n log n/10 ≤ M ≤ 50n log n. Letting SM = {v ∈ V (D) : d+
DM

(v) <

log n/20 or d−DM
(v) < log n/20}, there are no SM -paths or SM -cycles, and |SM | ≤ n1/3.

Proof. Let M0 be from Corollary 7.10. Let N0 = 9n log n/10 and N1 = 50n log n, and note that M0 ≤ N0.
Reveal the edges of DM0

and let S = SM0
, so that, almost surely, |S| ≤ n1/3 and there are no S-paths or

S-cycles. Note that SM ⊂ S for each M0 ≤ M ≤ N1. Thus, if we can show that, almost surely, DN1 has
no S-paths or S-cycles then we are done.
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For each M , M0 ≤ M < N1, let eM be the edge added to DM to get DM+1. Let S′M be the set of
vertices within a graph distance 2 in the underlying undirected graph of DM . Let EM be the event that
eM is contained within S′M . Note that if no such event EM , M0 ≤ M < N1, occurs, then DN1

has no
S-paths or S-cycles.

Note that, for each M , M0 ≤M < N1, |S′M | ≤ 2(∆+(DM ) + ∆−(DM ))2|S|, and thus

P(EM |(∆±(DM ) ≤ 104 log n) ∧ (|S| ≤ n1/3)) = O

(
log4 n · (n1/3)2

n(n− 1)−M

)
= O

(
n2/3 log4 n

n2

)
= o

(
1

n log n

)
.

By Lemma 7.4, for each M0 ≤ M < N1, P(∆±(DM ) ≤ 104 log n/n) = 1 − o(n−2). Thus, the probability
that no event EM , M0 ≤M < N1, occurs is at most

P(|S| > n1/3) +

N1−1∑
M=M0

(
o(n−2) + P(EM |(∆±(DM ) ≤ 104 log n) ∧ (|S| ≤ n1/3)

)
= o(1).

7.5 Resilience in the random digraph process

For convenience, we collect together the properties of the random digraph process that we have shown
into the following corollary.

Corollary 7.12. Let ε > 0. In almost every n-vertex random digraph process D0, D1, . . . , Dn(n−1), each

digraph DM with δ±(DM ) ≥ 1 satisfies M ≥ n(log n− log[2] n) and the following with

dM =
M

2 · 103n log n
, mM =

n log[3] n

dM log n
, and SM = {v : d+

DM
(v) < 2dM log n or d−DM

(v) < 2dM log n}.

X1 ∆±(DM ) ≤ 100M/n ≤ 106dM log n/2.

X2 For each v ∈ V (DM ), d+
DM

(v) + d−DM
(v) ≥ 2M/103n = 4dM log n.

X3 There are no SM -paths or SM -cycles in DM and |SM | ≤
√
n.

X4 If sets A,B ⊂ V (DM ) satisfy |A| ≥ mM/2 and |B| ≥ n/2, then, for each j ∈ {+,−}, letting
pM = M/n(n− 1), (1− ε/100)pM |A||B| ≤ ejDM

(A,B) ≤ (1 + ε/100)pM |A||B|.

X5 For any disjoint sets A,B ⊂ V (DM ) and j ∈ {+,−} with |A| ≤ 4mM and, for each v ∈ A,

djDM
(v,B) ≥ dM log[2] n/4 log[4] n, we have |B| ≥ 10|A|.

X6 For any disjoint sets A,B ⊂ V (DM ) with |A| ≤ 4mM and j ∈ {+,−}, for each v ∈ A, djDM
(v,B) ≥

dM (log n)2/3/4, we have |B| ≥ |A|(log n)1/3.

Proof. By Lemma 7.4, we almost surely have that ∆±(DM ) ≤ 100M/n, and thus X1 holds, for each
M ≥ n log n/2. By Lemma 7.7, we almost surely have that X2 holds for all M ≥ 9n log n/10. Almost
surely, by Lemma 7.3, for each M ≥ 50n log n, δ±(DM ) ≥ M/2n ≥ 103dM log n, so that SM = ∅.
Note that, if M ≤ 50n log n, then 2dM log n ≤ log n/20, and, thus combining this with Lemma 7.11, we
have that, almost surely, X3 holds for each M ≥ 9n log n/10. By Proposition 7.5 and Proposition 7.1,
we have that X4 almost surely holds for each 9n log n/10 ≤ M ≤ n(n − 1) − log n. Note that, when
M ≥ n(n− 1)− log n, there are at most log n missing edges, and so X4 easily holds for sufficiently large
n.

Almost surely, by Lemma 7.6 with f(n) = 40 log[4] n and taking the resulting property with k = 10,
and using Proposition 7.1, X5 holds for each 9n log n/10 ≤ M ≤ n(n − 1) − log n. Almost surely, by

Lemma 7.6 with f(n) = 4 log[2] n/(log n)1/3 and taking the resulting property with k = (log n)1/3 =
o(n/mM ), and using Proposition 7.1, X6 holds for each 9n log n/10 ≤ M ≤ n(n− 1)− log n. Note that,

if M ≥ n(n− 1)− log n, then dM log[2] n/4 log[4] n ≥ 40mM and dM (log n)2/3/4 ≥ 4mM (log n)1/3, so that
X5 and X6 hold.

Therefore, X1–X6 almost surely hold for each M ≥ 9n log n/10. By Lemma 7.2, almost surely, if

M ≤ n(log n − log[2] n), then δ+(DM ) = 0 or δ−(DM ) = 0. Thus, almost surely, if δ±(DM ) ≥ 1, then

M ≥ n(log n− log[2] n) and X1–X6 hold.
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We now have the tools we need to prove the resilience in Theorem 1.3.

Proof of the resilience in Theorem 1.3. Almost surely, by Corollary 7.12, every digraph DM in the random
digraph process with δ±(DM ) ≥ 1 satisfies M ≥ n(log n− log[2] n) and X1–X6 with

dM =
M

2 · 103n log n
, mM =

n log[3] n

dM log n
and SM = {v : d+

DM
(v) < 2dM log n or d−DM

(v) < 2dM log n}.

We will show, for sufficiently large n, that each such DM is (1/2− ε)-resiliently Hamiltonian.

Fix M ≥ n(log n − log[2] n) such that δ±(DM ) ≥ 1, then, and suppose that H ⊂ DM with djH(v) ≤
(1/2 − ε)djDM

(v) for each v ∈ V (DM ) and j ∈ {+,−}. Pick for each v ∈ SM an in-neighbour xv and

an out-neighbour yv in DM − H, noting that this is possible as djDM−H(v) > djDM
(v)/2 > 0 for each

j ∈ {+,−}. Note that, as there are no SM -paths or SM -cycles in DM by X3, the vertices v, xv and yv,
v ∈ SM , are distinct. Form D from DM −H by deleting the vertices in SM and, for each v ∈ SM , merging
xv into yv to get the new vertex zv.

Claim 10. For sufficiently large n, D is an (ε/100, dM )-pseudorandom digraph.

Proof. We will check the conditions A1–A4. Let n̄ = |D| = n − 2|SM | = (1 − o(1))n, where we have

used X3. Let m = n̄ log[3] n̄/dM log n̄, so that, for sufficiently large n, mM ≥ m ≥ mM/2. Note that,
as there are no SM -paths or SM -cycles in DM by X3, every vertex in V (DM ) \ SM has at most 1 in-
or out-neighbour in SM ∪ {xv, yv : v ∈ SM} in DM . Thus, every vertex in D has in- and out- degree at
least (1/2 + ε) · 2dM log n − 1 ≥ dM log n ≥ dM log n̄ in D, for sufficiently large n. Furthermore, by X1,
∆±(D) ≤ 106dM log n̄, and therefore A1 holds.

Now, suppose A,B ⊂ V (D) are disjoint sets with |A| ≤ 2m ≤ 4mM and, for each v ∈ A, d+
D(v,B) ≥

dM log[2] n̄/ log[4] n̄. Let A′ ⊂ V (DM ) be formed from A by replacing any vertex zv, v ∈ SM , with the
vertex yv, and let B′ ⊂ V (DM ) be formed by replacing any vertex zv, v ∈ SM , with the vertex xv. Then,

for each v ∈ A′, we have d+
DM

(v,B′) ≥ dM log[2] n/4 log[4] n, for sufficiently large n. Thus, using X5, we
have |B| = |B′| ≥ 10|A′| = 10|A|. Similar reasoning, again using X5, completes the proof to show that
A2 holds. Similarly, A3 follows from X6.

Therefore, it is left only to show that A4 holds. Suppose, for contradiction, there is some U ⊂ V (D),
with |U | = m, for which, without loss of generality |N+

D (U)| ≤ (1/2 + ε/100)n̄. Let U ′ be the set U with
any vertex zv, v ∈ SM , replaced by yv, so that |U ′| = m and, using X3,

|N+
DM−H(U ′)| ≤ |N+

D (U)|+ 2|SM | ≤ (1/2 + ε/100)n̄+ 2
√
n.

Let V = V (DM ) \ (U ′ ∪N+
DM−H(U ′)), so that

|V | ≥ n−m− (1/2 + ε/100)n− 2
√
n ≥ (1/2− ε/50)n, (43)

for sufficiently large n. By X4, letting pM = M/n(n− 1), we have

e+
DM

(U ′, V ) ≥ (1− ε/100)pM |U ′||V |
(43)

≥ (1− ε/100) · (1/2− ε/50) · pM |U ′|n. (44)

On the other hand, by the choice of V , we have e+
DM−H(U ′, V ) = 0, so that

e+
DM

(U ′, V ) ≤ e+
H(U ′, V ) ≤

∑
u∈U ′

d+
H(u, V ) ≤

∑
u∈U ′

(1/2− ε)d+
DM

(u)

= (1/2− ε)e+
DM

(U ′, V (D) \ U ′) ≤ (1/2− ε) · (1 + ε/100) · pM |U ′|n, (45)

where the last inequality follows by X4.
Thus, we have, by (44) and (45),

(1− ε/100) · (1/2− ε/50) ≤ (1/2− ε) · (1 + ε/100),

a contradiction. Therefore, A4 holds, completing the proof that D is (ε/100, d)-pseudorandom.

Thus, by Theorem 2.2, for sufficiently large n, D contains a directed Hamilton cycle, C say. For each
vertex zv, v ∈ SM , in C, replace zv by xvvyv. This gives a directed Hamilton cycle in DM −H. Thus,
DM −H is Hamiltonian, and therefore DM is (1/2− ε)-resiliently Hamiltonian.
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7.6 Non-resilience in the random digraph process

To prove the non-resilience of our random digraph, we divide the vertices without low in- or out-degree
randomly into two sets independently at random with equal probability. By Lemma 3.2, there must be
such a partition where each vertex has roughly an equal number of in- and out-neighbours in each set.
Carefully dividing the low degree vertices between these sets, we reach a bipartition where deleting the
edges across this partition does not remove substantially more than one half of the in- and out-neighbours
around any one vertex. This gives us a limit for the resilience of Hamiltonicity in the digraph.

Proof of the non-resilience in Theorem 1.3. Almost surely, by Corollary 7.12, every digraph DM in the
random digraph process with δ±(DM ) ≥ 1 satisfies M ≥ n(log n− log[2] n) and X1–X6 with

dM =
M

2 · 103n log n
, mM =

n log[3] n

dM log n
and SM = {v : d+

DM
(v) < 2dM log n or d−DM

(v) < 2dM log n}.

Take the vertices in V (DM )\SM and partition them as A∪B so that each vertex is placed into A or B
independently at random with probability 1/2. We will show that the following claim holds for sufficiently
large n.

Claim 11. With positive probability, the following holds.

Y For each v ∈ V (DM ) and j ∈ {+,−}, if djDM
(v) ≥ 2dM log n, then djDM

(v,A), djDM
(v,B) ≥ (1/2 −

ε)djDM
(v).

Proof of Claim 11. For each v ∈ V (DM ) and j ∈ {+,−}, let Ev,j be the event that, if djDM
(v) ≥ 2dM log n,

then either djDM
(v,A) < (1 − ε)djDM

(v) or djDM
(v,B) < (1 − ε)djDM

(v). Let G be the dependence graph

of these events and note that, by X1, ∆(G) ≤ (∆+(DM ) + ∆−(DM ))2 ≤ 105M2/n2.
Let q = 4 exp(−ε2dM log n/100), so that q · ∆(G) = o(1). By X3, djDM−SM

(v) ≥ djDM
(v) − 1 ≥

2dM log n− 1 ≥ dM log n. By Lemma 2.8, we then have

P(Ev,j) ≤ 2 exp

(
− ε

2

12
·
djDM−SM

(v)

2

)
≤ 2 exp

(
−ε

2dM log n

100

)
= q/2 ≤ q(1− q ·∆(G)) ≤ q(1− q)∆(G).

Thus, by Theorem 3.1, no event Ev,j occurs with positive probability.

Thus, by Claim 11, there is some partition V (DM )\SM = A∪B such that Y holds. Note that A,B 6= ∅.
For each v ∈ S, by X2, there is jv such that djvD (v) ≥ 2dM log n, and thus, by Y, djvDM

(v,A), djvDM
(v,B) ≥

(1/2− ε)djvDM
(v). Let iv ∈ {+,−} such that iv 6= jv. By X3, as v ∈ SM , there are no edges from v to SM

in either direction. Thus, there is some Xv ∈ {A,B} such that divDM
(v,Xv) ≥ divDM

(v)/2.
Let A′ = A∪{v ∈ S : Xv = A} and B′ = B ∪{v ∈ S : Xv = B}, and note that, for each X ∈ {A′, B′},

v ∈ X and j ∈ {+,−}, djDM
(v,X) ≥ (1/2− ε)djDM

(v). Let H be the bipartite digraph with vertex classes
A′ and B′, with edges exactly those edges in DM between A′ and B′ in either direction. Thus, we have,
for each v ∈ V (DM ) and j ∈ {+,−}, djH(v) ≤ (1/2 + ε)djDM

(v).
As A,B 6= ∅, DM −H is disconnected and hence not Hamiltonian. Therefore, DM is not (1/2 + ε)-

resiliently Hamiltonian.
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