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STEFAN GLOCK, DANIELA KÜHN, RICHARD MONTGOMERY AND DERYK OSTHUS

Abstract. A subgraph of an edge-coloured graph is called rainbow if all its edges have distinct
colours. Our main result implies that, given any optimal colouring of a sufficiently large complete
graph K2n, there exists a decomposition of K2n into isomorphic rainbow spanning trees. This
settles conjectures of Brualdi–Hollingsworth (from 1996) and Constantine (from 2002) for large
graphs.

1. Introduction

Given an edge-coloured graph G, we say a subgraph H is rainbow if all the edges of H have
distinct colours. Moreover, we say that H1, . . . ,Ht decompose G if H1, . . . ,Ht are edge-disjoint
subgraphs of G covering all the edges of G.

In this paper, we address the problem of decomposing an optimally edge-coloured complete
graph K2n into (isomorphic) rainbow spanning trees. The study of rainbow decomposition
problems can be traced back to the work of Euler, who investigated for which n one can find a
pair of orthogonal Latin squares of order n. That is, equivalently, for which n does there exist an
optimally edge-coloured Kn,n which can be decomposed into rainbow perfect matchings? Euler
gave a construction for all n 6≡ 2 mod 4 and conjectured that these are the only admissible
values. His conjecture was disproved by Parker, Bose and Shrikhande who provided constructions
for the missing values, except for n = 6 (which corresponds to Euler’s famous ‘36 officers
problem’, for which the non-existence had already been shown by Tarry in 1901).

On the other hand, given an arbitrary optimally edge-coloured Kn,n, a decomposition into
rainbow perfect matchings need not exist. In fact, there are examples of such colourings that
do not admit a single rainbow perfect matching. (An important conjecture widely attributed to
Ryser–Brualdi–Stein postulates that there always exists a rainbow matching of size n− 1.)

Perfect matchings are, in some sense, very rigid objects, and it is natural to ask analogous
questions for other types of subgraphs. In particular, several natural conjectures arose con-
cerning decompositions into rainbow spanning trees. Here, the most notable are the Brualdi–
Hollingsworth conjecture, Constantine’s conjecture and the Kaneko–Kano–Suzuki conjecture.
Our main result implies the first two of these.

1.1. Decompositions into rainbow spanning trees. Note that if K2n is optimally edge-
coloured, then the colour classes form a 1-factorization, that is, a decomposition of K2n into per-
fect matchings. We will here use the term 1-factorization synonymously with an edge-colouring
whose colour classes form a 1-factorization. Note that if a 1-factorization of Kn exists, then n
is even. We now state the Brualdi–Hollingsworth conjecture.

Conjecture 1 (Brualdi and Hollingsworth, [6]). For all n > 4 and any 1-factorization of Kn,
there exists a decomposition of Kn into rainbow spanning trees.
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Note that the condition that n > 4 is necessary. Suppose a 1-factorization of Kn is given.
Clearly, there always exists one rainbow spanning tree, for instance the star at any vertex.
Brualdi and Hollingsworth in their original paper [6] showed that one can find two edge-disjoint
rainbow spanning trees. Shortly afterwards, Krussel, Marshall and Verrall [17] were able to
find three such trees. Later, Horn [13] significantly improved on this by finding Ω(n) edge-
disjoint rainbow spanning trees. Very recently, Montgomery, Pokrovskiy, and Sudakov [21]
proved Conjecture 1 approximately by showing that one can guarantee (1 − o(1))n/2 edge-
disjoint rainbow spanning trees.

Several related problems have been studied, in two main directions. Firstly, we may wish to
strengthen the conditions on the trees in the decomposition, most commonly by requiring the
trees in the decomposition to be isomorphic. Secondly, we may wish to weaken the conditions
on the colouring, most commonly by allowing non-optimal proper edge-colourings. (Naturally,
those two directions can also be combined.)

A decomposition of an edge-coloured Kn into isomorphic rainbow spanning trees is also known
in the literature as a multicoloured tree parallelism (MTP). It turns out that the problem of
finding an MTP is non-trivial even if one is allowed to choose the 1-factorization. Partial results
were obtained by Constantine [9]. Akbari, Alipour, Fu and Lo [2] then proved that for all n ∈ N
with n > 2, there exists a 1-factorization of K2n which admits an MTP. Moreover, Constantine
conjectured that in fact an MTP should exist for any given 1-factorization, thus generalizing
the Brualdi–Hollingsworth conjecture.

Conjecture 2 (Constantine, [9, 10]). For all n > 4, any 1-factorization of Kn admits a decom-
position into isomorphic rainbow spanning trees.

Unsurprisingly, for this conjecture, much less was known than for the Brualdi–Hollingsworth
conjecture. In [12] it was shown that three isomorphic rainbow spanning trees can be guaran-
teed. In [23], Pokrovskiy and Sudakov showed that one can find 10−6n edge-disjoint rainbow
spanning trees all isomorphic to a so-called t-spider (which is even independent of the given
1-factorization). Montgomery, Pokrovskiy, and Sudakov [21], and independently, Kim, Kühn,
Kupavskii and Osthus [16], proved a weak asymptotic version of the conjecture by showing that
there are (1− o(1))n/2 edge-disjoint rainbow paths each of length (1− o(1))n.

We now discuss results on more general colourings. Intuitively it might seem that dealing with
an optimal colouring is the hardest case, as having more colours should make finding rainbow
subgraphs easier. However, non-optimal colourings seem genuinely harder to deal with than
1-factorizations. Kaneko, Kano and Suzuki proved that for any proper colouring of Kn, there
exist three edge-disjoint rainbow spanning trees, and also generalized the Brualdi–Hollingsworth
conjecture as follows.

Conjecture 3 (Kaneko, Kano, and Suzuki, 2002). For all n > 4, every properly edge-coloured
Kn contains bn/2c edge-disjoint rainbow spanning trees.

Note that any proper colouring is n/2-bounded, that is, every colour appears on at most n/2
edges. Under the weaker assumption that the colouring is n/2-bounded, Akbari and Alipour [1]
showed that one can guarantee two edge-disjoint rainbow spanning trees, and this was signific-
antly improved by Carraher, Hartke, and Horn [8] who showed that Ω(n/ log n) such trees exist.
For proper colourings, a linear number of rainbow spanning trees was independently obtained
by Pokrovskiy and Sudakov [23] and by Balogh, Liu and Montgomery [5], where in the former
work, the trees are even isomorphic. Finally, the aforementioned result from [21] on Conjecture 1
also applies to proper colourings, thus proving Conjecture 3 approximately.

We now state our main theorem, which implies the Brualdi–Hollingsworth conjecture and
Constantine’s conjecture for large n. This is the first general exact rainbow decomposition
result for spanning subgraphs, where each subgraph in the decomposition has to use all the
colours.
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Theorem 4. For all sufficiently large n, there exists a tree T on n vertices such that for any
1-factorization of Kn, there exists a decomposition into rainbow subgraphs each isomorphic to T .

Note that whereas Constantine’s conjecture says that given a 1-factorization, one can decom-
pose into isomorphic rainbow spanning trees, we actually show that one can use the same tree
T for any 1-factorization. This tree is made up of a path of length n − o(n), with o(n) short
paths attached to it (see Definition 5). By modifying our proof slightly, we can even ensure that
∆(T ) ≤ 3. This is best possible in the sense that there exist 1-factorizations which do not admit
a single rainbow Hamilton path [18].

Our argument relies upon the fact that the colouring is a 1-factorization. It would be very
interesting to prove the result for more general colourings, in particular proper colourings.

It would also be interesting to investigate the n/2-bounded setting further. The best known
bound is the one from [8] mentioned earlier, which provides Ω(n/ log n) edge-disjoint rainbow
spanning trees. A natural question is to ask for the maximum number k of such trees that can be
guaranteed. It seems unlikely that a decomposition can be obtained, but it would be interesting
to see whether k = Ω(n) is possible or not. It is also natural to impose further local conditions
on the colouring, e.g. that the colouring is locally ∆-bounded, which means that the maximum
degree of each colour class is at most ∆. For instance, in [16] it is shown that for any n/2-
bounded colouring which is locally o(n)-bounded, there exists an approximate decomposition
into almost spanning rainbow cycles (and thus into almost spanning paths).

1.2. Related problems. We now discuss some related results concerning rainbow decompos-
itions. Let us first revisit the perfect matching case. As mentioned earlier, there exist proper
optimal colourings of Kn,n which do not contain a rainbow perfect matching. However, by im-
posing slightly stronger boundedness conditions on the colouring, one can obtain strong results.
For example, Alon, Spencer and Tetali [3] showed that if n is a power of 2 and the edge-colouring
is o(n)-bounded (and not necessarily proper), there exists a decomposition into rainbow perfect
matchings. Montgomery, Pokrovskiy and Sudakov [21] showed that any proper edge-colouring of
Kn,n, where at most (1−o(1))n colours appear more than (1−o(1))n times, contains (1−o(1))n
edge-disjoint rainbow perfect matchings. This implied a conjecture of Akbari and Alipour in a
strong form (which was proved independently by Keevash and Yepremyan [15]) and a conjec-
ture of Barat and Nagy approximately, both for large n. Kim, Kühn, Kupavskii and Osthus [16]
proved that for any (1 − o(1))n-bounded and locally o(n/ log2 n)-bounded edge-colouring of
Kn,n, there exist (1− o(1))n edge-disjoint rainbow perfect matchings. The authors of both [16]
and [21] also obtain analogous results (in their respective settings) on approximate decompos-
itions of Kn into rainbow Hamilton cycles. Furthermore, [16] contains results for approximate
decompositions of Kn into rainbow F -factors (for any given graph F ).

A further tantalizing problem concerning rainbow tree decompositions is the following special
case of Rota’s basis conjecture. Let T1, . . . , Tn−1 be spanning trees on a common vertex set of
size n, each monochromatic in a different colour. Then their union (allowing multiple edges)
can be decomposed into n− 1 rainbow spanning trees. The general version of Rota’s conjecture
concerns the rearrangement of bases of a matroid into disjoint transversal bases. Recently, Bucić,
Kwan, Pokrovskiy and Sudakov [7] showed that (1/2− o(1))n disjoint transversal bases can be
found.

2. Notation

Given a graph G with edge colouring φ : E(G)→ C, we say a subgraph H is D-rainbow if H
is rainbow and φ(E(H)) = D. We refer to an edge e = uv with colour c as a c-edge, and v is a
c-neighbour of u. For each colour c, Ec(G) is the set of c-edges in G. For each vertex v of G,
we let ∂G(v) denote the set of all edges of G incident to v. For any S ⊆ V (G), NG(S) is the
common neighbourhood in G of the vertices in S. For any x ∈ V (G) and U ⊆ V (G), dG(x, U)
is the number of neighbours of x in U . We denote by G − H the graph obtained from G by
deleting the edges of H.
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For a hypergraph H, let ∆c(H) denote its maximum codegree, that is, the maximum number
of edges containing any two fixed vertices.

Given a set X and p ∈ [0, 1], a p-random subset is a random subset Y ⊆ X which is obtained
by including each element of X independently with probability p. If not otherwise stated, we
always assume that such random subsets are independent. For instance, if we say that Y is
a p-random subset of X and Y ′ is a p′-random subset of Y , we implicitly assume that these
random choices are made independently. Similarly, if G is a graph, then a p-random subgraph
is the random graph with vertex set V (G) and a p-random subset of E(G) as edge set.

On the other hand, we often split a random subset further into disjoint subsets. For instance,
if Y is a (p+p′)-random subset of X, we might say that we split Y into a p-random set Y1 and a
p′-random set Y2, by which we mean that for each y ∈ Y independently, we include y in Y1 with
probability p/(p+ p′) and into Y2 otherwise. Note that then Y1 is indeed a p-random subset of
X and Y2 is a p′-random subset of X, but they are obviously not independent. To split into
more sets, we use the following notation: By splitting X randomly as

X = X1 ·∪ . . . ·∪ Xm

1 = p1 + . . . + pm

we mean that for every element in X independently, we choose an index i ∈ [m] according to
the probability distribution (pi)

m
i=1, and put this element into the corresponding set Xi.

We say that a random event holds with high probability if the probability that it holds tends
to 1 as n tends to infinity (where n is usually the number of vertices and the event depends
on n).

We write [n] := {1, . . . , n}. For a, b, c ∈ R, we write a = b± c whenever a ∈ [b− c, b+ c]. For
a, b, c ∈ (0, 1], we write a� b� c in our statements to mean that there are increasing functions
f, g : (0, 1]→ (0, 1] such that whenever a ≤ f(b) and b ≤ g(c), then the subsequent result holds.

3. Proof sketch

Our proof is based on hypergraph matching results and new absorption techniques. Suppose
we are given a 1-factorization φ of the complete graph Kn with colour set C. We build the t :=
n/2 rainbow trees simultaneously, beginning with our absorbing structures and then gradually
extending these structures to cover all the vertices and edges. For this, we further develop a
recent ‘distributive’ form of the absorption method: we form an absorption structure along with
a reservoir, such that, given any subset (of given size) from the reservoir we can distribute the
elements of this subset among the different parts of the absorbing structure to always obtain
a copy of the same tree. We create a ‘global’ reservoir of edges, as well as ‘local’ reservoirs of
colours and vertices (as explained below, ‘local’ refers to the fact that there is one such reservoir
for each tree, while the ‘global’ reservoir is common to all trees). The structure of these absorbers
and the corresponding reservoirs is described in more detail in Section 3.1.

Already, however, we can outline our proof strategy, as follows.

(1) Create an edge absorption structure and a global edge reservoir.
(2) For each tree, create a colour absorption structure and a colour reservoir.
(3) For each tree, create a vertex absorption structure and a vertex reservoir.
(4) Find t = n/2 edge-disjoint almost spanning rainbow paths Pi covering most of the

remaining vertices.
(5) Link up the absorbers and paths to form t rainbow forests Fi and thereby cover all

non-reservoir vertices.
(6) Cover non-reservoir edges by adding each such edge to one of the forests Fi.
(7) Incorporate non-reservoir colours for each forest, by adding a suitable edge from the edge

reservoir.
(8) Absorb the uncovered reservoir vertices into each forest, using edges and colours from

the reservoirs.
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(9) Absorb the uncovered reservoir colours into each forest, using the colour absorption
structure.

(10) Absorb the uncovered edges from the global edge reservoir by distributing them among
the forests to complete these forests into rainbow spanning trees Ti.

To find all of the structures we use, we apply results on matchings in certain auxiliary hyper-
graphs, as described in Section 3.2. This allows the structures we find to look random-like, which
in turn means that at each stage of the construction of the trees Ti, the currently unused sets
are also random-like. In particular, this means that the leftover sets which need to be absorbed
are sufficiently small and well-distributed (again, the sets we track here are vertices and edges
as well as colour sets).

The main difficulty in our proof lies in obtaining a decomposition into spanning trees. The
property that these trees are isomorphic (even to some T fixed in advance) can be achieved with
only a little extra care. We comment more on this in Section 3.3. In Section 4, we list the tools
that we use in our proof.

The above strategy is implemented in Section 5.6, following the proof of several lemmas
allowing some of these tasks. In Section 5.1, we find a set of almost spanning rainbow paths. In
Section 5.2, we find our colour absorption structure. In Section 5.3, we find our edge absorption
structure. In Section 5.4, we show how we will connect these structures together. In Section 5.5,
we find suitable rainbow matchings which we will use to absorb vertices.

3.1. Designing absorbers. The absorbing method has its roots in work by Erdős, Gyárfás, and
Pyber, as well as Krivelevich, before its general codification by Rödl, Ruciński and Szemerédi.
The key novelty in our work is to construct a ‘nested’ absorbing structure for the edges, colours
and vertices. As the edges of a tree define its colours and vertices, we start by building an
edge absorption structure and an accompanying edge reservoir (i.e. the edges in the reservoir
are those which can later be absorbed).

Edge absorbers via monochromatic matchings. We create an edge absorption structure
for a set of reservoir edges as follows, where η is a small constant. (Recall that t = n/2 is the

number of trees in our decomposition.) For each i ∈ [t], we construct a rainbow forest F̃i (where

we will have F̃i ⊆ Ti) and matchings Mi,c. Each Mi,c will consist of edges of colour c, and c
ranges over all elements of some colour set D′i, where |D′i| ∼ 6ηn. The matchings may overlap

but are edge-disjoint from F̃i, and, for each matching Mi,c, any one of its edges can be added

to F̃i to obtain a rainbow tree. More precisely, we have the following ‘local’ edge absorption
property for each i ∈ [t]:

(P) If one edge ei,c is chosen from each matching Mi,c, then F+
i := F̃i +

∑
c∈D′i

ei,c is a

rainbow tree with vertex set V (F̃i).

Note that since the Mi,c are monochromatic, the colour set of F+
i does not depend on the choice

of ei,c. See Figure 1 for our construction of such a subgraph F̃i and the matchings Mi,c. We
think of Mi,c as being (the essential part of) an absorber which is able to ‘absorb’ exactly one

of the edges it contains. The chosen edge ei,c is then added to F̃i to become part of the tree Ti.
Since the Mi,c will be small (of size 256) and monochromatic, the requirement that exactly

one edge from each Mi,c is to be added to F̃i is very restrictive. However, by carefully choosing
how edges appear in different matchings Mi,c, we can combine these to create the following
‘global’ edge absorption property for two suitable subgraphs G1 and G2 of Kn. (Here G1, G2

and the forests F̃i, i ∈ [t], will be edge-disjoint.)

(Q) For any subset E∗ ⊆ E(G1) which consists of precisely ηn edges of each colour c ∈ C,
we can label E∗ ∪ E(G2) as {ei,c : i ∈ [t], c ∈ D′i} so that ei,c ∈ Mi,c for each i ∈ [t] and
c ∈ D′i.

Properties (P) and (Q) mean that, given any set E∗ ⊆ E(G1) with the right number of edges
of each colour, we can absorb these edges (along with those in the ‘buffer set’ E(G2)) into
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a) Edge absorption structure b) Colour absorption structure

c) Vertex absorption structure

v`

v0
v5 v5r

Figure 1. The tree Tn;r,b which we use for our decomposition (see Definition 5), with the edge
absorption structure and colour absorption structure highlighted as a) and b) above, with the
vertex absorption structure marked with c). Note that, whichever our choice of one edge from
each of the monochromatic matchings in a) and one edge from each of the rainbow matchings
in b), the resulting tree is the same.

the forests F̃1, . . . , F̃t to obtain rainbow trees which span some pre-determined vertex set and
colour set (these sets are different for each tree). In fact, the equidistribution condition on E∗

will be naturally satisfied as the resulting trees must contain exactly one edge of each colour.
Thus altogether, the local edge absorption structures give rise to a global edge reservoir (namely
E(G1)), for which we can absorb a leftover edge set E∗ into the existing forests.

To choose the matchings Mi,c ⊆ E(G1 ∪ G2), we consider a set of auxiliary graphs (called
‘robustly matchable bipartite graphs’), introduced in [20] and already a standard technique in
the construction of absorbers. As the name suggests, these graphs have the property that one
can find a perfect matching even after the removal of an arbitrary set of vertices (of given size)
from the larger vertex class, B say. We will consider one such robustly matchable bipartite
graph Hc = Hc[A,B] for each colour c, where B = Ec(G1 ∪ G2). The neighbourhood in Hc of
each vertex a ∈ A will correspond to some matching Mi,c, where i is such that c ∈ D′i. Thus
adjacencies in Hc encode the possible absorber matchings Mi,c (and thus the possible trees) that
a reservoir edge e ∈ B can be assigned to. A matching in Hc saturating E∗c ∪Ec(G2) (where E∗c
is the set of c-edges in E∗) gives an assignment of these ‘leftover’ edges of colour c to absorbers
and thus to the trees Ti. Carrying this out for all c ∈ C allows us to absorb all the leftover edges
E∗ from the edge reservoir G1 and the buffer edges (i.e. those in G2).

The robustly matchable graphs are discussed in more detail in Section 4.2 and the properties
of the edge absorption structure are described in Lemma 19.

Colour absorbers via rainbow matchings. The above properties allow us to use part of the
edge reservoir G1 to create separate colour absorbers for each tree. This means that for the ith
tree we have a reservoir C ′i,1 of colours with the property that any ‘leftover’ (i.e. so far unused)

set of colours C∗ ⊆ C ′i,1 of given size can be absorbed into the ith rainbow forest so that the

result is still a (larger) rainbow forest.

More precisely, for the ith tree, we find a rainbow forest F̃ ′i which is vertex- and colour-

disjoint from F̃i, along with small rainbow matchings M ′i,1, . . . ,M
′
i,3s which are edge-disjoint

from F̃ ′i , as well as colour sets C ′i,1 (the ‘colour reservoir’) and C ′i,2 (the ‘buffer set’), such that

the following ‘local colour absorption’ property holds for each i ∈ [t] (where s = ηn/768, and
|C ′i,1| = |C ′i,2| = 2s).

(P′) Given any set C∗ ⊆ C ′i,1 of s colours, we can choose one edge fi,j from each M ′i,j so that

F̃ ′i + fi,1 + . . .+ fi,3s is a (φ(E(F̃ ′i )) ∪ C∗ ∪ C ′i,2)-rainbow tree with vertex set V (F̃ ′i ).
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For each colour c appearing on an edge in M ′i,j , we think of M ′i,j as (part of) an absorber

which can absorb colour c into the ith tree (and for each c, we will provide several of these
absorbers). The edges of the M ′i,j will lie in the edge reservoir G1. Crucially, this means that

when absorbing a colour c, it does not matter which edges/absorbers are actually involved in
this colour absorption step – we can absorb any unused ones later. This means that the colour
absorption step is less delicate than the edge absorption step. See Figure 1 for our construction
of such an F̃ ′i . (In the main proof, we actually construct the forests F̃i and F̃ ′i simultaneously,

and denote them F̃i.)
The matchings M ′i,j will be small edge-disjoint rainbow matchings, where the colours of each

matching M ′i,j are chosen according to some auxiliary robustly matchable bipartite graph. We
will consider one such auxiliary graph Hi for each tree Ti, with the larger vertex class consisting
of the colour reservoir C ′i,1 together with the buffer set C ′i,2. The edges of Hi connect each colour

c to some indices j ∈ [3s]. The colour set of M ′i,j will consist of precisely those colours in NHi(j).

For any set C∗ ⊆ C ′i,1 of size s, a matching saturating C∗∪C ′i,2 absorbs all the ‘leftover’ colours,
as required. The details are given in Lemma 18.

Vertex absorbers. We then use part of both the edge reservoir and the colour reservoir to
create vertex absorbers. This construction is relatively simple, and the resulting vertex reservoir
consists of some vertices unused by the ith tree so far. For each i ∈ [t], we take a small random
set Ai of vertices and connect them into a rainbow vertex absorbing path, while reserving a
further random set of vertices Bi that is slightly smaller than Ai. When we reach Step (8), the
set of uncovered vertices will be a subset of Bi and contain almost all vertices of Bi. (So one can
view Bi as a vertex reservoir.) We will match those vertices in Bi which are still uncovered onto
the vertex absorbing path. The randomness of Ai and Bi allows us to do this with a rainbow
matching between Ai and Bi.

Covering outside the reservoirs. By construction, the edge and colour absorbing structures
can only deal with edges/colours within the respective reservoirs. Thus, after we construct the
ith forest Fi which covers almost all the colours, we must extend it slightly so that it now uses
every colour outside its reservoir, and that collectively the resulting forests use all the edges
outside of the global edge reservoir. We achieve this as follows: To cover an edge e outside
the global edge reservoir (in Step (6)), we include e as an edge between Ai and Bi for some
suitable i. Similarly, to cover a colour c outside the ith colour reservoir (in Step (7)), we choose
a suitable c-edge e between Ai and Bi, again from the edge reservoir. We can carry this out in
such a way that these edges form a relatively small AiBi-matching, thus enabling us to carry
out the vertex absorption procedure described above with only minor modifications.

3.2. Almost-packing random subgraphs. We will find the different structures for the strategy
outlined above by defining (for each of these structures) an auxiliary hypergraph in which a large
matching corresponds to the desired structure. The hypergraph will be roughly regular, with
small codegrees, and thus the existence of this matching will follow from standard results (see
Theorem 7 in Section 4.1). In each case, the hypergraph is defined in a similar way, but to give a
concrete example we will sketch how to find t = n/2 almost-spanning rainbow paths in any op-
timally coloured Kn. (Note that this construction as described below is already present in [16].
We repeat it informally here, as it forms a template for several more involved applications in
this paper.)

To simplify further, we note that by randomly reserving edges, colours and vertices, we can
greedily connect a given set of long disjoint rainbow paths together via very short paths (which
use their own set of reserved edges, colours and vertices) into a single rainbow path. Thus, to
cut to the main part of the argument, let us suppose we want to find the following, where ` is a
large constant, and r` ≤ (1− ε)n, for some small ε > 0.

Aim: To find in Kn, for each i ∈ [t], a set Fi of r vertex-disjoint colour-disjoint rainbow cycles
of length `, so that all the cycles in

⋃
i∈[t]Fi are edge-disjoint.
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The key is to construct a hypergraph H in which a large matching corresponds to the required
cycles (where each matching edge directs us to include some cycle into some set Fi). We take
vertices for H as follows. We need all the cycles we find to be edge-disjoint, so each edge in G
will appear as a vertex of H. All the cycles in Fi must be vertex-disjoint, so we wish to represent
the vertices of V = V (Kn) as vertices in H. However, different cycles in different sets Fi are
permitted to share vertices. Thus, for each i ∈ [t], we include a copy of V by including the
vertices in {i} × V in V (H). Similarly, we represent the colours for cycles by including {i} × C
for each i ∈ [t]. We define the hyperedges of H as follows. For each rainbow cycle F ⊆ Kn of
length ` and i ∈ [t], we include the hyperedge

fi,F := E(F ) ∪ ({i} × V (F )) ∪ ({i} × φ(E(F ))).

Suppose then we had a matching M in H. Then, for each i ∈ [t], let Fi be the set of cycles F
with fi,F ∈M. Note that we have the following properties.

• If F,L ∈ Fi are distinct, we have the following.
– As {i} × V (F ) ⊆ fi,F , {i} × V (L) ⊆ fi,L and fi,F , fi,L ∈M, we have that F and L

are vertex-disjoint.
– As {i} × φ(E(F )) ⊆ fi,F , {i} × φ(E(L)) ⊆ fi,L and fi,F , fi,L ∈ M, we have that F

and L are colour-disjoint.
• For any F ∈ Fi and L ∈ Fj with i 6= j, we have E(F ) ⊆ fi,F , E(L) ⊆ fj,L, and
fi,F , fj,L ∈M, so F and L are edge-disjoint.

That is, each Fi is a set of vertex- and colour-disjoint rainbow cycles, and the cycles in
⋃
i∈[t]Fi

are edge-disjoint, as required in the above aim.
In the actual proof we will find the required structures within prescribed (randomly chosen)

vertex, edge and colour sets, with parameters carefully chosen so that the construction uses
almost all of the available sets each time. Together, this has the advantage that the overall
leftover after removing these structures is also randomly distributed and sufficiently small so
that it can be absorbed.

3.3. Isomorphic trees. The main achievement of our techniques is to find a decomposition
into (any) spanning rainbow trees. However, by taking care at several points in our argument,
the trees we construct can be kept isomorphic. The key point here is to observe that in Figure 1
the resulting structure from the absorber is the same regardless of which edges are used from
the reservoir.

In fact, we not only find isomorphic trees, but we find copies of the same fixed tree, regardless
of the 1-factorization of Kn. We define this tree as follows (see Figure 1).

Definition 5. Given n, r, b ∈ N such that ` := n−1020r− b−1 > r+ b, we define the tree Tn;r,b
as follows: Take a path v0 . . . v` of length `. For all k ∈ [r− 1], add 510 paths of length 2 to v5k
(i.e. v5k will become an endvertex of these 510 paths), and add 255 paths of length 2 to each of
v0 and v5r. Moreover, take a set B of b new vertices and add a perfect matching between B and
{v`−b+1, . . . , v`}.

The set B corresponds to the set Bi in the vertex absorption structure. For each i ∈ [t] there
will be an integer ri ≤ r so that for each k ∈ [ri], the ‘middle’ edge on the path between v5(k−1)
and v5k will be an edge of some ‘absorber-matching’ Mi,c or M ′i,j . Note that |Tn;r,b| = n and

∆(Tn;r,b) ≤ 512. We will prove Theorem 4 with T = Tn;r,b, where r and b are small but linear
in n. So T contains an almost spanning path. After proving Theorem 4 in Section 5.6, we
describe how this construction can be slightly modified to achieve that ∆(T ) = 3.

4. Tools

4.1. Hypergraph matchings. We make frequent use of the existence of large matchings in
almost regular hypergraphs with small codegrees (such matchings are constructed via semi-
random nibble methods pioneered by Rödl [25]). Moreover, we wish to have a matching which is
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‘well-distributed’ across a number of vertex subsets. To make this precise, we use the following
definition.

Definition 6. Given a hypergraph H and a collection F of subsets of V (H), we say a matching

M in H is (γ,F)-perfect if for each F ∈ F , at most γ · max{|F |, |V (H)|2/5} vertices of F are
left uncovered by M.

Pippenger and Spencer [22] showed that in an almost regular hypergraph H with small co-
degrees there are many large edge-disjoint matchings. Alon and Yuster [4] observed that by
randomly splitting V (H) into many parts, and applying the Pippenger–Spencer theorem to
each induced subhypergraph and then selecting a matching in each of these subhypergraphs at
random, one can obtain an almost perfect matching M of H that is ‘well-distributed’ in the
sense of Definition 6. We will use the following consequence of Theorem 1.2 in [4].

Theorem 7 ([4]). Suppose 1/n� ε� γ, 1/r. Let H be an r-uniform hypergraph on n vertices
such that for some D ∈ N, we have dH(x) = (1±ε)D for all x ∈ V (H), and ∆c(H) ≤ D/ log9r n.
Suppose that F is a collection of subsets of V (H) such that |F| ≤ nlogn. Then there exists a
(γ,F)-perfect matching in H.

We apply Theorem 7 to several different hypergraphs in our proof, each time checking the
appropriate degree and codegree bounds. We comment here generally why our hypergraphs are
almost regular with small codegree. Indeed, roughly speaking, in each hypergraph H we define
(see Section 3.2), estimating vertex degrees will correspond to counting the number of rainbow
copies of a certain graph in Kn with one fixed characteristic (e.g. one fixed vertex/edge/colour).
The symmetry in our choice of random subsets and subgraphs will mean that for each charac-
teristic, the vertex degrees in H are roughly the same. Our choice of edge, colour and vertex
probabilities then results in an almost regular hypergraph. (Here, it is also useful that we con-
sider 1-factorizations rather than proper colourings.) Counting codegrees corresponds roughly
to counting the number of copies of the same subgraph but with two characteristics fixed. This
means that the codegrees are small in comparison to the degrees, giving the additional condition
we need to apply Theorem 7.

4.2. Robustly matchable bipartite graphs. As noted in Section 3.1, we use robustly match-
able bipartite graphs as auxiliary graphs to tell us how to distribute edges during the absorbing
steps. These graphs are defined as follows.

Definition 8. Given pairwise disjoint vertex sets X,Y, Z, an RMBG(X,Y, Z) is a bipartite
graph H with bipartition (X,Y ∪ Z) and the following crucial property: for any set Y ′ ⊆ Y
with |Y ′| = |X| − |Z|, the subgraph H[X,Y ′ ∪ Z] has a perfect matching.

We also refer to H as an RMBG(|X|, |Y |, |Z|) with parts X,Y, Z.

Such graphs were introduced in [20] in order to find given spanning trees in random graphs.

Lemma 9 ([20, Lemma 10.7]). For all sufficiently large m, there exists an RMBG(3m, 2m, 2m)
with maximum degree at most 100.

We say that a bipartite graph H with bipartition (X,Y ) is (`, r)-regular if all the vertices in
X have degree ` and all the vertices in Y have degree r. Using the Max-Flow-Min-Cut-theorem,
it is straightforward to find a supergraph of an RMBG from Lemma 9 which is appropriately
regular.

Corollary 10. For all fixed d ≥ 59 and sufficiently large m, there exists a (4d, 3d)-regular
RMBG(3m, 2m, 2m).

Proof. Let H be an RMBG(3m, 2m, 2m) with parts X, Y and Z and maximum degree at
most 100, as in Lemma 9. Take new vertices s, t and let G be the directed graph obtained from
the complete bipartite graph between X and Y ∪ Z (with all edges directed towards Y ∪ Z)
by removing the edges of H and adding all edges from s to X and from Y ∪ Z to t. An
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edge sx receives capacity 4d − dH(x), and an edge yt receives capacity 3d − dH(y). All edges
in G[X,Y ∪ Z] receive capacity 1. We claim that ({s}, V (G) \ {s}) and ({t}, V (G) \ {t}) are
minimal (s, t)-cuts. Indeed, first note that the capacity of these cuts is 12dm− e(H). Now, let
(S, T ) be any (s, t)-cut. Let S1 := S ∩X, S2 := S ∩ (Y ∪Z), T1 := T ∩X and T2 := T ∩ (Y ∪Z).
The capacity c(S, T ) of the cut (S, T ) satisfies

c(S, T ) =
∑
x∈T1

(4d− dH(x)) + |S1||T2| − eH(S1, T2) +
∑
y∈S2

(3d− dH(y))(1)

= 12dm+ |S1|(|T2| − 4d) + 3d|S2| − e(H)− eH(T1, S2)

= 12dm+ 4d|T1|+ |T2|(|S1| − 3d)− e(H)− eH(T1, S2).

Thus, if |S1| ≥ 3d or |T2| ≥ 4d, then c(S, T ) ≥ 12dm− e(H), as desired. Therefore, assume that
|S1| < 3d and |T2| < 4d. Then, (1) implies that c(S, T ) ≥ (3m− 3d)(4d− 100) + (4m− 4d)(3d−
100) ≥ 12md, where the last inequality uses d ≥ 59. This proves the claim.

By the Max-Flow-Min-Cut-theorem, there exists an (s, t)-flow in G with value 12dm− e(H).
This yields a subgraph H ′ ⊆ G\{s, t} such that dH′(x) = 4d−dH(x) for all x ∈ X and dH′(y) =
3d− dH(y) for all y ∈ Y ∪Z. Thus, H ∪H ′ is the desired (4d, 3d)-regular RMBG(3m, 2m, 2m).

�

4.3. Probabilistic tools. In order to show various properties of random subgraphs and subsets,
we will use common concentration inequalities, as follows.

Lemma 11 (see [14, Corollary 2.3, Corollary 2.4 and Theorem 2.8]). Let X be the sum of n
independent Bernoulli random variables. Then the following hold.

(i) For all 0 ≤ ε ≤ 3/2, P (|X − E (X) | ≥ εE (X)) ≤ 2e−ε
2E(X)/3.

(ii) If t ≥ 7E (X), then P (X ≥ t) ≤ e−t.

Throughout, we will refer to (i) as ‘Chernoff’s bound’. Often, we will use this in conjunc-
tion with an implicit union bound to show that several properties hold altogether with high
probability.

Fact 12 (cf. [24, Lemma 8]). Let X1, . . . , Xn be Bernoulli random variables such that for all
i ∈ [n], we have P (Xi = 1 | X1, . . . , Xi−1) ≤ p. Let B ∼ Bin(n, p) and X :=

∑n
i=1Xi. Then

P (X ≥ t) ≤ P (B ≥ t) for all t ≥ 0.

One important tool to prove concentration of our random variables is McDiarmid’s inequality.
Let X1, . . . , Xm be independent random variables taking values in X . Let f : Xm → R be a
function of X1, . . . , Xm such that

|f(x1, . . . , xi−1, xi, xi+1, . . . , xm)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ ci

for all i ∈ [m], x′i, x1, . . . , xm ∈ X . If this holds, we say that Xi affects f by at most ci.

Theorem 13 (McDiarmid’s inequality, see [19, Lemma 1.2]). Let X1, . . . , Xm, c1, . . . , cm and
f be as stated above. Then, for all t > 0,

P (|f(X1, . . . , Xm)− E (f(X1, . . . , Xm)) | ≥ t) ≤ 2e
− 2t2∑m

i=1
c2
i .

For our purposes, we will have X = {0, 1}, and the Xi will be indicator variables of certain
events. We will often use different indicator variables (which are not necessarily independent)
to compute E (f), and then use McDiarmid’s inequality to prove concentration.
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5. Proof

5.1. Approximate decomposition. The main result in this Section is Lemma 16, which im-
plies the existence of an approximate decomposition into rainbow almost spanning paths for any
given 1-factorization of Kn. As noted earlier, this result was already proved in [16, 21].

However, we need to strengthen the result somewhat – in particular, we need to constrain
the paths to use given (randomly chosen) vertex and colour sets, and we need the paths to be
well-behaved towards given subsets of these sets (the latter is encapsulated in the concept of
‘boundedness’ defined below).

The proof of Lemma 16 relies on ideas from Theorem 1.5 and Lemma 2.14 in [16] (and
simplifies some aspects of that argument). As described in Section 4.1, the strategy is to first
find for each i ∈ [t] an almost spanning collection of vertex-disjoint long rainbow cycles. Then we
delete an edge from each such cycle and connect them into a long rainbow path via Lemma 15.

Definition 14 (m-bounded). Let φ be a 1-factorization of the complete graph Kn with vertex
set V and colour set C. Given a subgraph G ⊆ Kn, vertex sets {Vi}i∈[t] ⊆ V and colour sets
{Ci}i∈[t] ⊆ C, we say that (G, {Vi}i∈[t], {Ci}i∈[t]) is m-bounded if the following hold:

(B1) for all i ∈ [t], |Vi|, |Ci| ≤ m;
(B2) for all v ∈ V , we have |{i ∈ [t] : v ∈ Vi}| ≤ m and dG(v) ≤ m;
(B3) for all c ∈ C, |{i ∈ [t] : c ∈ Ci}| ≤ m and |Ec(G)| ≤ m.

Here, we think of (G, {Vi}i∈[t], {Ci}i∈[t]) as being ‘leftovers’ that we want to be ‘well-behaved’ in
the above sense.

The following lemma allows us to embed rooted graphs in a rainbow fashion. We will often
apply it to find the desired rainbow subgraphs that were missed by an application of Theorem 7.

Lemma 15. Suppose 1/n � γ � 1/∆ and t ≤ n. Let G be a graph on n vertices and
φ : E(G)→ C a proper edge colouring. Moreover, let V1, . . . , Vt ⊆ V (G) and C1, . . . , Ct ⊆ C be
such that for each i ∈ [t] and any set S ⊆ V (G) with |S| ≤ ∆, we have that

|{v ∈ NG(S) ∩ Vi : φ(uv) ∈ Ci for each u ∈ S}| ≥ γ1/3n.(2)

For each i ∈ [t], let Hi be a graph with |V (Hi)|, |E(Hi)| ≤ γn and ∆(Hi) ≤ ∆, and let
Λi : Xi → V (G) be an injection, where Xi ⊆ V (Hi) is independent. Assume that for all u ∈
V (G), there are at most γn indices i ∈ [t] for which u ∈ Im(Λi).

Then, there exist embeddings ψi : Hi → G, i ∈ [t], such that, for each i ∈ [t], ψi(Hi) is rainbow
with colours in Ci, ψi(x) = Λi(x) for all x ∈ Xi and ψi(x) ∈ Vi for all x ∈ V (Hi) \Xi, and such
that ψ1(H1), . . . , ψt(Ht) are edge-disjoint.

Proof. We find the embeddings ψ1, . . . , ψt successively and greedily. For s ∈ [t] and a vertex
u ∈ V (G), let r(u, s) be the number of indices i ∈ [s] for which u ∈ Im(Λi). By assumption,
r(u, s) ≤ γn.

Suppose that, for some s ∈ [t], we have already found suitable embeddings ψ1, . . . , ψs−1 such
that, additionally,

the degree of each u ∈ V in
⋃
i∈[s−1] ψi(Hi) is at most 2

√
γn+ r(u, s− 1)∆.(3)

Now, we find a suitable embedding ψs such that (3) holds with s replaced by s+1. Let B be the
set of all vertices whose degree in

⋃
i∈[s−1] ψi(Hi) is larger than

√
γn. Since

∑
i∈[s−1] |E(Hi)| ≤

γn2, observe that |B| ≤ 2
√
γn.

We can now greedily embed Hs while avoiding the vertices in B \ Λs(Xs). For all x ∈ Xs,
define ψs(x) = Λs(x). Order the remaining vertices of Hs arbitrarily and embed them one by
one into V (G) \ B as follows. When we consider x ∈ V (Hs) \Xs, let S be the set of images of
the neighbours of x which have already been embedded. We would like to choose an image for
x from Y := {v ∈ NG(S) ∩ Vs : φ(uv) ∈ Cs for each u ∈ S} \B.
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First, note that by (2) with i = s, and as |B| ≤ 2
√
γn, we have |Y | ≥ γ1/3n− 2

√
γn. At most

γn vertices of Y are blocked because they have already been chosen as an image for Hs, and at
most |S|γn ≤ ∆γn vertices v ∈ Y are blocked because {φ(uv) : u ∈ S} contains a colour that
has already been used. Moreover, invoking (3), at most ∆(2

√
γ + ∆γ)n vertices v are blocked

because uv ∈ E(
⋃
i∈[s−1] ψi(Hi)) for some u ∈ S. Hence, there exists a suitable image for x.

Thus, we can finish the embedding of Hs in this way.
Clearly, ψs(Hs) is rainbow with colours in Cs, and edge-disjoint from ψ1(H1), . . . , ψs−1(Hs−1).

Moreover, for any vertex u ∈ V (G), the degree of u in ψs(Hs) is at most ∆. In particular, if
u /∈ B, then the degree of u in

⋃
i∈[s] ψi(Hi) is at most

√
γn+ ∆ ≤ 2

√
γn. Moreover, if u ∈ B,

then u ∈ V (ψs(Hs)) if and only if u ∈ Im(Λs), in which case the degree of u in ψs(Hs) is at
most ∆ = (r(u, s) − r(u, s − 1))∆. Thus, (3) holds with s replaced by s + 1, which completes
the proof. �

Lemma 16. Suppose 1/n � γ, κ � p and let q := β := p and t := n/2. Let φ be a 1-
factorization of the complete graph Kn with vertex set V and colour set C. For every i ∈ [t],
let Vi be a p-random subset of V , and let Ci be a q-random subset of C. Moreover, let G be a
β-random subgraph of Kn.

Then with high probability, there exist edge-disjoint rainbow paths P1, . . . , Pt in G such that

(P1) V (Pi) ⊆ Vi, φ(E(Pi)) ⊆ Ci;
(P2) (G−

⋃
i∈[t] Pi, {Vi \ V (Pi)}i∈[t], {Ci \ φ(E(Pi))}i∈[t]) is 5γn-bounded;

(P3) for all v ∈ V , the number of i ∈ [t] for which v ∈ V (Pi) and the subpath from v to one
of the endvertices of Pi has length at most κn, is at most 21κp−1n.

Proof. Choose new constants ε > 0 and ` ∈ N such that 1/n� ε� 1/`� γ, κ� p.
For each i ∈ [t], split Vi into a p(1 − γ)-random subset Vi,1 and a pγ-random subset Vi,2,

and split Ci into a q(1 − γ)-random subset Ci,1 and a qγ-random subset Ci,2. We also split G
into a β(1− γ)-random subgraph G1 and a βγ-random subgraph G2. We claim that with high
probability, we have the following:

(a) for each i ∈ [t] and S ⊆ V with |S| ≤ 2,

|{v ∈ NG1(S) ∩ Vi,1 : φ(uv) ∈ Ci,1 for each u ∈ S}| = (1± ε)(βq(1− γ)2)|S|p(1− γ)n;

(b) for each i ∈ [t] and S ⊆ V with |S| ≤ 2,

|{v ∈ NG2(S) ∩ Vi,2 : φ(uv) ∈ Ci,2 for each u ∈ S}| ≥ γ6n;

(c) for each e ∈ E(Kn), |{i ∈ [t] : e ⊆ Vi,1, φ(e) ∈ Ci,1}| = (1± ε)p2q(1− γ)3n/2;
(d) for each i ∈ [t] and c ∈ C, we have that |Ec(G1[Vi,1])| = (1± ε)p2β(1− γ)3n/2;
(e) for each i ∈ [t], |Vi| = (1± ε)pn;
(f) (G2, {Vi,2}i∈[t], {Ci,2}i∈[t]) is 2γn-bounded.

Indeed, using Chernoff’s bound, it is straightforward to check that (c)–(f) hold with high prob-
ability. For (a) and (b), we can apply McDiarmid’s inequality, since of the at most |S|n edges
incident with S, each has an effect of at most 1, each vertex has an effect of at most 1, and each
colour has an effect of at most |S|.

Henceforth, assume that these random choices have been made and satisfy the above proper-
ties.

For all i ∈ [t], let Ri be the collection of all rainbow cycles R of length ` in G1 for which
V (R) ⊆ Vi,1 and φ(E(R)) ⊆ Ci,1. (Note that the Ri’s are not necessarily disjoint.) For v ∈ V ,
c ∈ C and e ∈ E(Kn), we let Ri(v), Ri(c) and Ri(e) denote the set of all R ∈ Ri with v ∈ V (R),
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c ∈ φ(E(R)) and e ∈ E(R), respectively. Using (a), we can now count that, for all v ∈ Vi,1,

|Ri(v)| = 1

2
· ((1± 2ε)(1− γ)3βqpn)`−2 · (1± 2ε)(1− γ)5(βq)2pn

= (1±
√
ε)

1

2
(1− γ)3`−1β`q`p`−1n`−1,(4)

and, for all e ∈ E(G1[Vi,1]) with φ(e) ∈ Ci,1,

|Ri(e)| = ((1± 2ε)(1− γ)3βqpn)`−3 · (1± 2ε)(1− γ)5(βq)2pn

= (1±
√
ε)(1− γ)3`−4β`−1q`−1p`−2n`−2.(5)

We define an auxiliary hypergraph H as follows. The vertex set of H consists of three parts.
The first part is simply E(G1). The second part is the set V of all pairs (i, v) with i ∈ [t] and
v ∈ Vi,1. The third part is the set C of all pairs (i, c) with i ∈ [t] and c ∈ Ci,1.

Now, we define the edge set of H. For each i ∈ [t] and R ∈ Ri, we add the hyperedge

fi,R := E(R) ∪ ({i} × V (R)) ∪ ({i} × φ(E(R))).(6)

Hence, H is 3`-uniform.
Clearly, using (4), we have for each (i, v) ∈ V that

dH((i, v)) = |Ri(v)| = (1±
√
ε)

1

2
(1− γ)3`−1β`q`p`−1n`−1.(7)

Moreover, we have for each e ∈ E(G1) that

dH(e) =
∑

i∈[t] : e⊆Vi,1,φ(e)∈Ci,1

|Ri(e)|
(c),(5)

= (1± 2
√
ε)

1

2
(1− γ)3`−1β`−1q`p`n`−1(8)

and for all (i, c) ∈ C that

dH((i, c)) =
∑

e∈Ec(G1[Vi,1])

|Ri(e)|
(d),(5)

= (1± 2
√
ε)

1

2
(1− γ)3`−1β`q`−1p`n`−1.(9)

(Note that no hyperedge is counted more than once since each rainbow cycle contains at most
one c-edge.)

Claim 1: ∆c(H) ≤ `4n`−2.

Proof of claim: Recall, from (6), that each hyperedge of H is uniquely fixed by some i ∈ [t] and
R ∈ Ri. Note that for a set S of vertices and i ∈ [t], the number of R ∈ Ri with S ⊆ V (R) is at

most `|S|n`−|S|. This easily implies that codegrees of pairs in E(G1)×V, E(G1)× C and V × V
are at most `2n`−2.

Next, consider distinct e, e′ ∈ E(G1). For each i ∈ [t], the number of R ∈ Ri with e∪e′ ⊆ V (R)
is at most `3n`−3. Summing over all i ∈ [t] yields the desired bound.

Now, take (i, v) ∈ V and (i, c) ∈ C. Each R ∈ Ri with {(i, v), (i, c)} ⊆ fi,R will contain some
c-edge e. We distinguish two cases for e. If e is incident to v, there is only one choice for e, and
then at most `2n`−2 choices left. If e is not incident to v, there are at most n/2 choices for e,
and then at most `3n`−3 choices left. Thus, in total, there are at most 2`3n`−2 choices.

Similarly, we check that the codegree of (i, c) and (i, c′) for distinct c, c′ ∈ C is at most `4n`−2.
We have to choose a c-edge e and a c′-edge e′ and again distinguish two cases. If e and e′ share a
vertex v, there are at most n choices for v (which determines e and e′), and then at most `3n`−3

choices left. If e and e′ form a matching, there are at most (n/2)2 ways to choose e and e′, and
then at most `4n`−4 choices left. −
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For each v ∈ V , let Vv be the set of all pairs (i, v) with i ∈ [t] and v ∈ Vi,1. For each colour
c ∈ C, let Cc be the set of all pairs (i, c) with i ∈ [t] and c ∈ Ci,1. Let

F := {{i} × Vi,1, {i} × Ci,1 : i ∈ [t]} ∪ {Vv, ∂G1(v) : v ∈ V } ∪ {Cc, Ec(G1) : c ∈ C}.

Using (7), (8), (9), and Claim 1, we now apply Theorem 7 to obtain a (γ,F)-perfect matching
M in H. For i ∈ [t], let R′i be the collection of all R ∈ Ri for which fi,R ∈ M. For distinct
R,R′ ∈ Ri, {i} × V (R) ⊆ fi,R and {i} × V (R′) ⊆ fi,R′ , and therefore, as M is a matching, R
and R′ are vertex-disjoint. Similarly, R and R′ are colour-disjoint. Thus, R′i ⊆ Ri is a collection
of vertex-disjoint `-cycles in G1[Vi,1] whose union is rainbow with colours in Ci,1. Moreover, as
for each i ∈ [t] and R ∈ Ri, E(R) ⊆ fi,R, all these cycles are edge-disjoint.

For each i ∈ [t], we will now randomly break each cycle in R′i into a path, before joining
all these paths together into a single cycle. For each i ∈ [t] and all R ∈ R′i, choose an edge
ei,R ∈ E(R) uniformly at random. For each i ∈ [t], let Xi :=

⋃
R∈R′i

ei,R ⊆ Vi,1 and Di :=

{φ(ei,R) : R ∈ R′i} ⊆ Ci,1. We claim that, with high probability, we have

|{i ∈ [t] : v ∈ Xi}|, |{i ∈ [t] : c ∈ Di}| ≤ 7n/` for all v ∈ V, c ∈ C.(10)

Indeed, fix a vertex v ∈ V . We have P (v ∈ Xi) ≤ 2/` for all i ∈ [t], and those events are
independent. Similarly, for a fixed colour c ∈ C, we have P (c ∈ Di) ≤ 1/` for all i ∈ [t], and
those events are independent too. Thus, the claim follows with Lemma 11(ii) and a union bound.

Now, assume that (10) holds. For each i ∈ [t], let Hi be the graph obtained as follows: Give
every edge {ei,R}R∈R′i an orientation, and (cyclically) enumerate these edges. Now, for each
edge, add a path of length 2 between its head and the tail of the next edge, using a new vertex
as the internal vertex each time. (So Hi consists of the union of all these |R′i| paths of length 2,
but does not contain the edges ei,R. In particular, Xi is independent in Hi.) Observe that
|V (Hi)|, |E(Hi)| ≤ 3|R′i| ≤ 3n/`.

By (b) and (10), we can apply Lemma 15 (with G2, {Vi,2}i∈[t], {Ci,2}i∈[t] taking the place of
G,{Vi}i∈[t],{Ci}i∈[t]) to find for each i ∈ [t] an embedding ψi : Hi → G2 such that ψi(Hi) is
rainbow with colours in Ci,2 and ψi(x) = x for all x ∈ Xi and ψi(x) ∈ Vi,2 for all x ∈ V (Hi)\Xi,
and such that ψ1(H1), . . . , ψt(Ht) are edge-disjoint.

For i ∈ [t], let

R̃i :=
⋃
R∈R′i

(R− ei,R) ∪ ψi(Hi).

We have that R̃1, . . . , R̃t are edge-disjoint rainbow cycles in G, where R̃i is rainbow with
colours in Ci and V (R̃i) ⊆ Vi. Moreover, by the definition of F , (f) and (10) and the fact that

|Di| = |R′i| ≤ n/` for all i ∈ [t], we have that (G−
⋃
i∈[t] R̃i, {Vi\V (R̃i)}i∈[t], {Ci\φ(E(R̃i))}i∈[t])

is 4γn-bounded.
Finally, choose for each i ∈ [t] an edge ei ∈ E(R̃i) uniformly at random and let Pi := R̃i − ei.

For a vertex v ∈ V , let Iv be the set of indices i ∈ [t] for which v ∈ V (R̃i) and the subpath
from v to one of the endvertices of Pi has length at most κn. Note that, for each i ∈ [t], as

|Vi \ V (R̃i)| ≤ 4γn, the cycle R̃i has length at least pn/2 by (e), implying P (i ∈ Iv) ≤ 3κn
pn/2 =

6κp−1, and these events are independent. Thus, with Lemma 11(ii), we conclude that (P3) holds
with high probability. Similarly, we can deduce that with high probability, for every v ∈ V , the
number of i ∈ [t] for which v is incident with ei, is at most log2 n, and for every c ∈ C, the
number of i ∈ [t] for which φ(ei) = c, is at most log2 n. This implies that (P2) still holds with
high probability. �

5.2. Matchings for colour absorption. In this subsection, we find the rainbow matchings
which form the crucial part of the colour absorption structure (see Lemma 18). The following
lemma prepares the ground for this.
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Lemma 17. Suppose 1/n � γ � η � 1 and let p := 2η, q := η/192 and t := n/2. Let
φ be a 1-factorization of Kn with vertex set V and colour set C. For every i ∈ [t], let Vi be
a p(1 + γ)-random subset of V , and let Ci be a q-random subset of C. Moreover, let G be an
η(1+γ)-random subgraph of Kn. Then, with high probability, there exist edge-disjoint matchings
M1, . . . ,Mt in G such that the following hold:

(i) V (Mi) ⊆ Vi for all i ∈ [t];
(ii) for all i ∈ [t], Mi consists of 192 c-edges for each c ∈ Ci;

(iii) for every vertex v ∈ V , the number of i ∈ [t] for which v is covered by Mi is (1± 3γ)pt.

Later on some edges of Mi will be used to construct the ith tree Ti of the decomposition.

Proof. Choose a new constant ε > 0 such that 1/n � ε � γ � η � 1. For each i ∈ [t], we
randomly split Vi into a p-random set Vi,1 and a pγ-random set Vi,2. Similarly, we split G into
an η-random subgraph G1 and an ηγ-random subgraph G2. For c ∈ C and i ∈ [t], let Yc,i denote
the number of c-edges in G2[Vi,2].

We define a (random) auxiliary hypergraph H as follows. The vertex set of H consists of
three parts: The first part is simply E(G1). The second part is the set V of all pairs (i, v) with
i ∈ [t] and v ∈ Vi,1. The third part of V (H) is the set C of all triples (i, c, `) with i ∈ [t], c ∈ Ci
and ` ∈ [192]. For all e = uv ∈ E(Kn), i ∈ [t] and ` ∈ [192], we add the hyperedge

fe,i,` := {e, (i, u), (i, v), (i, φ(e), `)}(11)

if and only if e ∈ E(G1), u, v ∈ Vi,1 and φ(e) ∈ Ci. Thus, H is a 4-uniform hypergraph.

Claim 1: With high probability, for each e ∈ E(G1), dH(e) = (1± ε)192tp2q.

Proof of claim: Fix an edge e = uv and assume e ∈ E(G1). For i ∈ [t], let Xi be the indicator
variable of the event that u, v ∈ Vi,1 and φ(e) ∈ Ci. Note that dH(e) = 192

∑
i∈[t]Xi. Since

P (Xi = 1) = p2q for each i and the Xi’s are independent, we can easily deduce from Chernoff’s
bound that the claim holds. −

Claim 2: With high probability, for each (i, v) ∈ V, dH((i, v)) = (1± ε)192npqη.

Proof of claim: Fix i ∈ [t] and v ∈ V and assume (i, v) ∈ V. For every vertex u 6= v, let Xu

be the indicator variable of the event that u ∈ Vi,1, uv ∈ E(G1) and φ(uv) ∈ Ci. Note that
dH((i, v)) = 192

∑
u∈V \{v}Xu. Since P (Xu = 1) = pηq for each u and the Xu’s are independent,

we can easily deduce from Chernoff’s bound that the claim holds. −

Claim 3: With high probability, for each (i, c, `) ∈ C, dH((i, c, `)) = (1 ± ε)p2ηn/2, and, for
each c ∈ C and i ∈ [t], Yc,i = (1± ε)(pγ)2(ηγ)n/2.

Proof of claim: Fix i ∈ [t], c ∈ C and ` ∈ [192] and assume that (i, c, `) ∈ C. For every c-edge
e ∈ E(Kn), let Xe be the indicator variable of the event that e ∈ E(G1) and e ⊆ Vi,1. Note
that dH((i, c, `)) =

∑
e∈Ec(Kn)

Xe. Since P (Xe = 1) = p2η for each e ∈ E(Kn) and the Xe’s

are independent, we can easily deduce from Chernoff’s bound that the claim holds. (A similar
argument works for Yc,i.) −

Claim 4: With high probability, we have |{i ∈ [t] : v ∈ Vi,1}| = (1 ± ε)pt and |{i ∈ [t] : v ∈
Vi,2}| = (1± ε)pγt for all v ∈ V .

Proof of claim: This is an easy consequence of Chernoff’s bound. −

Claim 5: ∆c(H) ≤ 192.

Proof of claim: Clearly, the codegree of pairs in E(G1)× E(G1) and C × C is 0. Moreover, the
codegree of any pair in E(G1) × C and V × C is at most 1, and the codegree of any pair in
E(G1)×V is at most 192. Finally, consider a pair in V × V, say (i, u) and (i′, v). If i 6= i′, then
the codegree is 0, so assume i = i′. If uv /∈ E(G1), then the codegree is also zero, so assume
otherwise and let c be the colour of uv. Then the codegree is at most 192. −
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We now assume that the properties stated in Claims 1–5 are satisfied. By our choice of p, q, η,
we have that dH(x) = (1 ± ε)192pqηn for all x ∈ V (H). For every vertex v ∈ V , let Vv be the
set of all pairs (i, v) ∈ V with i ∈ [t] and v ∈ Vi,1. For every c ∈ C, let Cc be the set of all (i, c, `)
with c ∈ Ci and ` ∈ [192]. Let

F := {Vv : v ∈ V } ∪ {{i} × Ci × [192] : i ∈ [t]} ∪ {Cc : c ∈ C}

Thus, we can apply Theorem 7 to find a (γ5,F)-perfect matching M in H. For i ∈ [t], let M ′i
be the set of all edges e ∈ E(G1) such that fe,i,` ∈M for some ` ∈ [192].

Hence, by definition of H, we have that M ′1, . . . ,M
′
t are edge-disjoint matchings in G1, and,

for each i ∈ [t], we have V (M ′i) ⊆ Vi and M ′i consists of at most 192 edges with colour c, for
each c ∈ Ci.

For each i ∈ [t] and c ∈ Ci, let ri,c := 192−|M ′i ∩Ec(Kn)|. Thus, ri,c is the number of c-edges
that are missing in M ′i in order to satisfy (ii). SinceM is (γ5,F)-perfect, we have for each i ∈ [t]
and c ∈ C that∑

c′∈Ci

ri,c′ ≤ γ5|{i} × Ci × [192]| ≤ 192γ5n and
∑

i′∈[t]:c∈Ci′

ri′,c ≤ γ5|Cc| ≤ 192γ5n.(12)

Moreover, for each vertex v ∈ V , the number of i ∈ [t] for which v ∈ Vi,1 but v is not covered
by M ′i , is at most γ5n. Since |{i ∈ [t] : v ∈ Vi,1}| = (1± ε)pt by Claim 4, this implies that the
number of i ∈ [t] for which v is covered by M ′i is (1± γ4)pt.

Now, we wish to find edge-disjoint matchings M ′′1 , . . . ,M
′′
t in G2 such that, for each i ∈ [t],

V (M ′′i ) ⊆ Vi,2 and M ′′i contains precisely ri,c c-edges for each c ∈ C. This can be done in order
greedily using Claim 3 and (12). Indeed, suppose we want to add c-edges to M ′′i . By (12),
we added at most 192γ5n c-edges to previous matchings M ′′j , j < i, and at most 192γ5n edges

to M ′′i . Thus, at most 3 · 192γ5n c-edges are blocked (since every edge in M ′′i might block 2
c-edges). Since Yc,i ≥ γ4n by Claim 3, we can find ri,c suitable c-edges in G2[Vi,2] and add them
to M ′′i .

Note that, by Claim 4, for every vertex v ∈ V , the number of i ∈ [t] for which v is covered
by M ′′i , is at most 2γpt. Finally, for each i ∈ [t], let Mi := M ′i ∪M ′′i . It is easy to see that
M1, . . . ,Mt are the desired matchings. �

Lemma 18. Suppose 1/n � γ � η � 1 and let p := 2η, q := η/192 and t := n/2. Suppose
s ∈ N with s = (q/4− 2γ/5± γ2)n and 0 ≤ α ≤ q/2− γ. Let φ be a 1-factorization of Kn with
vertex set V and colour set C. Let G be an η(1 + γ)-random subgraph of Kn. For every i ∈ [t],
let Vi be a p(1 + γ)-random subset of V , and let Ci,1, Ci,2 be disjoint q/2-random subsets of C.
Split Ci,1 further into an α-random set Ci,1,1 and a (q/2− α)-random subset Ci,1,2.

Then with high probability, for each i ∈ [t], there exist C ′i,1, C
′
i,2 such that Ci,1,1 ⊆ C ′i,1 ⊆ Ci,1

and C ′i,2 ⊆ Ci,2 and vertex-disjoint rainbow matchings {Mi,j : j ∈ [3s]} in G[Vi], such that
altogether the following hold:

(i) for each i ∈ [t], |C ′i,1| = |C ′i,2| = 2s;

(ii) for all c ∈ C, |{i ∈ [t] : c ∈ Ci,2 \ C ′i,2}| ≤
√
γn;

(iii) for each i ∈ [t], Mi :=
⋃
j∈[3s]Mi,j consists of 192 c-edges for each c ∈ C ′i,1 ∪ C ′i,2;

(iv) for each i ∈ [t] and any subset C∗i ⊆ C ′i,1 of size s, there exists Ji ⊆ Mi such that Ji is

(C∗i ∪ C ′i,2)-rainbow and contains exactly one edge from each of {Mi,j : j ∈ [3s]};
(v) the matchings M1, . . . ,Mt are edge-disjoint, and |Mi,j | = 256 for all (i, j) ∈ [t]× [3s];

(vi) for every vertex v ∈ V , the number of i ∈ [t] for which v is covered by Mi is (1±√γ)pt.

Here, the crucial property is (iv), which will allow us to use some colours of C ′i,1 flexibly before

assigning the remaining colours (i.e. those in C∗i ) together with the ‘buffer’ C ′i,2 in such a way
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that each matching {Mi,j : i ∈ [t], j ∈ [3s]} contributes exactly one edge to Ji which will be
part of Ti.

Proof. Clearly, we may assume that α = q/2− γ. We choose the random colour sets according
to the following procedure: For each i ∈ [t], let Ci be a q-random subset of C, and let τi : C → [4]
be a random function such that P (τi(c) = 1) = P (τi(c) = 2) = 1/2 − γ/q and P (τi(c) = 3) =
P (τi(c) = 4) = γ/q. For i ∈ [t] and k ∈ [2], let Ci,k,1 = {c ∈ Ci : τi(c) = k} and Ci,k,2 = {c ∈
Ci : τi(c) = k + 2}, and let Ci,k := Ci,k,1 ∪ Ci,k,2. Then Ci,1, Ci,2, Ci,1,1, Ci,1,2 are as in the
statement.

Now, we first expose all random choices except the functions {τi}i∈[t]. By Lemma 17, with
high probability, there exist edge-disjoint matchings M ′1, . . . ,M

′
t in G such that the following

hold:

(a) V (M ′i) ⊆ Vi for all i ∈ [t];
(b) for all i ∈ [t], M ′i consists of 192 c-edges for each c ∈ Ci;
(c) for every vertex v ∈ V , the number of i ∈ [t] for which v is covered by M ′i is (1± 3γ)pt.

Henceforth, assume that these random choices have been made and satisfy the above proper-
ties. It remains to expose the functions τi.

With high probability, we have for all i ∈ [t] and k ∈ [2] that

|Ci,k,1| = (1± γ2)(q/2− γ)n and |Ci,k,2| = (1± γ2)γn.(13)

With high probability, we also have for all c ∈ C that

|{i ∈ [t] : τi(c) = 4}| ≤ √γn.(14)

For v ∈ V , let us call i ∈ [t] unreliable for v if v is covered by M ′i via an edge whose colour is
in Ci,1,2 ∪ Ci,2,2. Then, also with high probability, for all v ∈ V ,

at most 2γq−1n indices i ∈ [t] are unreliable for v.(15)

From now on, assume that (13)–(15) hold. For each i ∈ [t] and k ∈ [2], note that by (13) we
have 2s− 2γn/5 ≤ |Ci,k,1| ≤ 2s and thus, again by (13), we can choose C ′i,k,2 ⊆ Ci,k,2 such that

|C ′i,k,2| = 2s− |Ci,k,1|, and define

C ′i,k := Ci,k,1 ∪ C ′i,k,2.

Then (i) clearly holds and (ii) follows from (14). Moreover, let

Mi := {e ∈M ′i : φ(e) ∈ C ′i,1 ∪ C ′i,2}

for each i ∈ [t]. Observe that (c) and (15) imply (vi).
We now use RMBG’s to break eachMi into small rainbow matchings. For each i ∈ [t], letHi be

a (256, 192)-regular RMBG(3s, 2s, 2s) with parts [3s], C ′i,1 and C ′i,2, which exist by Corollary 10.

For each i ∈ [t], partition Mi into matchings Mi,1, . . . ,Mi,3s, such that, for each j ∈ [3s], Mi,j

is an NHi(j)-rainbow matching. This can be done greedily since to do so we need precisely 192
c-edges of each colour c ∈ C ′i,1 ∪ C ′i,2, which Mi contains. Clearly, |Mi,j | = |NHi(j)| = 256, and

thus (iii) and (v) hold.
Finally, we check that the crucial property (iv) holds. Consider i ∈ [t] and suppose C∗i ⊆ C ′i,1

has size s. Since Hi is an RMBG with parts [3s], C ′i,1 and C ′i,2, there exists a perfect matching

τ in Hi between [3s] and C∗i ∪ C ′i,2. Now, for each j ∈ [3s], we select the τ(j)-edge from Mi,j

and include it in Ji. (Here we view τ(j) as the colour matched to j in the matching τ , and we
use that Mi,j is NHi(j)-rainbow.) Clearly, Ji is as desired. �
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5.3. Matchings for edge absorption. We now find the monochromatic matchings which form
the crucial ingredients for the edge absorption process.

Lemma 19. Suppose 1/n� ε� γ � η � 1 and let p := 3072η, q := 6η, t := n/2, and suppose
m ∈ N with m = (η−ε/5±ε2)n and 0 ≤ α ≤ 4η−ε. Let φ be a 1-factorization of Kn with vertex
set V and colour set C. Let G′1, G

′
2 be edge-disjoint 4η-random subgraphs of Kn, and split G′1

further into an α-random subgraph G′1,1 and a (4η−α)-random subgraph G′1,2. For each i ∈ [t],

let Vi be a p(1 + γ)-random subset of V and let Di be a q(1 + γ)-random subset of C.
Then, with high probability, there exist G1 and G2 such that G′1,1 ⊆ G1 ⊆ G′1 and G2 ⊆ G′2

with ∆(G′2 − G2) ≤ 2εn and, for each i ∈ [t], there exists D′i ⊆ Di of size (1 ± 2γ)qn and
vertex-disjoint matchings {Mi,c}c∈D′i in (G1 ∪G2)[Vi], where Mi,c consists of 256 c-edges, such
that altogether the following hold:

(i) for each c ∈ C, |Ec(G1)| = |Ec(G2)| = 2m and |{i ∈ [t] : c ∈ D′i}| = 3m;
(ii) for any subset E∗ ⊆ E(G1) which consists of precisely m edges of each colour c ∈ C,

there exists a partition of E∗ ∪ E(G2) into sets J1, . . . , Jt, such that, for each i ∈ [t], Ji
contains exactly one edge from each of {Mi,c}c∈D′i;

(iii) every vertex v ∈ V is covered by (1± γ)pt of the matchings {Mi,c : i ∈ [t], c ∈ D′i}.

Here, the crucial property is (ii), which will allow us to use some edges of the global edge
reservoir G1 flexibly before assigning the remaining edges (i.e. those in E∗) together with the
‘buffer’ E(G2) in such a way that each matching {Mi,c : i ∈ [t], c ∈ D′i} contributes exactly one
edge to Ji. Ji will then be assigned to the ith tree Ti.

Proof. We may clearly assume that α = 4η−ε. We also split G′2 further into a (4η−ε)-random
subgraph G′2,1 and an ε-random subgraph G′2,2. We first expose G′1,1, G

′
1,2, G

′
2,1, G

′
2,2. Using

Chernoff’s bound, it is easy to see that, with high probability, we have for all j ∈ [2], c ∈ C and
v ∈ V that

|Ec(G′j,1)| = (1± ε2)(4η − ε)n/2 and |Ec(G′j,2)| = (1± ε2)εn/2,(16)

dG′j,1(v) = (1± ε2)(4η − ε)n and dG′j,2(v) = (1± ε2)εn.(17)

Henceforth, we assume that G′1,1, G
′
1,2, G

′
2,1, G

′
2,2 are fixed with the above properties, and expose

the other random sets.
By (16), we have for j ∈ [2] and c ∈ C that 2m− εn/5 ≤ |Ec(G′j,1)| ≤ 2m. Therefore, by (16)

again, for each j ∈ [2], we can choose G′′j,2 ⊆ G′j,2 such that |Ec(G′′j,2)| = 2m− |Ec(G′j,1)| for all
c ∈ C, and define

Gj := G′j,1 ∪G′′j,2.
Clearly, this choice of G1 and G2 satisfies the first part of (i). Moreover, from (17), we can infer
that ∆(G′2 −G2) ≤ 2εn, as desired, and that

dG1∪G2(v) = (1±
√
ε)8ηn for all v ∈ V .(18)

As indicated in the proof sketch, the key to obtaining (ii) is to use an RMBG for each colour

which matches the 3m c-edges of E∗ ∪ E(G2) to 3m ‘absorbers’. Let Ĥ be a (256, 192)-regular

RMBG(3m, 2m, 2m) with parts [3m], Ŷ1, Ŷ2, which exists by Corollary 10. We identify Ŷ1 and

Ŷ2 with Ec(G1) and Ec(G2). We carry out this identification randomly in order to obtain a
codegree condition in some hypergraph H which we will define later. (This codegree condition
will be needed when applying Theorem 7 to H.) For each colour c ∈ C, pick random bijections

πc,1 : Ec(G1) → Ŷ1 and πc,2 : Ec(G2) → Ŷ2, all independently. Obtain a copy Hc of Ĥ by

identifying Ec(G1) with Ŷ1 according to πc,1 and Ec(G2) with Ŷ2 according to πc,2.
For two vertices v, v′, we define rv,v′ as the number of colours c ∈ C for which NHc(e) ∩

NHc(e
′) 6= ∅, where e and e′ are the unique c-edges at v and v′, respectively. (In particular, if e

or e′ is not contained in Ec(G1 ∪G2), then c contributes 0 to rv,v′ .)

Claim 1: With positive probability, rv,v′ ≤ 3 log n for all distinct vertices v, v′ ∈ V .
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Proof of claim: Fix two distinct vertices v, v′ ∈ V . For c ∈ C, let Xc be the indicator variable
of the event that there exist c-edges e, e′ at v and v′, respectively (which are unique if existent),
and NHc(e) ∩ NHc(e

′) 6= ∅. Fix c ∈ C \ {φ(vv′)} and let e, e′ be as above. We claim that
P (Xc = 1) ≤ 105m−1. Note that e, e′ are distinct. Let k, k′ ∈ {1, 2} be such that e ∈ E(Gk)
and e′ ∈ E(Gk′). Thus,

P (Xc = 1) ≤
∑
j∈[3m]

P
(
πc,k(e), πc,k′(e

′) ∈ NĤ(j)
)
≤ 3m · 256 · 255

2m · (2m− 1)
≤ 105m−1.

Hence, E
(
rv,v′

)
≤ η−2, and since the Xc’s are independent, Chernoff’s bound implies that the

probability that rv,v′ > 3 log n is smaller than n−2. A union bound then implies the claim. −

From now on, fix RMBG’s {Hc}c∈C for which the conclusion of Claim 1 holds. Let A :=
C× [3m]. For each (c, j) ∈ A, we define Ac,j := NHc(j). We refer to Ac,j as an absorber and will
sometimes identify Ac,j with (c, j) ∈ A. Note that Ac,j is a matching consisting of 256 c-edges.

By our choice of RMBG’s, we have that for any two distinct vertices v, v′ ∈ V ,

there are at most 192 · 3 log n absorbers (c, j) ∈ A with v, v′ ∈ V (Ac,j).(19)

We will now assign to each absorber an index i ∈ [t]. The assignment will be obtained as
follows: We first define an auxiliary hypergraph H, in which we will find an almost perfect
matching that provides an almost complete assignment. For the remaining absorbers not yet
assigned, we will greedily pick images from a reserve.

In order to set aside this ‘reserve’, we randomly split Vi and Di further as follows. For each
i ∈ [t], split Vi into a p-random set Vi,1 and a pγ-random set Vi,2, and split Di into a q-random
set Di,1 and a qγ-random set Di,2.

We can now define the (random) auxiliary hypergraph H as follows. The vertex set of H
consists of three different parts: The first part is simply the set A which represents all the
absorbers. The second part is the set V of all pairs (i, v) with i ∈ [t] and v ∈ Vi,1. The third
part is the set C of all pairs (i, c) with i ∈ [t] and c ∈ Di,1.

Now, we define the edge set of H. For every i ∈ [t] and every absorber (c, j) ∈ A, we add the
hyperedge

fc,j,i := {(c, j), (i, c)} ∪ ({i} × V (Ac,j))(20)

if and only if c ∈ Di,1 and V (Ac,j) ⊆ Vi,1. Hence, H is 514-uniform. (Recall that Ac,j is a
matching consisting of 256 c-edges.)

Moreover, for each absorber (c, j) ∈ A, we define the random set Yc,j of indices i ∈ [t] for
which c ∈ Di,2 and V (Ac,j) ⊆ Vi,2. We aim to apply Theorem 7 to H. For this, we first establish
the following properties.

Claim 2: With high probability, for each (c, j) ∈ A, dH((c, j)) = (1 ± ε)tp512q and |Yc,j | =
(1± ε)t(pγ)512qγ.

Proof of claim: Fix an absorber (c, j) ∈ A. For i ∈ [t], letXi be the indicator variable of the event
that c ∈ Di,1 and V (Ac,j) ⊆ Vi,1 and let Yi be the indicator variable of the event that c ∈ Di,2

and V (Ac,j) ⊆ Vi,2. Note that dH((c, j)) =
∑

i∈[t]Xi and |Yc,j | =
∑

i∈[t] Yi. For each i ∈ [t],

we have that P (Xi = 1) = p512q and P (Yi = 1) = (pγ)512qγ. Thus, E (dH((c, j))) = tp512q and
E (|Yc,j |) = t(pγ)512qγ. Since the Xi’s are independent, and similarly, the Yi’s are independent,
we can deduce with Chernoff’s bound that the claim holds. −

Claim 3: With high probability, for each (i, c) ∈ C, dH((i, c)) = (1± ε)3mp512.

Proof of claim: Fix (i, c) ∈ C. For j ∈ [3m], let Xj be the indicator variable of the event that
V (Ac,j) ⊆ Vi,1. Note that dH((i, c)) =

∑
j∈[3m]Xj . For each j ∈ [3m] we have P (Xj = 1) = p512.

Thus, E (dH((i, c))) = 3mp512.
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Moreover, dH((i, c)) is determined by the independent random variables {1{v∈Vi,1} : v ∈
V }. Since 1{v∈Vi,1} affects dH((i, c)) by at most 192, the claim follows by an application of
McDiarmid’s inequality. −

Claim 4: With high probability, for all (i, v) ∈ V, dH((i, v)) = (1± 2
√
ε)1536ηp511qn.

Proof of claim: Fix (i, v) ∈ V. For each edge e at v in G1 ∪ G2, say with colour c, e has 192
neighbours j ∈ [3m] in Hc, and for each of those we have fc,j,i ∈ E(H) iff c ∈ Di,1 and the
511 other vertices of Ac,j are contained in Vi,1. Thus, E (dH((i, v))) = dG1∪G2(v) · 192 · p511q =
(1±

√
ε) · 8 · 192ηp511qn by (18).

Moreover, dH((i, v)) is determined by the independent random variables {1{u∈Vi,1} : u ∈
V \ {v}} ∪ {1{c∈Di,1} : c ∈ C}. The effect of 1{c∈Di,1} on dH((i, v)) is at most 192. Moreover,

for each u ∈ V \ {v}, by (19), 1{u∈Vi,1} affects dH((i, v)) by at most 192 · 3 log n. The claim now
follows from an application of McDiarmid’s inequality. −

Claim 5: ∆c(H) ≤ 192 · 3 log n.

Proof of claim: Clearly, the codegree of pairs in A×A and C × C is 0. Moreover, the codegree
of pairs in A × V and A × C is at most 1. It is also easy to see that the codegree of a pair in
V × C is at most 192.

Finally, consider a pair in V × V, say (i, u) and (i′, v). If i 6= i′, then the codegree is 0, so
assume i = i′. Crucially, by (19), the codegree of (i, u) and (i, v) is at most 192 · 3 log n. −

We now assume that the properties stated in Claims 2–5 are satisfied. Using Chernoff’s
bound, we can assume that the following simple properties hold as well:

|Di,1| = (1± ε)qn and |Di,2| = (1± ε)qγn.(21)

By our choice of p, q, η, t,m, we have that dH(x) = (1 ± 2
√
ε)3ηp512n for all x ∈ V (H). In

combination with Claim 5, we can thus apply Theorem 7 to find an almost perfect matching
in H. In order to gain control over the leftover vertices in H, we define the following vertex sets.
For each vertex v ∈ V , let Av be the set of all absorbers (c, j) ∈ A for which v ∈ V (Ac,j). Note
that

|Av| = 192dG1∪G2(v)
(18)
= (1±

√
ε) · 8 · 192ηn = (1±

√
ε)pt.(22)

Define
F := {Av : v ∈ V } ∪ {{c} × [3m] : c ∈ C} ∪ {{i} ×Di,1 : i ∈ [t]}.

Now, apply Theorem 7 to find a

(γ515,F)-perfect matching M in H.(23)

Our goal is to define a map σ : A → [t]. Let A′ be the set of absorbers (c, j) ∈ A which are not
covered by M. For each (c, j) ∈ A \ A′, the absorber (c, j) is covered by a (unique) hyperedge
fc,j,i ∈M, and we define σ(c, j) := i. For all uncovered absorbers, we now use the ‘reserve’ sets
Vi,2 and Di,2 to pick suitable images.

For all (c, j) ∈ A′, we successively define σ(c, j) as follows: when we consider (c, j) ∈ A′, let
A′′ be the set of all previously considered (c′, j′) ∈ A′ with c′ = c or V (Ac,j) ∩ V (Ac′,j′) 6= ∅.
By (23), we have that

|A′′| ≤ γ515 · |{c} × [3m]|+
∑

v∈V (Ac,j)

γ515|Av|
(22)

≤ γ515 · 3m+ 512γ515 · 2pt < γ514n/2.

Recall from Claim 2 that |Yc,j | ≥ γ514n. Thus, there is i ∈ Yc,j \σ(A′′) and we define σ(c, j) := i.
Altogether, we have found a map σ : A → [t], which we show has the following properties:

(a) V (Ac,j) ⊆ Vσ(c,j) and c ∈ Dσ(c,j) for all (c, j) ∈ A;
(b) V (Ac,j) ∩ V (Ac′,j′) = ∅ whenever σ(c, j) = σ(c′, j′);
(c) for all c ∈ C and i ∈ [t], there is at most one j ∈ [3m] with σ(c, j) = i.
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Here, (a) clearly holds by the definitions of H, Yc,j and σ. To see (b), suppose σ(c, j) =
σ(c′, j′) = i. If (c, j), (c′, j′) ∈ A \ A′, then we have V (Ac,j) ∩ V (Ac′,j′) = ∅ since M is a
matching and as such covers every vertex (i, v) ∈ V at most once. If (c, j) ∈ A and (c′, j′) ∈ A′,
then V (Ac,j) ⊆ Vi,1 and V (Ac′,j′) ⊆ Vi,2. Finally, suppose (c, j), (c′, j′) ∈ A′ and assume that
we defined σ(c, j) after σ(c′, j′). If V (Ac,j) ∩ V (Ac′,j′) 6= ∅, then (c′, j′) ∈ A′′ (with notation as
above) and hence i ∈ σ(A′′), a contradiction.

For (c), fix c ∈ C and i ∈ [t]. Suppose σ(c, j) = i for some j ∈ [3m]. We consider two cases.
In the first case, we have (c, j) ∈ A \ A′ and fc,j,i ∈ M. In particular, there is at most one j
which satisfies this and we must have c ∈ Di,1. In the second case, we must have (c, j) ∈ A′ and
c ∈ Di,2, and there can only be one j which satisfies this by definition of A′′ above. Since Di,1

and Di,2 are disjoint, (c) follows.

Now, for every c ∈ C, define σc := σ(c, ·) and Ic := Im(σc). By (c), σc : [3m] → Ic is a
bijection. For all i ∈ [t], define

D′i := {c ∈ C : i ∈ Ic}.
For all c ∈ C, we have |{i ∈ [t] : c ∈ D′i}| = |Ic| = 3m, so the second part of (i) holds too.
Observe that if c ∈ D′i, then i ∈ Ic and hence there exists some j ∈ [3m] for which σ(c, j) = i.
By (a), we have c ∈ Di. Thus, D′i ⊆ Di. In particular, we have |D′i| ≤ |Di| ≤ (1+2γ)qn by (21).
Moreover, since {i}×Di,1 ∈ F , at least (1−γ515)|Di,1| elements of {i}×Di,1 are covered byM,
which means that for at least (1 − γ515)|Di,1| colours c in Di,1, we have i ∈ Ic and therefore
c ∈ D′i. Thus, |D′i| ≥ (1−γ515)|Di,1| ≥ (1−2γ)qn by (21). Hence, |D′i| = (1±2γ)qn, as required.

Furthermore, for all i ∈ [t] and c ∈ D′i, let

Mi,c := Ac,σ−1
c (i).

Clearly, Mi,c is a matching consisting of 256 c-edges in G1 ∪ G2. Using (a), we can also
see that V (Mi,c) ⊆ Vi. Moreover, for fixed i ∈ [t], all the matchings {Mi,c}c∈D′i are vertex-

disjoint by (b). To check (iii), consider any vertex v ∈ V . Clearly, the number of matchings
{Mi,c : i ∈ [t], c ∈ D′i} covering v is at most |Av| ≤ (1+

√
ε)pt by (22). Moreover, sinceM covers

all but at most γ515|Av| absorbers in Av, we obtain a lower bound of (1− γ515)|Av| ≥ (1− γ)pt,
as desired.

It remains to show the crucial property (ii). Suppose E∗ ⊆ E(G1) consists of precisely m
edges of each colour c ∈ C. For each c ∈ C, let E∗c be the set of c-edges in E∗. Since Hc is an
RMBG with parts [3m], Ec(G1) and Ec(G2), there exists a bijection τc : [3m] → E∗c ∪ Ec(G2)
such that τc(j) ∈ NHc(j) for all j ∈ [3m].

We can now define the desired partition of E∗ ∪E(G2) as follows. Let e ∈ E∗ ∪E(G2). Let c
be the colour of e and j := τ−1c (e). Thus, we have e ∈ NHc(j) = Ac,j = Mi,c, where i := σc(j).
Note that i ∈ Ic and hence c ∈ D′i. Assign e to Ji. Clearly, this defines a partition of E∗∪E(G2)
into J1, . . . , Jt. Consider i ∈ [t]. By construction, every edge e ∈ Ji belongs to some Mi,c with
c ∈ D′i. Moreover, for fixed c ∈ D′i, only one edge of Mi,c is included in Ji because σc and τc are
bijective. �

5.4. Connecting lemma. The following lemma will be used to efficiently connect up the (edges
from the) matchings produced by Lemmas 18 and 19 of the trees Ti.

Given a k-uniform matching R, we say that a graph F is an R-connector if F is obtained
from the empty graph on V (R) by adding, for every R ∈ R, new vertices vR,1, . . . , vR,k+1, a
perfect matching between R and {vR,1, . . . , vR,k} and all edges from {vR,1, . . . , vR,k} to vR,k+1.

Lemma 20. Suppose 1/n � ε � γ � p′ � 1/k and let p := p′/k and β := q := 2p′ and
t := n/2 and suppose p′′ = (1 ± ε)p′. Let φ be a 1-factorization of the complete graph Kn with

vertex set V and colour set C. Let G̃ be a β(1 + γ)-random subgraph of Kn. For every i ∈ [t],
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let Ui, Ṽi be disjoint subsets of V that are p′′-random and (p′ + p)(1 + γ)-random, respectively,

and let C̃i be a q(1 + γ)-random subset of C.
Then, the following holds with high probability: Let R be any k-uniform (multi-)hypergraph

which is the union of t matchings R1, . . . ,Rt such that V (Ri) ⊆ Ui and |Ri| = (1± ε)pn for all
i ∈ [t], and such that dR(x) = (1 ± ε)p′t for all x ∈ V . Then, for each i ∈ [t], there exists an

Ri-connector F̃i in G̃[Ui ∪ Ṽi] such that the following hold:

(i) F̃1, . . . , F̃t are edge-disjoint;

(ii) for each i ∈ [t], F̃i is rainbow with colours in C̃i;

(iii) (G̃−
⋃
i∈[t] F̃i, {(Ui ∪ Ṽi) \ V (F̃i)}i∈[t], {C̃i \ φ(E(F̃i))}i∈[t]) is 2γn-bounded.

In the proof, we will find most of the required connections via Theorem 7 (which allows us to
do this ‘efficiently’) and the remaining ones via Lemma 15.

Proof. Choose a new constant ξ > 0 such that ε � ξ � γ. Split G̃ further into a β-
random subgraph G and a βγ-random subgraph G′. Moreover, for each i ∈ [t], split Ṽi into a

p′-random subset Vi, a p-random subset Wi and a (p′ + p)γ-random subset V ′i . Split C̃i into
a q-random subset Ci and a qγ-random subset C ′i. We will now establish a few properties
concerning the random sets which hold with high probability. From these properties, we can
then (deterministically) find the desired connections for any admissible R.

For i ∈ [t], let Gi be the spanning subgraph of G with all Ci-edges, and let G′i be the spanning
subgraph of G′ with all C ′i-edges.

For each edge e ∈ E(Kn), let Ĩe,1 be the set of i ∈ [t] for which φ(e) ∈ Ci and e intersects
both Ui, Vi, and let Ie,2 be the set of i ∈ [t] for which φ(e) ∈ Ci and e intersects both Vi,Wi.

For i ∈ [t] and c ∈ C, let Ẽi,c,1 be the set of c-edges in EG(Ui, Vi), and let Ei,c,2 be the set of
c-edges in EG(Vi,Wi).

We claim that the following hold with high probability:

(a) for all i ∈ [t], |Ui| = (1± 3ε)p′n, |Vi| = (1± ε)p′n, and |Wi| = (1± ε)pn;
(b) for all u ∈ V , we have |{i ∈ [t] : u ∈ Ui}| = (1± 3ε)p′t;
(c) for all i ∈ [t] and x ∈ V , dGi(x, Ui) = (1 ± 3ε)p′qβn, dGi(x, Vi) = (1 ± ε)p′qβn and

dGi(x,Wi) = (1± ε)pqβn;
(d) for all i ∈ [t] and distinct x, y ∈ V , |NGi({x, y}) ∩ Vi| = (1± ε)p′q2β2n;
(e) for all i ∈ [t] and S ⊆ V with 1 ≤ |S| ≤ k, we have |NG′i

(S) ∩ V ′i | ≥ γ2k+2n;

(f) for all e ∈ E(Kn), |Ĩe,1| = (1± 2ε)p′2qn and |Ie,2| = (1± ε)p′pqn;

(g) for all i ∈ [t] and c ∈ C, |Ẽi,c,1| = (1± 2ε)p′2βn and |Ei,c,2| = (1± ε)p′pβn;
(h) (G′, {V ′i }i∈[t], {C ′i}i∈[t]) is γn-bounded.

Indeed, (a), (b), (c), (f), (g) and (h) follow easily from Chernoff’s bound. For (d) and (e),
we use McDiarmid’s inequality, as follows. Consider i ∈ [t] and distinct x, y ∈ V . Clearly,
E (|NGi({x, y}) ∩ Vi|) = p′β2q2(n− 2). Moreover, of the at most 2n edges incident with either x
or y, each has an effect of at most 1. Each vertex has an effect of at most 1, and each colour has
an effect of at most 2, and so McDiarmid’s inequality applies. A similar argument works for (e).

Now assume that (a)–(h) hold. Let R be given arbitrarily as in the lemma statement. Let
U ′i := V (Ri). By (a) and since |V (Ri)| = k|Ri| = (1± ε)p′n, we have that

|Ui \ U ′i | ≤ 4εp′n ≤ εn.(24)

Moreover, for every vertex u ∈ V , it follows from (b) and since dR(u) = (1± ε)p′t that

|{i ∈ [t] : u ∈ Ui \ U ′i}| ≤ 4εp′t ≤ εn.(25)

From (c) and (24) we infer that

for all i ∈ [t] and x ∈ V , dGi(x, U
′
i) = (1±

√
ε)p′qβn.(26)
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For an edge e ∈ E(Kn), let Ie,1 be the set of i ∈ Ĩe,1 for which e intersects U ′i . From (f) and (25),
we deduce that

|Ie,1| = (1±
√
ε)p′2qn.(27)

For all i ∈ [t] and c ∈ C, let Ei,c,1 be the set of c-edges in EG(U ′i , Vi). By (g) and (24), we have

|Ei,c,1| = (1±
√
ε)p′2βn.(28)

We now define an auxiliary hypergraph H whose vertex set is the union of five parts. The
first part is simply E(G). The second part is the set R∗ of all pairs (i, R) such that R ∈ Ri.
The third part is the set V of all pairs (i, v) with v ∈ Vi. The fourth part is the set W of all
pairs (i, w) with w ∈Wi. The fifth part is the set C of all pairs (i, c) with c ∈ Ci.

We now define the edge set of H. For disjoint R, T , {w} ⊆ V and a bijection π : T → R, let
SR,T,w,π denote the graph on R∪T ∪{w} with edge set {π(v)v, vw : v ∈ T}. Note that SR,T,w,π
is an {R}-connector.

For all (i, R) ∈ R∗, T ⊆ Vi, w ∈Wi and bijections π : T → R, we add the hyperedge

fi,R,T,w,π := E(SR,T,w,π) ∪ {(i, R)} ∪ ({i} × T ) ∪ {(i, w)} ∪ ({i} × φ(E(SR,T,w,π)))

to H if and only if SR,T,w,π is a rainbow subgraph of Gi. Note that H is (5k + 2)-uniform since
|T | = |R| = k and hence E(SR,T,w,π) = 2k. We will apply Theorem 7 to H. For this, we first
check that H is roughly regular.

For each i ∈ [t] and e ∈ E(Gi), let

di,e := |{fi,R,T,w,π ∈ E(H) : e ∈ E(SR,T,w,π)}|,
and let di,e := 0 for each i ∈ [t] and e /∈ E(Gi).

Claim 1: For each i ∈ [t] and e ∈ E(Gi), we have

di,e =


(1±

√
ε)pqβn(p′β2q2n)k−1 if e intersects both U ′i and Vi,

(1± 3
√
ε)p′qβn(p′β2q2n)k−1 if e intersects both Vi and Wi,

0 otherwise.

Proof of claim: First, assume e = uv with u ∈ U ′i and v ∈ Vi. There is a unique R ∈ Ri with u ∈
R. By (c), there are (1±ε)pqβn choices for w ∈ NGi(v)∩Wi. For each u′ ∈ R\{u} in turn, by (d),
we have (1± 2ε)p′q2β2n choices for π−1(u′) ∈ NGi(u

′) ∩NGi(w) ∩ Vi while avoiding previously
chosen vertices and previously used colours. We deduce that di,e = (1±

√
ε)pqβn(p′β2q2n)k−1.

Next, assume e = vw with v ∈ Vi and w ∈ Wi. By (26), there are (1 ±
√
ε)p′qβn choices

for π(v) ∈ NGi(v) ∩ U ′i , which yields a unique R ∈ Ri with π(v) ∈ R. Using (d) as above, we
conclude that di,e = (1± 3

√
ε)p′qβn(p′β2q2n)k−1.

Clearly, in any other case, we have di,e = 0. −
We will use Claim 1 below without explicit reference.

Claim 2: For all x ∈ V (H), we have dH(x) = (1± ε1/3)pp′kβ2kq2knk+1.

Proof of claim: First, consider e ∈ E(G). We have

dH(e) =
∑
i∈[t]

di,e = |Ie,1| · (1±
√
ε)pqβn(p′β2q2n)k−1 + |Ie,2| · (1± 3

√
ε)p′qβn(p′β2q2n)k−1

(f),(27)
= (1± ε1/3)2pp′k+1β2k−1q2knk+1 = (1± ε1/3)pp′kβ2kq2knk+1,

as p′ = β/2.
Next, consider (i, R) ∈ R∗. By (a), there are (1± ε)pn choices for w ∈Wi. For each u ∈ R in

turn, by (d), we have (1± 2ε)p′β2q2n choices for π−1(u) ∈ NGi(u)∩NGi(w)∩ Vi while avoiding
previously chosen vertices and previously used colours. We deduce that

dH((i, R)) = (1±
√
ε)pn(p′β2q2n)k = (1±

√
ε)pp′kβ2kq2knk+1.
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Now, consider (i, v) ∈ V. We have

dH((i, v)) =
∑

w∈NGi
(v)∩Wi

di,vw
(c)
= (1± ε)pqβn · (1± 3

√
ε)p′qβn(p′β2q2n)k−1

= (1± ε1/3)pp′kβ2kq2knk+1.

Next, consider (i, w) ∈ W. By assumption, we have |Ri| = (1± ε)pn choices for R ∈ Ri. For
each u ∈ R in turn, by (d), we have (1± 2ε)p′β2q2n choices for π−1(u) ∈ NGi(u) ∩NGi(w) ∩ Vi
while avoiding previously chosen vertices and previously used colours. We deduce that

dH(i, w) = (1± ε1/3)pn(p′β2q2n)k = (1± ε1/3)pp′kβ2kq2knk+1.

Finally, consider (i, c) ∈ C. Note that dH((i, c)) =
∑

e∈Ec(G) di,e. Hence,

dH((i, c)) = |Ei,c,1| · (1±
√
ε)pqβn(p′β2q2n)k−1 + |Ei,c,2| · (1± 3

√
ε)p′qβn(p′β2q2n)k−1

(g),(28)
= (1± ε1/3)((p′2βn)(pqβn)(p′β2q2n)k−1 + (p′pβn)(p′qβn)(p′β2q2n)k−1)

= (1± ε1/3)2pp′k+1β2kq2k−1nk+1 = (1± ε1/3)pp′kβ2kq2knk+1,

since p′ = q/2. −

Claim 3: ∆c(H) ≤ 4k2nk.

Proof of claim: Clearly, the codegrees of pairs in R∗ × R∗ and W ×W are 0. Moreover, by
Claim 1, we have di,e ≤ nk for all i ∈ [t] and e ∈ E(Gi). This implies that the codegrees of pairs

in E(G)×R∗, E(G)×V, E(G)×W and E(G)×C are at most nk, as required. It is also easy to
see that the codegrees of pairs in R∗ × V, R∗ ×W, V × V and V ×W are at most nk, since for
fixed i, we always have at most |Ri| ≤ n choices for R and at most n choices for each remaining
vertex.

Consider distinct e, e′ ∈ E(G). There are t ≤ n choices for i. If e = vw and e′ = v′w with
v, v′ ∈ Vi and w ∈ Wi, then there are at most n choices for R and at most nk−2 choices for
T \ {v, v′}. Otherwise, we may assume that e = uv for u ∈ U ′i , v ∈ Vi and e′ is incident to
a vertex x ∈ (Vi ∪ Wi) \ {v}. Now u determines R and there are at most nk−1 choices for
(T ∪ {w}) \ {v, x}. Altogether, we conclude that the codegree of e, e′ is at most nk.

Next, consider (i, c), (i, c′) ∈ C with c 6= c′. We have to provide an upper bound for the
number of R, T,w, π for which fi,R,T,w,π ∈ E(H) and SR,T,w,π contains a c-edge e and a c′-edge
e′. To count these possibilities, we distinguish some cases regarding how e, e′ intersect U ′i , Vi,Wi.
First, assume that e, e′ ∈ EG(U ′i , Vi). In this case, there are at most n choices for R and then at
most k(k− 1) choices for e, e′. Moreover, since e, e′ must form a matching, two vertices of T are
determined. This leaves at most nk−1 choices for the remaining vertices, which yields a total of
k2nk choices in this case. Next, assume that e, e′ ∈ EG(Vi,Wi). In this case, there are at most
n choices for w, which then determines e and e′ and thus two vertices from T . There are at
most n choices for R and at most nk−2 choices for the remaining vertices of T . Finally, assume
that e ∈ EG(U ′i , Vi), e

′ ∈ EG(Vi,Wi). We divide this case into two subcases. First, assume that
e, e′ share their endpoint v in Vi. Then we have at most n choices for v, which determines e, e′,
which in turn determines R and w, and leaves at most nk−1 choices for the vertices in T \ {v}.
On the other hand, if e, e′ form a matching, then we have at most n2 choices for e, e′, which
determines R and w as before and leaves at most nk−2 choices for the remaining vertices in T .
Thus, altogether, the codegree of (i, c), (i, c′) is at most k2nk + nk + 2nk ≤ 4k2nk.

Next, consider (i, R) ∈ R∗ and (i, c) ∈ C. We have to choose a c-edge e. If e ∈ EG(U ′i , Vi),
there are at most k choices for e, which also fixes one vertex of T , and leaves at most nk choices
for the remaining vertices. If e ∈ EG(Vi,Wi), then there are at most n choices for e, which fixes
w and one vertex from T , and leaves at most nk−1 choices for the remaining vertices. Thus,
(i, R) and (i, c) have codegree at most (k + 1)nk.
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Finally, consider (i, x) ∈ V ∪W and (i, c) ∈ C. We have to choose a c-edge e. If e is incident
with x, then there is only one choice for e. This either fixes R, in which case at most nk choices
are left for the remaining vertices, or it fixes another vertex from T ∪ {w}, in which case there
are at most n choices for R and at most nk−1 choices for the remaining vertices. If e is not
incident with x, then there are at most n choices for e. However, this either fixes R and leaves
at most nk−1 choices for the remaining vertices, or it fixes two more vertices, which leaves at
most n choices for R and at most nk−2 choices for the remaining vertices. Thus, (i, x) and (i, c)
have codegree at most 2nk. −

For v ∈ V , let Rv be the set of all (i, R) ∈ R∗ with v ∈ R, and let Vv be the set of all pairs
(i, v) with i ∈ [t] and v ∈ Vi ∪Wi. For a colour c ∈ C, let Cc be the set of all pairs (i, c) with
i ∈ [t] and c ∈ Ci. Let

F := {{i}×Ri, {i}×(Vi∪Wi), {i}×Ci : i ∈ [t]}∪{Rv,Vv, ∂G(v) : v ∈ V }∪{Cc, Ec(G) : c ∈ C}.

Now, apply Theorem 7 to obtain a (ξ,F)-perfect matchingM in H. For each i ∈ [t], let R′i be
the set of all R ∈ Ri with (i, R) /∈ V (M). Since {i} × Ri ∈ F , we have |R′i| ≤ ξ|Ri| ≤ ξn. For
each R ∈ Ri \R′i, there is a unique edge fi,R,T,w,π inM which covers (i, R). Let Si,R := SR,T,w,π
and define Fi :=

⋃
R∈Ri\R′i

Si,R. By construction of H, F1, . . . , Ft are edge-disjoint subgraphs

of G, and, for each i ∈ [t], we have that Fi is a rainbow (Ri \ R′i)-connector with colours in Ci,
and V (Fi) ∩ V (R′i) = ∅ and V (Fi) \ U ′i ⊆ Vi ∪Wi. Moreover, observe that

(G−
⋃
i∈[t] Fi, {(Vi ∪Wi) \ V (Fi)}i∈[t], {Ci \ φ(E(Fi))}i∈[t]) is ξn-bounded.(29)

Indeed, (B1) holds since {i} × (Vi ∪Wi), {i} × Ci ∈ F for every i ∈ [t]. Similarly, (B2) holds
since Vv, ∂G(v) ∈ F for every v ∈ V . Finally, (B3) holds since Cc, Ec(G) ∈ F for every c ∈ C.

We will find the missing connectors using Lemma 15. Let Hi be an R′i-connector. Clearly,
V (R′i) is an independent set in Hi, ∆(Hi) ≤ k and |V (Hi)|, |E(Hi)| ≤ (2k + 1)|R′i| ≤ 3kξn.
Moreover, for every vertex x ∈ V , the number of i ∈ [t] for which x ∈ V (R′i), is at most
|Rx| ≤ ξn.

Using (e), we can thus apply Lemma 15 (with G′, {V ′i }i∈[t], {C ′i}i∈[t] playing the roles of
G, {Vi}i∈[t], {Ci}i∈[t]) to find for each i ∈ [t], an embedding ψi : Hi → G′ such that ψi(Hi)
is rainbow with colours in C ′i and ψi(x) = x for all x ∈ V (R′i) and ψi(x) ∈ V ′i for all x ∈
V (Hi) \ V (R′i), and such that ψ1(H1), . . . , ψt(Ht) are edge-disjoint.

Finally, let F̃i := Fi ∪ψi(Hi). Clearly, F̃i is a rainbow Ri-connector in G̃[Ui ∪ Ṽi] with colours

in C̃i, and F̃1, . . . , F̃t are edge-disjoint. Moreover, (iii) follows from (h), (29), (24) and (25).
�

5.5. Rainbow perfect matchings. Given a bipartite graph G with vertex classes V1, V2, we
say that G is (ε, d)-quasirandom if for all j ∈ [2] and distinct v, v′ ∈ Vj , we have dG(v, V3−j) =
(1± ε)d|V3−j | and |NG({v, v′}) ∩ V3−j | = (1± ε)d2|V3−j |.

The next lemma follows easily from a result of Coulson and Perarnau [11, Lemma 6]. Indeed,
it is well known that the above notion of quasirandomness implies super-regularity, which is
sufficient for the existence of a perfect matching. Moreover, using regularity, it is straightforward
to count the number of ‘switchable edges’, as required in the general statement in [11].

Lemma 21. Suppose 1/n � ε � d. Let G be a bipartite graph with vertex classes A,B such
that |A| = |B| = n and G is (ε, d)-quasirandom. Then, given any edge-colouring of G where
each colour appears at most εn times, there exists a rainbow perfect matching of G.

We now use Lemma 21 to obtain several edge-disjoint rainbow perfect matchings.

Lemma 22. Suppose 1/n � µ � d and let t ≤ n. Let V be a vertex set of size n and assume
that U1, . . . , Ut are subsets of V such that |Ui| ≥ µn for all i ∈ [t], |Ui ∩ Uj | ≤ 5µ2n for all
distinct i, j ∈ [t], and, for every v ∈ V , the number of i ∈ [t] for which v ∈ Ui is at most 3µt.
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For each i ∈ [t], suppose Ui is partitioned into equal-sized sets Ai and Bi, and Gi is a (µ1/3, d)-
quasirandom bipartite graph with vertex classes Ai, Bi. Assume that Gi is edge-coloured and
each colour appears at most 2µ2n times in Gi.

Then there exist edge-disjoint M1, . . . ,Mt such that Mi is a rainbow perfect matching of Gi
for each i ∈ [t].

We find M1, . . . ,Mt using a randomised greedy algorithm.

Proof. Let r := d105µ3/2ne. Suppose that we have already found M1, . . . ,Ms−1 for some s ∈ [t].

We now define Ms as follows. Let Hs−1 :=
⋃s−1
i=1 Mi and let G′s := Gs−Hs−1. If ∆(Hs−1[Us]) ≤

µ3/2n, then G′s is (µ1/4, d)-quasirandom. Thus, by Lemma 21 used repeatedly, we can find edge-

disjoint rainbow perfect matchings Ms,1, . . . ,Ms,r of G′s. Otherwise, if ∆(Hs−1[Us]) > µ3/2n, let
Ms,1, . . . ,Ms,r be empty graphs on Us. In either case, pick j ∈ [r] uniformly at random and let
Ms := Ms,j . The lemma clearly follows if the following holds with positive probability:

∆(Hs−1[Us]) ≤ µ3/2n for all s ∈ [t].(30)

For s ∈ [t] and u ∈ Us, let Js,u be the set of indices i ∈ [s − 1] such that u ∈ Ui, so that
|Js,u| ≤ 3µt, and for i ∈ Js,u, let Y s,u

i be the indicator variable of the event that uu′ ∈ E(Mi)
for some u′ ∈ Us. Observe that

dHs−1[Us](u) =
∑
i∈Js,u

Y s,u
i .

Now, fix s ∈ [t] and u ∈ Us. Crucially, for any i ∈ Js,u, since |Us ∩ Ui| ≤ 5µ2n, at most
5µ2n of the matchings Mi,1, . . . ,Mi,r that we picked in G′i contain an edge incident to u in Gs
(regardless of the previous choices). Let i1, . . . , i|Js,u| be the enumeration of Js,u in increasing
order. By the above, for all ` ∈ [|Js,u|], we have

P
(
Y s,u
i`

= 1 | Y s,u
i1
, . . . , Y s,u

i`−1

)
≤ 5µ2n

r
≤ µ1/2

21
.

Let B ∼ Bin(|Js,u|, µ1/2/21). Since |Js,u| ≤ 3µn, we have E (B) ≤ µ3/2n/7. Using Fact 12 and
Lemma 11(ii), we infer that

P

( ∑
i∈Js,u

Y s,u
i > µ3/2n

)
≤ P

(
B > µ3/2n

)
≤ e−µ3/2n.

Finally, a union bound implies that (30) holds with high probability. �

5.6. Proof of Theorem 4. We are now ready to prove our main theorem.

Proof of Theorem 4. Choose new constants ε, γ, ξ, µ, η > 0 such that

1/n� ε� γ � ξ � µ� η � 1,

and let

t := n/2 r := d(η/256 + 6η + 3γ)ne b := d(µ− ξ1/3)ne.
Let φ be a 1-factorization of Kn with vertex set V and colour set C. We will obtain a decompos-
ition into t rainbow copies of Tn;r,b (cf. Definition 5). Hence, r and b are essentially determined
by η and µ, respectively, and ε, γ, ξ are best thought of as error parameters.

In order to apply the lemmas that we have proven in this section without interference, we
will split E(Kn), V and C into random subsets each reserved for the application of the relevant
lemma. For convenience, we now define the relevant constants in one place (where the letters
p, q, β represent vertex, colour and edge probabilities, respectively).
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prb := 2η qrb := η/192 pmc := 3072η qmc := 6η

m := d(η − ε/5)ne s := d(qrb/4− 2γ/5)ne

p̃′ := prb + pmc p̃ := η/256 + 6η β̃ := q̃ := 2p̃′

p◦ := 1− p̃′(1 + γ)− (p̃′ + p̃)(1 + ξ)− 2µ

q◦,1 := 1− qrb − qmc(1 + γ)− q̃(1 + ξ)− µ q◦,2 := p◦ − q◦,1
β◦,1 := 1− 8η − β̃(1 + ξ)− µ β◦,2 := p◦ − β◦,1

qM := (qrb/2− q◦,2)/3 βM := (4η − η(1 + γ)− β◦,2)/3.

Note that, as γ � ξ, q◦,2 = η/768−µ±ξ and β◦,2 = 2η−η/256−µ±ξ and hence qM ≥ η/2304
and βM ≥ η/3.

Step 1: Random splitting

Split vertices. For each i ∈ [t], we split V randomly as follows:

V = Ui ·∪ Ṽi ·∪ V ◦i ·∪ Ai ·∪ Bi
1 = p̃′(1 + γ) + (p̃′ + p̃)(1 + ξ) + p◦ + µ + µ.

We split Ui and Bi further as follows:

Ui = V rb
i ·∪ V mc

i
p̃′(1 + γ) = prb(1 + γ) + pmc(1 + γ)

and
Bi = Bi,1 ·∪ Bi,2
µ = µ/2 + µ/2.

Split colours. Moreover, for each i ∈ [t], we split C randomly as follows:

C = Ci,1 ·∪ Ci,2 ·∪ Di ·∪ C̃i ·∪ C•i ·∪ C◦,1i
1 = qrb/2 + qrb/2 + qmc(1 + γ) + q̃(1 + ξ) + µ + q◦,1.

We split Ci,1 further as follows:

Ci,1 = CMi,1 ·∪ CMi,2 ·∪ CMi,3 ·∪ C◦,2i
qrb/2 = qM + qM + qM + q◦,2.

Let C◦i := C◦,1i ∪ C
◦,2
i . Hence, C◦i is a p◦-random set. Moreover, let CMi := CMi,1 ∪ CMi,2 ∪ CMi,3.

Split edges. We split Kn randomly as follows:

Kn = G1 ·∪ G2 ·∪ G̃ ·∪ G• ·∪ G◦,1

1 = 4η + 4η + β̃(1 + ξ) + µ + β◦,1.

Split G1 further as follows:

G1 = Grb ·∪ GM1 ·∪ GM2 ·∪ GM3 ·∪ G◦,2

4η = η(1 + γ) + βM + βM + βM + β◦,2.

Let G◦ := G◦,1 ∪G◦,2. Thus, G◦ is a p◦-random subgraph. Moreover, let GM := GM1 ∪GM2 ∪GM3 .

Create the edge reservoir. By Lemma 19 (with G1, G2, G
rb∪GM, G◦,2, {V mc

i , Di}i∈[t] in place
of G′1, G

′
2, G

′
1,1, G

′
1,2, {Vi, Di}i∈[t]), with high probability, there exist G′1, G

′
2 such that

Grb ∪GM ⊆ G′1 ⊆ G1 and G′2 ⊆ G2

with ∆(G2 − G′2) ≤ 2εn and, for each i ∈ [t], there exists D′i ⊆ Di of size (1 ± 2γ)qmcn and
vertex-disjoint matchings {M ′i,c}c∈D′i in (G′1∪G′2)[V mc

i ], where M ′i,c consists of 256 c-edges, such
that altogether the following hold:

(M1) |Ec(G′1)| = |Ec(G′2)| = 2m and |{i ∈ [t] : c ∈ D′i}| = 3m for all c ∈ C;
(M2) for any subset E∗ ⊆ E(G′1) which consists of precisely m edges of each colour c ∈ C,

there exists a partition of E∗ ∪ E(G′2) into sets J ′1, . . . , J
′
t, such that for each i ∈ [t], J ′i

contains exactly one edge from each of {M ′i,c}c∈D′i ;
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(M3) every vertex v ∈ V is covered by (1± γ)pmct of the matchings {M ′i,c : i ∈ [t], c ∈ D′i}.

Create colour reservoirs. We apply Lemma 18 (with Grb, {V rb
i , Ci,1, Ci,2, C

M
i , C

◦,2
i }i∈[t] in

place of G, {Vi, Ci,1, Ci,2, Ci,1,1, Ci,1,2}i∈[t]) to see that with high probability, for each i ∈ [t],
there exist

CMi ⊆ C ′i,1 ⊆ Ci,1 and C ′i,2 ⊆ Ci,2
and vertex-disjoint rainbow matchings {Mi,j : j ∈ [3s]} in Grb[V rb

i ], such that altogether the
following hold:

(R1) for each i ∈ [t], |C ′i,1| = |C ′i,2| = 2s;

(R2) for all c ∈ C, |{i ∈ [t] : c ∈ Ci,2 \ C ′i,2}| ≤
√
γn;

(R3) for each i ∈ [t], Mi :=
⋃
j∈[3s]Mi,j consists of 192 c-edges for each c ∈ C ′i,1 ∪ C ′i,2;

(R4) for each i ∈ [t] and any subset C∗i ⊆ C ′i,1 of size s, there exists Ji ⊆ Mi such that Ji is

(C∗i ∪ C ′i,2)-rainbow and contains exactly one edge from each of {Mi,j : j ∈ [3s]};
(R5) the matchings {Mi,j : (i, j) ∈ [t] × [3s]} are edge-disjoint, and |Mi,j | = 256 for all

(i, j) ∈ [t]× [3s];
(R6) for every vertex v ∈ V , the number of i ∈ [t] for which v is covered by Mi is (1±√γ)prbt.

Create short paths for the vertex absorption. By Lemma 16 (with ε/5, 2ξ1/3, µ playing
the roles of γ, κ, p), with high probability, there exist edge-disjoint rainbow paths Q1, . . . , Qt in
G• such that

(Q1) for each i ∈ [t], we have V (Qi) ⊆ Ai and φ(E(Qi)) ⊆ C•i ;
(Q2) (G• −

⋃
i∈[t]Qi, {Ai \ V (Qi)}i∈[t], {C•i \ φ(E(Qi))}i∈[t]) is εn-bounded;

(Q3) for each v ∈ V , the number of i ∈ [t] for which v ∈ V (Qi) and the subpath from v to

one of the endvertices of Qi has length at most 2ξ1/3n, is at most ξ1/4n.

Properties for vertex absorption and covering non-reservoir edges/colours/vertices.

For i ∈ [t], let G(i) be the subgraph of GM3 [Ai, Bi] containing precisely the CMi,3-edges. In addition
to the above, with high probability, the following hold:

(A1) for all i ∈ [t] and c ∈ C, there are at most 2µ2n c-edges between Ai and Bi;
(A2) for all distinct i, i′ ∈ [t], we have |(Ai ∪Bi) ∩ (Ai′ ∪Bi′)| ≤ 5µ2n;
(A3) for every v ∈ V , the number of i ∈ [t] for which v ∈ Ai ∪Bi, is at most 3µt;

(A4) for all i ∈ [t], |Ai|, |Bi| = (1± ε)µn and G(i) is (ε, βMqM)-quasirandom;
(A5) for all i ∈ [t] and all S ⊆ V with |S| ≤ 512, we have that

|{v ∈ NGM
1
(S) ∩Bi,1 : φ(uv) ∈ CMi,1 for each u ∈ S}| ≥ µ2n;

(A6) for all e ∈ E(Kn), the number of i ∈ [t] for which e intersects Ai and Bi,2, and φ(e) ∈ CMi,2,
is at least qMµ

2n/3;
(A7) for all i ∈ [t] and c ∈ C, the number of c-edges in EGM

2
(Ai, Bi,2), is at least βMµ

2n/3;

(A8) for all i ∈ [t], |Ci,2| = (1± ε)qrbn/2 and |Di| = (1± 2γ)qmcn;
(A9) for all c ∈ C, |Ec(G2)| = (1± ε)2ηn and |{i ∈ [t] : c ∈ Di}| = (1±√γ)qmct.

Here, to deal with the sizes of the common neighbourhoods in (A4) and (A5), we use McDiarmid’s
inequality. For all other claims, Chernoff’s bound suffices.

Find almost-spanning paths. We now find an approximate decomposition of G◦ (and
thus Kn) into t = n/2 almost spanning rainbow paths. By Lemma 16 (with ε/5, ε2, p◦ playing
the roles of γ, κ, p), with high probability, there exist edge-disjoint rainbow paths P1, . . . , Pt in
G◦ such that

(P1) for each i ∈ [t], we have V (Pi) ⊆ V ◦i and φ(E(Pi)) ⊆ C◦i ;
(P2) (G◦ −

⋃
i∈[t] Pi, {V ◦i \ V (Pi)}i∈[t], {C◦i \ φ(E(Pi))}i∈[t]) is εn-bounded;

(P3) every vertex v ∈ V is an endvertex of at most εn paths.
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Establish connection properties. By Lemma 20 (with γ1/3, ξ, p̃′, p̃, 512 playing the roles of
ε, γ, p′, p, k), with high probability, the following is true:

(C) LetR be any 512-uniform (multi-)hypergraph which is the union of tmatchingsR1, . . . ,Rt
such that V (Ri) ⊆ Ui and |Ri| = (1 ± γ1/3)p̃n for all i ∈ [t], and such that dR(x) =

(1 ± γ1/3)p̃′t for all x ∈ V . Then, for each i ∈ [t], there exists an Ri-connector F̃i in

G̃[Ui ∪ Ṽi] such that the following hold:

(C1) F̃1, . . . , F̃t are edge-disjoint;

(C2) for each i ∈ [t], F̃i is rainbow with colours in C̃i;

(C3) (G̃−
⋃
i∈[t] F̃i, {(Ui ∪ Ṽi) \ V (F̃i)}i∈[t], {C̃i \ φ(E(F̃i))}i∈[t]) is 2ξn-bounded.

Henceforth, we assume that all random choices have been made and satisfy the
above properties.

Step 2: Connecting the pieces

For each i ∈ [t], we now aim to connect the matchings {Mi,j : j ∈ [3s]} and {M ′i,c : c ∈ D′i}.
For this, we will define a 512-uniform matchingRi, which consists of 256 vertices of one matching
and 256 vertices of the next matching, and then apply (C).

To make this more precise, for each i ∈ [t], let

ri := 3s+ |D′i| and Mi := {Mi,j : j ∈ [3s]} ∪ {M ′i,c : c ∈ D′i}.(31)

So ri = |Mi|. Note that ri = p̃n ± 3γn and hence 0 ≤ r − ri ≤ 7γn. Also note that since V rb
i

and V mc
i are disjoint, all the matchings inMi are vertex-disjoint, and recall that each matching

consists of 256 edges. For each i ∈ [t], find two distinct M−i ,M
+
i ∈Mi such that altogether,

each vertex v ∈ V is contained in V (M−i ∪M
+
i ) for at most η−2 indices i ∈ [t].(32)

This can clearly be done greedily. Now, for each i ∈ [t], choose an arbitrary bijection σi : [ri]→
Mi such that σi(1) = M−i and σi(ri) = M+

i , and partition for each matching M ∈ Mi the
vertices V (M) arbitrarily into a ‘tail set’ T (M) and a ‘head set’ H(M) such that M is a perfect
matching between T (M) and H(M). Define

Ri := {H(σi(k)) ∪ T (σi(k + 1)) : k ∈ [ri − 1]}.
Hence, Ri is a 512-uniform matching in Ui. Note that

|Ri| = ri − 1 = (1±√γ)p̃n.

Let R := R1 ∪ · · · ∪Rt. By (R6), (M3) and (32), we have that dR(x) = (1± 2
√
γ)(prb + pmc)t =

(1 ± 2
√
γ)p̃′t for all x ∈ V . Hence, applying (C), for each i ∈ [t], there exists an Ri-connector

F̃i in G̃[Ui ∪ Ṽi] such that altogether the following hold:

(C1′) F̃1, . . . , F̃t are edge-disjoint;

(C2′) for each i ∈ [t], F̃i is rainbow with colours in C̃i;

(C3′) (G̃−
⋃
i∈[t] F̃i, {(Ui ∪ Ṽi) \ V (F̃i)}i∈[t], {C̃i \ φ(E(F̃i))}i∈[t]) is 2ξn-bounded.

For each i ∈ [t], let

Fi := Pi ∪Qi ∪ F̃i.
We will eventually have Fi ⊆ Ti for all i ∈ [t]. Note that F1, . . . , Ft are edge-disjoint rainbow
forests in Kn − (Grb ∪ GM ∪ G2). Moreover, for each i ∈ [t], V (Fi) ⊆ V \ Bi and φ(E(Fi)) ⊆
C \ (CMi ∪ Ci,2 ∪Di). Let

V̂i := V \ (V (Fi) ∪Bi),(33)

Ĉi := C \ (φ(E(Fi)) ∪ C ′i,1 ∪ C ′i,2 ∪D′i),(34)

Ĝ := Kn −
⋃
i∈[t]

Fi − (G′1 ∪G′2).(35)
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We think of the above as leftover sets. The following claim asserts that this leftover is well-
behaved.

Claim 1: (Ĝ, {V̂i}i∈[t], {Ĉi}i∈[t]) is
√
ξn-bounded.

Proof of claim: Observe that

V̂i = ((Ui ∪ Ṽi) \ V (F̃i)) ∪ (V ◦i \ V (Pi)) ∪ (Ai \ V (Qi)),

Ĉi ⊆ ((Ci,2 ∪Di) \ (C ′i,2 ∪D′i)) ∪ (C̃i \ φ(E(F̃i))) ∪ (C◦i \ φ(E(Pi))) ∪ (C•i \ φ(E(Qi))),

Ĝ ⊆ (G2 −G′2) ∪
(
G̃−

⋃
i∈[t]

F̃i

)
∪
(
G◦ −

⋃
i∈[t]

Pi

)
∪
(
G• −

⋃
i∈[t]

Qi

)
.

Recall that ∆(G2 − G′2) ≤ 2εn and |D′i| = (1 ± 2γ)qmcn for all i ∈ [t]. Thus, (R1) and (A8)
imply that, for all i ∈ [t],

|(Ci,2 ∪Di) \ (C ′i,2 ∪D′i)| ≤ γ1/3n
and (R2), (M1) and (A9) imply that, for all c ∈ C,

|Ec(G2 −G′2)|, |{i ∈ [t] : c ∈ (Ci,2 ∪Di) \ (C ′i,2 ∪D′i)}| ≤ γ1/3n.

Hence, the claim follows together with (P2), (Q2) and (C3′). −

We now use Lemma 15 to join the pieces of each Fi together. Moreover, since the sets Ri
have different sizes, we artificially add some structure that will ensure that ultimately, all trees
are isomorphic to T (cf. (†) below). In this process we can cover all remaining vertices outside
the vertex reservoir Bi.

For i ∈ [t], let v−i , v
+
i be the endvertices of Pi, and let w−i , w

+
i be the endvertices of Qi. Let

Xi := T (M−i ) ∪H(M+
i ) ∪ {v−i , v

+
i , w

−
i } ∪ V̂i.

We now define a graph Hi in which Xi is independent and all other vertices are new vertices.
Take new vertices z0, zri , . . . , zr. For each x ∈ T (M−i ), add a path of length 2 between x and z0,

and for each x ∈ H(M+
i ), add a path of length 2 between x and zri . For each k ∈ {ri, . . . , r−1},

add a path of length 5 between zk and zk+1. For each k ∈ {ri + 1, . . . , r − 1}, add 510 further
paths of length 2 onto zk (so zk will be an endvertex of those paths of length 2), and add 255

paths of length 2 onto each of zri and zr. Connect zr and v−i by a path which contains V̂i such

that V̂i is an independent set. Finally, add a path of length 2 between v+i and w−i . Clearly,

∆(Hi) ≤ 512. Note that since |V̂i| ≤
√
ξn, r − ri ≤ 7γn and |Bi| − b = ξ1/3n± εn by (A4), we

can choose Hi in such a way that

|V (Hi) \Xi| = |Bi| − b and |V (Hi)|, |E(Hi)| ≤ 2ξ1/3n.(36)

Also, for every v ∈ V , by (32), (P3), (Q3) and Claim 1, the number of i ∈ [t] for which v ∈ Xi,

is at most 2ξ1/4n.
By (A5), we can now apply Lemma 15 (with GM1 , {CMi,1}i∈[t], {Bi,1}i∈[t] taking the place of

G,{Ci}i∈[t],{Vi}i∈[t]) to obtain, for each i ∈ [t], an embedding ψi : Hi → GM1 such that ψi(Hi) is
rainbow with colours in CMi,1, ψi(x) = x for all x ∈ Xi, ψi(x) ∈ Bi,1 for all x ∈ V (Hi) \Xi and

such that ψ1(H1), . . . , ψt(Ht) are edge-disjoint.
For each i ∈ [t], let

F ∗i := Fi ∪ ψi(Hi) and B∗i := V \ V (F ∗i ) ⊆ Bi.

Note that F ∗i is rainbow as CMi,1 ⊆ CMi . By (36), we have that |B∗i | = b. Moreover, Bi,2 ⊆ B∗i .

Let A∗i be the set of the last b vertices on Qi, containing w+
i , so that A∗i ⊆ Ai. From (Q2), (Q3)

and (A4), we deduce that, for each i ∈ [t],

|Ai \A∗i | ≤ |Ai| − b ≤ 2ξ1/3n,(37)
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and, for each v ∈ V ,

|{i ∈ [t] : v ∈ Ai \A∗i }| ≤ 2ξ1/4n.(38)

Crucially, observe that for each i ∈ [t],

(†) any graph obtained from F ∗i by adding a perfect matching between A∗i and B∗i and exactly
one edge from each of the matchings in Mi, is isomorphic to Tn;r,b.

In particular,

|E(F ∗i )| = n− 1− b− ri.(39)

Step 3: Final absorption

We will find the perfect matchings between A∗i and B∗i using Lemma 22, and then select
exactly one edge from each of the matchings in Mi using (R4) and (M2). For the last step to
work, we need to ensure that all leftover colours are in C ′i,1 ∪C ′i,2 ∪D′i and all leftover edges are

in G′1 ∪G′2. Thus, prior to applying Lemma 22, we greedily deal with the colours in Ĉi and the

edges in Ĝ.

Cover the remaining non-reservoir edges. First, find a partition of E(Ĝ) into rainbow

matchings M̂1, . . . , M̂t such that M̂i ⊆ EĜ(A∗i , Bi,2), φ(M̂i) ⊆ CMi,2 and |M̂i| ≤ ξ1/3n. This can

be done greedily. Indeed, suppose we want to assign to e ∈ E(Ĝ) an index i ∈ [t]. Let e = xy
and c := φ(e). By (A6) and (38), the number of i ∈ [t] for which e ∈ EĜ(A∗i , Bi,2) and c ∈ CMi,2,
is at least µ3n. By Claim 1, we have that |Ec(Ĝ)|, dĜ(x), dĜ(y) ≤

√
ξn and |E(Ĝ)| ≤

√
ξn2.

Thus, there exists a suitable i ∈ [t] such that no other c-edge of Ĝ has been assigned to i, and

M̂i does not yet cover x or y and contains at most ξ1/3n/2 edges so far. Finally, by (35) we have
that

E(G′2) ⊆ E(G′2 ∪Grb ∪GM2 ∪GM3 ) ⊆ E
(
Kn −

⋃
i∈[t](F

∗
i ∪ M̂i)

)
⊆ E(G′1 ∪G′2).(40)

Cover the remaining non-reservoir colours. Next, find edge-disjoint matchings M̂ ′1, . . . , M̂
′
t

in GM2 such that, for each i ∈ [t], V (M̂ ′i) ∩ V (M̂i) = ∅, M̂ ′i ⊆ EGM
2
(A∗i , Bi,2), and M̂ ′i consists of

exactly one c-edge for each c ∈ Ĉi. (Hence, |M̂ ′i | = |Ĉi|.) This can also be done greedily. Indeed,

suppose we want to add a c-edge to M̂ ′i . By (A7) and (37), there are at least µ3n c-edges in

EGM
2
(A∗i , Bi,2). By Claim 1, we have that |Ĉi| ≤

√
ξn and |{i ∈ [t] : c ∈ Ĉi}| ≤

√
ξn. Also recall

that |M̂i| ≤ ξ1/3n. Hence, there exists a suitable c-edge which has not been used by another

matching M̂ ′i′ , and whose endvertices are not covered by M̂i or yet by M̂ ′i . Hence, for each
i ∈ [t], we have by (34) that

C ′i,2 ∪D′i ⊆ C ′i,2 ∪D′i ∪ CMi,3 ⊆ C \ φ(E(F ∗i ) ∪ M̂i ∪ M̂ ′i) ⊆ C ′i,1 ∪ C ′i,2 ∪D′i.(41)

Absorb the uncovered vertices. We now extend F ∗i ∪ M̂i ∪ M̂ ′i into a spanning forest by

adding a matching MM
i . For each i ∈ [t], let A′i := A∗i \ V (M̂i ∪ M̂ ′i) and B′i := B∗i \ V (M̂i ∪

M̂ ′i). We aim to apply Lemma 22 (with µ, βMqM, {A′i, B′i, G(i)[A′i, B
′
i]}i∈[t] playing the roles of

µ, d, {Ai, Bi, Gi}i∈[t]). (Recall that G(i) was defined just before (A1).) Clearly, |A′i| = |B′i| =

b − |M̂i ∪ M̂ ′i | ≥ (µ − 3ξ1/3)n. In particular, by (A4), |Ai \ A′i|, |Bi \ B′i| ≤ 4ξ1/3n and thus

G(i)[A′i, B
′
i] is (µ1/3, βMqM)-quasirandom. Finally, since A′i ⊆ Ai and B′i ⊆ Bi, the remaining

conditions for Lemma 22 follow immediately from (A1), (A2) and (A3). Therefore, we can find

edge-disjoint MM
1 , . . . ,M

M
t such that MM

i is a rainbow perfect matching of G(i)[A′i, B
′
i] for each

i ∈ [t].

Absorb the uncovered colours. Now, for each i ∈ [t], let

M∗i := MM
i ∪ M̂i ∪ M̂ ′i and C∗i := C ′i,1 \ φ(E(F ∗i ) ∪M∗i ).(42)
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Note that by (41), M∗i is a rainbow perfect matching between A∗i and B∗i . Similarly, by (41)
and (42), F ∗i ∪M∗i is rainbow and φ(E(F ∗i ) ∪M∗i ) = C \ (C∗i ∪ C ′i,2 ∪ D′i). Also,

⋃
i∈[t] F

∗
i is

edge-disjoint from
⋃
i∈[t]M

∗
i (since GM1 ·∪GM2 ·∪GM3 = GM). Since F ∗i ∪M∗i has (n− 1)− ri edges

by (39), we deduce that |C∗i ∪C ′i,2∪D′i| = ri, implying that |C∗i | = s by (31) and (R1). Therefore,

using (R4), there exists Ji ⊆ Mi such that Ji is (C∗i ∪ C ′i,2)-rainbow and contains exactly one

edge from each of {Mi,j : j ∈ [3s]}. Note that the Ji are edge-disjoint from each other by (R5)
and also edge-disjoint from

⋃
i∈[t](F

∗
i ∪M∗i ) by (40).

Absorb the uncovered edges. Finally, let

E∗ := E(G′1)
∖ ⋃
i∈[t]

(F ∗i ∪M∗i ∪ Ji).

We claim that E∗ contains precisely m c-edges for every c ∈ C. Note that, by (40), we have⋃
i∈[t](F

∗
i ∪ M∗i ∪ Ji) = Kn − (E∗ ∪ E(G′2)). Moreover, for each i ∈ [t], F ∗i ∪ M∗i ∪ Ji is

(C \D′i)-rainbow, implying that for each c ∈ C the number of c-edges in
⋃
i∈[t](F

∗
i ∪M∗i ∪ Ji) is

|{i ∈ [t] : c ∈ C \D′i}| = t − 3m by (M1). Thus, the number of c-edges in E∗ ∪ E(G′2) is 3m,
which implies the claim, using (M1) again.

Thus, by (M2), there exists a partition of E∗ ∪E(G′2) into sets J ′1, . . . , J
′
t, such that for each

i ∈ [t], J ′i contains exactly one edge from each of {M ′i,c}c∈D′i . In particular, J ′i is D′i-rainbow.

Let Ti := F ∗i ∪M∗i ∪ Ji ∪ J ′i . By (†), Ti is a rainbow spanning tree isomorphic to Tn;r,b, and
T1, . . . , Tt decompose Kn, as desired. �

Finally, we briefly mention how the proof can be adapted to prove Theorem 4 with ∆(T ) = 3.
The only necessary change is in how we connect the matchings in Mi by using Lemma 20.
Suppose that in Step 2 in the proof of Theorem 4, we want to connect the ‘head set’ H(M) with
the ‘tail set’ T (M ′) for two consecutive M,M ′ ∈ Mi. In the current proof, we find a vertex w
and internally disjoint paths of length 2 from w to each vertex in H(M) ∪ T (M ′). Instead, we
could also connect H(M)∪T (M ′) as follows: let B be a binary tree with root b and leaves H(M),
and let B′ be a binary tree with root b′ and leaves T (M ′), and such that V (B) ∩ V (B′) = ∅.
(Recall that |H(M)| = |T (M ′)| = 28.) Let R be the graph obtained from B ∪ B′ by adding a
path of length 2 between b and b′, and then subdividing every edge once. Clearly, ∆(R) ≤ 3,
and this construction ensures that still, the tree Ti is always the same, independent of which
edge of M is ultimately selected for Ti. To find all the required connections R, one could still
employ Lemma 20, here repeatedly, with k = 2. However, this necessitates to split V , C and
E(Kn) into even more subsets, so for clarity, we omitted this from the proof.
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