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Abstract

In 2001, Komlós, Sárközy and Szemerédi proved that, for each α > 0, there is some
c > 0 and n0 such that, if n ≥ n0, then every n-vertex graph with minimum degree at least
(1/2 + α)n contains a copy of every n-vertex tree with maximum degree at most cn/ log n.
We prove the corresponding result for directed graphs. That is, for each α > 0, there is some
c > 0 and n0 such that, if n ≥ n0, then every n-vertex directed graph with minimum semi-
degree at least (1/2 + α)n contains a copy of every n-vertex oriented tree whose underlying
maximum degree is at most cn/ log n.

As with Komlós, Sárközy and Szemerédi’s theorem, this is tight up to the value of c. Our
result improves a recent result of Mycroft and Naia, which requires the oriented trees to have
underlying maximum degree at most ∆, for any constant ∆ ∈ N and sufficiently large n. In
contrast to the previous work on spanning trees in dense directed or undirected graphs, our
methods do not use Szemerédi’s regularity lemma.

1 Introduction

Given two graphs H and G, when may we expect to find a copy of H in G? In general, this
decision problem is NP-complete, and therefore we seek simple conditions on G which imply it
contains a copy of H. An important early result is Dirac’s theorem from 1952 that, when n ≥ 3,
any n-vertex graph with minimum degree at least n/2 contains a cycle through every vertex,
that is, a Hamilton cycle. This is a particular instance of the following meta-question, which has
seen much subsequent study. Given an n-vertex graph H, what is the lowest minimum degree
condition on an n-vertex graph G which guarantees it contains a copy of H? As such a copy of
H would contain every vertex in G, we say it is a spanning copy of H.

This question has been studied for many different graphs H, for example when H is a K-factor
for some small fixed graph K [8, 14], the k-th power of a Hamilton cycle for any k ≥ 2 [11] and
when H has bounded chromatic number and maximum degree, and sublinear bandwith [4]. For
more details on these results, and those for other graphs, see the survey by Kühn and Osthus [13].
Here, we will concentrate on the minimum degree required to guarantee different spanning trees.

Komlós, Sárközy and Szemerédi [10] proved in 1995 that, for each α,∆ > 0, there is some n0

such that, if n ≥ n0, then every n-vertex graph with minimum degree at least (1/2+α)n contains
a copy of every n-vertex tree with maximum degree at most ∆, thus confirming a conjecture of
Bollobás [2]. This result is furthermore notable as one of the earliest applications of the blow-up
lemma. In 2001, Komlós, Sárközy and Szemerédi [12] relaxed the maximum degree condition,
showing that, for each α > 0, there is some c > 0 and n0 such that, if n ≥ n0, then every
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n-vertex graph with minimum degree at least (1/2 + α)n contains a copy of every n-vertex tree
with maximum degree at most cn/ log n. This is tight up to the constant c. In this paper, we
will prove the corresponding version of this result for directed graphs (digraphs).

The minimum semidegree of a digraph D, denoted by δ0(D), is the smallest in- or out-
degree over the vertices in D, that is, δ0(D) = minv∈V (D),�∈{+,−} d

�(v). Ghouila-Houri [7] solved
the minimum semidegree problem for the directed Hamilton cycle, showing that, if an n-vertex
digraph D has δ0(D) ≥ n/2, then it contains a directed Hamilton cycle. That is, an n-vertex cycle
with the edges oriented in the same direction. DeBiasio, Kühn, Molla, Osthus and Taylor [5]
showed that, when n is sufficiently large, this holds in fact for any n-vertex cycle with any
orientations on its edges, except for when the edges change direction at every vertex around the
cycle. This latter cycle, known as the anti-directed Hamilton cycle, is only guaranteed to appear
if δ0(D) ≥ n/2 + 1, as shown by DeBiasio and Molla [6].

Recently, Mycroft and Naia [16, 17] gave the first bound on the minimum semidegree required
for the appearance of different spanning trees. Here, H is an oriented n-vertex tree, with some
bound on the degree of its underlying (undirected) tree. Mycroft and Naia [16, 17] proved that,
for each α,∆ > 0, there is some n0 such that, if n ≥ n0, then every n-vertex digraph with
minimum semidegree at least (1/2 + α)n contains a copy of every oriented n-vertex tree T with
∆±(T ) ≤ ∆. Moreover, their result holds for a slightly wider class of trees, allowing them to
show that, for each α > 0, almost every labelled oriented n-vertex tree appears in every n-vertex
digraph with minimum semidegree at least (1/2 + α)n.

In this paper, we introduce new methods to embed oriented trees in digraphs, relaxing the
maximum degree condition to give a full directed version of Komlós, Sárközy and Szemerédi’s
result, as follows.

Theorem 1.1. For each α > 0, there exists c > 0 and n0 ∈ N such that the following holds for
every n ≥ n0. Any n-vertex digraph D with δ0(D) ≥ (1/2+α)n contains a copy of every oriented
n-vertex tree T with ∆±(T ) ≤ cn/ log n.

We note that the undirected version follows immediately from Theorem 1.1. Indeed, given any
n-vertex tree T and an n-vertex graph G, we can apply Theorem 1.1 to a copy of T with each edge
oriented arbitrarily and a digraph formed from G by replacing each edge uv with an edge from u
to v and an edge from v to u. This demonstrates that, as with Komlós, Sárközy and Szemerédi’s
result, Theorem 1.1 is tight up to the constant c. Furthermore, through Theorem 1.1 we give
a new proof of the undirected result without using Szemerédi’s regularity lemma, in contrast to
the work of both Komlós, Sárközy and Szemerédi [10], and Mycroft and Naia [16, 17]. Key to
our result is to use a random embedding of part of the tree using ‘guide sets’ and embedding
many leaves (and small subtrees) of the tree using ‘guide graphs’. This replaces the regularity
methods of [10, 16, 17], and is sketched in Section 2, where we also outline the rest of this paper.

2 Preliminaries

2.1 Notation

Let D be a digraph. We denote by V (D) and E(D) the vertex set and edge set of D, respectively,
where every element of the edge set of D is an ordered pair of vertices. We let |D| = |V (D)|,
which we call the size of D, and let e(D) = |E(D)|. Letting u, v ∈ V (D), if uv ∈ E(D), then
we say that u is an in-neighbour of v and v is an out-neighbour of u. Denote by N−D (v) and
N+

D (v), respectively, the set of all in- and out-neighbours of v. We let d−D(v) =
∣∣N−D (v)

∣∣ and
d+
D(v) =

∣∣N+
D (v)

∣∣, and we refer to these as the in- and out-degree of v, respectively. For each
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� ∈ {+,−}, we let δ�(D) and ∆�(D) be, respectively, the minimum and maximum �-degree of
D. For any A,B ⊆ V (D), and each � ∈ {+,−}, let N�D(A,B) =

⋃
a∈A(N�D(a) ∩ B), and let

d�D(A,B) = |N�D(A,B)|. We omit the subscript when the graph is clear from context. Note that,
for simplicity of notation, we use ‘−’ and ‘in’ interchangeably, and, similarly, we use ‘+’ and ‘out’
interchangeably. We use ‘±’ to represent that a property holds for both ‘−’ and ‘+’.

Suppose that A and B are disjoint subsets of V (D). We write D[A] to mean D induced on
the set A, that is, the graph obtained from D by deleting all vertices which are not in A. For each
� ∈ {+,−}, a �-matching from A into B is a set of vertex-disjoint edges such that every edge in
the set has one endpoint in A and one endpoint in B, and the endpoint in B is a �-neighbour of
the endpoint in A, that is, every edge is a �-edge from A into B. We say this matching covers A
if every vertex of A belongs to some edge in the matching, and we call this a perfect �-matching
if it covers both A and B. A bare path of length m in a tree is a path with m edges such that
each of the internal vertices have degree 2 in the tree. When P is a path in D, we let D − P
denote the subgraph of D obtained by removing the internal vertices of P .

For any n ∈ N, we let [n] := {1, . . . , n}. In order to simplify notation, we use hierarchies to
state our results. That is, for a, b ∈ (0, 1], whenever we write that a statement holds for a � b
(or b � a), we mean that there exists a non-decreasing function f : (0, 1] → (0, 1] such that
the statement holds whenever a ≤ f(b). We define similar expressions with multiple variables
analogously. We say a random event occurs with high probability if the probability of the event
occurring tends to 1 as n tends to infinity. In our proofs, when we have shown that a property
holds with high probability, we will implicitly assume that this property holds from that point
onwards. For simplicity, we ignore floors and ceilings wherever this does not affect the argument.

2.2 Proof sketch

When 1/n � c � α, we will embed any oriented n-vertex tree T with ∆±(T ) ≤ cn/ log n into
any n-vertex digraph D with δ0(D) ≥ (1/2 + α)n. We embed T using the absorption method,
an approach first introduced in general by Rödl, Ruciński and Szemerédi [18] which has been
effective on a range of embedding problems for spanning graphs and digraphs (see, for example,
the survey [3]). We first partially embed a subtree T ′′ of T into a set A such that, given any
subset B ⊂ V (D) with A ⊂ B and |B| = |T ′′|, we can complete this embedding of T ′′ into D[B]
(see Theorem 2.1).

We then use an almost-spanning embedding to embed the vertices in V (T )\V (T ′′) to extend
the partial embedding of T ′′ (see Theorem 2.2). We will have chosen T ′′ so that in this stage
a tree, called T ′, is attached to an embedded vertex of T ′′. Using the property of the partial
embedding of T ′′, we then complete the embedding of T ′′ with the unused vertices in D. The
decomposition of T that we need follows from a simple proposition (Proposition 2.3).

In Section 2.2.1, we state these three results, Theorem 2.1, Theorem 2.2 and Proposition 2.3,
before deducing Theorem 1.1 from them. In Section 2.2.2, we then discuss in detail the proof of
Theorem 2.2, which is the major challenge overcome by this paper.

In the rest of Section 2, we restate the probabilistic tools we will use, and give a basic
structural decomposition of trees and some simple results on matchings. In Section 3, we prove
Theorem 2.2. In Section 4, we prove Theorem 2.1.

2.2.1 Main tools and deduction of Theorem 1.1

For Theorem 1.1, we will first find a suitable subtree T ′′ ⊂ T and a set A ⊂ V (D) with slightly
fewer than |T ′′| vertices, so that, given any set B of |T ′′| vertices containing A, we can embed
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T ′′ in D[B]. Furthermore, we will ensure that some pre-specified vertex t ∈ V (T ′′) is always
embedded to some fixed vertex v ∈ A, as follows.

Theorem 2.1. Let 1/n � c � ε � µ � α. Let D be an n-vertex digraph with minimum
semidegree at least (1/2+α)n. Let T be an oriented tree with µn vertices and ∆±(T ) ≤ cn/ log n,
and let t ∈ V (T ).

Then, V (D) contains a vertex set A with size (µ − ε)n containing a vertex v ∈ A such that
the following holds. For any set B ⊂ V (D) with A ⊂ B and |B| = µn, D[B] contains a copy of
T in which t is copied to v.

Theorem 2.1 is proved in Section 4 by randomly embedding most of T and taking A to be
the image of this embedding. We then show that the partial embedding of T can be extended
using any new vertex in y ∈ V (D)\A by switching y into the partial embedding in place of some
vertex in A that can instead be used to embed a new vertex of T . Repeatedly doing this will
allow the embedding of T to be completed using any set of |T | − |A| new vertices in V (D) \ A.
This is sketched in more detail at the start of Section 4, before Theorem 2.1 is proved.

We will embed the majority of the tree for Theorem 1.1, using the following almost-spanning
embedding.

Theorem 2.2. Let 1/n� c� ε, α. Let D be an n-vertex digraph with minimum semidegree at
least (1/2 + α)n and let v ∈ V (D). Let T be an oriented tree with at most (1− ε)n vertices and
∆±(T ) ≤ cn/ log n, and let t ∈ V (T ).

Then, D contains a copy of T in which t is copied to v.

Using in addition the following simple proposition (see, for example, [15, Proposition 3.22]),
we can now deduce Theorem 1.1.

Proposition 2.3. Let n,m ∈ N satisfy 1 ≤ m ≤ n/3. Given any n-vertex tree T , there are two
edge-disjoint trees T1, T2 ⊂ T such that E(T1) ∪ E(T2) = E(T ) and m ≤ |T2| ≤ 3m.

Proof of Theorem 1.1 from Theorems 2.1 and 2.2. Let ε, µ > 0 be such that c � ε � µ � α.
Let D be an n-vertex digraph with δ0(D) ≥ (1/2 +α)n. Let T be an oriented n-vertex tree with
∆±(T ) ≤ cn/ log n.

Using Proposition 2.3 with m = µn, find edge-disjoint trees T ′, T ′′ ⊂ T such that E(T ′) ∪
E(T ′′) = E(T ) and µn ≤ |T ′′| ≤ 3µn. Let t be the vertex which is in both T ′ and T ′′. By
Theorem 2.1 applied with µ′ = |T ′′|/n, there is a set A ⊂ V (D) such that |A| = |T ′′| − εn, and a
vertex v ∈ A such that, for any set B ⊂ V (D) with A ⊂ B and |B| = |T ′′|, D[B] contains a copy
of T ′′ in which t is copied to v.

Let D′ = D − (A \ {v}). Let n′ = |D′|, so that (1 − 3µ)n ≤ n′ ≤ n. Let α′ be such that D′

has minimum semidegree (1/2 + α′)n′. Note that (1/2 + α′)n ≥ (1/2 + α′)n′ ≥ (1/2 + α− 3µ)n,
so that α′ ≥ α/2. Furthermore, n′ = n− |T ′′|+ εn+ 1 = |T ′|+ εn, and therefore

|T ′|
n′

=
|T ′|

|T ′|+ εn
≤ |T ′|
|T ′|(1 + ε)

≤ 1− ε/2.

Thus, by Theorem 2.2, we can find a copy, S′ say, of T ′ in D′ in which t is copied to v. By
applying the property of A from Theorem 2.1, we can then find a copy of T ′′ in D− (V (S′)\{v})
in which t is copied to v. Together, these give us a copy of T .
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2.2.2 Proof Sketch of Theorem 2.2

We will embed a (1− ε)n-vertex tree T for Theorem 2.2 by dividing most of T into a small core
forest T0 ⊂ T and a collection of constant-sized subtrees, which are either attached to T0 by a
single edge or by two short paths. It is the trees attached to T0 by a single edge that will be the
most challenging to embed, and so we dedicate most of our attention in the proof sketch to this.

More precisely, we will find a tree T ′ ⊂ T , containing a core forest T0 ⊂ T ′ and vertex-disjoint
trees S1, . . . , S` ⊂ T ′−V (T0), for some ` ∈ N, such that T ′ is formed from T0 by, for each i ∈ [`],

(1) either adding Si to T0 using two bare paths with length 2,

(2) or adding Si to T0 with a single edge.

Furthermore, for some µ > 0 and K ∈ N, with 1/n� 1/K, µ� α, ε, we will have that

• |T0| ≤ µn (i.e., T0 is small),

• |T ′| ≥ |T | − µn (i.e., T ′ is most of T ),

• there are at most µn trees Si which are in Case (1), and

• each tree Si has at most K vertices.

In Case (1), we say Si is added to T0 as a path, and in Case (2) we say Si is added to T0 as a
leaf. The crux of our method is to embed T0 along with the trees Si in Case (2) connected to the
embedding of T0 by the appropriate edge. This is encapsulated in the following lemma, which is
proved in Section 3.1.

Lemma 2.4. Let 1/n � c � µ � α, ε, let c � 1/K and let ` ∈ N. Suppose D is an n-vertex
digraph with δ0(D) ≥ (1/2 + α)n and v ∈ V (D).

Suppose that T is an oriented tree with |T | ≤ (1 − ε)n and ∆±(T ) ≤ cn/ log n. Suppose
that T ′, S1, . . . S` ⊂ T are vertex-disjoint subtrees with |T ′| ≤ µn, and |Si| ≤ K for each i ∈ [`].
Suppose that T is formed from T ′ by attaching each Si, i ∈ [`], to T ′ by an edge. Finally, let
t ∈ V (T ′).

Then, D contains a copy of T in which t is copied to v.

We will now briefly sketch how Theorem 2.2 can be proved from Lemma 2.4. Let m be the
total number of vertices that appear in the trees Si in Case (1) above. To embed these trees,
we use the fact that two random sets in D of the same (linear) size are likely to have a perfect
matching from one to the other (see Proposition 2.12). Taking p � 1/n and Kp ≤ 1, we can,
with high probability, find pn copies of an oriented tree with K vertices in a random set of
Kpn vertices in D by taking randomly K disjoint subsets within this set of size pn and finding
appropriate matchings between them (see Section 2.5). Collecting isomorphic trees Si together,
and applying this to each of the constantly many (depending on K) isomorphism classes, allows
us to embed the trees Si in Case (1) with high probability in a random set with size m+ εn/4.
Here, the extra εn/4 vertices allow us to find a linear number of trees in each isomorphism class
by finding some additional trees if required.

Thus, in a partition of V (D) into sets V1 ∪ V2 ∪ V3 ∪ V4 chosen uniformly at random so that
|V1| = n−m− 3εn/4, |V2| = m+ εn/4, |V3| = |V4| = εn/4, with high probability, the following
occur.

• δ±(D[V1]) ≥ (1/2 + α/2)|V1|, so that, applying Lemma 2.4, we can embed T0 along with
the trees Si in Case (2) connected to the embedding of T0 by the appropriate edge.
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• We can embed the trees Si in Case (1) in D[V2].

• Then, using that there are at most µn trees in Case (1), we can greedily attach them to the
embedding of T0 using two paths with length 2 whose interior vertex is an unused vertex
in V3 (see Section 3.2).

• Finally, as |T | − |T ′| ≤ µn, we can greedily extend the resulting embedding of T ′ to one of
T , by adding a sequence of leaves using vertices in V4 (see Section 3.3).

Here, the last two steps are (with high probability) possible using the semi-degree condition of
D. Note that, as µ� ε, we only embed a small proportion of vertices into V3 and V4.

We will now give a detailed proof sketch of Lemma 2.4.

Proof sketch of Lemma 2.4

To simplify our discussion, let us assume that each tree Si in Lemma 2.4 consists of only a single
vertex, which is an out-neighbour in the tree T of a vertex of T0, and that every vertex in T0

is attached to exactly one such tree. That is, T consists of T0 with an out-matching attached.
Our embedding of T0 is randomised, which will allow the methods described to be used to find
matchings attached from different subsets of the image of the embedding of T0 to different random
sets. This will allow the embedding below for T0 to be used for the general case.

Let us detail the example situation precisely. Suppose we have a µn-vertex tree T0 and choose
two disjoint random sets V0, V1 ⊂ V (D) with size p0n and p1n respectively, where p0 � µ and
p1 = (1 + o(1))µ. We will randomly embed T0 into V0, so that there is an out-matching from the
vertex set of the embedding of T0 into V1. Note that there are many spare vertices in V0, possible
as in the general case we embed T0 once. However, as we then find (potentially) many different
matchings, we need to do this with few spare vertices, and therefore use most of the vertices in
V1 (as p1 is only a little larger than µ).

We will embed T0 vertex-by-vertex, say in order t1, . . . , t`, so that each new vertex is embedded
as an in- or out-leaf of the previously embedded subtree. Having chosen the random sets V0, V1,
and before beginning the embedding, we will find guide sets Av,� ⊂ N�D(v, V0), v ∈ V0 and
� ∈ {+,−}, which we use to guide the random embedding. We then start the random embedding,
under the rule that if, for some v ∈ V0 and � ∈ {+,−}, we are attaching a �-edge as a leaf to v,
then we choose this leaf uniformly at random from the unused vertices in Av,�.

The guide sets ensure that, with high probability, there will be a matching from the embedding
of T0 into V1. These guide sets are found using Lemma 3.5, and they exist (with high probability
for the choice of V0, V1) due to the semi-degree condition in D. Essentially, for some constants
β, γ, we find, for each v ∈ V (D) and � ∈ {+,−}, a set Av,� ⊂ N�D(v, V0) with size βn and bipartite
digraphs H◦v,� ⊂ D◦[Av,�, V1], ◦ ∈ {+,−}, so that in H◦v,� each vertex in Av,� has around γp1n
◦-neighbours in V1, and each vertex in V1 has around γβn ◦-edges leading into it. That is, H◦v,�
is approximately regular on each side with edge density approximately γ.

The guide graphs H+
v,� can be used to find the matching from the embedding of T0 as follows.

When a vertex ti is embedded using a guide set Avi,�i , to some vertex si say, we add the edges
in H+

vi,�i adjacent to si to an auxiliary graph K – note that approximately γp1n edges are added
next to si. Note further that, as most of the vertices in Avi,�i will be unused, each w ∈ V1 will
have an edge added from si to w with probability approximately

d−
H+

vi,�i
(w)

|Avi,�i |
≈ γβn

βn
= γ. (1)
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When this is complete, K is a bipartite digraph with vertex classes {s1, . . . , s`} and V1. Each
vertex si will have out-degree approximately γp1n, and, due to the randomness of the embedding
and (1), each vertex in V1 will have in-degree which is approximately γ` = γ|T0| ≈ γp1n.

Thus, K will be a bipartite graph with the in-degrees in one vertex class approximately equal
to the out-degrees in the other. Via Hall’s matching criterion, an out-matching will exist from
{s1, . . . , s`} to V1 which covers most of the vertices in {s1, . . . , s`}. By ensuring that V1 is likely
to be a little larger than `, we in fact will get with high probability that such an out-matching
can cover {s1, . . . , s`}.

Note that, in the sketch above, we do not use the graph H−v,�. However, in practice, we find
such guide sets and guide graphs with V1 = V (D) \ V0 (see Lemma 3.3), before taking random
subsets of V1. We will find out-matchings into some of these random sets, and in-matchings
into some others. Therefore, it is important to have both guide graphs H−v,� and H+

v,�, and,
furthermore, that the same set Av,� is used for both graphs.

Finally, let us note where the condition ∆±(T ) ≤ cn/ log n is used in our proof of Lemma 2.4.
In the sketch above the set V1 will always have size which is linear in n, but we may need to
attach the trees in Lemma 2.4 to few vertices in T . The maximum in- or out-degree condition on
T ensures, that, if the trees Si in Lemma 2.4 together comprise linearly (in n) many vertices in
T , then they are attached to at least C log n different vertices, for some large constant C, which
gives us sufficient probability concentrations when these vertices are randomly embedded for the
corresponding versions of Hall’s criterion to hold (see the proof of Claim 3.7).

2.3 Probabilistic tools

Let n,m, k ∈ N be such that max{m, k} ≤ n. Let A be a set of size n, and B ⊆ A be such
that |B| = m. Let A′ be a uniformly random subset of A of size k. Then the random variable
X = |A′ ∩B| is said to have hypergeometric distribution with parameters n,m and k, which we
denote by X ∼ Hyp(n,m, k). We will use the following Chernoff-type bound.

Lemma 2.5 (see, for example, [9]). Suppose X ∼ Hyp(n,m, k). Then for any 0 < α < 3/2, we
have

P [|X − E[X]| ≥ αE[X]] ≤ 2 exp
(
α2E[X]/3

)
.

A sequence of random variables (Xi)i≥0 is a martingale if E[Xi+1 | X0, . . . , Xi] = Xi for each
i ≥ 0. We will use the following Azuma-type bound for martingales.

Lemma 2.6 (see, for example, [1]). Let (Xi)i≥0 be a martingale and let ci > 0 for each i ≥ 1. If
|Xi −Xi−1| < ci for each i ≥ 1, then, for each n ≥ 1,

P[|Xn −X0| ≥ t] ≤ 2 exp

(
− t2∑n

i=1 c
2
i

)
.

We will use this bound for supermartingales and submartingales. A sequence of random
variables (Xi)i≥0 is a supermartingale if E[Xi+1 | X0, . . . , Xi] ≤ Xi for each i ≥ 0, and a
submartingale if E[Xi+1 | X0, . . . , Xi] ≥ Xi for each i ≥ 0. The bound on the upper tail in
Lemma 2.6 holds for supermartingales, while the bound on the lower tail holds for submartingales.

2.4 Structural lemmas

In this section we decompose undirected trees. Note that we will later apply this to directed
trees as the edge directions do not affect the decompositions. We will use the following simple
but useful lemma (see [15, Lemma 4.1]) which tells us that either a tree has many leaves, or it
has many bare paths.
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Lemma 2.7. Let t,m ≥ 2, and suppose that T is a tree with at most t leaves. Then there is some
s and some vertex-disjoint bare paths Pi, i ∈ [s], in T with length m so that |T − P1 − · · · − Ps| ≤
6mt+ 2 |T | /(m+ 1).

We can now prove the following key lemma, in which we decompose a tree for our embedding.

Lemma 2.8. Let 0 � 1/n � 1/K � 1/k � η. Let T be a tree on n vertices with t ∈ V (T ).
Then, T contains forests T0 ⊂ T1 ⊂ T2 ⊂ T3 = T , such that T2 is a tree, and the following hold.

P1 |T0| ≤ ηn and t ∈ V (T0).

P2 T1 is formed from T0 by the vertex-disjoint addition of trees, Sv, v ∈ V (T0), so that, for
each v ∈ V (T0), Sv − v is a forest of trees with size at most K.

P3 T2 is formed from T1 by the addition of trees with size at least k and at most K attached
to T1 with exactly two bare paths of length 2.

P4 |T3| − |T2| ≤ ηn.

Proof. Let ε satisfy 1/K � ε � 1/k, and let S0 = T . Do the following for i = 0, 1, 2 . . . as far
as possible, where a set of independent leaves is a set of leaves which pairwise have no common
neighbours in the tree. If Si has at least εn independent leaves, the set Li say, then remove
Li \ {t} from Si to get the tree Si+1. Suppose this finishes with S`, which does not have at least
εn independent leaves. Note that ` ≤ 1/ε+ 1. We will show the following claim.

Claim 2.9. To get from T to S`, for each v ∈ V (S`), there is a tree removed from v which has
at most 2` vertices.

Proof of Claim 2.9. We will show by induction on i = 0, 1, . . . , `, that, to get from S`−i to S`,
for each v ∈ V (S`), there is a tree removed from v which has at most 2i vertices. Thus the claim
follows when i = `. Note that this is trivially true for i = 0 and label the tree removed from
v ∈ V (S`) to get from S`−i to S` as Tv,i.

Now, let 0 ≤ i < `, and assume that |Tv,i| ≤ 2i for each v ∈ V (S`). As we remove a
set of independent leaves from S`−i−1 to get to S`−i, for each v ∈ V (S`), we remove a set of
independent leaves of Tv,i+1 to get Tv,i. Therefore, for each v ∈ V (S`), |Tv,i+1| ≤ 2|Tv,i| ≤ 2i+1,
as required.

Let L(S`) be the set of leaves of S`. Remove L(S`) \ {t} and call the resulting tree S′. Note
that, as S` does not have at least εn independent leaves, S′ does not have at least εn leaves.
Thus, by Lemma 2.7, for some m ≤ n/(k + 1), S′ contains vertex disjoint bare paths P1, . . . , Pm

with length k such that t /∈ V (Pi) for each i ∈ [k] and

|S′ − P1 − · · · − Pm| ≤ 6k · εn+ 2n/(k + 1) + k + 1 ≤ ηn/4. (2)

For each path Pi, i ∈ [m], if possible, find within Pi a path P ′i with length at least k− 2η3k, such
that, labelling its endvertices xi and yi the following hold.

(i) Each of xi and yi had a tree with size at most ηk/4 removed from them in T to reach S′.

(ii) Letting Qi be the component of T − {xi, yi} containing P ′i − {xi, yi}, we have |Qi| ≤ K.
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Say, with relabelling, these paths are P ′1, . . . , P
′
m′ . We will show that m′ ≥ m− ηn/2k. Note

first that the number of i ∈ [m] with no vertices xi and yi ∈ V (Pi) respectively within η3k of
the two endvertices of Pi, so that each of xi and yi had a tree with at most ηk/4 vertices deleted
from them, is at most n/(η3k · ηk/4) ≤ ηn/4k. Note further that the number of i ∈ [m] with at
least K vertices in V (Pi) or in a component of T − E(Pi) containing an interior vertex of Pi is
at most n/K ≤ ηn/4k. Therefore, we can find such a path P ′i for all but at most ηn/2k values
of i ∈ [m], so that m′ ≥ m− ηn/2k.

Letting T0 = S′ − P ′1 − . . . − P ′m′ , we will now show that |T0| ≤ ηn. Note that, for each
i ∈ [m′], |V (Pi) \ V (P ′i )| ≤ 2η3k. Therefore, as m ≤ n/k,

|T0| ≤ |S′ − P1 − . . .− Pm|+ k · ηn/2k +m · 2η3k
(2)

≤ ηn.

Furthermore, clearly t ∈ V (T0), and thus P1 holds.
Note that, by Claim 2.9, for each i ∈ [m′], |Qi| ≤ k2` ≤ K. For each v ∈ V (T0), let Rv be the

tree containing v in T [(V (T ) \ V (T0)) ∪ {v}], without any of the xi, yi as neighbours. Now, by
Claim 2.9, Rv − v consists of trees with at most 2` ≤ K vertices. Let T1 = T0 ∪ (

⋃
v∈V (T0)Rv).

Thus, P2 holds.
Let T3 = T and let T2 be T [V (T1) ∪ (

⋃
i∈[m′]({xi, yi} ∪ V (Qi)))]. Note that P3 holds by

construction, and as |Qi| ≤ K for each i ∈ [m′]. Furthermore, the only missing vertices from
T are those in Rv − v, for each v ∈ {xi, yi : i ∈ [m′]}, and thus T2 is a tree. For each such v,
|Rv| ≤ ηk/4 by (i). Therefore, |T3| − |T2| ≤ (n/k) · (2ηk/4) ≤ ηn, and hence P4 holds.

2.5 Matchings between random sets

With high probability, any random subset of vertices in the digraph in Theorem 1.1 satisfies a
similar minimum semidegree condition, as follows.

Lemma 2.10. 0Let 1/n� c, α, and suppose D is an n-vertex digraph with δ0(D) ≥ (1/2 +α)n.
Let A ⊆ V (D) be chosen uniformly at random subject to |A| = cn. Then, with high probability,
for every vertex v ∈ V (D), we have

∣∣N±D (v,A)
∣∣ ≥ (1/2 + α/2) |A|.

Proof. Let v be an arbitrary vertex of D and let A ⊆ V (D) be a uniformly random subset with
|A| = cn. For � ∈ {+,−}, we let Z�v be the random variable which measures |N�(v) ∩A|. Then
Z�v has hypergeometric distribution with expectation

E[Z�v ] =
|N�(v)| |A|

n
≥
(

1

2
+ α

)
cn.

Therefore, by Lemma 2.5, we have

P
[
|Z�v − E[Z�x]| > α/2

1/2 + α
(1/2 + α)cn

]
≤ 2 exp

(
−
(

α/2

1/2 + α

)2 (1/2 + α)cn

3

)

= 2 exp

(
−α2cn

6 + 12α

)
.

Then, applying a union bound, with probability at least 1−2n exp
(
−α2cn/(6 + 12α)

)
= 1−o(1),

we have that Z�v ≥ (1/2 + α/2) |A| for each � ∈ {+,−} and v ∈ V (D).

The following digraph version of Hall’s matching criterion implies a matching exists, as follows
directly from the same result for undirected graphs.
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Lemma 2.11. Let D be a bipartite digraph with vertex classes A and B, and let � ∈ {+,−}.
Suppose that for every S ⊂ A, |N�D(S,B)| ≥ |S|. Then there is a �-matching from A into B
which covers A.

We will refer to the condition in Lemma 2.11 as Hall’s criterion. In combination with
Lemma 2.10, Lemma 2.11 shows that with high probability there is a perfect matching between
a large random pair of disjoint equal-sized vertex subsets in the digraph, as follows.

Proposition 2.12. Let 1/n� p, α, and suppose D is an n-vertex digraph with δ0(D) ≥ (1/2 +
α)n. Let A,B be chosen uniformly at random from all disjoint pairs of subsets of V (D), each
with size pn, and let � ∈ {+,−}. Then, with high probability, there is a perfect �-matching from
A into B.

Proof. By Lemma 2.10, with high probability we can assume the following. For all v ∈ A, we
have |N±(v,B)| ≥ (1/2 +α/2) |B|, and, for all v ∈ B, we have |N±(v,A)| ≥ (1/2 +α/2) |A|. We
will now show that Hall’s criterion holds.

Let S ⊆ A, such that S 6= ∅ and |S| ≤ (1/2 + α/2)pn, and let x ∈ S. Then, |N�(S,B)| ≥
|N�(x,B)| ≥ (1/2 + α/2)pn ≥ |S|, so Hall’s condition is trivially satisfied. Now take S ⊆ A,
|S| > (1/2 + α/2)pn, and assume for a contradiction that |N�(S,B)| < |S|. Then in particular,
B \ N�(S,B) 6= ∅. Take b ∈ B \ N�(S,B), and let ◦ ∈ {+,−} be such that ◦ 6= �. We have
|N◦(b, A)| ≥ (1/2 + α/2)pn. However, since b 6∈ N�(S,B), we have N◦(b, A) ∩ S = ∅. So,

pn = |A| ≥ |N◦(b, A)|+ |S| ≥ (1/2 + α/2)pn+ (1/2 + α/2)pn = (1 + α)pn > pn,

giving a contradiction. Thus, Hall’s criterion is satisfied for all S ⊆ A and so, since |A| = |B|, by
Lemma 2.11, there is a perfect �-matching from A into B.

We use Proposition 2.12 to embed many vertex disjoint small trees, via the following two
lemmas. In Lemma 2.13, we embed linearly many copies of a given constant-sized tree into
specified subsets of our digraph. In Lemma 2.13, we embed a forest of constant-sized trees
covering almost all the vertices in our digraph.

Lemma 2.13. Let 1/n � 1/K, p, α with pK ≤ 1. Suppose T is an oriented K-vertex tree
containing t ∈ V (T ). Let D be an n-vertex digraph with δ0(D) ≥ (1/2+α)n. Let V1, V2 be vertex
disjoint subsets of V (D) chosen uniformly at random subject to |V1| = pn and |V2| = (K − 1)pn.

Then, with high probability, D[V1 ∪ V2] contains pn vertex disjoint copies of T , in which t is
copied into V1 in each copy of T .

Proof. Let V1 = U1, and let U2 ∪ · · · ∪ UK be a partition of V2 chosen uniformly at random so
that |Ui| = pn for each i ∈ {2, . . . ,K}. Note that the distribution of any pair of sets Ui, Uj with
1 ≤ i < j ≤ K is that of two disjoint vertex sets with size pn in V (D), uniformly at random
drawn from all such pairs.

Label the vertices of T by t1, . . . , tK so that t1 = t and T [{t1, . . . , ti}] is a tree for each
i ∈ {1, . . . ,K}. For each i ∈ {2, . . . ,K}, let ji ∈ {1, . . . , i − 1} be such that tji is the in- or
out-neighbour in T [{t1, . . . , ti−1}] of the vertex ti, and let �i ∈ {+,−} be such that ti ∈ N�iT (tji).

Now by Proposition 2.12, for each i ∈ {2, . . . ,K}, with high probability, we can find a �i-
matching from Uji into Ui. By applying a union bound, we see that, with high probability, for
every i ∈ {2, . . . ,K}, there is a �i-matching, Mi say, from Uji into Ui.

Note that the union of these matchings,
⋃

2≤i≤K Mi ⊂ D[V1 ∪ V2] is the disjoint union of pn
copies of T , in which, for each i ∈ [K], the copy of ti is in Vi. Thus, in each of these pn copies of
T , t = t1 is copied into V1 = U1, as required.
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Lemma 2.14. Let 1/n � 1/K, ε, and suppose F is a digraph with at most (1 − ε)n vertices
which is the disjoint union of trees with size at most K. Let D be an n-vertex digraph with
δ0(D) ≥ (1/2 + α)n. Then, with high probability, D contains a copy of F .

Proof. Arrange the components of F into isomorphic classes of trees R1, . . . ,R`, noting that we
may take ` ≤ (2K)K−1. For each i ∈ [`], let ti = |Ri| and let si be the size of each component in
Ri. Uniformly at random, take, in V (D), disjoint subsets Vi,1 and Vi,2, i ∈ [`], with |Vi,1| = pin
and |Vi,2| = (si − 1)pin, where pi = ti/n+ ε/`si, for each i ∈ [`]. Note that this is possible, since

∑̀
i=1

sipin =
∑̀
i=1

(
siti +

εn

`

)
≤ n.

For each i ∈ [`], we can apply Lemma 2.13 to show that, with high probability, there are pin
copies of the underlying tree of Ri in Di = D[Vi,1 ∪ Vi,2]. Since pin ≥ ti, this implies that with
high probability, we can find a copy of Ri in Di for each i ∈ [`]. By applying a union bound and
using that 1/n� 1/`, we have, with high probability, that there is a copy of F in D.

3 Almost-spanning trees

The key aim of this section is to prove Theorem 2.2, that is, to prove we can embed an almost-
spanning tree T in our digraph. By Lemma 2.8, we can find T0 ⊂ T1 ⊂ T2 ⊂ T3 = T , satisfying
P1 to P4. In Section 3.1, we show that we can embed T1. In Section 3.2, we show that we can
embed T2 \T1, and T3 \T2. We conclude in Section 3.3 by combining this to obtain an embedding
of T .

3.1 Embedding constant-sized trees as stars

As sketched in Section 2.2, we will embed T0 randomly, leaf by leaf, using a guide set to embed
each new vertex. Each guide set has an accompanying guide graph, which we later use to find
a matching. The property of the guide graph that we use to find the matching is that it is
skew-bounded, as follows.

Definition 3.1. A digraph D with vertex sets A,B ⊂ V (D) is (a, b, �)-skew-bounded on (A,B)
if d�D(v,B) ≥ a for each v ∈ A and d◦D(v,A) ≤ b for each v ∈ B, where ◦ ∈ {+,−} and ◦ 6= �.

This property can imply a matching exists via Hall’s criterion, as follows.

Proposition 3.2. Let a ≥ b and � ∈ {+,−}. Suppose D is a digraph containing disjoint vertex
sets A,B ⊂ V (D), such that D is (a, b, �)-skew-bounded on (A,B). Then, there is a �-matching
from A into B in D.

Proof. Let U ⊂ A. As D is (a, b, �)-skew-bounded on (A,B), there are at least a |U | and at most
b |N�D(U,B)| �-edges from U to N�D(U,B). Thus, |N�D(U,B)| ≥ a |U | /b ≥ |U |. Therefore, by
Lemma 2.11, there is a �-matching from A into B.

In the following lemmas, we find our guide sets and guide graphs. We start by finding in D,
for each v ∈ V (D) and � ∈ {+,−}, a guide set A and guide graphs which are skew-bounded on
(A, V (D)).
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Lemma 3.3. Let 1/n� ε� α, η ≤ 1 and 1/n� µ ≤ α2/2. Let D be an n-vertex digraph with
δ0(D) ≥ (1/2 + α)n, let v ∈ V (D) and let � ∈ {+,−}.

Then, there is a set A ⊂ N�D(v) with size µn and digraphs H+, H− ⊂ D such that, for each
◦ ∈ {+,−}, H◦ is (εn, (1 + η)µεn, ◦)-skew-bounded on (A, V (D)).

Proof. We start by showing that we can label the vertices of V (D) as V (D) = {x1, . . . , xn} =
{y1, . . . , yn} so that, for each i ∈ [n],

|N−D (xi) ∩N�D(v) ∩N+
D (yi)| ≥ α2n. (3)

To do this, create an auxiliary graph, as follows. For each w ∈ V (D), create distinct new
vertices w− and w+, and let V + = {w+ : w ∈ V (D)} and V − = {w− : w ∈ V (D)}. Consider the
auxiliary bipartite graph H with vertex set V + ∪ V −, where for each x, y ∈ V (D), there is an
edge between x+ and y− if and only if

∣∣N−D (x) ∩N�D(v) ∩N+
D (y)

∣∣ ≥ α2n.

Claim 3.4. δ(H) ≥ (1/2 + α/2)n.

Proof of Claim 3.4. Let x ∈ V (D). We have |N−D (x)∩N�D(v)| ≥ n− (n−d−D(x))− (n−d�D(v)) ≥
2αn. Let B = N−D (x) ∩ N�D(v) and Y = {y ∈ V (D) : |N+

D (y) ∩ B| ≥ α2n}, and note that
dH(x+) = |Y |.

For each u ∈ B, we have |N−D (u)| ≥ (1/2 + α)n, and thus eD(V (D), B) ≥ (1/2 + α)|B|n. By
the choice of Y , we have eD(V (D), B) ≤ |Y ||B| + α2n2. Therefore, as, in addition, 2αn ≤ |B|,
we have

(1/2 + α)|B|n ≤ |Y ||B|+ α2n2 ≤ |Y ||B|+ α|B|n/2.

Thus, (1/2 + α/2)|B|n ≤ |Y ||B|, so that |Y | ≥ (1/2 + α/2)n. Therefore, dH(x+) = |Y | ≥
(1/2 + α/2)n.

A similar argument, with the signs reversed, shows that dH(y−) ≥ (1/2 + α/2)n for each
y ∈ V (D), completing the proof of the claim.

As in the proof of Proposition 2.12, Claim 3.4 easily implies that Hall’s criterion is satisfied,
so that there is a matching from V + to V − in H. That is, we can label the vertices of V (D) as
V (D) = {x1, . . . , xn} = {y1, . . . , yn} so that, for each i ∈ [n], (3) holds.

We will now show by induction that, for each 0 ≤ i ≤ µn, there is a set Ai ⊂ N�D(v) with size
i and graphs H+

i , H
−
i ⊂ D such that, for each ◦ ∈ {+,−}, H◦i is (εn, (1+η)µεn, ◦)-skew-bounded

on (Ai, V (D)), e(H◦i ) = iεn, and, for each j ∈ [n], d−
H+

i

(xj) = d+

H−i
(yj).

Note that if A0 = ∅ and if H+
0 , H−0 have no edges and vertex set V (D), then the conditions

hold, so assume that 0 ≤ i < µn and we have Ai ⊂ N�D(v) and H+
i , H

−
i ⊂ D as described.

Let Ji ⊂ [n] be the set of j ∈ [n] for which d−
H+

i

(xj) = d+

H−i
(yj) ≤ (1 + η/2)µεn. Note that, as

e(H+
i ) = e(H−i ) = iεn ≤ µεn2, we have

(n− |Ji|)(1 + η/2)µεn ≤ µεn2.

Thus, as η ≤ 1, (n− |Ji|) ≤ n/(1 + η/2) ≤ n(1− η/4), so that |Ji| ≥ ηn/4.
For each j ∈ Ji, let Wi,j = (N−D (xj) ∩ N�D(v) ∩ N+

D (yj)) \ Ai, noting that, by (3), |Wi,j | ≥
α2n− i > α2n− µn ≥ α2n/2. By averaging, choose some wi ∈ V (D) such that

|{j ∈ Ji : wi ∈Wi,j}| ≥
∑

j∈Ji |Wi,j |
n

≥ ηn/4 · α2n/2

n
≥ εn,

using that α, η � ε. Choose a set J ′i ⊂ {j ∈ Ji : wi ∈ Wi,j} with size εn. Let Ai+1 = Ai ∪ {wi}.
LetH+

i+1 be the digraphH+
i with edges wixj , j ∈ J ′i , added. Note that, as d−

H+
i

(xj) ≤ (1+η/2)µεn
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for each j ∈ J ′i , H
+
i+1 is (εn, (1 + η)µεn,+)-skew-bounded on (Ai+1, V (D)). Furthermore, by the

definition of Wi,j , the edges added to H+
i are in D, and therefore H+

i+1 ⊂ D.
Let H−i+1 be the digraph H−i with the edges yjwi, j ∈ J ′i , added. Note that, similarly, H−i+1

is (εn, (1 + η)µεn,−)-skew-bounded on (Ai+1, V (D)). Finally, noting that Ai+1 has size i + 1,
that e(H+

i+1) = e(H−i+1) = (i+ 1)εn and that, for each j ∈ [n], d−
H+

i+1

(xj) = d+

H−i+1

(yj), completes

the inductive step, and hence the proof.

We now show that the guide sets and guide graphs found by Lemma 3.3 have a similar
skew-bounded property when restricted to random vertex subsets, as follows.

Lemma 3.5. Let 1/n� ε� α, η ≤ 1 and 1/n� 1/k, p0, p1, . . . , pk ≤ 1. Let µ = α2p0/4. Let D
be an n-vertex digraph with δ0(D) ≥ (1/2 + α)n. Let V0, V1, . . . , Vk ⊂ V (D) be disjoint random
sets chosen uniformly at random subject to |Vi| = pin for each i ∈ {0, . . . , k}.

Then, with high probability, for each v ∈ V (D) and � ∈ {+,−}, there is a set Av,� ⊂
N�D(v)∩ V0 with size µn and digraphs H◦v,� ⊂ D, ◦ ∈ {+,−}, such that, for each ◦ ∈ {+,−} and
i ∈ [k], H◦v,� is (εpin, (1 + η)εµn, ◦)-skew-bounded on (Av,�, Vi).

Proof. By Lemma 3.3, applied with ε′ = (1 + η/4)ε, η′ = η/4 and µ′ = (1 + η/4)α2/4, for each
v ∈ V (D) and � ∈ {+,−}, there is a set Āv,� ⊂ N�D(v) with size (1 + η/4)α2n/4 and digraphs
H+

v,�, H
−
v,� ⊂ D such that, for each ◦ ∈ {+,−}, H◦v,� is ((1 + η/4)εn, (1 + η/4)3εα2n/4, ◦)-skew-

bounded on (Āv,�, V (D)).
Select V0, V1, . . . , Vk ⊂ V (D) according to the distribution in the lemma. Using Lemma 2.5,

and a union bound, we have that, with high probability, the following hold.

Q1 For each v ∈ V (D) and � ∈ {+,−}, |Āv,� ∩ V0| ≥ α2p0n/4 = µn.

Q2 For each v ∈ V (D), �, ◦ ∈ {+,−}, and w ∈ Āv,�, |N◦H◦v,�(w, Vi)| ≥ εpin.

Q3 For each v ∈ V (D), �, ◦ ∈ {+,−}, and w ∈ V (D), |N ◦̄H◦v,�(w, Āv,�)∩V0)| ≤ (1+η)εα2p0n/4 =

(1 + η)εµn, where ◦̄ ∈ {+,−} is such that ◦̄ 6= ◦.

Indeed, by Lemma 2.5, as ε, η, α, p0, p1, . . . , pk � 1/n, for any instance of v ∈ V (D), �, ◦ ∈
{+,−}, and w ∈ V (D), the property Q1 above holds with probability 1− exp(−Ω(n)), and the
same is true for Q2 and Q3. Therefore, by a union bound, with high probability, the properties
Q1, Q2 and Q3 hold.

Now, for each v ∈ V (D) and � ∈ {+,−}, using Q1, choose Av,� ⊂ Āv,� ∩V0 with |Av,�| = µn.
By Q2 and Q3, we have, for each ◦ ∈ {+,−} and i ∈ [k], that H◦v,� is (εpin, (1 + η)εµn, ◦)-skew-
bounded on (Av,�, Vi), as required,

We will now use the guide sets produced by Lemma 3.5 to randomly embed T0, the small
core of the original tree, and then use the guide graphs to find matchings from certain subsets
of the image of the embedding to other random sets, as follows.

Lemma 3.6. Let 1/n � c � β � ε, q, α ≤ 1 and 1/n � c � p � 1/m. Let D be an n-vertex
digraph with δ0(D) ≥ (1/2 + α)n.

Let T be an oriented tree with ∆±(T ) ≤ cn/ log n consisting of a subtree T0 ⊂ T with |T0| ≤
βn, such that every vertex in V (T ) \ V (T0) is attached as a leaf to T0. Let t ∈ V (T0). Let
U0 = V (T0) and let U1∪ . . .∪Um be a partition of V (T )\V (T0) such that, for each i ∈ [m], either
eT (V (T0), Ui) = 0 or eT (Ui, V (T0)) = 0. Let V0, V1, . . . , Vm ⊂ V (D) be disjoint random sets
chosen uniformly at random subject to |V0| = qn, and, for each i ∈ [m], |Vi| = b(1 + ε)|Ui|c+ pn.

Then, with high probability, for each s ∈ V0, there is an embedding of T into D such that t is
embedded to s, and, for each i ∈ {0, 1, . . . ,m}, Ui is embedded into Vi.
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Proof. Choose µ such that c, β � µ � ε, q, α. For each j ∈ [m], let pj = (b(1 + ε)|Ui|c/n) + p.
Choose V0, V1, . . . , Vm according to the distribution in the lemma. By Lemma 3.5 with p0 = q,
with high probability, for each v ∈ V (D) and � ∈ {+,−}, there is

R1 a set Av,� ⊂ N�D(v) ∩ V0 with size qα2n/4, and

R2 digraphs H◦v,� ⊂ D, ◦ ∈ {+,−}, such that, for each j ∈ [m] and ◦ ∈ {+,−}, H◦v,� is
(µpjn, (1 + ε/2)µqα2n/4, ◦)-skew-bounded on (Av,�, Vj).

We will now show that, given only R1 and R2, we can embed T as required in the lemma for
each s ∈ V0. Let then s ∈ V0. We will randomly embed T0 into D[V0], as follows, before showing
that, with positive probability, it can be extended into the required copy of T . Let ` = |T0| and
label V (T0) = {t1, . . . , t`}, so that t1 = t and T0[{t1, . . . , ti}] is a tree for each i ∈ [`]. Let s1 = s
and embed t1 to s1. For each i ∈ {2, . . . , `} in turn, let ji ∈ {1, . . . , i − 1} be such that tji is
the in- or out-neighbour of ti in T0[{t1, . . . , ti}] and let �i ∈ {+,−} be such ti ∈ N�iT0

(tji), and,
uniformly at random, embed ti to si ∈ Asji ,�i \ {s1, . . . , si−1}.

Claim 3.7. For each j ∈ [m], with high probability, the embedding of T0 can be extended to an
embedding of T [V (T0) ∪ Uj ] by embedding Uj into Vj.

As p � 1/n, and m ≤ 1/p, we can take a union bound over all j ∈ [m], to show that, with
positive probability, for each j ∈ [m], the embedding of T0 can be extended to T [V (T0) ∪ Uj ]
by embedding Uj into Vj , and hence T can be embedded as required in the lemma. Therefore,
there is some choice of the embedding of T0 for which this can be done. It is left then to prove
Claim 3.7.

Proof of Claim 3.7. Let j ∈ [m] and let ◦j ∈ {+,−} be such that all the edges from V (T0) to Uj

in T are ◦j-edges. For each i ∈ [`], let dj,i = |N◦jT (ti, Uj)|. For each i ∈ [`], take dj,i new vertices
and call them wj,i,i′ , i

′ ∈ [dj,i]. Let Wj = {wj,i,i′ : i ∈ [`], i′ ∈ [dj,i]}. Let Kj be the directed graph
with vertex set Wj ∪ Vj , containing only ◦j-edges from Wj to Vj , and where, for each i ∈ [`],
i′ ∈ [dj,i] and v ∈ Vj , there is a ◦j-edge from wj,i,i′ to v in Kj if, and only if, siv ∈ E(H

◦j
sji ,�i).

We will show that, with high probability, Kj is (µpjn, µpjn, ◦j)-skew-bounded on (Wj , Vj).
This is enough to prove the claim, as, by Proposition 3.2, there is a perfect ◦j-matching from Wj

into Vj in Kj . Thus, we can label distinct vertices v′j,i,i′ , i ∈ [`], i′ ∈ [dj,i] in Vj so that wj,i,i′v
′
j,i,i′ ,

i ∈ [`] and i′ ∈ [dj,i], is a matching in Kj . For each i ∈ [`], use the vertices v′j,i,i′ , i
′ ∈ [dj,i],

to embed dj,i ◦j-neighbours of ti in Uj into Vj . This is possible as, by the definition of Kj and
H
◦j
sji ,�i , siv

′
j,i,i′ is a ◦j-edge in D. Therefore, this extends the embedding of T0 to an embedding

of T0 ∪ T [Uj ] with Uj embedded into Vj , as required.
Thus, it is sufficient to prove that, with high probability, Kj is (µpjn, µpjn, ◦j)-skew-bounded

on (Wj , Vj). Now, for each i ∈ [`], si ∈ Aji,�i , and therefore si has at least µpjn ◦j-neighbours
in Vj in H

◦j
sji ,�i by R2. Therefore, for each i ∈ [`] and i′ ∈ [dj,i], wj,i,i′ has at least µpin ◦j-

neighbours in Kj . That is, each v ∈ Wj has at least µpjn ◦j-neighbours in Kj . Thus, letting
◦̄j ∈ {+,−} with ◦̄j 6= ◦j , it is sufficient to prove that, for each v ∈ Vj , with probability 1−o(n−1),

d
◦̄j
Kj

(v,Wj) ≤ µpjn.

Let then v ∈ Vj . For each i ∈ [`], let

Xj,v
i =

{
dj,i if siv ∈ E(H

◦j
sji ,�i)

0 otherwise,

so that d
◦̄j
Kj

(v,Wj) =
∑

i∈[`]X
j,v
i . Note that, when si ∈ Asji ,�i \{s1, . . . , si−1} is chosen uniformly

at random, by R1 and R2, and as β � ε, α, q and i ≤ ` ≤ βn, if di,j > 0, then Xj,v
i = dj,i with
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probability at most

d
H
◦j
sji

,�i
(v)

|Asji ,�i \ {s1, . . . , si−1}|
≤ (1 + ε/2)µqα2n/4

qα2n/4− (i− 1)
≤ (1 + ε)µ.

Let γ = (1 + ε)µ. Then, for each i ∈ [`], E(Xj,v
i |X

j,v
1 , . . . , Xj,v

i−1) ≤ γ · dj,i.
Let Y j,v

i = 0 and, for each i ∈ [`], let Y j,v
i =

∑
1≤i′≤i(X

j,v
i′ − γdj,i). Then, Y j,v

0 , Y j,v
1 , . . . , Y j,v

`

is a supermartingale, since E[Y j,v
i+1 | Y1, . . . , Yi] = E[Xj,v

i+1 | Y1, . . . , Yi]− γdj,i+1 + Y j,v
i ≤ γdj,i+1 −

γdj,i+1 + Y j,v
i = Y j.v

i for each i ≥ 0. Note further that |Y j,v
i+1 − Y

j,v
i | = |X

j,v
i+1 − γdj,i+1| ≤ dj,i+1

for each j ∈ [` − 1]. Furthermore, as dj,i ≤ cn/ log n for each i ∈ [`], and
∑

i∈[`] dj,i ≤ |Uj | ≤ n,

we have
∑

i∈[`] d
2
j,i ≤ cn2/ log n. Therefore, by Azuma’s inequality (Lemma 2.6) with t = pn/3,

and using that c� p,

P(Y j,v
` ≥ pn/3) ≤ 2 exp(−p2n2 log n/9cn2) = o(n−1).

Thus, with probability 1− o(n−1), we have Y j,v
` < pn/3, so that

d
◦̄j
Kj

(v,Wj) =
∑
i∈[`]

Xj,v
i = γ ·

∑
i∈[`]

dj,i

+ Y j,v
` = γ|Uj |+ Y j,v

` < γ|Uj |+ pn/3

≤ γpjn/(1 + ε) = (1 + ε)µpjn/(1 + ε) = µpjn,

completing the proof of the claim, and hence the lemma.

Finally, by combining Lemma 3.6 and Lemma 2.13, we can prove Lemma 2.4.

Proof of Lemma 2.4. Let p satisfy 1/n� c� p� 1/K. For each j ∈ [`], let sj be the vertex of
Sj with an in- or out-neighbour in V (T ′) in T . Let R be a maximal set of pairs (R, r) for which
R is a directed tree with at most K edges and r ∈ V (R), such that the pairs (R, r) are unique up
to isomorphism. Let m = |R| and enumerate R as (R1, r1), . . . , (Rm, rm). Note that p� 1/m

Let T ′′ = T [V (T ′) ∪ N+
T (V (T ′)) ∪ N−T (V (T ′))]. For each i ∈ [m] and � ∈ {+,−}, let Ui,� ⊂

V (T ′′) be the set of vertices sj , j ∈ [`], for which (Sj , sj) is isomorphic to (Ri, ri) and the edge
from V (T ′) to sj in T is a �-edge.

In V (D), take disjoint random sets V0 and Vi,�,j , i ∈ [m], � ∈ {+,−} and j ∈ {1, 2}, uniformly
at random subject to the following.

• |V0| = εn/2.

• For each i ∈ [m] and � ∈ {+,−}, we have that |Vi,�,1| = b(1 + ε/6)|Ui,�|c + pn and
|Vi,�,2| = (b(1 + ε/6)|Ui,�|c+ pn)(|Ri| − 1).

Note that this is possible, as

|V0|+
∑

i∈[m],�∈{+,−}

(|Vi,�,1|+ |Vi,�,2|) = |V0|+
∑

i∈[m],�∈{+,−}

(b(1 + ε/6)|Ui,�|c+ pn)|Ri|

≤ εn/2 + (1 + ε/6)
∑
j∈[`]

|Sj |+
∑
i∈[m]

2pn · |Ri|

≤ εn/2 + (1 + ε/6)|T |+ (2pn) ·m ·K ≤ n.
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Now, with probability ε/2, v ∈ V0. By Lemma 3.6, with high probability, if v ∈ V0, then there
is an embedding of T ′′ into D such that t is embedded to v, V (T ′) ⊂ V0, and, for each i ∈ [m]
and � ∈ {+,−}, Ui,� is embedded into Vi,�,1. By Lemma 2.13, for each i ∈ [m] and � ∈ {+,−},
D[Vi,�,1 ∪ Vi,�,2] contains |Vi,�,1| vertex disjoint copies of Ri, in which ri is copied into Vi,�,1. For
each i ∈ [m] and � ∈ {+,−}, add each copy of Ri containing an embedded vertex of Ui,� to the
embedding of T ′′. Note that this results in a copy of T .

3.2 Embedding constant-sized trees as paths

Given our decomposition T0 ⊂ T1 ⊂ T2 ⊂ T3 = T , we have now embedded T1. We now embed
the vertices from V (T2) \ V (T1), recalling that we obtain T2 from T1 by adding constant-sized
trees, where each tree is attached to T1 by exactly two bare paths of length 2. In the following
lemma, we embed T2 \ T1 so that the vertices in V (T2) ∩ V (T1) are embedded to preselected
vertices (labelled ai, bi, i ∈ [`]). This allows us to extend our embedding of T1 to one of T2.

Lemma 3.8. Let 1/n � 1/K ≤ 1/k � α, ε. Suppose T is a forest formed of vertex-disjoint
oriented trees Ti, i ∈ [`], with at most (1 − ε)n vertices in total, and so that k ≤ |Ti| ≤ K, for
each i ∈ [`], and each tree Ti contains distinct vertices ri and si which are leaves in Ti whose
neighbour has total in- and out-degree 2.

Suppose D is an n-vertex digraph with δ0(D) ≥ (1/2 + α)n, containing the distinct vertices
ai, bi, i ∈ [`]. Then, D contains a copy of T in which, for each i ∈ [`], ri is embedded to ai and
si is embedded to bi.

Proof. Let β be such that 1/k � β � α, ε. For each i ∈ [`], let r′i and s′i be the neighbours
in Ti of ri and si, respectively, and let T ′i = Ti − {ri, r′i, si, s′i}. Let T ′ be the forest composed
of connected components T ′i , i ∈ [`], so that |T ′i | ≤ (1 − ε)n. Let A = {ai, bi : i ∈ [`]}. Then
|A| = 2` ≤ 2n/k. Let B ⊂ V (D) \A be a random subset of vertices with |B| = βn.

Let D′ = D−A−B. As 1/k, β � α, ε, we have |D′| ≥ (1−ε/4)n and δ0(D′) ≥ (1/2+α/2) |D′|.
Since ∣∣T ′∣∣ ≤ (1− ε)n ≤ (1− ε)

(1− ε/4)
|D′| ≤ (1− ε/2)

∣∣D′∣∣ ,
we have, by Lemma 2.14, with high probability we can find a copy, S′ say, of T ′ inside D′.

Let r′′i and s′′i be the neighbours in T ′ of r′i and s′i, respectively, for each i ∈ [`], and let a′′i
and b′′i be the copy of r′′i and s′′i in S′, respectively.

Claim 3.9. The following holds with high probability. For any pair of vertices u, v ∈ V (D) and
�, ◦ ∈ {+,−}, we have that |N�(u) ∩N◦(v) ∩B| ≥ αβn.

Proof of Claim 3.9. Let u, v ∈ V (D) and �, ◦ ∈ {+,−}. Note that, by the semi-degree condition
on D, |N�(u) ∩N◦(v)| ≥ 2αn, and hence |N�(u) ∩N◦(v) ∩B| has a hypergeometric distribution
with E |N�(u) ∩N◦(v) ∩B| ≥ 2αβn. By Lemma 2.5, and a union bound over all pairs u, v ∈ D
and �, ◦ ∈ {+,−}, the statement in the claim thus holds with probability 1− o(1).

Thus, with high probability, we can assume the property in the claim holds. Now, for each
i ∈ [`], embed ai and bi to ri and si, respectively. Let �i, ◦i, �′i, ◦′i ∈ {+,−} be such that
r′i ∈ N�i(ri) ∩ N◦i(r′′i ), and s′i ∈ N�

′
i(si) ∩ N◦

′
i(s′′i ). Greedily and disjointly, for each i ∈ [r],

embed r′i to a vertex in N�i(ai)∩N◦i(a′′i )∩B and embed s′i to a vertex in N�
′
i(bi)∩N◦

′
i(b′′i )∩B.

Note that this is possible, since, from the property in the claim we have, for each i ∈ [r]∣∣N�i(ai) ∩N◦i(a′′i ) ∩B
∣∣ , ∣∣∣N�′i(bi) ∩N◦′i(b′′i ) ∩B

∣∣∣ ≥ αβn ≥ 2n

k
≥ 2r.

This completes the embedding of T with the property required in the lemma.
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3.3 Proof of Theorem 2.2

We now combine Lemma 2.4 and Lemma 3.8 to find a copy of any almost-spanning tree.

Proof of Theorem 2.2. Take K, k and η so that 1/n � 1/K � 1/k � η � ε, α. Let D be an
n-vertex graph with δ0(D) ≥ (1/2 + α)n. Let T be an oriented tree on at most (1− ε)n vertices
with ∆±(T ) ≤ cn/ log n. By Lemma 2.8, we can find forests T0 ⊂ T1 ⊂ T2 ⊂ T3 = satisfying P1
to P4. Randomly partition V (D) into three parts, V (D) = V1∪V2∪V3 so that |V1| = |T1|+εn/3,
|V2| = |T2| − |T1|+ εn/3, and |V3| = |T | − |T2|+ εn/3. Note that, with probability at least ε/3,
we have v ∈ V1.

By applying Lemma 2.10 with A = V1, with high probability we have δ0(D[V1]) ≥ (1/2 +
α/2) |V1|. Thus, by applying Lemma 2.4 to D = D[V1] and T = T1, we can find a copy of T1 in
V1 in which t is copied to v. By P3, for some ` ∈ N, T2 is formed from T1 by the addition of
trees Fi, i ∈ [`], where k ≤ |Fi| ≤ K, which are each attached to T1 by exactly two bare paths of
length 2, Pi and Qi say. For each i ∈ [`], let pi and qi be the endpoint of Pi and Qi, respectively,
which belongs to T1. Let ai and bi be the embedding in V1 of pi and qi, respectively, and let
A = {ai, bi : i ∈ [`]}.

By Lemma 2.10 again, we have, with high probability, δ0(D[A ∪ V2]) ≥ (1/2 + α/2) |A ∪ V2|.
Applying Lemma 3.8 to D[A∪V2] with Ti = Fi ∪Pi ∪Qi, ri = pi, and si = qi, for each i ∈ [`], we
can find a copy of T2 in D[V1∪V2]. Now since T2 is a tree, any vertex in T3 \T2 can have at most
one neighbour in T2. Note that, by Lemma 2.10, we know that with high probability every vertex
in D has at least (1/2 + α/2) |V3| ≥ ηn in-neighbours in V3 and at least (1/2 + α/2) |V3| ≥ ηn
out-neighbours in V3. Let j = |T3| − |T2| ≤ ηn and order the vertices of T3 \ T2 by u1, . . . , uj , so
that T [V (T2)∪ {u1, . . . , ui}] is a tree for each i ∈ [j]. Embed the vertices u1, . . . , uj greedily into
V3, to complete the copy of T in D. Noting that this embedding was successful with probability
at least ε/3− o(1) > 0, there must always be such a copy of T .

4 Absorption from switching

The aim of this section is to prove Theorem 2.1. The main idea is as follows. Given a small tree
T , we split it into two trees T ′ and T ′′ and randomly embed T ′ vertex by vertex. With positive
probability, the resulting tree is such that, given the right number of other vertices in the graph,
we can embed T ′′ to extend this into a copy of T while making some small modifications to the
copy of T ′. Essentially, we show that, for each vertex y, there are many vertices in the embedding
of T ′ which we can switch with y and still get a copy of T . We then embed T ′′ vertex-by-vertex,
at each step switching an unused vertex into the copy of T ′ in place of a vertex which we can
instead use to extend the (partial) embedding of T ′′.

Proof of Theorem 2.1. Take λ such that ε � λ � µ. Using Proposition 2.3, let T = T ′ ∪ T ′′,
where t ∈ V (T ′) and εn < |T ′′| ≤ 3εn. Let ` = |T ′|, and label V (T ′) as t1, . . . , t` so that t1 = t,
T ′[t1, . . . , ti] is a tree for each i ∈ [`], and the leaves of T ′ appear last in this order (except for t)
and in any bare path of length 6 the middle 3 vertices appear consecutively. For each i ∈ [`], let
Ti = T ′[{t1, . . . , ti}].

Pick an arbitrary vertex v ∈ V (D), and let R1 be the graph with only the vertex v. For
each i = 2, . . . , `, do the following. Let �i ∈ {+,−} be such that N�iTi

(ti) is non-empty (and thus
contains exactly one vertex. Let ◦i ∈ {+,−} with ◦i 6= �i. Take Ri−1, which is a copy of Ti−1,
and let wi be the copy of the sole vertex in N�iTi

(ti) in Ri−1. Pick a vertex vi independently at
random from N◦iD (wi) \ V (Ri−1). Embed ti to vi to get Ri, a copy of Ti.
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Note that this process always ends with a copy of T ′, as N◦iD (wi) \ V (Ri−1) always has size
at least d◦iD(wi)− |T | ≥ (1/2 + α)n− µn and µ� α. Let R = R`, so that R is a copy of T ′. We
will show that, with positive probability the following property holds.

S For each distinct x, y ∈ V (D) and � ∈ {+,−},

|{i ∈ [`] : vi ∈ N�D(x) and N±R (vi) ⊂ N±D (y)}| ≥ λn.

Noting |R| = |T ′| ≤ |T |−|T ′′|+1 ≤ (µ−ε)n, let A ⊂ V (D) contain V (R) so that |A| = (µ−ε)n,
and let v be the copy of t. We will show in two claims that, with positive probability S holds,
and that, if S holds, then A and v satisfy the property in the theorem. Thus, the theorem follows
from these two claims.

Claim 4.1. With positive probability, S holds.

Proof of Claim 4.1. Fix x, y ∈ V (D) and � ∈ {+,−} with x 6= y. We will show that S holds for
x, y and � with probability at least 1− 1/4n2, so that the result follows by a union bound.

For convenience, let us take two cases. Either T ′ has 2µ2n leaves (Case I) or µ2n vertex-
disjoint bare paths with length 6 (Case II). One of these cases must hold, as, suppose that
Case I does not hold and thus T ′ has fewer than 2µ2n leaves. Then, by Lemma 2.7, we know
that there is some s and some vertex-disjoint bare paths Pi, i ∈ [s], in T ′ of length 6 so that
|T ′ − P1 − · · · − Ps| ≤ 72µ2n+2`/7. Removing the internal vertices of each path Pi, i ∈ [s], from
T ′ removes 5 vertices, and |T ′| = `, so that `− 5s ≤ 72µ2n+ 2`/7, and therefore

s ≥ (`− 2`/7)/5− 72µ2n/5 ≥ `/7− 15µ2n ≥ (µ− 3ε)n/7− 15µ2n ≥ µ2n,

where the final inequality holds since ε� µ.

Case I. Assume that at least µ2n leaves of T ′ are out-leaves, where the proof whenever T ′ has
at least µ2n in-leaves follows similarly. Let `′ be the smallest integer such that, for each i > `′,
ti is a leaf of T ′. We will analyse the embedding of T ′ in two stages. First, for the embedding
of t1, . . . , t`′ , we show that with high probability there will be plenty of these vertices which are
adjacent to out-leaves in t`′+1, . . . , t` that are embedded to in-neighbours of y. Then, we will
analyse the embedding of t`′+1, . . . , t`, and show that plenty of these vertices whose in-neighbour
in t1, . . . , t`′ was embedded to an in-neighbour of y are themselves embedded to a �-neighbour of
x.

For each i ∈ [`′], let ci be the number of out-leaves of ti in T ′. For each i ∈ [`′], let Xi be the
random variable which takes value ci if vi ∈ N−D (y), and 0 otherwise. Note that, for each i ∈ [`],
if ci > 0, then, when the process selects vi, having chosen v1, . . . , vi−1, Xi = ci with probability
at least

|(N◦iD (wi) \ V (Ri)) ∩N−D (y)|
n

≥
|(N◦iD (wi)) ∩N−D (y)| − |Ri|

n
≥ 2αn− µn

n
≥ α, (4)

as α� µ. Thus, for each i ∈ [`], E[Xi | X1, . . . Xi−1] ≥ αci.
Note that

∑
i∈[`′] ci is the number of out-leaves of T ′, so that

∑
i∈[`′] ci ≥ µ2n and, as ∆(T ) ≤

cn/ log n,
∑

i∈[`′] c
2
i ≤ cn2/ log n. Let Z0 = 0 and, for each i ∈ [`′], let Zi =

∑
j≤i(Xj−αcj). Then,

(Zi)i≥0 is a submartingale, since E[Zi+1 | Z1, . . . , Zi] = Zi + E[Xi+1 − αci+1 | X1, . . . Xi] ≥ Zi

for each i ∈ [`′]. Furthermore, for each i ∈ [`′], we have |Zi − Zi−1| = |Xi − αci| ≤ ci. Therefore,
by Azuma’s inequality (Lemma 2.6) with t = αµ2n/2, we have

P

∑
i∈[`′]

(Xi − αci) ≤ −t

 ≤ 2 exp

(
−t2∑
i∈[`′] c

2
i

)
≤ 2 exp

(
−t2 log n

cn2

)
≤ 1

8n2
. (5)

18



Here, the final inequality holds because c� µ, α. Therefore, with probability at least 1− 1/8n2,
we have

∑
i∈[`′]Xi ≥

∑
i∈[`′] αci − αµ2n/2 ≥ αµ2n/2.

Let m =
∑

i∈[`′]Xi ≥ αµ2n/2. Consider now the embedding of t`′+1, . . . , t`. Let j1, . . . , jm ∈
{`′ + 1, . . . , `} be such that tji is an out-leaf of T ′ and the image of N−T ′(tji) is an in-neighbour
of y for each i ∈ [m]. For each i ∈ [m], let Yi be the random variable which takes value 1 if vji is
in N�D(x), and 0 otherwise. Note that, similarly to the calculation in (4), E[Yi | Y1, . . . Yi−1] ≥ α
for each i ∈ [m]. Let Z0 = 0 and, for each i ∈ [m], let Zi =

∑
j≤i(Yj − α). Then, (Zi)i≥0 is a

submartingale, since E[Zi+1 | Z1, . . . , Zi] = Zi + E[Yi − α | Y1, . . . , Yi−1] ≥ Zi for each i ∈ [m].
Furthermore, |Zi − Zi−1| = |Yi − α| ≤ 1 for each i ∈ [m]. Therefore, by Azuma’s inequality
(Lemma 2.6) with t = αm/2, we see that

P

∑
i∈[m]

Yi − α < −t

 ≤ 2 exp

(
−t2

(1− α)2m

)
≤ 1

8n2
, (6)

where the final inequality holds because 1/n� µ, α. Hence, with probability at least 1− 1/8n2,
we have

∑
i∈[m] Yi ≥ αm/2. Note that

∣∣{i ∈ [`] : vi ∈ N�D(x) and N±R (vi) ⊂ N±D (y)}
∣∣ ≥∑i Yi.

Thus, by taking a simple union bound over the events in (5) and (6) and using λ� α, µ, we
see that in total, with probability at least 1− 1/4n2,∣∣{i ∈ [`] : vi ∈ N�D(x) and N±R (vi) ⊂ N±D (y)}

∣∣ ≥ αm/2 ≥ λn.
Taking a union bound over all possible x, y ∈ V (D) and � ∈ {+,−}, we see that in this case S
holds with probability at least 1/2.

Case II. Let m = µ2n. Let P1, . . . , Pm be vertex disjoint paths of length 6 in T , so that, if,
for each i ∈ [m], ji is such that tji is the middle vertex of Pi, then the vertices tji appear in order
in t1, . . . , t`.

For each i ∈ [m], let Xi be the random variable taking value 1 if

vji ∈ N�D(x) and N±R (vji) ⊂ N±D (y) (7)

and 0 otherwise. Note that, by virtue of the labelling of the t1, . . . , t`, the vertices that appear
in N±R (vji) are exactly the vertices vji−1 and vji+1. When we choose each of vji−1, vji , vji+1, the
probability that it satisfies its condition in (7) (however the previous vertices vi′ are chosen) is
at least α, in a calculation similar to (4). Therefore, we have, for each i ∈ [m], that E[Xi |
X1, . . . Xi−1] ≥ α3.

Now, let Z0 = 0 and, for each i ∈ [m], let Zi =
∑

j≤i(Xj − α3). Then, E [Zi+1 | Z1, . . . , Zi] =

Zi + E[Xi+1 | X1, . . . , Xi] − α3 ≥ Zi for each i ∈ [m], and thus (Zi)i≥0 is a submartingale.
Furthermore, |Zi − Zi−1| =

∣∣Xi − α3
∣∣ ≤ 1 for each i ∈ [m]. Thus, by Azuma’s inequality

(Lemma 2.6), letting t = α3m/2, we have

P[Zm ≤ −t] ≤ 2 exp

(
−t2

m

)
= 2 exp

(
−α6m

4

)
≤ 1

4n2
,

as 1/n � α, µ. Therefore, with probability at least 1 − 1/4n2, we have Zm > −t, so that, as
λ� µ, α,∣∣{i ∈ [`] : vi ∈ N�D(x) and N±R (vi) ⊂ N±D (y)}

∣∣ ≥ ∣∣{i ∈ [m] : vji ∈ N�D(x) and N±R (vji) ⊂ N±D (y)}
∣∣

=
∑
i∈[m]

Xi = Zm + α3m ≥ α3m− t ≥ λn.
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Taking a union bound over all possible x, y ∈ V (D) and � ∈ {+,−}, we see that in this case S
holds with probability at least 1/2.

Claim 4.2. If S holds then A and v satisfy the property in the theorem.

Proof of Claim 4.2. Let B ⊂ V (D) with A ⊂ B and |B| = µn. Let k = |T ′′| − 1 ≤ 3εn and label
the vertices of V (T ′′) \ V (T ′) as s1, . . . , sk, so that, for each i ∈ [k], T ′i := T ′ ∪ T ′′[{s1, . . . , si}] is
a tree. Note that |B \ V (R)| = k and label the vertices of B \ V (R) as y1, . . . , yk.

Let S0 = R. Now, for each i = 1, . . . , k in turn, do the following. Let xi ∈ V (Si−1) and
�i ∈ {+,−} be such that we need to add a �i-neighbour to xi as a leaf to get a copy of T ′i .
Choose some j′i ∈ [`] \ {1, j′1, . . . , j′i−1} such that

vj′i ∈ N
�i
D (xi) and N±Si−1

(vj′i−1
) ⊂ N±D (yi) and d+

Si−1
(vj′i) + d−Si−1

(vj′i) ≤ 4/λ.

Replace vj′i with yi in Si−1 and add vj′i as a �i-neighbour of xi to get Si, a copy of T ′i with vertex
sets V (Si−1) ∪ {yi}.

We need only show that there is such a vertex vj′i in each case, as if this process finds Sk,
then we have a copy of T ′k = T . Fix then i ∈ [k]. Note that there are at most (4/λ) · 3εn ≤ λn/4
vertices next to the vertices vj′1 , . . . , vj′i inRi−1, and thereforeN+

R (vi′) = N+
Ri−1

(vi′) andN−R (vi′) =

N−Ri−1
(vi′) for all but at most λn/4 values of i′ ∈ [`]. Furthermore, as

∑
i′∈[`](d

+
T (ti′) + d−T (ti′)) ≤

2n, at most λn/2 values of i ∈ [k] can have d+
Si−1

(vj′i) + d−Si−1
(vj′i) > 4/λ. Thus, such an j′i will

always exist by S.
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[14] D. Kühn and D. Osthus. The minimum degree threshold for perfect graph packings. Com-
binatorica, 29(1):65–107, 2009.

[15] R. Montgomery. Spanning trees in random graphs. Advances in Mathematics, 356:106793,
2019.

[16] R. Mycroft and T. Naia. Spanning trees of dense directed graphs. Electronic Notes in
Theoretical Computer Science, 346:645–654, 2019.

[17] R. Mycroft and T. Naia. Trees and tree-like structures in dense digraphs, 2020. arXiv
preprint: 2012.09201.

[18] V. Rödl, E. Szemerédi, and A. Ruciński. An approximate Dirac-type theorem for k-uniform
hypergraphs. Combinatorica, 28(2):229–260, 2008.

21


	Introduction
	Preliminaries
	Notation
	Proof sketch
	Main tools and deduction of Theorem 1.1
	Proof Sketch of Theorem 2.2

	Probabilistic tools
	Structural lemmas
	Matchings between random sets

	Almost-spanning trees
	Embedding constant-sized trees as stars
	Embedding constant-sized trees as paths
	Proof of Theorem 2.2

	Absorption from switching

