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Abstract

We show that, in almost every n-vertex random directed graph process, a copy of every possible
n-vertex oriented cycle will appear strictly before a directed Hamilton cycle does, except of course for
the directed cycle itself. Furthermore, given an arbitrary n-vertex oriented cycle, we determine the
sharp threshold for its appearance in the binomial random directed graph. These results confirm, in
a strong form, a conjecture of Ferber and Long.

1 Introduction

Hamilton cycles in random graphs have been extensively studied since the early work of Erdős and Rényi [6]
on random graphs. Improving on seminal work by Pósa [18] and Korshunov [13], the sharp appearance
threshold of the Hamilton cycle was determined in 1983 by Bollobás [3], and Komlós and Szemerédi [12],
who showed that, if p = (log n+ log log n+ω(1))/n, then the binomial random graph G(n, p) is, with high
probability, Hamiltonian. If p = (log n + log log n − ω(1))/n, then, with high probability, G(n, p) has a
vertex with degree at most 1, and therefore contains no Hamilton cycle. For such ranges of p, then, with
high probability, the property of Hamiltonicity in G(n, p) is exactly concurrent with the property of the
minimum degree being at least 2.

Such a result can be made more precise by considering the n-vertex random graph process G0, G1,
. . . , Gn(n−1)/2, where G0 is the graph with vertex set [n] and no edges, and each graph Gi, i ≥ 1, in the
sequence, is formed from Gi−1 by adding a new edge taken uniformly at random from the non-edges of
Gi−1. Independently, Bollobás [4], and Ajtai, Komlós and Szemerédi [1], showed that, in almost every
random graph process, the first graph Gi with minimum degree at least 2 is Hamiltonian. Further results
on the Hamiltonicity of random graphs, including counting and packing results, can be found in Frieze’s
comprehensive bibliography [9].

Hamilton cycles have also been extensively studied in random directed graphs (digraphs). Here, a
directed Hamilton cycle is a cycle through every vertex of a digraph whose edges are directed in the same
direction around the cycle. In 1980, McDiarmid [15] gave a beautiful coupling argument which, when
applied to Hamilton cycles, shows that, if p = (log n + log log n + ω(1))/n, then D(n, p) is Hamiltonian
with high probability, where D(n, p) is the binomial random digraph with n vertices and edge probability
p. This coupling argument is crucial to this paper, and is covered in Sections 2.2 and 3.3. For directed
Hamiltonicity, the natural local obstruction is that each vertex must have at least one in-neighbour and at
least one out-neighbour so that a directed cycle may pass through it. In D(n, p), if p = (log n+ ω(1))/n,
then, with high probability, each vertex will have this property, while, if p = (log n− ω(1))/n, with high
probability at least one vertex will not. Similarly to the undirected case, this local obstruction coincides
with when we can expect the binomial random digraph to be Hamiltonian, as shown by Frieze [8]. That
is, if p = (log n+ ω(1))/n, then, with high probability, D(n, p) is Hamiltonian.

The n-vertex random digraph process D0, D1, . . . , Dn(n−1) begins with the digraph D0 with vertex
set [n] and no edges, and each digraph Di, i ≥ 1, in the sequence is formed from Di−1 by adding a new
directed edge taken uniformly at random from the non-edges of Di−1. Frieze [8] gave the corresponding
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result for Hamilton cycles in the random digraph process to that shown in the random graph process.
That is, in almost every random digraph process, the first digraph in which every vertex has in- and
out-degree at least 1 is Hamiltonian.

The directed n-vertex cycle is the most natural generalisation of the undirected n-vertex cycle, but we
may also consider other n-vertex oriented cycles. An oriented cycle is any digraph formed by taking an
undirected cycle and orienting its edges. Ferber and Long [7] studied such cycles in the binomial random
digraph, and noted that McDiarmid’s coupling argument gives that, for any n-vertex oriented cycle C, if
p = (log n + log log n + ω(1))/n, then D(n, p) contains a copy of C with high probability. Furthermore,
they conjectured that this should be true as long as p = (log n+ ω(1))/n.

The local obstruction to a copy of an n-vertex oriented cycle C in D(n, p) is different depending on
the pattern of directions on C. For example, consider the anti-directed Hamilton cycle, where, for even
n, the edges change direction at every opportunity around the cycle so that each vertex has in-degree 0
or out-degree 0. If p = (log n+ 2 log log n+ ω(1))/2n, then with high probability every vertex in D(n, p)
has out-degree at least 2 or in-degree at least 2, and thus has no local obstruction to the containment
of an anti-directed cycle. This is tight up the function ω(1), and, very recently, Frieze, Pérez-Giménez
and Pra lat [10] confirmed that this is also when we may expect an anti-directed Hamilton cycle to appear
in D(n, p). Thus, compared to the directed Hamilton cycle, we need only around one half of the edge
probability to typically find a anti-directed Hamilton cycle. More generally, Frieze, Pérez-Giménez and
Pra lat [10] studied n-vertex cycles in which the pattern of edges repeats after a fixed interval (with respect
to n), and determined which local conditions are likely to imply the existence of such a cycle in the random
digraph process. Indeed, they showed that, except for the anti-directed and directed Hamilton cycle, these
cycles are likely to appear in the random digraph process as soon as each vertex has total in- and out-degree
at least 2.

In this paper, we show that, with high probability, a much larger range of n-vertex oriented cycles
will appear in the random digraph process as soon as each vertex has total in- and out-degree at least 2.
Our condition on the cycle is only that it has at least n1/2+o(1) vertices where the direction of the edges
changes (that is, vertices which have in- or out-degree 0) and at least polylogarithmically many vertices
where the direction of the edges is maintained (that is, which have in- and out-degree 1).

Notably, we show that these cycles are likely to appear simultaneously at this point in the random
digraph process. Determining the threshold for the simultaneous containment of every possible n-vertex
oriented cycle in D(n, p) was the original motivation behind this work. For this, we show that, in almost
every random digraph process, the first digraph in which every vertex has both in- and out-degree at least
1 contains a copy of every n-vertex oriented cycle. In fact, the directed Hamilton cycle is likely to be
strictly the last such cycle to appear. From these results, it follows simply that, if p = (log n + ω(1))/n,
then D(n, p) contains a copy of every n-vertex oriented cycle. In particular, this confirms the conjecture
of Ferber and Long [7] stated above. These results are summarised in the following theorem.

Theorem 1.1. Let D0, D1, . . . , Dn(n−1) be the n-vertex random digraph process. Let m1 be the largest
integer m for which δ+(Dm) = 0 or δ−(Dm) = 0. Then, with high probability,

(i) Dm1 contains a copy of every n-vertex oriented cycle except for the directed n-vertex cycle, and

(ii) Dm1+1 contains a copy of every n-vertex oriented cycle.

Let m0 be the smallest integer m for which d+
Dm

(v) + d−Dm
(v) ≥ 2 for every v ∈ V (Dm). Then, with high

probability,

(iii) Dm0
contains a copy of every n-vertex oriented cycle with at least n1/2 log3 n changes of direction

and at most n− log4 n changes of direction.

We will also find, given any n-vertex oriented cycle C, the sharp threshold for the appearance of C
in D(n, p), where the thresholds vary from p = log n/2n to p = log n/n (see Theorem 1.3). If C has few
vertices with in- and out- degree 1, then the random graph must have few vertices with both in- and out-
degree exactly 1. If C has few vertices with in-degree 0 or out-degree 0, then the random graph must have
few vertices with in-degree 0 or out-degree 0. As p increases from (1 + o(1)) log n/2n to (1 + o(1)) log n/n,
the expected number of vertices in D with in- or out-degree 0 decreases from n1/2+o(1) to 0. The expected
number of vertices with both in- and out-degree 1 is much smaller, and, as p increases in this interval, it
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quickly decreases from no(1) to 0. Thus, for the sharp threshold for C we focus on the vertices in C with
in- or out-degree 0. We define pC below, before showing that this is the sharp threshold in Theorem 1.3.

Definition 1.2. Given an n-vertex oriented cycle C, let λ(C) be the number of vertices of C with in- or
out-degree 0 in C. If λ(C) = 0, then let pC = log n/n, while if λ(C) > 0, let pC = max{log n, 2(log n −
log λ(C))}/2n.

Theorem 1.3. For each ε > 0 and function p = p(n), with high probability, D(n, p) contains a copy
of every n-vertex oriented cycle with pC ≤ (1 − ε)p and no copy of any n-vertex oriented cycle with
pC ≥ (1 + ε)p.

Both Theorem 1.1 and Theorem 1.3 follow from a stronger theorem, Theorem 2.4, which gives a better
indication of where in the random digraph process we can expect an arbitrary spanning oriented cycle to
appear. However, there are n-vertex cycles C whose point of appearance cannot be (with high probability)
determined only from the evolving degree sequence of the n-vertex random digraph process. For example,
consider an n-vertex cycle C with exactly two vertices with out-degree 0 and exactly two vertices with
in-degree 0, which are in sequence ` vertices apart on the cycle, for some function ` = `(n). With positive
probability the last two vertices in the n-vertex random digraph process D0, D1, . . . , Dn(n−1) with in- or
out-degree 0 will both have in-degree 0. Then, whether a copy of C appears in the first digraph Dj which
has at most 2 vertices with out-degree 0 and at most 2 vertices with in-degree 0 can depend, for certain
values of ` ≈ log n/2 log log n on the different paths in Dj with length 2` between the last two vertices
with in-degree 0. Carefully selecting the value of `, we can find a sequence ` = `(n) where the probability
a copy of C exists in Dj is bounded away from 0 and 1.

The key new method used by this paper is a combination of constructive techniques along with Mc-
Diarmid’s coupling. After stating our notation, this is sketched in detail in Section 2, before we state our
main technical theorem, Theorem 2.3, and its application to the random digraph process, Theorem 2.4.
In Section 3, we prove Theorem 2.3, from which we then deduce Theorem 2.4 in Section 4.

2 Preliminaries

2.1 Notation

A digraph D has vertex set V (D) and edge set E(D), where E(D) is a collection of ordered distinct
vertex pairs from V (D). We let e(D) = |E(D)| and |D| = |V (D)|. We say that uv is an edge of D if
(u, v) ∈ E(D), and consider this edge as directed from u to v. Where uv ∈ E(D), we say that v is an
out-neighbour (or +-neighbour) of u and u is an in-neighbour (or −-neighbour) of v. For each � ∈ {+,−},
we let N�D(v) be the set of �-neighbours of v in D, and set d�D(v) = |N�D(v)|. Where it is clear from
context, we omit the subscript. We let ∆+(D) and δ+(D) be the maximum and minimum out-degree of
D respectively, and define ∆−(D) and δ−(D) similarly. Where ± is used, we mean that the statement
holds with ± replaced by both + and by −.

Given A,B ⊂ V (D), v ∈ V (D) and � ∈ {+,−}, we let N�D(v,B) = N�D(v) ∩ B, and N�D(A) =
(∪w∈AN�D(w))\A and N�D(A,B) = N�D(A)∩B. The digraph D[A] is the digraph D induced on the vertex
set A. Given an edge e with vertices in V (D), the digraphs D + e and D − e have vertex set V (D) and
edge sets E(D) ∪ {e} and E(D) \ {e} respectively. Given a vertex set A ⊂ V (D), the digraph D − A is
the digraph D[V (D) \ A]. We use similar notation for, for example, D − v with v ∈ V (D), and D + E,
where E is a set of edges.

Given two digraphs H and G, we say that H ⊂∼ G if G contains a copy of H. We denote by D(n, p)
the binomial random digraph with vertex set [n] = {1, . . . , n}, in which each possible edge uv is included
independently at random with probability p. In a digraph D, we say vertices u, v ∈ V (D) are at least k
apart if their graph distance in the underlying undirected graph of D is at least k.

Our notation for graphs is analogous to that defined above for digraphs. We also use standard asymp-
totic notation such as O(n), ΘC(n), where the implicit constant(s) depend on the variable in the subscript,
if any. We say an event holds with high probability if the probability which with it holds tends to 1 as
n→∞. For each n ∈ N, we use log[2] n = log log n and log[3] n = log log log n. All logarithms are natural,
and we omit rounding signs whenever they are not crucial.
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2.2 Proof overview

In our proof sketch we will concentrate on how to show that many different spanning cycles appear
simultaneously in the binomial random digraph. Let us say then that p = λ log n/n, for some large
constant λ, and that we wish to show that D(n, p) contains a copy of every n-vertex oriented cycle with
high probability. We note first that a simple union bound is not strong enough for this. Indeed, given an
n-vertex cycle C whose edges are oriented with any directions, we have, for D = D(n, p) and an arbitrary
v ∈ [n], that

P(C ⊂∼ D(n, p)) ≤ P(d+
D(v) + d−D(v) > 0) = 1− (1− p)2(n−1) = 1− exp(−Θλ(log n)).

As there are 2(1−o(1))n oriented cycles with length n up to isomorphism, we thus cannot prove a bound
on P(C ⊂∼ D(n, p)) before taking a union bound over all the n-vertex oriented cycles C.

On the other hand, it would suffice to find some pseudorandom properties which D(n, p) has with
high probability and show that any digraph with these properties contains any n-vertex oriented cycle C.
However, for general cycles C, this seems to be rather challenging. Instead, we combine the ‘union bound’
approach and the ‘pseudorandom’ approach, as follows.

Taking two random digraphs D0 and D1, each distributed as D(n, p/2), we define a notion of a
‘pseudorandom digraph’ and show that

P(D0 is pseudorandom) = 1− o(1)

and, for any n-vertex oriented cycle C,

P(C ⊂∼ D0 ∪D1|D0 is pseudorandom) = 1− exp(−ω(n)). (1)

Choosing first the random digraph D0, and then taking a union bound over all cycles C, these statements
easily combine (see Section 4.3) to show that

P(D(n, p) contains every n-vertex cycle) ≥ P(D0 ∪D1 contains every n-vertex cycle) = 1− o(1).

Instead of proving (1) directly, we now employ McDiarmid’s coupling technique (as discussed exten-
sively in Section 3.3). For this, consider the following random digraph, D∗(n, q).

Definition 2.1. Let D∗(n, q) be the random digraph with vertex set [n] where each pair of edges uv and
vu are included together independently at random with probability q, and otherwise excluded.

Let D∗1 be distributed as D∗(n, p/2). A simple use of McDiarmid’s coupling technique (see Section 3.3)
shows that

P(C ⊂∼ D0 ∪D1|D0 is pseudorandom) ≥ P(C ⊂∼ D0 ∪D∗1 |D0 is pseudorandom).

Therefore, to prove (1), it is sufficient to show that

P(C ⊂∼ D0 ∪D∗1 |D0 is pseudorandom) = 1− exp(−ω(n)). (2)

Now, we observe that D∗1 has the same distribution as the random graph G(n, p/2) with each edge uv
replaced by the two directed edges uv and vu. This allows us to use (undirected) graph techniques to find
paths and cycles in the underlying graph of D∗1 , safe in the knowledge that such a path or cycle will exist
in D∗1 with any orientations on its edges. This is the benefit of working with D∗1 . However, for (2), we can
only use graph techniques which use properties of G(n, p/2) which hold with probability 1− exp(−ω(n)).

Key here is that one part of the standard proof of the Hamiltonicity of G(n, p) uses a ‘sprinkling’
technique that works with probability 1 − exp(−ω(n)). So that we may recall this, let G0 and G1 be
independent random graphs, each distributed as G(n, p/2). Typically, following the approach pioneered
by Pósa [18], we show that G0 is likely to be an ‘expander’ (see Section 3.1), and then, given that G0 is an
‘expander’, that G0 ∪G1 is likely to contain a Hamilton cycle. In fact, we have, where Cn is an n-vertex
cycle, that

P(Cn ⊂∼ G0 ∪G1|G0 is an ‘expander’) = 1− exp(−ω(n)). (3)
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This is the undirected version of (2), our version of which we prove as Lemma 3.6.
Unfortunately, the proof of (3) (using the extension-rotation method as given in Section 3.8) cannot

be applied to directed graphs to get an arbitrary cycle. Instead, given a pseudorandom digraph D0, we
split D∗1 into two random digraphs D∗2 and D∗3 with equal edge probability and proceed with the following
4 steps.

A We reveal D∗2 to (with very high probability) identify a set of ‘bad’ vertices B ⊂ [n] which are hard
to cover by paths or cycles in D∗2 .

B We use D0 to find sections of the cycle C covering these bad vertices, where the sections have
endvertices in [n] \B.

C We connect these sections using D∗2 into a single section of the cycle (using that the endvertices are
not ‘bad’). Say the path found in D0 ∪D∗2 is a path P with endvertices x and y. When we do this,
we ensure that D∗2 − V (P − x− y) is an ‘expander’.

D Using our version of (3), we reveal D∗3 and show that, given D∗2 − V (P − x− y) is an ‘expander’, an
x, y-path through every vertex in (D∗2 ∪D∗3)− V (P − x− y) exists with very high probability.

These steps are given in more detail in Section 3. We next give our definition of pseudorandomness
and the statement of our main technical theorem, before discussing how it can be applied to the random
digraph process.

2.3 Pseudorandomness and our main technical theorem

For our definition of pseudorandomness, we take the simplest conditions we need for our methods to work.
We require our pseudorandom digraph to satisfy some maximum in- and out-degree condition (A1 below),
some minimum in- and out-degree condition (A2 below), and a condition that gives rise to some digraph
‘expansion’ (A3 below). Additionally, the pseudorandom digraph D has an exceptional set of vertices X,
which will arise from low in- or out-degree vertices in the random digraph process.

Definition 2.2. Given an n-vertex digraph D and a vertex set X ⊂ V (D), D is pseudorandom with
exceptional set X if the following hold.

A1 ∆±(D) ≤ 100 log n.

A2 For each v ∈ V (D), d±(v, V (D) \X) ≥ log n/500.

A3 For any sets A,B ⊂ V (D) and � ∈ {−,+}, with |A| ≤ n log log n/ log n, and, for each v ∈ A,
d�(v,B) ≥ (log n)2/3, we have |B| ≥ |A|(log n)1/3.

We wish to apply our methods to digraphs in the n-vertex random digraph process which have minimum
in- or out-degree strictly less than log n/500. As A2 will not hold, such a digraph is not pseudorandom.
However, as discussed below, we will modify such a digraph into a pseudorandom digraph. Once we find a
spanning cycle, we will undo this modification, and therefore the spanning cycle we find will need to have
some additional properties. This motivates our main theorem, Theorem 2.3, where prespecified vertices
in the cycle are copied to prespecified vertices in the exceptional set X.

Theorem 2.3. There is some n0 such that the following holds for each n ≥ n0. Let D0 be an n-vertex
digraph containing X ⊂ V (D0), with |X| ≤ n3/4, so that D0 is pseudorandom with exceptional set X. Let
C be an n-vertex oriented cycle and let P ⊂ C be a path with length at most n/10. Let f : X → V (P )
be an injection such that the vertices in f(X) are pairwise at least 20 log n/ log log n apart on P , and let
D1 = D(n, log n/103n)

Then, with probability at least 1− 2 exp(−2n), D0 ∪D1 contains a copy of C in which f(x) is copied
to x for each x ∈ X.
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We prove this theorem with the strategy outlined in Section 2.2. To apply it to the random digraph
process, we first modify the random digraphs. This is explained in more detail in Section 4, but, roughly,
before Theorem 2.3 is applied, we first use a conditioning argument (from Krivelevich, Lubetzky and
Sudakov [14]) to reserve some random edges to act as D1 in Theorem 2.3, and then identify the low in-
or out-degree vertices in a digraph in the random digraph process. Assigning each low degree vertex two
neighbours, we embed well-spaced paths of length 2 from the cycle to these vertices and their chosen
neighbours. Replacing each embedded path of length 2 by a new vertex and modifying the cycle and
digraph from the random digraph process, we apply Theorem 2.3 using the random edges we have reserved
as D1, gathering the new vertices into the exceptional set X. Altogether, this will give us the following
theorem.

Theorem 2.4. Let D0, D1, . . . , Dn(n−1) be the n-vertex random digraph process. For each i with 0 ≤ i ≤
n(n− 1), let si be the number of vertices in Di with in-degree or out-degree 0 and let ti be the number of
vertices in Di with in-degree 1 and out-degree 1.

Then, with high probability, the following holds for each i ∈ {0, 1, . . . , n(n−1)}. If d+
Di

(v)+d−Di
(v) ≥ 2

for each v ∈ V (Di), then Di contains a copy of every n-vertex oriented cycle with at least 1 + (si−1) log n
changes in direction and at most n− 1− (ti − 1) log n changes in direction.

Theorem 1.1 and Theorem 1.3 follow straight-forwardly from Theorem 2.4. We show this in detail in
Section 4.3, following the proof of Theorem 2.4. In Section 3, we prove Theorem 2.3.

3 Proof of Theorem 2.3

In Section 3.1 we state our component results, before combining them to prove Theorem 2.3 in Section 3.2.
We prove these component results in Sections 3.3–3.8.

3.1 Components of the proof of Theorem 2.3

The following component parts are contextualised in the proof guide in Section 2.2.

3.1.1 Coupling argument. We prove the following implication of McDiarmid’s coupling argument in
Section 3.3, where an oriented graph is a directed graph in which there is at most one edge between any
pair of vertices.

Theorem 3.1. Let p ∈ [0, 1] and n ∈ N. Let H be a set of oriented graphs with vertex set [n], let D0 be
a digraph with vertex set [n], let D1 = D(n, p) and let D∗1 = D∗(n, p).

Then, P(∃H ∈ H : H ⊂ D0 ∪D1) ≥ P(∃H ∈ H : H ⊂ D0 ∪D∗1).

3.1.2 Partitioning lemma. We partition the vertex set of our pseudorandom digraph for the steps
outlined in Section 2.2 using the following lemma, which is proved in Section 3.4.

Lemma 3.2. There is some n0 such that the following holds for each n ≥ n0. Suppose D0 is an n-vertex
pseudorandom digraph with exceptional set X ⊂ V (D0) satisfying |X| ≤ n3/4.

Then, there is a partition V0 ∪ V1 ∪ V2 of V (D0) \ X with |V1| = |V2| = bn/4c such that, for each
v ∈ V (D0) and i ∈ [2], we have d±(v, Vi) ≥ log n/5000.

3.1.3 Steps A and C. The next lemma, Lemma 3.4, carries out Steps A and C in Section 2.2, and
is proved in Sections 3.5 and 3.6. It identifies the set of ‘bad’ vertices B for Step A, while showing the
connectivity property that is then used for Step C. We state it after formalising how we need ‘small sets
to expand’, as follows.

Definition 3.3. An n-vertex graph G is a 10-expander if it is connected and, given any subset A ⊂ V (G)
with |A| ≤ n/20, we have |N(A)| ≥ 10|A|.
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Lemma 3.4. There is some n0 such that the following holds for each n ≥ n0. Let V0 ⊂ [n] satisfy
|V0| ≥ n/4, and let p = log n/104n and G = G(n, p). Then, with probability at least 1 − exp(−2n), G

contains a set B ⊂ [n] with 1 ≤ |B| ≤ n log[3] n/ log n and the following property.

Suppose we have any k ≥ 1, and any integers `i ≥ 10 log n/ log[2] n, i ∈ [k], such that
∑
i∈[k] `i ≤ n/8,

and distinct vertices x1, . . . , xk, y1, . . . , yk ∈ V (G) \ (V0 ∪ B). Then, there is a set of internally vertex-
disjoint paths P1, . . . , Pk in G such that the following hold with V1 = V0 \ (B ∪ (∪i∈[k]V (Pi))).

• For each i ∈ [k], Pi is an xi, yi-path in G with length `i and internal vertices in V0 \B.

• For each A ⊂ V (G) with V1 ⊂ A and A ∩B = ∅, G[A] is a 10-expander.

3.1.4 Step B. The next lemma, Lemma 3.5, carries out Step B, and is proved in Section 3.7. The lemma
will be applied to the exceptional set X of the pseudorandom digraph D0 and the set of ‘bad’ vertices B
from Lemma 3.4 (split as B = B+ ∪B−). We use it to embed paths from the cycle to cover X ∪B, with
vertices in X embedded to prespecified vertices, so that these paths have endvertices outside of X ∪B (so
that their endvertices are ‘good’ vertices).

Lemma 3.5. There is some n0 such that the following holds for each n ≥ n0. Let D be an n-vertex
pseudorandom digraph with exceptional set X. Let B+, B−, A+, A− be disjoint sets in V (D) \ X, and
suppose that

• for each v ∈ V (D) and � ∈ {+,−}, d�(v,B� ∪A�) ≥ log n/5000, and

• |X|, |B+|, |B−| ≤ n log[3] n/ log n.

Let B = B+∪B−. Let k = |X∪B|, and let {Pi : i ∈ [k]} be a collection of vertex-disjoint oriented paths,
each with length 2d4 log n/ log log ne. Let xi be the midpoint of Pi for each i ∈ [k], and let f : X ∪B → [k]
be a bijection.

Then, there is some B̄ ⊂ B and a collection of vertex-disjoint oriented paths {Qv : v ∈ X ∪ B̄} such
that,

B1 for each v ∈ X∪ B̄, Qv is a copy in D of a portion of Pf(v) with endvertices in A+∪A− and interior
vertices in X ∪B, in which xf(v) is copied to v, and

B2 X ∪B is contained in ∪v∈X∪B̄V (Qv).

3.1.5 Step D. Finally, the following lemma is used for Step D and is proved in Section 3.8.

Lemma 3.6. There is some n0 such that the following holds for each n ≥ n0. Let G0 be a 10-expander
with vertex set [n] and let x, y ∈ V (G0) be distinct. Let p = log n/105n and G1 = G(n, p). Then, with
probability at least 1− exp(−4n), G0 ∪G1 contains a Hamilton x, y-path.

3.2 Proof of Theorem 2.3

We now put these component parts together to prove Theorem 2.3, as follows.

Proof of Theorem 2.3. Let n0 be sufficiently large that each property in Lemmas 3.2, 3.4, 3.5 and 3.6
holds for each n ≥ n0/2, and further simple inequalities involving n ≥ n0 hold as used below. We will
show the property in Theorem 2.3 holds for each n ≥ n0. For this, let D0 be an n-vertex pseudorandom
digraph with exceptional set X ⊂ V (D0) = [n] such that |X| ≤ n3/4. Let C be an n-vertex oriented cycle.
Let P ⊂ C be a path with length at most n/100. Let f : X → V (P ) be an injection, so that the vertices
in f(X) are pairwise at least 100 log n/ log log n apart on P .

Let H be the set of copies of C with vertex set [n] in which f(x) is copied to x for each x ∈ X, and let
p = log n/104n. Independently, let D∗1 , D∗2 , D1, and D∗ be distributed as D∗(n, p), D∗(n, p), D(n, 10p),
and D∗(n, 10p) respectively. Noting that each pair of edges {uv, vu} appears in D∗1 ∪D∗2 independently
at random with probability 1− (1− p)2 ≤ 10p, Theorem 3.1 implies that

P(∃H ∈ H : H ⊂ D0 ∪D1) ≥ P(∃H ∈ H : H ⊂ D0 ∪D∗) ≥ P(∃H ∈ H : H ⊂ D0 ∪D∗1 ∪D∗2).
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Thus, to prove Theorem 2.3, it is sufficient to show that P(∃H ∈ H : H ⊂ D0∪D∗1∪D∗2) ≥ 1−2 exp(−2n).
First, using the property from Lemma 3.2, find a partition V (D0) \ X = V0 ∪ V1 ∪ V2 with |V1| =

|V2| = bn/4c such that, for each v ∈ V (D0) and i ∈ [2], we have d±(v, Vi) ≥ log n/5000. Note that
|V0| ≥ n/2− |X| ≥ n/4.

Let G1 be the underlying undirected graph of D∗1 , noting that G1 has the same distribution as G(n, p).
By the property from Lemma 3.4, with probability at least 1 − exp(−2n), there exists a set B ⊂ V (G1)

with 1 ≤ |B| ≤ n log[3] n/ log n such that the following holds.

C1 For any k ≥ 1, and any integers `i ≥ 10 log n/ log[2] n, i ∈ [k], such that
∑
i∈[k] `i ≤ n/8, and distinct

vertices x1, . . . , xk, y1, . . . , yk ∈ V (G1) \ (V0 ∪ B), there is a set of internally vertex-disjoint paths
R1, . . . , Rk such that the following hold with V̄0 = V0 \ (B ∪ (∪i∈[k]V (Ri))).

• For each i ∈ [k], Ri is an xi, yi-path in G1 with length `i and internal vertices in V0.

• For each A ⊂ V (G1) with V̄0 ⊂ A and A ∩B = ∅, G1[A] is a 10-expander.

Now, let k′ = |X∪B| ≥ 1 and note that k′ ≤ 2n log[3] n/ log n. Let A+ = V1\B, A− = V2\B, B+ = B∩V1

and B− = B ∩ V2. Let ` = 2d4 log n/ log[2] ne and let `0 = 10 log n/ log[2] n. Let P ′ be the subpath of C
containing P which contains ` extra vertices on each side. Take paths Pi, i ∈ [k′], in P ′ which are pairwise
a distance at least `0 apart in C, which each have length 2`, and such that, for each x ∈ X, there is some
j ∈ [k′] for which f(x) is the center vertex of Pj . Note that this is possible as k′(2`+ 2`0) = o(n).

By the property from Lemma 3.5, there is some k ≤ k′ and a set of vertex-disjoint paths Qi, i ∈ [k],
in D0, such that the following hold.

C2 For each i ∈ [k], Qi is a copy of a portion of Pi with endvertices in A+ ∪A− and interior vertices in
X ∪B.

C3 X ∪B ⊂ ∪i∈[k]V (Qi).

C4 For each x ∈ X, for some j ∈ [k], Qj is the copy of a portion of P ′ containing x in which f(x) is
copied to x.

Note that we can assume, by deleting paths if necessary, that each path Qi, i ∈ [k], contains some vertex
in X ∪B, and hence, by C2, has length at least 2. As k′ = |X ∪B| ≥ 1, we have k ≥ 1.

Pick an arbitrary clockwise direction on C. Relabelling, if necessary, assume that the paths P1, . . . , Pk
occur on C in clockwise order. For each i ∈ [k − 1], let `i ≥ `0 be the length of the path between the
preimage of Qi and the preimage of Qi+1 on P . For each i ∈ [k], label the endvertices of Qi so that Qi
is an xi, yi-path and the preimage of xi occurs earlier in Pi than the preimage of yi under the clockwise
order. Note that, by the choice of the paths Pi, i ∈ [k], we have that

∑
i∈[k] `i ≤ |P |+ 2` ≤ n/8 and, for

each i ∈ [k− 1], `i ≥ `0 = 10 log n/ log[2] n. Furthermore, the vertices x1, . . . , xk, y1, . . . , yk are all distinct
as they are endvertices of vertex-disjoint paths with length at least 2, and, by C2, these vertices are all
in A+ ∪A− = (V1 ∪ V2) \B = V (D0) \ (V0 ∪B).

By C1, we can find paths Ri, i ∈ [k − 1], which are internally vertex-disjoint such that, for each
i ∈ [k − 1], Ri is a yi, xi+1-path in G1 with length `i and internal vertices in V0, and such that, setting
V̄0 = V0 \ (B ∪ (∪i∈[k−1]V (Ri))), the following holds.

C5 For each A ⊂ V (G1) with V̄0 ⊂ A and A ∩B = ∅, G1[A] is a 10-expander.

Now, for each Ri, i ∈ [k − 1], let R′i be the digraph formed by replacing each edge uv of Ri by both
uv and vu. Observe that (∪i∈[k]Qi) ∪ (∪i∈[k−1]R

′
i) ⊂ D0 ∪D∗1 contains an oriented x1, yk-path, Q say, of

a portion of P ′, P ′′ say, in which the following hold.

• By C2, the paths Qi, i ∈ [k], have vertices in A+ ∪A− ∪ (X ∪B) = V1 ∪ V2 ∪X ∪B, and hence, by
the definition of V̄0, we have V̄0 ⊂ V (G1) \ V (Q).

• By C3, we have X ∪B ⊂ V (Q), and, hence, by C5, G′1 := G1 − (V (Q) \ {x1, yk}) is a 10-expander.

• By C4, for each x ∈ X, f(x) ∈ V (P ′′) is copied to x ∈ V (Q).
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Let m = |G′1|, and note that m ≥ n − |Q| ≥ n − |P ′′| ≥ n/2 ≥ n0/2. Let G2 be the underlying
graph of D∗2 [V (G′1)] and note that G2 has the same distribution as G(m, p). Then, by the property from
Lemma 3.6, with probability at least 1− exp(−4m), G′1 ∪G2 contains a Hamilton yk, x1-path, S say. Let
S∗ be S with each edge replaced by a directed edge in each direction, and note that, as S ⊂ G′1 ∪G2, we
have that S∗ ⊂ D∗1 ∪D∗2 . Finally, note that a copy of C lies in Q ∪ S∗ ⊂ D0 ∪D∗1 ∪D∗2 , in which f(x)
is copied to x for each x ∈ X. Therefore, in total, we have found a copy of C in D0 ∪D∗1 ∪D∗2 in which
f(x) is copied to x for each x ∈ X with probability at least 1− exp(−2n)− exp(−4m) ≥ 1− 2 exp(−2n),
as required.

3.3 Coupling argument

To recap, for Theorem 3.1, we have the following situation. We have p ∈ [0, 1], n ∈ N, and a set H of
oriented graphs with vertex set [n]. We have a digraph D0 with vertex set [n], and random digraphs
D1 = D(n, p) and D∗1 = D∗(n, p). We want to show that

P(∃H ∈ H : H ⊂ D0 ∪D1) ≥ P(∃H ∈ H : H ⊂ D0 ∪D∗1).

To do this, we follow closely the approach of McDiarmid [15]. We construct a sequence of random
digraphs, denoted D̂0, D̂1, . . . , D̂n(n−1)/2, beginning with the random digraph D̂0 which has same distri-
bution as D∗1 . Given an arbitrary order of the n(n− 1)/2 vertex pairs from [n], throughout this sequence
of digraphs we steadily decouple each pair of edges uv, vu in D∗1 so that more of these edge pairs appear
independently of each other. At the end of this sequence, we have decoupled the appearance of edge pairs
in D∗1 until the last digraph in the sequence, D̂n(n−1)/2, has the same distribution as D1. Once this se-
quence of random digraphs is constructed, we show that, as i increases, some digraph in H is increasingly
likely to appear in D0∪D∗i (see Claim 1, below). The only change from the proof used by McDiarmid [15]
is the introduction of a fixed graph, D0, whose edges are added to every random graph in this sequence,
but this introduces no additional complication.

Proof of Theorem 3.1. Let ` = n(n − 1)/2 and enumerate [n](2) as e1 = {x1, y1}, . . . , e` = {x`, y`}. For
each 0 ≤ i ≤ `, let Xi, Yi and Zi be independent Bernoulli random variables which are 1 with probability
p, and 0 otherwise. For each 0 ≤ j ≤ `, let D̂j be the random digraph with vertex set [n] and edge set

{xiyi : 1 ≤ i ≤ j and Xi = 1} ∪ {yixi : 1 ≤ i ≤ j and Yi = 1} ∪ {xiyi, yixi : j < i ≤ ` and Zi = 1}.

Note the following.

D1 D̂0 has the same distribution as D∗(n, p), and hence D∗1 .

D2 D̂` has the same distribution as D(n, p), and hence D1.

D3 For each j ∈ [`], E(D̂j−1)4E(D̂j) ⊂ {xjyj , yjxj}.

We will show the following claim.

Claim 1. For each i ∈ [`], P(∃H ∈ H : H ⊂ D0 ∪ D̂i) ≥ P(∃H ∈ H : H ⊂ D0 ∪ D̂i−1).

This is sufficient to prove the lemma. Indeed, it follows from Claim 1 that

P(∃H ∈ H : H ⊂ D0 ∪D1)
D2
= P(∃H ∈ H : H ⊂ D0 ∪ D̂`) ≥ P(∃H ∈ H : H ⊂ D0 ∪ D̂`−1)

≥ . . . ≥ P(∃H ∈ H : H ⊂ D0 ∪ D̂0)
D1
= P(∃H ∈ H : H ⊂ D0 ∪D∗1).

Thus, P(∃H ∈ H : H ⊂ D0 ∪D1) ≥ P(∃H ∈ H : H ⊂ D0 ∪D∗1), as required. It is left then only to prove
Claim 1.

Proof of Claim 1. Fix an arbitrary i ∈ [`]. Let D′i = D̂i − {xiyi, yixi}, so that, by D3, we also have

D′i = D̂i−1 − {xiyi, yixi}. Let D be the set of possible outcomes for D′i and fix an arbitrary D ∈ D.
Consider the following three possible cases.

a : D0 ∪D contains some H ∈ H.
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b : (D0 ∪D) + {xiyi, yixi} contains no H ∈ H.

c : D0 ∪D contains no H ∈ H but (D0 ∪D) + {xiyi, yixi} contains some H ∈ H.

If case a occurs, then

P(∃H ∈ H : H ⊂ D0 ∪ D̂i−1|D′i = D) = 1 = P(∃H ∈ H : H ⊂ D0 ∪ D̂i|D′i = D).

If case b occurs, then

P(∃H ∈ H : H ⊂ D0 ∪ D̂i−1|D′i = D) = 0 = P(∃H ∈ H : H ⊂ D0 ∪ D̂i|D′i = D).

If case c occurs, then, as H is a set of oriented graphs, at least one of D0 ∪ D + xiyi or D0 ∪ D + yixi
contains some H ∈ H. Thus,

P(∃H ∈ H : H ⊂ D0 ∪ D̂i|D′i = D) ≥ p = P(∃H ∈ H : H ⊂ D0 ∪ D̂i−1|D′i = D).

Hence, in all cases, and thus for all D ∈ D, we have

P(∃H ∈ H : H ⊂ D0 ∪ D̂i|D′i = D) ≥ P(∃H ∈ H : H ⊂ D0 ∪ D̂i−1|D′i = D).

Therefore,

P(∃H ∈ H : H ⊂ D0 ∪ D̂i) =
∑
D∈D

P(D′i = D) · P(∃H ∈ H : H ⊂ D0 ∪ D̂i|D′i = D)

≥
∑
D∈D

P(D′i = D) · P(∃H ∈ H : H ⊂ D0 ∪ D̂i−1|D′i = D)

= P(∃H ∈ H : H ⊂ D0 ∪ D̂i−1).

3.4 Splitting sets with the local lemma

We will prove Lemma 3.2 with a standard application of the following version of the Local Lemma, due
to Lovász (see [19, Theorem 1.1]), where the dependence graph of a set of events A1, . . . , An is the graph
with vertex set {A1, . . . , An} and an edge between Ai and Aj , i, j ∈ [n] and i 6= j, exactly when the events
Ai and Aj are not independent.

Theorem 3.7. Let A1, . . . , An be events in a probability space Ω with dependence graph G. Suppose there
exist 0 < q1, . . . , qn < 1 such that, for each i ∈ [n],

P(Ai) ≤ qi
∏

j:AiAj∈E(G)

(1− qj).

Then, with strictly positive probability, no such event Ai occurs.

We will also use the following well-known Chernoff bound (see, for example, [5, Corollary 2.3]).

Lemma 3.8. If X is a binomial variable with standard parameters n and p, denoted X = Bin(n, p), and
ε satisfies 0 < ε ≤ 3/2, then P(|X − EX| ≥ εEX) ≤ 2 exp

(
−ε2EX/3

)
.

Proof of Lemma 3.2. Let p = 1/5 and n ≥ 103. Let D be a pseudorandom digraph with vertex set [n] and
exceptional set X ⊂ V (D) which satisfies |X| ≤ n3/4. Take a partition V (D) \X = U0 ∪ U1 ∪ U2 so that
each v ∈ V (D) \X appears independently in U0, U1 and U2 with probability 1− 2p, p and p, respectively.
For each v ∈ [n], let Ev be the event that, for some i ∈ [2] and � ∈ {+,−}, we have d�(v, Ui) < log n/5000.
Let E0 be the event that either |U1| > n/4 or |U2| > n/4.

If E0 does not hold, then, using that |X| ≤ n3/4 ≤ n/4, take a partition V (D) \ X = V0 ∪ V1 ∪ V2

such that U1 ⊂ V1, U2 ⊂ V2, and |V1| = |V2| = bn/4c. If E0 does hold then let Vi = Ui for each i ∈ [3].
Note that, if E0 does not hold, and no Ev, v ∈ [n], holds, then V0 ∪ V1 ∪ V2 satisfies the requirements in
the lemma. Therefore, it is sufficient to show that there is some n0 such that, whenever n ≥ n0, no such
event holds with positive probability.
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Let ∆ = 100 log n, so that, by A1 in the definition of pseudorandomness, ∆±(D) ≤ ∆. Note that,
for each v ∈ [n], each event Ev has some dependence on only E0 and the events Eu, u ∈ Yv := {u ∈
[n] : (N+(u) ∪ N−(u)) ∩ (N+(v) ∪ N−(v)) 6= ∅}, and, furthermore, that |Yv| ≤ 4∆2. Let q0 = 1/2 and
q = exp(−

√
log n). Thus, the lemma follows from the following claim and Theorem 3.7 applied with q0,

and qv = q for each v ∈ [n].

Claim 2. There is some n0 such that, if n ≥ n0, then P(E0) ≤ q0(1 − q)n, and, for each v ∈ [n],

P(Ev) ≤ q(1− q0)(1− q)4∆2

.

Proof of Claim 2. First, take an arbitrary v ∈ [n]. By A2 we have d±(v, V (D) \ X) ≥ log n/500.
For each i ∈ [2], then, E|N±(v) ∩ Ui| ≥ log n/2500. Therefore, by Lemma 3.8 with ε = 1/2, we have
P(Ev) = exp(−Ω(log n)). Noting further that ∆2q = o(1), we have

P(Ev) = exp(−Ω(log n)) = o(q) = o(q(1− 4∆2q)) = o(q(1− q0)(1− q)4∆2

).

Thus, for sufficiently large n, P(Ev) ≤ q(1− q0)(1− q)4∆2

.
Now, as |[n] \ X| ≥ n − n3/4 ≥ 3n/4, we have n/10 ≤ E|Ui| ≤ n/5 for each i ∈ [2]. Thus, by

Lemma 3.8 with ε = 1/100, we have P(E0) = exp(−Ω(n)). Therefore, for sufficiently large n, q0(1− q)n ≥
exp(−2qn)/2 = exp(−o(n)) ≥ P(E0), as required.

3.5 Expansion with very high probability

In this section, we show how to get an expansion property in some subgraph of a random graph with very
high probability, which we then use in Section 3.6 to prove Lemma 3.4. We start with the following simple
proposition concerning the neighbourhoods of large sets in a random graph.

Proposition 3.9. For each fixed c > 0, if p = c log n/n, then, with probability 1 − exp(−ω(n)), the
following hold in G = G(n, p).

E1 Every set U ⊂ V (G) with |U | = n log[3] n/2 log n satisfies |N(U)| ≥ 9n/10.

E2 Every disjoint pair A,B ⊂ V (G) of subsets of size at least n/ log2/5 n have some edge between them.

Proof. Given any disjoint subsets U,U ′ ⊂ V (G) with |U | = n log[3] n/2 log n and |U ′| ≥ n/100, the
probability there are no edges between U and U ′ in G is

(1− p)|U ||U
′| = exp(−Ω(pn2 log[3] n/ log n)) = exp(−Ω(n log[3] n)).

Therefore, as there are at most 22n such pairs U,U ′ ⊂ V (G), there are no such pairs with no edges between

them with probability at least 1 − 4n · exp(−Ω(n log[3] n)) = 1 − exp(−ω(n)). If such a property holds,

then, for any U ⊂ V (G) with |U | = n log[3] n/2 log n, we have |V (G) \ (N(U) ∪ U)| < n/100, and hence

|N(U)| ≥ n− n/100− |U | ≥ 9n/10.

Thus, E1 holds with probability 1− exp(−ω(n)).

Now, given disjoint subsets A,B ⊂ V (G) with size at least n/ log2/5 n, the probability there is no edge
between them is

(1− p)|A||B| = exp(−Ω(pn2/ log4/5 n) = exp(−Ω(n log1/5 n)).

Therefore, as there are at most 22n such pairs A,B ⊂ V (G), there are no such pairs with no edges between

them with probability at least 1 − 4n · exp(−Ω(n log1/5 n)) = 1 − exp(−ω(n)). That is, with probability
1− exp(−ω(n)), E2 holds.

Using E1 from Proposition 3.9, we now find in a random graph a subgraph with almost the same
vertex set and a good expansion property, by removing a maximal set B without this expansion property.
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Lemma 3.10. Let c > 0, p = c log n/n, d = log1/3 n and m = n/100d. Let V0 ⊂ [n] be a set of at least
n/4 vertices and G = G(n, p).

Then, with probability 1− exp(−ω(n)), there is a set B ⊂ [n] with 1 ≤ |B| ≤ n log[3] n/ log n such that,
for each U ⊂ V (G) \B with |U | ≤ 2m, we have |N(U, V0 \B)| ≥ d|U |.

Proof. By Proposition 3.9, we have that E1 holds in G with probability 1− exp(−ω(n)). Let B ⊂ V (G)
be a largest set satisfying |B| ≤ 3m such that |N(B, V0)| ≤ 2d|B|, noting that the empty set demonstrates
that such a set B exists. Note that, if B = ∅, then taking an arbitrary set B′ ⊂ V (G) with |B′| = 1, we
have, for each U ⊂ V (G) \ B′ with 1 ≤ |U | ≤ 2m, that |N(U, V0 \ B′)| ≥ 2d|U | − 1 ≥ d|U |. Therefore,
we can assume that |B| ≥ 1. We will now show that B satisfies the property in the lemma, starting with

showing that, in fact, |B| < n log[3] n/2 log n ≤ m.
As |B| ≤ 3m and |N(B, V0)| ≤ 2d|B| ≤ 6dm = 6n/100, we have

|N(B)| ≤ |V (G) \ V0|+ |N(B, V0)| ≤ 3n/4 + 6n/100 < 9n/10.

Thus, by E1, we have |B| < n log[3] n/2 log n ≤ m.
Now, let U ⊂ V (G) \B with |U | ≤ 2m and U 6= ∅. As |B ∪ U | ≤ 3m, by the choice of B we have that

|N(B ∪ U, V0)| > 2d|B ∪ U |. Then,

|N(U, V0 \B)| ≥ |N(B ∪ U, V0)| − |N(B, V0)| > 2d|B ∪ U | − 2d|B| = 2d|U | ≥ d|U |,

as required.

3.6 Expansion into connection

To connect pairs of vertices efficiently with paths using expansion properties we will use the extendability
techniques of Glebov, Krivelevich and Johannson [11]. These methods flexibly embed bounded-degree
trees in larger graphs using certain expansion conditions, though we will only use them to find paths
with specified lengths between specified vertex pairs. (More generally, see [16, Section 3.1] for a practical
overview of the use of the (d,m)-extendability methods and [17] for a directed generalisation for finding
consistently oriented paths.)

We first recall the key definition of (d,m)-extendability, using the following inclusive neighbourhood
N ′(U) of a vertex set U .

Definition 3.11. For each U ⊂ V (G), let N ′(U) = {u ∈ V (G) : ∃v ∈ U s.t. vu ∈ E(G)} = ∪u∈UN(u).

Definition 3.12. Let d ≥ 3 and m ≥ 1, let G be a graph, and let S ⊂ G be a subgraph of G. We say
that S is (d,m)-extendable in G if S has maximum degree at most d and, for all sets U ⊂ V (G) with
|U | ≤ 2m,

|N ′(U) \ V (S)| ≥ (d− 1)|U | −
∑

x∈U∩V (S)

(dS(x)− 1). (4)

Given two vertices in an extendable subgraph, we can add a path with a specified length between them
(subject to certain simple conditions) to, crucially, get a subgraph which is still extendable. This allows
a sequence of paths to be added while remaining extendable. This is possible using the following lemma.

Lemma 3.13. [16, Corollary 3.12] Let d,m, ` ∈ N satisfy m ≥ 1 and d ≥ 3. Let k = dlog(2m)/ log(d−1)e
and ` ≥ 2k + 1. Let G be a graph in which any two disjoint sets of size m have some edge between them.
Let S be a (d,m)-extendable subgraph of G with at most |G| − 10dm− (`− 2k − 1) vertices.

Suppose a and b are two distinct vertices in S, both with degree at most d/2 in S. Then, there is an
a,b-path P in G, with length ` and internal vertices outside of S, so that S +P is (d,m)-extendable in G.

We can now prove Lemma 3.4.

Proof of Lemma 3.4. As in the statement of the lemma, let V0 ⊂ [n] satisfy |V0| ≥ n/4 and let p =

log n/104n. Furthermore, let d = log1/3 n and m = n/100d. By Lemma 3.10 with c = 10−4, with
probability 1− exp(−ω(n)), G = G(n, p) contains a set B ⊂ [n] such that the following holds.
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F1 1 ≤ |B| ≤ n log[3] n/ log n and, for any set U ⊂ V (G) \B with |U | ≤ 2m, |NG(U, V0 \B)| ≥ d|U |.

By Proposition 3.9 with c = 10−4, with probability 1− exp(−ω(n)), the following holds.

F2 Any two disjoint sets U,U ′ ⊂ V (G) of size at least m have some edge between them in G.

Therefore, there is some n0 such that, for each n ≥ n0, with probability at least 1−exp(−2n), G = G(n, p)
contains a set B such that F1 and F2 hold, and we can assume that d ≥ 12.

We will now show that G and B have the property in the lemma. Note that, from F1, we have the
required bounds on |B|. Let then k ≥ 1 and take any integers `i ≥ 10 log n/ log[2] n, i ∈ [k], such that∑
i∈[k] `i ≤ n/8, and distinct vertices x1, . . . , xk, y1, . . . , yk ∈ V (G) \ (V0 ∪ B). Let S0 be the graph with

vertex set V (G) \ (V0 ∪B) and no edges, and let G′ = G−B. We will show that S0 is (d,m)-extendable
in G′. First note that S0 ⊂ G′, and ∆(S0) = 0. For each U ⊂ V (G′) with |U | ≤ 2m, we have

|N ′G′(U) \ V (S0)| ≥ |NG(U, V0 \B)|
F1
≥ d|U | ≥ (d− 1)|U | −

∑
x∈U∩V (S0)

(dS0
(x)− 1),

as required. Thus, S0 is (d,m)-extendable in G′.
Now, for each i = 1, . . . , k in turn, we can apply Lemma 3.13 to find a path Pi, such that

G1 Pi is an xi, yi-path in G′ with length `i and interior vertices in V (G′) \ (∪i−1
j=1V (Pj)), and

G2 Si := S0 + P1 + . . .+ Pi is (d,m)-extendable in G′.

Indeed, suppose that we seek the path Pi for some i ∈ [k]. Then, Si−1 = S0 + P1 + . . . + Pi−1 is
(d,m)-extendable in G′ by G2 for i− 1 if i > 1, or as S0 is (d,m)-extendable in G′. Now, note that

|Si| ≤ |V (G′) \ V0|+
i−1∑
j=1

`j ≤ |G′| − |V0 \B| − `i +
∑
j∈[k]

`j

≤ |G′| − n

4
+ |B| − `i +

∑
j∈[k]

`j ≤ |G′| −
n

8
+ |B| − `i ≤ |G′| − 10dm− `i.

Furthermore, `i ≥ 10 log n/ log[2] n ≥ 2dlog(2m)/ log(d−1)e+1. Finally, note that, as x1, . . . , xk, y1, . . . , yk
are distinct, by G1, xi and yi have degree 0 ≤ d/2 in Si−1. Therefore, by Lemma 3.13 and F2, there is
an xi, yi-path Pi with length `i and interior vertices in V (G′) \ V (Si−1) = V0 \ (B ∪ (∪j<iV (Pj))) and
such that Si := Si−1 + Pi is (d,m)-extendable. Thus, G1 and G2 are satisfied for i.

Suppose then we have paths Pi, i ∈ [k], satisfying G1 and G2. By G1, for each i ∈ [k], Pi is an
xi, yi-path with length `i, and the paths Pi, i ∈ [k], are internally vertex-disjoint. Furthermore, for each
i ∈ [k], the internal vertices of Pi are in V (G′) \ V (Si−1) ⊂ V (G′) \ V (S0) = V0 \B.

Let V1 = V0 \ (B ∪ (∪j∈[k]V (Pj))) = V0 \ (B ∪ V (Sk)). To show that the paths Pi, i ∈ [k], have the
property in the lemma, it is left only to show that, for any A ⊂ V (G) \ B with V1 ⊂ A and A ∩ B = ∅,
G[A] is a 10-expander. Take then such a set A, and let H := G[A] ⊂ G′.

For each U ⊂ V (H) with 0 < |U | ≤ m, by G2 for i = k, as U ⊂ V (H) ⊂ V (G′) and V (Sk) =
(V (G) \ (V0 ∪B)) ∪ (∪j∈[k]V (Pj)) = V (G′) \ V1, we have

|NH(U)| ≥ |N ′H(U)| − |U | = |N ′G′(U) ∩A| − |U | ≥ |N ′G′(U, V1)| − |U | = |N ′G′(U) \ V (Sk)| − |U |
≥ (d− 1)|U | − |U | ≥ (d− 2)|U | ≥ 10|U |. (5)

For each U ⊂ V (H) with m < |U | ≤ |H|/20, by F2 we have that |V (H) \ (U ∪NH(U))| ≤ m. Therefore,
using that |U | ≤ |H|/20, we have

|NH(U)| ≥ |H| − |U | −m ≥ |H| − 2|U | ≥ 10|U |,

so that |NH(U)| ≥ 10|U | for each U ⊂ V (H) with |U | ≤ |H|/20. Finally, by (5), any connected component
of H must contain more than m vertices. Therefore, by F2, H has 1 connected component. Thus, H is
connected, and hence an 10-expander, as required.
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3.7 Covering vertices with a path

We now prove Lemma 3.5. In a pseudorandom digraph D, this allows us to use sections of the cycle C
to cover the exceptional set X as well as a further set B of vertices corresponding to the set B found in
Lemma 3.4. To prove Lemma 3.5, we identify for some r a sequence B0 ⊂ B1 ⊂ B2 ⊂ . . . ⊂ Br = B of
subsets of B, such that, roughly speaking, the later a vertex first appears in a set in the sequence, the
harder it is to cover with paths in D. We then embed paths covering X while using vertices from B,
before, iteratively, for each i from r− 1 to 1, covering the unused vertices from B \Bi while using unused
vertices in Bi if necessary. This ensures that we cover vertices which are more difficult to cover first.

Proof of Lemma 3.5. Following the lemma statement, let D be an n-vertex pseudorandom graph with
exceptional set X, let B−, B+, A+, A− ⊂ V (D) \ X be disjoint, such that X, B+ and B− each have

size at most n log[3] n/ log n, and such that, for each v ∈ V (D) and � ∈ {+,−}, we have d�(v,B� ∪
A�) ≥ log n/5000. Let B = B+ ∪ B− and let Pi, i ∈ [k], be vertex-disjoint oriented paths with length
2d4 log n/ log log ne, where k = |X ∪B| and, for each i ∈ [k], xi is the midpoint of Pi. Let f : X ∪B → [k]
be a bijection.

Let d = log n/104 and let B+
0 = B−0 = ∅. Iteratively, for each integer i ≥ 1 and � ∈ {+,−}, let

B�i = {v ∈ B� : d+(v,B+
i−1 ∪A

+) ≥ d and d−(v,B−i−1 ∪A
−) ≥ d}. (6)

This gives a sequence B+
0 ⊂ B

+
1 ⊂ . . . of subsets of B+ and a sequence B−0 ⊂ B

−
1 ⊂ . . . of subsets of B−.

For each i ≥ 0, let Bi = B+
i ∪B

−
i . We will show the following claim.

Claim 3. For each i ≥ 0, |B \Bi| ≤ |B|/(log n)i/3.

Proof. Note that this is true for i = 0. We will prove this by induction on i, so suppose that i > 0
and that it is true for i − 1. For each � ∈ {+,−}, let Z�i be the set of vertices v ∈ B such that
d�(v,B�i−1 ∪ A�) < d. Observe that, by (6), Z+

i ∪ Z
−
i = B \Bi. Furthermore, for each � ∈ {+,−}, every

vertex v ∈ Z�i has d�(B� ∪ A�) ≥ log n/5000 = 2d but d�(B�i−1 ∪ A�) < d. Therefore, for each v ∈ Z�i ,

we have d�(v,B� \ B�i−1) > d ≥ (log n)2/3. Therefore, by A3 in the definition of pseudorandomness, as

|Z�i | ≤ |B| ≤ 2n log[3] n/ log n, we have |B� \B�i−1| ≥ |Z�i |(log n)1/3. Therefore,

|B \Bi| = |Z+
i ∪ Z

−
i | ≤ |Z

+
i |+ |Z

−
i | ≤ (|B+ \B+

i−1|+ |B
− \B−i−1|)/(log n)1/3

= |B \Bi−1|/(log n)1/3 ≤ |B|/(log n)i/3.

This completes the inductive step, and hence the proof of the claim.

By Claim 3, if i ≥ 3(log n/ log log n)+1, then B \Bi = ∅. Let then r ≤ 4 log n/ log log n be the smallest
integer such that B \Br = ∅, and note that B+

r = B+ and B−r = B−. For each � ∈ {+,−}, let H� be the
bipartite auxiliary (undirected) graph with vertex classes a copy of X ∪B and a disjoint copy of B� ∪A�,
with an edge xy between x ∈ X ∪B and y ∈ B� ∪A� if, for some i ∈ {0, 1, . . . , r}, x ∈ X ∪ (B \B�i ) and
y ∈ B�i ∪A�, and y ∈ N�D(x).

Claim 4. For each � ∈ {+,−} and U ⊂ X ∪B, we have |NH�(U)| ≥ 2|U |.

Proof of Claim 4. Let � ∈ {+,−} and U ⊂ X ∪ B. Suppose x ∈ U . If x ∈ U ∩X, then, as B�r = B�, for
each y ∈ (B� ∪A�) ∩N�D(x), xy ∈ E(H�). Thus, we have dH�(x) ≥ log n/5000 > d.

On the other hand, if x ∈ U ∩ B, then let i be the smallest i ∈ [r] with x ∈ B+
i ∪ B

−
i . Then, by the

choice of B+
i and B−i , we have d�D(x,B�i−1 ∪A�) ≥ d. Thus, we have dH�(x) ≥ d.

Therefore, dH�(x) ≥ d for each x ∈ U . Let V = NH�(U), and let U ′ and V ′ be the vertex sets in D
which correspond to U and V . We have that d�D(x, V ′) ≥ d for each x ∈ U ′, and therefore, by A3, as

|U | ≤ |X ∪B| ≤ 3n log[3] n/ log n, we have that

|NH�(U)| = |V | = |V ′| ≥ |U ′|(log n)1/3 ≥ 2|U ′| = 2|U |,

as required.
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Therefore, for each � ∈ {+,−}, the appropriate Hall’s matching criterion holds by Claim 4 to show
that there exist functions g�1 , g

�
2 : X ∪B → B�∪A� so that vgi(v) ∈ E(H�) for each v ∈ X ∪B and i ∈ [2],

and g�1(v), g�2(v), v ∈ X ∪B, are all distinct vertices in B� ∪A�.
For each v ∈ X ∪B we now find a path Qv covering v, in which f(x) is copied to x and then, moving

in either direction on Qv, the vertices appear earlier and earlier in the sequence A+∪A−∪B0, B1, . . . , Br.
To do this, for each v ∈ X ∪B, let Qv ⊂ D be a longest path satisfying the following properties.

H1 Qv is a copy of a portion of Pf(v) containing xf(v) in which xf(v) is copied to v.

H2 Each interior vertex of Qv is in X ∪B, and the endvertices of Qv are in X ∪B ∪A+ ∪A−.

H3 For each u ∈ V (Qv) and � ∈ {+,−}, if w is a �-neighbour of u in Qv which lies further from v than
u on the underlying undirected path of Qv (if such a w exists), then w ∈ {g�1(u), g�2(u)}.

Note that the path Qv consisting solely of the vertex v satisfies these conditions, so such a path Qv does
exist.

We now pick a subcollection of these paths which are disjoint. To do this, iteratively, for each i =
r, . . . , 1, let

B̄i = {v ∈ Bi \Bi−1 : v /∈ V (Qu) for each u ∈ X ∪ B̄r ∪ B̄r−1 ∪ . . . ∪ B̄i+1}.

Let B̄ = B̄r ∪ . . . ∪ B̄1. We will show that the paths Qv, v ∈ X ∪ B̄, satisfy the conditions in the lemma.
That is, that they are vertex-disjoint and satisfy B1–B2.

Note first that, by the choice of B̄, the paths Qv, v ∈ X ∪ B̄, contain every vertex in X ∪B, and thus
B2 holds. As H1 holds, to show that B1 holds it is sufficient to show that, for each v ∈ X ∪ B, the
endvertices of Qv are in A+ ∪A−. Therefore, to complete the proof of the lemma we need only show the
following two claims.

Claim 5. For each v ∈ X ∪B, the endvertices of Qv are in A+ ∪A−.

Claim 6. The paths Qv, v ∈ X ∪ B̄, are vertex-disjoint.

Before proving these claims, we will deduce two properties, I1 and I2 that we require. For each vertex
v ∈ X∪B, let iv be the largest integer i ∈ {0, 1, . . . , r} such that v ∈ X∪(B \Bi). Note that, if v ∈ X∪B,
� ∈ {+,−}, and x, y ∈ V (Qv), and x is closer to v on Qv than y (and possibly even x = v) and y is a
�-neighbour of x on Qv, then, by H3, y ∈ {g�1(x), g�2(x)}, so that xy ∈ E(H�). Thus, by the definition of
H�, if, in addition, x, y ∈ X ∪B, then iy < ix. Thus, we have the following two properties.

I1 If v ∈ X ∪B, and x, y ∈ (X ∪B)∩ V (Qv), are such that x is closer to v on Qv than y, then iy < ix.

I2 If v ∈ X ∪B, and x ∈ (X ∪B)∩ V (Qv), then any vertex on Qv in {g+
1 (x), g+

2 (x), g−1 (x), g−2 (x)} is a
neighbour of x on Qv which is further than v from x on Qv, and every such neighbour must be in
{g+

1 (x), g+
2 (x), g−1 (x), g−2 (x)}.

We now prove Claim 5 and 6.

Proof of Claim 5. Suppose, to the contrary, that there is some v ∈ X∪B such that Qv has some endvertex,
w say, which is not in A+ ∪A−. Let P ′f(v) ⊂ Pf(v) be the subpath of Pf(v) of which Qv is a copy, and let

its endvertex of which w is a copy be w′. Note that, by I1, there are at most r− 1 vertices between v and
w on Qv. Thus, we can pick x′ ∈ V (Pf(v)) \ V (P ′f(v)) and � ∈ {+,−} be such that x′ is a �-neighbour of

w on Pf(v). By I2, Qv contains at most one vertex in {g+
1 (w), g+

2 (w), g−1 (w), g−2 (w)} ⊂ B ∪A+ ∪A− (and
no such vertex if w 6= v). Therefore, we can pick x ∈ {g�1(w), g�2(w)} \ V (Qv). Noting that Q′v = Qv +wx
satisfies H1–H3 in place of Qv contradicts the maximality of Qv.

Proof of Claim 6. Suppose, to the contrary, that there are distinct u, v ∈ X ∪ B̄, and a vertex x ∈
V (Qu) ∩ V (Qv). Assume further that x is as close to u as possible on Qu subject to x ∈ V (Qu) ∩ V (Qv).

Suppose first that u 6= x and v 6= x. By I2, there is some xu ∈ V (Qu) which is closer to x on
Qu than x is and for which x ∈ {g+

1 (xu), g+
2 (xu), g−1 (xu), g−2 (xu)}. Similarly, there is some xv ∈ V (Qv)

which is closer to v on Qv than x is and for which x ∈ {g+
1 (xv), g

+
2 (xv), g

−
1 (xv), g

−
2 (xv)}. As the sets
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{g+
1 (w), g+

2 (w), g−1 (w), g−2 (w)}, w ∈ X ∪ B, are disjoint, we have xv = xu, contradicting the assumption
on x.

Therefore, by swapping the labels of u and v if necessary, we can assume, as u and v are distinct that
u = x and v 6= x. By the choice of B̄iu , as u, v ∈ B̄ and u ∈ V (Qv), we must have that iv ≤ iu. However,
by I1, as v is closer to v on Qv than u ∈ V (Qv) \ {v} is, we have iu < iv, a contradiction. This completes
the proof of the claim, and hence the lemma. .

3.8 Pósa rotation and extension

We will now prove Lemma 3.6, using a standard implementation of Pósa’s rotation-extension technique
with edge sprinkling to find a Hamilton cycle (see, for example, [5]). We include the proof to record the
very high probability of success that we need, as well as to show that a Hamilton cycle can be found
including any fixed edge e, to then have a Hamilton path between the vertices of e. We begin by defining
an e-booster, and a rotation.

Definition 3.14. For a graph G and edges e, f ∈ V (G)(2), f is an e-booster for G if either G+ e+ f has
a longer path containing e than G+ e does, or G+ e+ f contains a Hamilton cycle through e.

Definition 3.15. Let a path Q in a graph G be Q = u0u1 . . . u`. Let e ∈ E(Q) and 0 ≤ i ≤ ` − 1 with
uiui+1 6= e. Then, we rotate Q in G with u0 and e fixed using u`ui to get the path (Q− uiui+1) + u`ui.

Note that this is a u0, ui+1-path containing e with the same vertex set as Q.

We now show that a 10-expander has many boosters.

Lemma 3.16. Let n ≥ 3. If an n-vertex graph G is a 10-expander, and e ∈ V (G)(2), then G has at least
n2/104 e-boosters.

Proof. Note that, by Definition 3.14, we can assume that e ∈ E(G). Let P be a maximal path in G
containing e, and V = V (P ). Let E be the set of pairs ab for which there is an a, b-path, Pab say, in G
containing e with vertex set V . Note that each ab ∈ E is an e-booster for G. Indeed, Pab + ab is a cycle
in G with vertex set V which contains e. If V = V (G), then Pab + ab is a Hamilton cycle containing e. If
V 6= V (G), then, as G is a 10-expander, and hence connected, there exists some x ∈ V (G) \ V and y ∈ V
with xy ∈ E(G). Let e′ be an edge of Pab + ab containing y which is not e. Then, Pab + ab+ xy − e′ is a
path containing e with length greater than P in G+ ab. Thus, in both cases, ab is an e-booster for G.

Suppose then, for contradiction, that |E| ≤ n2/104. As the pair of endvertices of P is in E, E 6= ∅,
so there is some vertex u in a pair in E. If u is in more than n/50 such pairs, then there are at least
n/50 vertices in some pair in E. Therefore, by averaging if necessary, there is some u0 ∈ V such that
1 ≤ |{v ∈ V : u0v ∈ E}| ≤ n/50. Let Q be a path in G with vertex set V which contains e and has u0 as
an endvertex. Let V0 ⊂ V be the set of vertices v ∈ V \ {u0} such that a u0, v-path with vertex set V can
be reached by iteratively rotating Q in G with u0 and e fixed. Note that |V0| ≤ |{v : u0v ∈ E}| ≤ n/50.

For each v ∈ V0, let Qv be a u0, v-path with vertex set V which can be reached by iteratively rotating
Q with u0 and e fixed. For each v ∈ V0, as Qv is a maximal path in G, we have N(v) ⊂ V (Qv) = V , and
thus N(V0) ⊂ V .

Let ` be the length of Q and label Q as u0u1 · · ·u`. Note that, for each i ∈ [`−1], if ui−1, ui, ui+1 /∈ V0

then in any sequence of rotations fixing e and u0 we always preserve the subpath ui−1uiui+1 (in either
order), and therefore we never rotate using an edge containing ui. Thus, for each i ∈ [` − 1], if v ∈ V0

and uiv ∈ E(G), then we must have one of ui−1 ∈ V0, ui ∈ V0, ui+1 ∈ V0, ui−1ui = e or uiui+1 = e.
There can be at most 3|V0|+ 2 values of i for each v, and hence |NG(V0)| ≤ 3|V0|+ 2 < 10|V0|. As G is a
10-expander, |V0| > n/20, contradicting that |V0| ≤ n/50.

We use the following standard form of Azuma’s inequality for a sub-martingale (see, for example [2],
for an exposition of martingales and Azuma’s inequality).

Theorem 3.17 (Azuma’s inequality). If X0, X1, . . . , Xn is a sub-martingale, and |Xi − Xi−1| ≤ ci for

each 1 ≤ i ≤ n, then, for each t > 0, P(Xn −X0 ≤ −t) ≤ exp
(

−t2
2
∑n

i=1 c
2
i

)
.

We now prove Lemma 3.6.
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Proof of Lemma 3.6. As in the lemma statement, let G0 be a 10-expander with vertex set [n] and let
x, y ∈ V (G0) be distinct. Let p = log n/105n and G1 = G(n, p). We will show that, with probability
1− exp(−ω(n)), G0 ∪G1 contains a Hamilton x, y-path, and thus the lemma follows.

Let m = E(G1) and, uniformly at random, label E(G1) = {e1, . . . , em}. Let m0 = log n/106. By a
simple application of Lemma 3.8, we have

P(m ≥ m0) = 1− exp(−ω(n)). (7)

We will show that, letting E be the event that G0 ∪G1 contains an x, y-Hamilton cycle, we have

P(E|m = m0) = 1− exp(−ω(n)). (8)

As P(E|m = m̄) ≥ P(E|m = m0) for each m̄ ≥ m0, we will then have

P(E) =

(n
2)∑

m̄=0

P(m = m̄) · P(E|m = m̄) ≥
(n
2)∑

m̄=m0

P(m = m̄) · P(E|m = m0)

≥ P(m ≥ m0) · P(E|m = m0)
(7),(8)

= 1− exp(−ω(n)),

as required.
It is left then to prove (8). Let H0 = G0, and, for each 1 ≤ i ≤ m0, let Hi = Hi−1 + ei and let Xi

be 1 if ei is an xy-booster for Hi−1, and 0 otherwise. For each i ∈ [m0], as Hi−1 contains H0 it is always
a 10-expander. Hence, by Lemma 3.16, the set of xy-boosters for Hi−1 always has size at least n2/104.
Therefore, the probability that Xi = 1, conditioned on any possible values of H1, . . . ,Hi−1 is at least
(n2/104− i)/

(
n
2

)
≥ 1/105. For each 0 ≤ i ≤ m0, let Yi =

∑i
j=1(Xj−1/105), and note that Y0, Y1, . . . , Ym0

is a sub-martingale with |Yi − Yi−1| ≤ 1 for each i ∈ [m0]
Thus, by Theorem 3.17,

P(Ym0 < −m0/106) = exp(−Ω(m0)) = exp(−ω(n)).

Note that, if Ym0
≥ −m0/106, then

∑m0

i=0Xi ≥ 9m0/106 = ω(n). Furthermore, if
∑m0

i=0Xi ≥ n, then
at least n xy-boosters are added somewhere in the sequence H1, . . . ,Hm0

, and hence Hm0
contains a

Hamilton cycle containing xy, and thus a Hamilton x, y-path. Therefore, (8) holds, and the proof is
complete.

4 Proof of Theorem 2.4

We will prove Theorem 2.4 from Theorem 2.3 in Section 4.3, and then deduce Theorems 1.1 and 1.3 in
Sections 4.4 and 4.5. We start in Section 4.1 by proving some properties of the random digraph process
that we require, before selecting the vertices from the cycle to be embedded in Section 4.2.

4.1 Properties of the random digraph process

In the n-vertex random digraph process D0, D1, . . . , Dn(n−1), we focus on four particular digraphs, Di0 ,
Di1 , Di2 and Di3 , where

i0 =
9n log n

20
, i1 =

n log n

2
− n log log n, i2 =

3n log n

4
and i3 = n log n+ 2n log log n. (9)

We will prove that the properties J1–J12 typically hold for these digraphs, in Lemmas 4.2 and 4.3, where,
for convenience, we use the random digraphs K0,K1,K2 and K3. The digraphs we need to consider for
Theorem 2.4 will lie between Di1 and Di3 . That is, Di1 has, with high probability, some vertex v with
d+(v) + d−(v) ≤ 1 (see J10), and Di3 has, with high probability, minimum in- and out-degree at least
2 (see J12). We use Di0 as a point in the random digraph process by which most vertices do not have
low in- or out-degree, and Di2 as a point by which the low degree vertices are likely to be few enough
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that they are well-spaced in the digraph. In what follows, we consider ‘low degree’ to be degree at most
log n/300.

After adding i0 edges in the random digraph process, giving the digraph Di0 , it will typically already
be clear that most of the vertices in each Di, i1 ≤ i ≤ i3, will not have low in- or out-degree. We collect
the vertices for which this is not yet guaranteed into the set S0 (see (10)), which is likely to have size at
most n2/3 (see J1). To determine the vertices of low in- and out-degree of each Di, i1 ≤ i ≤ i3, we only
need to consider the edges in E(Di) \ E(Di0) with at least one vertex in S0 – say the set of these edges
is Ei. Conditioning on E(Di0) and Ei, let mi = |E(Di0) ∪ Ei|. Observe that, with this conditioning,
E(Di) \ (E(Di0) ∪ Ei) is distributed as i −mi edges chosen uniformly at random from the non-edges in
E(Di0) with no vertex in S0. As S0 is a sublinear set of vertices, when i ≥ i1, we are likely to have
that i −mi = Ω(log n) (see J2). These i −mi edges will provide the random digraph which we use (in
a modified form) to apply Theorem 2.3. The pseudorandom digraph in this application will (suitably
modified) be the digraph Di with the addition of any edge from E(Di) \ E(Di0) with at least one vertex
in S0. As a technique, conditioning on (events including) S0 in this way comes from work of Krivelevich,
Lubetzky and Sudakov [14] in their study of the Hamiltonicity of the k-core.

We use i2 as an arbitrary midpoint in the interval [i1, i3] by which the relevant structure of the random
digraph will have changed. In Di1 , we expect to have plenty of vertices with out-degree 0 or with in-degree
0, and some vertices with out- and in-degree both 1. Our methods are complicated by the likely existence
of edges (and short paths) between the vertices with low in- or out-degree (we give a likely upper-bound
for such paths in J3). We deal with this by showing that, for i1 ≤ i ≤ i2, Di will likely have sufficiently
many vertices with in-degree 0 (see J11) that any cycle we embed into Di has enough changes of direction
to cover not only the vertices of in-degree 0 or out-degree 0, but also any vertices in edges and short paths
between vertices with low in- or out-degree. Helpfully, there are typically never any edges or short paths
between vertices with both low in- and out-degree (see J6), or any short cycles containing a vertex of low
in- or low out-degree (see J4).

When enough edges are added to reach Di2 , the set of low in- or out-degree vertices will have decreased
in size enough that there are likely to be no edges or very short paths between these vertices, even after
more edges are added to reach Di3 (see J5). This means that low in- and out-degree vertices are sufficiently
far apart in Di, i2 ≤ i ≤ i3, that we can assign them neighbours without worrying about conflicts.

In addition to the properties mentioned above, we prove properties J7–J9 are likely to hold, which we
will use to help show pseudorandom properties of a modified subgraph of Di, for each i1 ≤ i ≤ i3. We
start with the following useful proposition.

Proposition 4.1. There is some n0 such that the following holds for each n ≥ n0. Letting d = log n/300,
for each k ≤ n1/2 and p with log n/4n ≤ p ≤ 2 log n/n, we have

d∑
i=0

(
n

i

)
pi(1− p)n−k ≤ exp

(
−pn+

1

30
log n

)
.

Proof. As 100 < enp/d ≤ 600e, we have

d∑
i=0

(
n

i

)
pi(1− p)n−k ≤

d∑
i=0

(enp
i

)i
(1− p)n−k ≤ (d+ 1)

(enp
d

)d
e−p(n−k)

≤ (700e)
d
e−p(n−k) ≤ exp(−pn+ pk + d log(700e)) ≤ exp(−pn+ (log n)/30),

where the last line of inequalities hold for sufficiently large n as pk ≤ 2n−1/2 log n and log(700e) < 8.

We now prove that properties J1–J9 are likely to hold, as follows.

Lemma 4.2. Let (K0,K1,K2,K3) be drawn uniformly at random from the set of such tuples such that,
for each j ∈ {0, 1, 2, 3}, Kj is a digraph with vertex set [n] and ij edges (as set in (9)), and K0 ⊂ K1 ⊂
K2 ⊂ K3. Let d = log n/300, and, for each j ∈ {0, 1, 2, 3}, let

Sj = {v ∈ [n] : d+
Kj

(v) ≤ d or d−Kj
(v) ≤ d}. (10)
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Let
T = {v ∈ [n] : d+

K1
(v) ≤ d and d−K1

(v) ≤ d}.

Then, with high probability, the following hold.

J1 |S0| ≤ n2/3.

J2 E(K3) \ E(K0) contains at most n edges with some vertex in S0.

J3 The number of paths in K3 between vertices in S1 with length at most 4 is at most n1/6.

J4 There are no cycles in K3 with length at most 3 containing a vertex in S1.

J5 K3[S2 ∪N+
K3

(S2) ∪N−K3
(S2)] is the disjoint union of |S2| stars.

J6 K3[T ∪N+
K3

(T ) ∪N−K3
(T )] is the disjoint union of |T | stars with no vertices in S1 \ T .

J7 Each v ∈ [n] has at most 2 in- or out-neighbours in K3 in S1 ∪N+
K3

(S1 − v) ∪N−K3
(S1 − v).

J8 For any sets A,B ⊂ [n] and � ∈ {+,−} with |A| ≤ 100n log log n/ log n and, for each v ∈ A,
d�K3

(v,B) ≥ (log n)2/3/2, we have |B| ≥ 100|A|(log n)1/3.

J9 ∆±(K3) ≤ 50 log n.

Proof. First, we will choose binomial random digraphs K̄0, K̄1, K̄2, and K̄3 and use them to choose the
digraphs K0,K1,K2, and K3 with the distribution in the lemma. This will allow us to prove likely
properties of K̄0, K̄1, K̄2, and K̄3 and infer J1–J9 from them.

Let N = n(n − 1), p0 = (i0 − n)/N , p1 = (i1 − n)/N , p2 = (i2 − n)/N , and p3 = (i3 + n)/N . For
each u, v ∈ [n] with u 6= v, let Xuv be chosen uniformly at random from [0, 1]. For each j ∈ {0, 1, 2, 3}, let
K̄j be the digraph with vertex set [n] and edge set {uv : u, v ∈ [n], u 6= v,Xuv ≤ pj}. Let d = log n/300.
For each j ∈ {0, 1, 2, 3}, let S̄j = {v ∈ [n] : d+

K̄j
(v) ≤ d or d−

K̄j
(v) ≤ d}. Let T̄ = {v ∈ [n] : d+

K̄1
(v) ≤

d and d−
K̄1

(v) ≤ d}.
Now, note that, for each j ∈ {0, 1, 2, 3}, K̄j has the same distribution as D(n, pj). Furthermore,

K̄0 ⊂ K̄1 ⊂ K̄2 ⊂ K̄3. Let ` = e(K̄3) − e(K̄0), and label the edges of E(K̄3) \ E(K̄0) as e1, . . . , e`
uniformly at random subject to the restriction that the edges of E(K̄1) \ E(K̄0) come first in this order,
followed by those in E(K̄2)\E(K̄1), and then those in E(K̄3)\E(K̄2). Let E be the event that e(K̄3) ≥ i3,
and, for each j ∈ {0, 1, 2}, e(K̄j) ≤ ij . If E holds, then, for each j ∈ {0, 1, 2, 3}, let Kj be the random
graph K̄0 with the edges e1, . . . , eij−e(K̄0) added. If E does not hold, then let (K0,K1,K2,K3) be drawn
uniformly at random from the set of such tuples such that, for each j ∈ {0, 1, 2, 3}, Kj is a digraph with
vertex set [n] and ij edges, and K0 ⊂ K1 ⊂ K2 ⊂ K3. Note that the distribution of (K0,K1,K2,K3) is
the same conditioned on E holding or on E not holding, and thus has the distribution as described in the
lemma.

Let J1–J9 be the properties J1–J9 with Kj , Sj and T replaced by K̄j , S̄j and T̄ respectively, for any
relevant j ∈ {0, 1, 2, 3}. Now, if E holds, then K̄0 ⊂ K0, K̄1 ⊂ K1, K̄2 ⊂ K2, and K3 ⊂ K̄3 and we also
have T ⊂ T̄ , and Sj ⊂ S̄j for each j ∈ {0, 1, 2}. Therefore, if E holds, then each property J1–J9 implies
the corresponding property J1–J9. Indeed, decreasing the sets T, S0, S2, adding edges in K3 to K0 and
removing edges from K3 makes it easier for each of these properties to hold. Therefore, if E and J1–J9
hold individually with high probability, then J1–J9 hold collectively with high probability. We now show
in turn that each of E and J1–J9 hold with high probability.

E: By Lemma 3.8 with ε = 1/4 log n, for each j ∈ {0, 1, 2},

P(e(K̄j) > ij) ≤ P(|e(K̄j)− pjn(n− 1)| > n) ≤ P(|e(K̄j)− pjn(n− 1)| ≥ εpjn(n− 1))

≤ 2 exp(−ε2pjn(n− 1)/3) = o(1). (11)

Similarly, P(e(K̄3) < i3) = o(1). Therefore, E holds with high probability.
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J1: For each v ∈ S̄0, there will be some � ∈ {+,−} and A ⊂ [n] \ {v} with |A| ≤ d such that there is a
�-edge from v to each vertex in A and no �-edge from A to [n] \ (A ∪ {v}). Therefore, for large n, using
Proposition 4.1, we have, as p0n = (9/20− o(1)) log n, that

E|S̄0| ≤ n · 2 ·
d∑
i=0

(
n− 1

i

)
pi0(1− p0)n−i−1 ≤ 2n · exp(−p0n+ (log n)/30) = o(n2/3).

Therefore, by Markov’s inequality, with high probability J1 holds.

J2: We will show that P(J2 holds |J1 holds) = 1 − o(1). Revealing the edges of K̄0, if J1 holds, then
there are at most 2|S̄0| · n ≤ 2n5/3 directed non-edges in K̄0 with at least one vertex in S̄0. For each such
uv, the probability that uv ∈ E(K̄3) \E(K̄0) is P(Xuv ≤ p3|Xuv > p0) ≤ 2p3. Thus, the number of edges
in E(K̄3) \ E(K̄0) has expectation at most 4p3n

5/3 = o(n). Therefore, P(J2 holds |J1 holds) = 1− o(1).
Thus, as J1 holds with high probability, so does J2.

J3: Let X1 be the number of paths of length at most 4 in K̄3 between vertices in S̄1. For each such
path, there are distinct vertices x, y (for the endvertices) an integer k ∈ {0, 1, 2, 3}, and distinct vertices
v1, . . . , vk ∈ [n] \ {x, y}, so that xv1 . . . vky is a path in K̄3 (with any orientations on its edges), and
(as x, y ∈ S̄1) sets Ax, Ay ⊂ [n] \ {x, y, v1, . . . , vk} with size at most d and �x, �y ∈ {+,−} for which,
for each v ∈ {x, y} there is an �v-edge from v to each vertex in Av in K̄1 and no �v-edge from v to
[n]\ (Av ∪{x, y, v1, . . . , vk}) in K̄1. Thus, as there are 2k+1 possible orientations for a path with k interior
vertices, for large n, using Proposition 4.1, we have, as 2p1n = (1− o(1)) log n, that

EX1 ≤
n(n− 1)

2
·

3∑
k=0

(
n− 2

k

)
2k+1pk+1

3 ·

(
2

d∑
i=0

(
n− 2− k

i

)
pi1(1− p1)n−2−k−i

)2

≤ n ·
3∑
k=0

(2p3n)k+1 · 4 exp(−2p1n+ (log n)/15)

≤ 16n · (4 log n)4 · exp(−(9/10 + o(1)) log n) = o(n1/6). (12)

Thus, with high probability J3 holds.

J4: Let X2 be the number of cycles of length at most 3 in K̄3 with a vertex in S̄1. Thus, as there are
2k+1 possible orientations for a cycle with k + 1 vertices, for large n, using Proposition 4.1, we have

EX2 ≤ n ·
2∑
k=1

(
n− 1

k

)
2k+1pk+1

3 ·

(
2

d∑
i=0

(
n− 1− k

i

)
pi1(1− p1)n−1−k−i

)

≤
2∑
k=1

(2p3n)k+1 · 2 exp(−p1n+ (log n)/30) ≤ 4 · (4 log n)3 · exp(−(log n)/4) = o(1), (13)

where we have used that p1n = (1/2− o(1)) log n. Therefore, with high probability J4 holds.

J5: Let X3 be the number of paths of length at most 4 in K̄3 between vertices in S̄2. By a similar
calculation to (12), we have EX3 ≤ 16n ·(4 log n)4 ·exp(−2p2n+(log n)/15) = o(1). Let X4 be the number
of cycles of length at most 3 in K̄3 between vertices in S̄2. By a similar calculation to (13), we have
EX4 ≤ 4 · (4 log n)3 · exp(−p2n+ (log n)/30) = o(1). Therefore, with high probability X3 = X4 = 0, and
thus J5 holds.

J6: First, let X5 be the number of paths with length at most 3 between a vertex in T̄ and a vertex in S̄1

in K̄3. Similarly to the analysis for (12), we have

EX5 ≤ n(n− 1) ·
2∑
k=0

(
n− 2

k

)
2k+1pk+1

3 · 2

(
d∑
i=0

(
n− 2− k

i

)
pi1(1− p1)n−2−k−i

)3

≤ 6n · (4 log n)3 · exp(−3p1n+ (log n)/10) = o(1).
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Let X6 be the number of cycles with length at most 3 in K̄3 containing some vertex in T̄ . Then, similarly
to the analysis for (13), we have

EX6 ≤ n ·
2∑
k=1

(
n− 1

k

)
(2p3)k+1 ·

(
d∑
i=0

(
n− 1− k

i

)
pi1(1− p1)n−1−k−i

)2

≤ 2 · (4 log n)3 · exp(−2p1n+ (log n)/15) = o(1).

Therefore, with high probability, X5 = X6 = 0, and hence J6 holds.

J7: Let X7 be the number of vertices v ∈ [n] with at least 3 out- or in -neighbours in K̄3 in S̄1∪N+
K̄3

(S̄1−
v) ∪ N−

K̄3
(S̄1 − v). For each such vertex v, we can pick three different paths, P1, P2 and P3 in K̄3, with

length at most 2 which go from v into S̄1. Letting H = P1∪P2∪P3, we have that H is a tree (with maybe
some doubled edges) if the endvertices of the paths which are not v are distinct. If |V (H)∩ S̄1| = 2, then
we see that H has at least |H| edges, while if |V (H) ∩ S̄1| = 1, then H has at least |H|+ 1 edges. Thus,
deleting edges if necessary, there is some digraph H ⊂ K̄3 and some j ∈ [3] so that v ∈ V (H), j ≤ |H| ≤ 7,
e(H) ≥ |H|+ 2− j edges, and V (H) contains j vertices in S̄1.

Therefore, using Proposition 4.1, we have, for large n, that

EX7 ≤ n ·
3∑
j=1

7∑
k=j

(
n− 1

k − 1

)
·
(
k(k − 1)

k + 2− j

)
· pk+2−j

3 ·

(
d∑
i=0

(
n− k
i

)
pi1(1− p1)n−i−k

)j

≤
3∑
j=1

7∑
k=j

(np3)k+2−j · nj−2 · 2k(k−1) · exp(−j · p1n+ j(log n)/30)

≤ log9 n ·
3∑
j=1

nj−2 · exp(−(2j/5) log n) = o(1).

Therefore, with high probability, X7 = 0, and thus J7 holds.

J8: Let t0 = (log n)1/3/200, t1 = 100n log log n/ log n, d0 = (log n)2/3/2 and d1 = 100(log n)1/3. Note
that if there are some sets A,B ⊂ [n] satisfying |B| < d1|A| and, for some � ∈ {+,−}, d�

K̄3
(v,B) ≥ d0 for

each v ∈ A, we have |B| ≥ d0, so that |A| > d0/d1 = t0. Furthermore, for such a pair A,B, we can add
vertices to B to ensure that |B| = d1|A|. Now, there is some � ∈ {+,−} and t with t0 ≤ t ≤ t1 and a pair
of sets A,B ⊂ [n] with |A| = t, |B| = d1t, and d�

K̄3
(v,B) ≥ d0 for each v ∈ A, with probability at most

2

t1∑
t=t0

(
n

t

)(
n

d1t

)(
d1t

d0

)t
pd0t3 ≤ 2

t1∑
t=t0

((en
t

)
·
(
en

d1t

)d1
·
(
ed1tp3

d0

)d0)t

≤ 2

t1∑
t=t0

((en
t

)d1+1

·
(
t(log n)3/4

n

)d0)t

≤ 2

t1∑
t=t0

(
ed1+1 ·

(
t

n

)d0−d1−1

· (log n)3d0/4

)t

≤ 2

t1∑
t=t0

(
e7d0/8 ·

(
t

n

)7d0/8

· (log n)3d0/4

)t

= 2

t1∑
t=t0

(
et(log n)6/7

n

)7d0t/8

≤ 2

t1∑
t=t0

(
1

2

)7d0t/8

≤ 4

2−7d0t0/8
= o(1).

Therefore, with high probability, J8 holds.
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J9: Let X8 be the number of vertices in K̄3 with in-degree larger than 50 log n or out-degree larger than
50 log n. Then,

EX8 ≤ 2n

(
n− 1

50 log n

)
p50 logn

3 ≤ 2n

(
enp3

50 log n

)50 logn

≤ 2n

(
1

10

)50 logn

= o(1).

Therefore, with high probability, J9 holds.

We now prove the properties J10–J12 are likely to hold. In the following lemma, the random digraphs
do not interact in the properties (nor is K0 used), but for convenience we use the same distribution for
the random digraphs as in Lemma 4.2.

Lemma 4.3. Let (K0,K1,K2,K3) be drawn uniformly at random from the set of such tuples for which,
for each j ∈ {0, 1, 2, 3}, Kj is a digraph with vertex set [n] and ij edges (as set in (9)), and K0 ⊂ K1 ⊂
K2 ⊂ K3.

Then, with high probability, the following hold.

J10 There is some v ∈ [n] with d+
K1

(v) + d−K1
(v) = 0.

J11 The number of vertices in K2 with in-degree 0 is at least n1/5.

J12 δ±(K3) ≥ 2.

Proof. J10: Let p1 = (i1+n)/n(n−1). We will construct a random digraph D1 with the same distribution
as D(n, p1). Similarly as for (11), by Lemma 3.8 we will then have that P(e(D1) ≥ i1) = 1 − o(1), and
thus, it is sufficient to show that, with high probability, there is some v ∈ [n] with d+

D1
(v) + d−D1

(v) = 0.
Let then q = p1/(4 − 2p1) and p = p1(2 − p1), and let G = G(n, p). Form D1 on the vertex set [n]

by taking each edge uv ∈ E(G) and, independently at random, adding uv but not vu to E(D1) with
probability (1/2− q), adding vu but not uv to E(D1) with probability (1/2− q), and adding both uv and
vu to E(D1) with probability 2q. Note that, as p(1/2+q) = p1 and 2pq = p2

1, D1 has the same distribution
as D(n, p1). As p = (log n−ω(1))/n, with high probability δ(G) = 0 (see, for example, Theorems 3.5 and
2.2(ii) in [5]). Furthermore, any v ∈ [n] with dG(v) = 0 satisfies d+

D1
(v) = d−D1

(v) = 0, and thus J10 holds
with high probability.

J11: Let p2 = (i2 + n)/n(n − 1) and D2 = D(n, p2). Similarly as for (11), by Lemma 3.8, we have that
P(e(D2) ≥ i2) = 1 − o(1). Therefore, it is sufficient to show that, with high probability, the number of
vertices in D2 with in-degree 0 is at least n1/5. Note that, for each v ∈ [n], the probability that d−D2

(v) = 0

is (1−p2)n−1 = exp(−(1−o(1))p2n) = exp(−(3/4−o(1)) log n). Furthermore, this is independent for each
v ∈ [n], and the expected number of vertices in [n] with d−D2

(v) = 0 is n·exp(−(3/4−o(1)) log n) = ω(n1/5).
Therefore, by Lemma 3.8, the probability that the number of vertices in D2 with in-degree 0 is at least
n1/5 is 1− o(1). Thus, with high probability, J11 holds.

J12: Let p3 = (i3−n)/n(n−1), so that p3(n−2) = log n+ log log n+ω(1). Let D3 = D(n, p3). Similarly
as for (11), by Lemma 3.8, we have that P(e(D3) ≤ i3) = 1− o(1). Therefore, it is sufficient to show that,
with high probability, δ±(D3) ≥ 2.

Let X be the number of vertices v ∈ [n] with d+
D3

(v) ≤ 1 or d−D3
(v) ≤ 1. Then,

EX ≤ 2n ·
1∑
i=0

(
n− 1

i

)
pi3(1− p3)n−1−i ≤ 4n · (np3) · exp(−p3(n− 2)) = o(1),

so that, with high probability X = 0, and hence δ±(D3) ≥ 2. Thus, with high probability, J12 holds.

4.2 Choosing vertices in the cycle

When embedding each cycle for Theorem 2.4, we have to use the vertices in the cycle with out-degree
0, 2 and 1 to cover vertices in the random digraph Di with out-degree 0, in-degree 0, and both in- and
out-degree 1, respectively. To cover the other low in- or out-degree vertices in Di, we have more choice.
We will select the vertices in the cycle to use with the following lemma, which, furthermore, picks the
vertices to be in some linear-sized subpath of the cycle.
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Lemma 4.4. There is some n0 such that the following holds for each n ≥ n0 and λ ∈ N. Suppose C is
an oriented n-vertex cycle with λ vertices with out-degree 0. Let µ0, µ2 ∈ N with µ0 + µ2 = d2λ/ log ne
and let µ1 = d(n− 2λ)/ log ne. Then, there exists a path P ⊂ C with length at most n/100 and vertex sets
Z0, Z1, Z2 ⊂ V (P ) such that the following hold.

• The vertices in Z0 ∪ Z1 ∪ Z2 are pairwise at least 100 log n/ log log n apart on P from each other.

• For each i ∈ [3], |Zi| = µi and each vertex v ∈ Zi has out-degree i in C.

Proof. For each i ∈ {0, 1, 2}, let Xi = {v ∈ V (C) : d+
C(v) = i}. Let k = 100 log n/ log log n and

` = bn/100c. We will first choose the path P using the following claim.

Claim 7. There is a path P with length ` such that the following hold.

K1 If µ0 > 0, then |V (P ) ∩X0| ≥ 1 + (µ0 + µ2 − 1) log n/103.

K2 If µ1 > 0, then |V (P ) ∩X1| ≥ 1 + (µ1 − 1) log n/103.

K3 If µ2 > 0, then |V (P ) ∩X2| ≥ 1 + (µ0 + µ2 − 1) log n/103.

Proof of Claim 7. If λ = 0 or n − 2λ = 0, then let P be any path in C with length `. Note that in the
first case µ0 + µ2 = 0 and |V (P ) ∩ X1| = |P |, and thus K1–K3 hold. In the second case, µ1 = 0 and
|V (P )∩ (X0 ∪X2)| = |P |, and therefore, as any two vertices with out-degree 0 in C on P must have some
vertex of in-degree 0 in C between them, we have |V (P ) ∩X0|, |V (P ) ∩X2| ≥ |P |/2 − 1. Thus, K1–K3
hold in this case.

If 0 < λ ≤ (log n)/2, then µ0 + µ2 = 1, so that either µ0 = 0 or µ2 = 0. If the first case occurs, then,
using λ > 0, let P be any path in C with length ` with |V (P ) ∩ X2| ≥ 1, and, otherwise, let P be any
path in C with length ` and |V (P )∩X0| ≥ 1. Note that, in each case, we have |V (P )∩X1| ≥ `+ 1−2λ ≥
n/200 ≥ 1 + µ1 log n/103. Thus, we have that K1–K3 hold.

If 0 < n− 2λ ≤ (log n)/2, then µ1 = 1. Using that n− 2λ > 0, let P be any path in C with length `
with |V (P ) ∩X1| ≥ 1. Note that we have |V (P ) ∩ (X0 ∪X2)| ≥ ` + 1 − (n − 2λ) ≥ n/200. As any two
vertices with out-degree 0 in C on P must have some vertex of in-degree 0 in C between them, we have
that |V (P ) ∩X0|, |V (P ) ∩X2| ≥ n/450 ≥ λ/450 ≥ 1 + (µ0 + µ2) log n/103. Thus, we have that K1–K3
hold.

Assume then that λ > (log n)/2 and n−2λ > (log n)/2. Pick an arbitrary direction of C, and label the
vertices of C as v1, . . . , vn in this order. For each i ∈ [n], let Pi be the path vivi+1 . . . vi+`, with addition
modulo n in the indices. For each i ∈ [n], let f(i) = n−2λ

n (` + 1) − |V (Pi) ∩ X1|. Let f(n + 1) = f(1).
Note that ∑

i∈[n]

f(i) = (n− 2λ)(`+ 1)− |V (Pi) ∩X1|(`+ 1) = 0.

As |f(i) − f(i + 1)| ≤ 1 for each i ∈ [n], we can thus choose j ∈ [n] with |f(j)| ≤ 1. Then, as n − 2λ >
(log n)/2, we have

|V (Pj) ∩X1| ≥
n− 2λ

n
(`+ 1)− 1 ≥ n− 2λ

100
− 1 ≥ 1 +

n− 2λ

200
≥ 1 +

(µ1 − 1) log n

103

and, as |V (Pj) ∩X1| ≤ n−2λ
n (`+ 1) + 1 = (`+ 1)− 2λ

n (`+ 1) + 1, and λ > (log n)/2, we have

|V (Pj) ∩ (X0 ∪X2)| ≥ 2λ

n
(`+ 1)− 1 ≥ 2λ

100
− 1 ≥ 3 +

2λ

200
≥ 3 +

2(µ0 + µ2 − 1) log n

103
.

As any two vertices in Pj with out-degree 0 on C must have some vertex of in-degree 0 in C between them
in Pj , we have that |V (Pj) ∩X0|, |V (Pj) ∩X2| ≥ 1 + (µ0 + µ2 − 1) log n/103. Let P = Pj . In every case,
we have now chosen a path P with length ` such that K1–K3 hold.

Given the path P as in Claim 7, we now pick the sets Z0, Z1 and Z2. We do this in two cases, according
to whether µ0 + µ2 ≤ µ1 or µ0 + µ2 > µ1. In each case, we pick the smaller of Z0 ∪ Z2 and Z1 first.
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Case I. Suppose that µ0 +µ2 ≤ µ1. Pick vertex sets Z0 ⊂ X0 and Z2 ⊂ X2 so that the vertices in Z0∪Z2

are pairwise at least k apart on P , |Z0| ≤ µ0, |Z2| ≤ µ2, and, subject to this, |Z0 ∪ Z2| is maximised.
Suppose, for contradiction, that |Z0| < µ0. If |Z0| = 0 and µ2 = 0, then Z2 = ∅ and, by K1, we have
|V (P ) ∩X0| ≥ 1, so that there is a vertex z ∈ V (P ) ∩X0 which is a distance at least k apart from every
vertex in Z1 ∪ Z2 = ∅ on P , a contradiction. Therefore, we can assume that |Z0| > 0 or µ2 > 0. In each
case, we have, as µ0 > |Z0|, that µ0 + µ2 ≥ 2. Hence, by K1, |V (P ) ∩ X0| ≥ (µ0 + µ2) log n/(2 · 103).
Now, every vertex in V (P ) ∩X0 is within distance k − 1 of some vertex in Z0 ∪ Z2 on P , so that

|V (P ) ∩X0| ≤ (2k − 1)|Z0 ∪ Z2| < (2k − 1)(µ0 + µ2) ≤ 103(µ0 + µ2) log n

log log n
.

For sufficiently large n this contradicts |V (P ) ∩ X0| ≥ (µ0 + µ2) log n/(2 · 103). Similarly, we get a
contradiction if |Z2| < µ2. Therefore, we have |Z0| = µ0 and |Z2| = µ2.

Let then Z1 ⊂ X1 be a maximal set subject to |Z1| ≤ µ1 and that the vertices in Z0 ∪ Z1 ∪ Z2 are
pairwise at least k apart on P . Suppose, for contradiction, that |Z1| < µ1. Then, every vertex in X1 is
within distance k − 1 of some vertex in Z0 ∪ Z1 ∪ Z2 on P , so that

|V (P ) ∩X1| ≤ (2k − 1)|Z0 ∪ Z1 ∪ Z2| < (2k − 1)(µ0 + µ1 + µ2) ≤ (2k − 1) · 2µ1 ≤
103µ1 log n

log log n
.

As µ1 ≥ µ0 + µ2 (and µ0 + µ1 + µ2 ≥ n/ log n), we have µ1 ≥ 2. Therefore, for sufficiently large n, this
contradicts K2. Thus, we have |Z1| = µ1, and Z0, Z1, Z2 and P satisfy the conditions in the lemma.

Case II. Assume then that µ0 + µ2 > µ1. Let Z1 ⊂ X1 be a maximal set subject to |Z1| ≤ µ1 and
that the vertices in Z1 are pairwise at least k apart on P . Suppose, for contradiction, that |Z1| < µ1. If
|Z1| = 0, then µ1 > 0 and, by K2, we have |V (P )∩X1| ≥ 1, so that there is a vertex z ∈ V (P )∩X1 which
is a distance at least k apart from every vertex in Z1 = ∅, a contradiction. Therefore, we can assume
that µ1 > |Z1| > 0, and hence, by K2, that |V (P ) ∩X1| ≥ µ1 log n/(2 · 103). Then, every vertex in X1 is
within distance 2k − 1 of Z1 on P , so that

|V (P ) ∩X1| ≤ (2k − 1)|Z1| < (2k − 1)µ1 ≤
103µ1 log n

log log n
.

For sufficiently large n this contradicts |V (P ) ∩X1| ≥ µ1 log n/(2 · 103). Therefore, we have |Z1| = µ1.
Pick vertex sets Z0 ⊂ X0 and Z2 ⊂ X2 so that the vertices in Z0∪Z1∪Z2 are pairwise at least k apart

on P , |Z0| ≤ µ0, and |Z2| ≤ µ2, and, subject to this, |Z0 ∪ Z2| is maximised. Suppose, for contradiction,
that |Z0| < µ0. Then, as every vertex in V (P ) ∩X0 is within distance k − 1 of Z0 ∪ Z1 ∪ Z2 on P , and
µ0 + µ2 > µ1, we have

|V (P ) ∩X0| ≤ (2k − 1)|Z0 ∪ Z1 ∪ Z2| < (2k − 1)(µ0 + µ1 + µ2) ≤ 103(µ0 + µ2) log n

log log n
. (14)

As µ0 + µ2 > µ1 (and µ0 + µ1 + µ2 ≥ n/ log n), we have µ0 + µ2 ≥ 2. Thus, by K1, |V (P ) ∩ X0| ≥
(µ0 +µ2) log n/(2 ·103), which, for large n, contradicts (14). Similarly, we get a contradiction if |Z2| < µ2.
Therefore, we have |Z0| = µ0, |Z2| = µ2, and thus Z0, Z1, Z2 and P satisfy the conditions in the lemma.

4.3 Proof of Theorem 2.4 from Theorem 2.3

We can now prove Theorem 2.4. In the initial set-up of the proof, we follow the explanation at the start of
Section 4.1, and use the values of i0, i1, i2 and i3 in (9). In the random digraph processD0, D1, . . . , Dn(n−1),
we condition on the value of Di0 , and, for each i with i0 ≤ i ≤ i3, on the edges in E(Di) \E(Di0) with at
least one vertex in S, where S is the set of low in- or out-degree vertices in Di0 . For each i with i1 ≤ i ≤ i2,
subject to this conditioning, we know which cycles we want to embed into Di (gathered into the set Ci).
The main part of the proof consists of showing that, subject to the conditioning, a copy of each such cycle
C is very likely to appear in Di (see Claim 8). Taking a union bound then completes the proof.

As highlighted by paragraph titles, the proof that a relevant cycle C is very likely to appear in Di

subject to the conditioning (that is, the proof of Claim 8) proceeds in the following steps.
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• We simplify the random edges in Di which have not been conditioned on, replacing them with a
binomial random digraph with vertex set [n] \ S (called D̄).

• We identify the low in- and out-degree vertices in Di (which form a subset of S), and partition them
according to the degree of the vertex in the cycle which will be embedded to them, before choosing
vertices to embed as their neighbours to get paths of length 2.

• We choose the subpath P of C so that we can embed well-spaced paths of length 2 from P to these
paths of length 2 in Di (using Lemma 4.4).

• We modify the conditioned edges of Di (those in the graph Hi) to get a pseudorandom digraph (H ′i),
by contracting the chosen paths of length 2 in Di (and possibly altering some edges).

• We modify C and P accordingly.

• We modify the binomial random digraph D̄ with vertex set [n] \ S accordingly.

• We apply Theorem 2.3 to these modified digraphs, before undoing the modifications to find a copy
of the cycle C in Di ∪ D̄.

Proof of Theorem 2.4. Let d = log n/300 and let i0, i1, i2 and i3 be as in (9). Let D0, D1, . . . , Dn(n−1) be
the n-vertex random digraph process. First, note that, by J10 in Lemma 4.2, with high probability there
is some v ∈ [n] with d+

Di1
(v) = d−Di1

(v) = 0, and thus, for each 0 ≤ i ≤ i1 the property in Theorem 2.4 for

Di holds trivially. Similarly, by J12 in Lemma 4.2, we have, with high probability that δ±(Di3) ≥ 2, and
hence si3 = ti3 = 0, and thus we need to show that, with high probability, Di3 contains a copy of every
n-vertex oriented cycle. If this holds, then Di contains a copy of every n-vertex oriented cycle for each
i ≥ i3. Therefore, it is sufficient show that, with high probability, the property in Theorem 2.4 holds for
each i1 ≤ i ≤ i3.

Let
S = {v ∈ [n] : d+

Di0
(v) ≤ d or d−Di0

(v) ≤ d}.

For each i0 ≤ i ≤ i3, let D′i be the (random) digraph with vertex set [n] and edge set

E(Di0) ∪ {xy ∈ E(Di) : {x, y} ∩ S 6= ∅},

so that D′i ⊂ Di, and E(Di) \ E(D′i) ⊂ ([n] \ S)× ([n] \ S).
Now, for each j ∈ {0, 1, 2, 3}, let Kj = Dij , K̄j = D′ij ,

Sj = {v ∈ [n] : d+
Kj

(v) ≤ d or d−Kj
(v) ≤ d} = {v ∈ [n] : d+

K̄j
(v) ≤ d or d−

K̄j
(v) ≤ d},

where we have used that S0 = S and d�Kj
(v) = d�

K̄j
(v) for each v ∈ S, � ∈ {+,−} and j ∈ {0, 1, 2, 3}.

Furthermore, let

T = {v ∈ [n] : d+
K1

(v) ≤ d and d−K1
(v) ≤ d} = {v ∈ [n] : d+

K̄1
(v) ≤ d and d−

K̄1
(v) ≤ d},

and let J1–J9 and J11 be the properties J2–J9 and J11 with Kj replaced by K̄j for any relevant
j ∈ {0, 1, 2, 3}. As K̄0 = K0 and K̄3 ⊂ K3, each of J3–J9 and J11 implies the corresponding property
J3–J9 and J11. Therefore, by Lemma 4.2, we have that, with high probability, J1–J9 and J11 hold.
Let D = (D′i0 , D

′
i0+1, . . . , D

′
i3

). Let H be the set of possible values of D for which J1–J9 and J11 hold,
so that P(D ∈ H) = 1− o(1).

Let C be the set of all oriented cycles whose underlying cycle is the canonical cycle with vertex set [n].
For each i1 ≤ i ≤ i3, let si be the number of vertices in Di with in-degree or out-degree 0 and let ti be the
number of vertices in Di with in-degree 1 and out-degree 1. Let Ci be the set of cycles in C with at least
1 + (si− 1) log n and at most n− 1− (ti− 1) log n changes of direction. We will show the following claim.

Claim 8. There is some n0 such that, if n ≥ n0, then, for each H ∈ H, i1 ≤ i ≤ i3, and C ∈ C,

P(d+
Di

(v) + d−Di
(v) ≥ 2 for each v ∈ [n], and C ∈ Ci, and C 6⊂∼ Di|D = H) ≤ 2e−n. (15)
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This claim is sufficient to prove the theorem. Indeed, let E be the event that, for some i1 ≤ i ≤ i3 and
C ∈ C, we have d+

Hi
(v) +d−Hi

(v) ≥ 2 for each v ∈ [n] and C ∈ Ci and C 6⊂∼ Di. Then, if n ≥ n0, by a simple

union bound and Claim 8, we have, for eachH ∈ H, that P(E|D = H) ≤ (i3−i1+1)·2n·2e−n ≤ n2·2n·2e−n
if n ≥ n0, and hence

P(E) ≤ P(D /∈ H) +
∑
H∈H

P(D = H) · P(E|D = H)

≤ P(D /∈ H) + n2 · 2n · 2e−n ·
∑
H∈H

P(D = H) ≤ P(D /∈ H) + n2 · 2n · e−n = P(D /∈ H) + o(1).

Thus, as P(D /∈ H) = o(1), we have that, with high probability, E does not hold, and therefore the
property in the theorem holds. It is left then to prove Claim 8.

Proof of Claim 8. Let H = (Hi0 , . . . ,Hi3) ∈ H, i1 ≤ i ≤ i3 and C ∈ C. Let s be the number of in-degree
0 or out-degree 0 vertices in Hi and let t be the number of vertices in Hi with in- and out-degree 1. For
each v ∈ [n], if D = H and either d+

Hi
(v) ≤ d or d−Hi

(v) ≤ d, we have, as Di0 = D′i0 = Hi0 , that v ∈ S0

and hence d�Di
(v) = d�Hi

(v) for each � ∈ {+,−}. Therefore, if D = H, then si = s and ti = t. Thus, given
D = H, whether or not C ∈ Ci depends only on H and i, so we can assume that C ∈ Ci, as otherwise (15)
holds trivially. Similarly, if d+

Hi
(v) + d−Hi

(v) ≤ 1 for some v ∈ [n], then d+
Di

(v) + d−Di
(v) ≤ 1 and (15) again

trivially holds. Thus, we can assume that d+
Hi

(v) + d−Hi
(v) ≥ 2 for each v ∈ [n].

Given D = H, we have that S = S0 is the fixed set {v ∈ [n] : d+
Hi0

(v) ≤ d or d−Hi0
(v) ≤ d}, which

depends only on H. Therefore, conditioned on D = H, the distribution of the random digraph Di is that
of the deterministic graph Hi with i− e(Hi) edges uniformly at random added from {uv /∈ E(Hi) : u, v ∈
[n] \ S, u 6= v}. We will first replace these random edges with an appropriate binomial random digraph.

Simplify the random edges within [n] \ S. Let p = log n/100n, and let D̄ be a binomial random
digraph with edge probability p and vertex set [n] \ S. Let E′ be the event that e(D̄) ≤ i − e(Hi).
If E′ holds, then let D̂ be D̄ with i − e(Hi) − |E(D̄) \ E(Hi)| edges uniformly at random added from
{uv /∈ E(Hi) ∪ E(D̄) : u, v ∈ [n] \ S, u 6= v}. If E′ does not hold, then let D̂ be the random digraph with
vertex set [n]\S with i−e(Hi) edges uniformly at random added from {uv /∈ E(Hi) : u, v ∈ [n]\S, u 6= v}.
Note that, Hi ∪ D̂ has the same distribution as Di conditioned on D = H. Furthermore, if E′ holds, then
Hi ∪ D̄ ⊂ Hi ∪ D̂.

As H ∈ H, we have that J2 holds whenever D = H, and therefore i − e(Hi) ≥ i1 − e(Hi1) ≥
i1− i0−n ≥ n log n/40, for sufficiently large n. Thus, as E(e(D̄)) ≤ p(n− |S|)2 ≤ pn2, by Lemma 3.8, we
have P(E′ does not hold) = exp(−Ω(n log n)) ≤ exp(−n), for sufficiently large n.

Thus, to complete the proof of the claim, it is sufficient to show that, for sufficiently large n, P(C 6⊂∼
Hi ∪ D̄) ≤ exp(−n), for it follows that

P(C 6⊂∼ Di|D = H) = P(C 6⊂∼ Hi ∪ D̂) ≤ P(E′ does not hold) + P(C 6⊂∼ Hi ∪ D̄) ≤ 2 · exp(−n).

We now focus on the vertices in Hi with low in- or out-degree.

Identify low in- and out-degree vertices. Recalling that d = log n/300, let

Y = {v ∈ [n] : d+
Hi

(v) ≤ d or d−Hi
(v) ≤ d},

so that Y ⊂ S1. For each j ∈ {0, 1, 2}, let Yj ⊂ Y be the vertices in Y which, based on their out- and
in-degree, could be a vertex of the copy of C in Hi with out-degree j. That is, let

Y0 = {v ∈ Y : d−Hi
(v) ≥ 2}, Y1 = {v ∈ Y : d±Hi

(v) ≥ 1}, and Y2 = {v ∈ Y : d+
Hi

(v) ≥ 2}.

As d−Hi
(v) + d+

Hi
(v) ≥ 2 for each v ∈ [n], we have Y = Y0 ∪ Y1 ∪ Y2. For each � ∈ {+,−}, we will let

Y � ⊂ Y be the set of vertices with plenty of �-neighbours in Hi, so that it is the set of vertices which are
easy to place in the copy of C as a vertex with two �-neighbours. That is, we let, for each � ∈ {+,−},

Y � = {v ∈ Y : d�Hi
(v) > d},
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so that, as Y ⊂ S1, Y + and Y − are disjoint. Recall that T is the set of vertices in Hi1 ⊂ Hi with in- and
out-degree both at most d, so that Y = (Y ∩ T ) ∪ Y + ∪ Y −.

Our aim now is to partition Y into sets Ȳj , j ∈ {0, 1, 2}, so that |Ȳj |, j ∈ {0, 1, 2}, satisfy certain
inequalities for a later application of Lemma 4.4. We will find them with vertices xv, yv ∈ [n] \Y , for each
v ∈ Y , where xv and yv can be the neighbours of v ∈ Ȳj on any cycle in which v has out degree j. We
do this differently according to the number of changes of direction on C. Let λ then be the number of
vertices of C with out-degree 0. As C ∈ Ci, we have 1 + (si − 1) log n ≤ 2λ ≤ n− 1− (ti − 1) log n. Our
cases are when λ ≥ n/4 and when λ < n/4.

Case I: when λ ≥ n/4. There are many changes of direction on C, so we will use vertices with
out-degree 0 or 2 in C to cover as many vertices as possible. Thus, let Ȳ0 = (Y ∩ Y −) ∪ (Y0 ∩ T ),
Ȳ2 = (Y ∩ Y +) ∪ ((Y2 ∩ T ) \ Ȳ0), and Ȳ1 = Y \ (Ȳ0 ∪ Ȳ2). Note that each vertex in Ȳ1 has in- and
out-degree exactly 1 in Hi. Thus, |Ȳ1| = ti and Ȳ1 ⊂ T . As 2λ ≤ n − 1 − (ti − 1) log n, we have
n − 2λ ≥ 1 + (ti − 1) log n, so that d(n − 2λ)/ log ne ≥ ti = |Ȳ1|. As J1 holds if D = H, we have that
|S0| ≤ n2/3, and thus |Ȳ0|+ |Ȳ2| ≤ |Y | ≤ |S0| ≤ 2λ/ log n.

Now, for each v ∈ Ȳ0 ∩ T ⊂ Y0, pick distinct xv, yv ∈ N−Hi
(v). For each v ∈ Ȳ1 ⊂ T , pick xv ∈ N+

Hi
(v)

and yv ∈ N−Hi
(v). For each v ∈ Ȳ2 ∩ T ⊂ Y2, pick distinct xv, yv ∈ N+

Hi
(v). As H ∈ H, and J6 holds

whenever D = H, we have that Hi[{v, xv, yv : v ∈ Y ∩ T}] is a forest with |Y ∩ T | components and no
vertices in S1 \ (Y ∩ T ), and hence the vertices xy, yv, v ∈ Y ∩ T , are distinct and in [n] \ S1 ⊂ [n] \ Y .

As H ∈ H, and J7 holds whenever D = H, and as Hi ⊂ K3 and Y ⊂ S1, we have that each v ∈ Y has
at most 2 in- or out-neighbours in Hi in Y ∪N+

Hi
(Y −v)∪N−Hi

(Y −v). Therefore, for each v ∈ Ȳ0\T ⊂ Y −,

as |N−Hi
(v)| ≥ d ≥ 4, we can do the following.

L1 Pick distinct xv, yv ∈ N−Hi
(v) \ (Y ∪N+(Y − v) ∪N−(Y − v)).

Similarly, for each v ∈ Ȳ2 \ T ⊂ Y +, we can do the following.

L2 Pick distinct xv, yv ∈ N+
Hi

(v) \ (Y ∪N+(Y − v) ∪N−(Y − v)).

Note that the vertices xv, yv, v ∈ Y , are distinct and in [n] \ Y .
To recap, we have found a partition Y = Ȳ0 ∪ Ȳ1 ∪ Ȳ2, and distinct vertices xv, yv, v ∈ Y , in [n] \ Y ,

such that the following hold.

M1 If v ∈ Ȳ0, then xv, yv ∈ N−Hi
(v). If v ∈ Ȳ1, then xv ∈ N+

Hi
(v) and yv ∈ N−Hi

(v). If v ∈ Ȳ2, then

xv, yv ∈ N+
Hi

(v).

M2 |Ȳ0|+ |Ȳ2| ≤ d2λ/ log ne and |Ȳ1| ≤ d(n− 2λ)/ log ne.

Case II: when λ < n/4. Supposing then that λ < n/4, we now find a partition Y = Ȳ0 ∪ Ȳ1 ∪ Ȳ2, and
distinct vertices xv, yv, v ∈ Y , in [n] \ Y , which also satisfy M1 and M2. This is more complicated than
in Case I, as to achieve M2 we may have to assign vertices in Y \ T not to Ȳ0 ∪ Ȳ2 but to Ȳ1. Thus, all
the vertices xv, yv, v ∈ Y \ T , are not selected in either L1 or L2. To cope with this, we gather into a set
B the vertices v ∈ Y \ T for which xv, yv would be particularly hard to find were v assigned to Ȳ1. We
then show there are enough changes of direction in C to assign the vertices in B instead to Ȳ0 or Ȳ2.

As J6 holds whenever D = H, we can take B ⊂ Y \T to be a minimal set of vertices for which we have
that Hi[(Y \B)∪N+

Hi
(Y \B)∪N−Hi

(Y \B)] is a forest with |Y \B| components and no vertices in B. For
each � ∈ {+,−}, let B� = {v ∈ B : d�Hi

(v) > d}. Note that, as B ⊂ Y ⊂ S1, B+ and B− are disjoint and,

as B ∩ T = ∅, B = B+ ∪B−. Let Ȳ0 = {y ∈ Y : d+
Hi

(y) = 0} ∪B−. Let Ȳ2 = {y ∈ Y : d−Hi
(y) = 0} ∪B+.

Let Ȳ1 = Y \ (Ȳ1 ∪ Ȳ2) ⊂ Y \B. As J1 holds if D = H, we have that |S0| ≤ n2/3, so that, as λ < n/4, we
have |Ȳ1| ≤ |Y | ≤ |S0| ≤ n2/3 ≤ (n− 2λ)/ log n.

If i ≥ i2, then Y ⊂ S2 and, as J5 holds whenever D = H, and Hi2 ⊂ Hi, we have that B = ∅. Hence,
|Ȳ0|+ |Ȳ2| = si, so that, as, 2λ ≥ 1 + (si − 1) log n, we have |Ȳ0|+ |Ȳ2| = si ≤ d2λ/ log ne.

If i ≤ i2, then, as J11 holds whenever D = H, and Hi ⊂ Hi2 , we have that si ≥ n1/5. As J3 and
J4 hold whenever D = H, we have that |B| ≤ 5n1/6 ≤ si − 2. Thus, as λ ≥ 1 + (si − 1) log n, we have
|Ȳ0|+ |Ȳ2| ≤ si + |B| ≤ 2si − 2 ≤ 2λ/ log n.

27



Therefore, M2 holds whether i ≥ i2 or i ≤ i2. Now, for each v ∈ Ȳ0 \ B− ⊂ Y0, pick distinct
xv, yv ∈ N−Hi

(v). For each v ∈ Ȳ1 ⊂ Y1, pick xv ∈ N+
Hi

(v) and yv ∈ N−Hi
(v). For each v ∈ Ȳ2 \ B+ ⊂ Y2,

pick distinct xv, yv ∈ N+
Hi

(v). As Hi[{v, xv, yv : v ∈ Y \B}] ⊂ Hi[(Y \B) ∪N+
Hi

(Y \B) ∪N−Hi
(Y \B)] is

a forest with |Y \B| components with no vertices in B, the vertices xy, yv, v ∈ Y \B, are distinct, and in
[n] \ Y .

Similarly to in Case I, we have that each v ∈ Y has at most 2 in- or out-neighbours in Y ∪N+
Hi

(Y −
v) ∪ N−Hi

(Y − v). Therefore, for each v ∈ B−, as |N−Hi
(v)| ≥ d ≥ 4, we can pick distinct xv, yv ∈

N−Hi
(v) \ (Y ∪ N+

Hi
(Y − v) ∪ N−Hi

(Y − v)). Similarly, for each v ∈ B+, we can pick distinct xv, yv ∈
N+
Hi

(v) \ (Y ∪ N+
Hi

(Y − v) ∪ N−Hi
(Y − v)). Note that all the vertices xv, yv, v ∈ Y , are distinct and in

[n] \ Y , and therefore M1 holds.

We have now chosen, in both Case I and Case II, a partition Y = Ȳ0 ∪ Ȳ1 ∪ Ȳ2, and distinct vertices
xv, yv, v ∈ Y , in [n] \ Y , satisfying M1 and M2. We now choose the section of the cycle, and vertex sets
in it, that we use to cover the low in- and out-degree vertices (those in Y = Ȳ0 ∪ Ȳ1 ∪ Ȳ2).

Choosing P and Z0, Z1, Z2. Now, by Lemma 4.4 and M2, there exists a path P ⊂ C with length at
most n/100 and vertex sets Z0, Z1, Z2 ⊂ V (P ) such that the following hold with Z = Z0 ∪ Z1 ∪ Z2.

N1 For each j ∈ {0, 1, 2}, |Zj | = |Ȳj |, and the vertices in Zj each have out-degree j in C.

N2 The vertices in Z are pairwise at least 100 log n/ log log n apart on P from each other.

Using N1, label the vertices of Z as av, v ∈ Y , so that, for each j ∈ {0, 1, 2}, if v ∈ Ȳj , then av ∈ Zj .
Pick an arbitrary direction on C to be clockwise and, for each v ∈ Y , label vertices of C so that dvbvavcvev
is a path on C with vertices in clockwise order. Using M1 and N1, for each v ∈ Y , by swapping the labels
of xv and yv if necessary, we can assume that xvvyv is a copy of bvavcv.

We now modify Hi, C (along with P ) and D̄, to allow us to apply Theorem 2.3.

Modify Hi to get a pseudorandom graph, H ′i. For each v ∈ Y , we wish to delete v, xv and yv
from Hi and replace them with a single new vertex zv. Later we will find a cycle C0 containing a subpath
through zv, say with vertices w, zv, w

′, and then replace wzvw
′ with wxvvyvw

′ to get a copy of the subpath
dvbvavcvev of P . To do this, we use the in-edges of zv to guarantee the appropriate edge between w and
xv (matching the edge between dv and bv) and the out-edges of zv to guarantee the appropriate edge
between yv and w′ (matching the edge between cv and ev), and insist later that the subpath on w, zv, w

′

in C0 is directed from w to w′.
More precisely, define H ′i as follows. Let Y ′ := {v, xv, yv : v ∈ Y } and let H ′i be the graph formed by

deleting Y ′ from Hi and adding the new vertices zv, v ∈ Y , along with the following additional edges for
each v ∈ Y and w ∈ [n] \ Y ′.

O1 wzv if dvbv ∈ E(C) and wxv ∈ E(Hi)

O2 wzv if bvdv ∈ E(C) and xvw ∈ E(Hi)

O3 zvw if cvev ∈ E(C) and yvw ∈ E(Hi)

O4 zvw if evcv ∈ E(C) and wyv ∈ E(Hi)

Let X = {zv : v ∈ Y }. Note that |X| = |Y | ≤ n2/3. Let n̄ = |H ′i| = n − 2|X| ≥ n − 2n2/3, so that,
for large n, |X| ≤ n̄3/4. We will show that H ′i is pseudorandom with exceptional set X. As J9 holds
whenever D = H, and Hi ⊂ Ki3 , we have that ∆(H ′i) ≤ ∆(H) ≤ 50n log n ≤ 100n̄ log n̄, and therefore A1
holds for D = H ′i.

As J7 holds whenever D = H, we have that any vertex in [n] has at most 2 in- or out-neighbours in
Hi in S1 ∪ N+

Hi
(S1) ∪ N−Hi

(S1), and hence at most 2 in- or out-neighbours in Hi in Y ′. Thus, for each
v ∈ [n] \ Y ′ ⊂ [n] \ Y and � ∈ {+,−}, we have

d�H′i(v, V (H ′i) \X) = d�Hi
(v, [n] \ Y ′) ≥ d− 2 ≥ log n/500 ≥ log n̄/500.

For each v ∈ Y , we have that if dvbv ∈ E(C), then d−Hi
(xv, [n] \ Y ′) in-edges to zv are added at O1, and

if bvdv ∈ E(C), then d+
Hi

(xv, [n] \ Y ′) in-edges to zv are added at O2. Therefore, as xv /∈ Y ,

d−H′i
(zv, V (H ′i) \X) ≥ min{d−Hi

(xv, [n] \ Y ′), d+
Hi

(xv, [n] \ Y ′)} ≥ d− 2 ≥ log n/500 ≥ log n̄/500.
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Similarly, enough out-edges from zv are added at either O3 or O4 that d+
H′i

(zv, V (H ′i) \X) ≥ log n̄/500.

Therefore, A2 holds for D = H ′i and X.
We now prove that A3 holds for D = H ′i. Suppose, for contradiction, that there are sets A′, B′ ⊂

V (H ′i) and some � ∈ {+,−} with d�H′i
(v,B′) ≥ (log n̄)2/3 for each v ∈ A′, |B′| ≤ |A′|(log n̄)1/3 and

|A′| ≤ n̄ log log n̄/ log n̄. Now, every vertex in v ∈ [n] \ Y ′ has at most 2 in- or out-neighbours in Hi in
Y ′, and hence at most 2 in- or out-neighbours in H ′i in X. Therefore, every vertex in A′ \X has at least
(log n̄)2/3 − 2 ≥ (log n)2/3/2 �-neighbours in B′ \ X. Therefore, as J8 holds whenever D = H, and any
edges in H ′i between A′ \X and B′ \X lie in Hi ⊂ K3, we have |A′ \X| ≤ |B′|/100(log n)1/3 ≤ |A′|/2.
Thus, |A′ ∩X| ≥ |A′|/2.

Now, take A′′ ⊂ A′ ∩X with |A′′| ≥ |A′|/4 so that all the �-edges of zv ∈ A′′ were added under the
same step O1–O4 (noting that only two steps are used for each possible value of �). If these edges were
all added under O1, then let A0 = {xv : zv ∈ A′′}, and observe that every vertex in A0 has at least
(log n̄)2/3−2 ≥ (log n)2/3/2 in-neighbours in Hi in B′ \X. Therefore, again as J8 holds whenever D = H,
we have |B′| ≥ |B′ \X| ≥ 100|A′ ∩X|(log n)1/3 > |A′|(log n)1/3, a contradiction. A similar contradiction
is reached if all these edges are added at O2, at O3, or at O4. Thus, no such sets A′ and B′ exist, so
that A3 holds for D = H ′i. Therefore, H ′i is a pseudorandom digraph with exceptional set X.

Modify C and P . For each v ∈ Y , recall that the labelled vertices dv, bv, av, cv, ev occur consecutively
in this order on C. Note that, by N2, all these labelled vertices are distinct. Let C ′ be the cycle formed
by, for each v ∈ Y , deleting the vertices av, bv, cv and adding the new vertex fv along with the edges dvfv
and fvev. Note these new edges are the same whether dvbv or bvdv is an edge of C, and whether cvev or
evcv is an edge of C. Let P ′ be the path P with these same modifications carried out, so that P ′ ⊂ C ′.

Modify D̄. We modify D̄ similarly to our modification for Hi. For each v ∈ Y , we wish to delete v, xv
and yv from D̄ and replace them with zv (as created for H ′i), and add an in-edge from w ∈ [n] \ Y ′ to
zv if there is an appropriate edge between w and xv in D̄ (matching the edge between dv and bv) and an
out-edge if there is an appropriate edge between yv and w in D̄ (matching the edge between cv and ev).
This will result in there being an edge from w to xv with probability p, independently of all other edges
in D̄, and, similarly, an edge from xv to w independently at random with probability p.

More precisely, let D̄′ be the random graph formed by deleting Y ′ = {v, xv, yv : v ∈ Y } from D̄, and
adding the vertices zv, v ∈ Y , and the following edges for each v ∈ Y and w ∈ [n] \ Y ′.

P1 wzv if dvbv ∈ E(C) and wxv ∈ E(D̄)

P2 wzv if bvdv ∈ E(C) and xvw ∈ E(D̄)

P3 zvw if cvev ∈ E(C) and yvw ∈ E(D̄)

P4 zvw if evcv ∈ E(C) and wyv ∈ E(D̄)

Finally, for each distinct v, v′ ∈ Y , add the edge zvzv′ independently at random with probability p.
Note that the distribution of D̄′ is the same as the binomial random digraph with vertex set V (H ′i) and
edge probability p.

Apply Theorem 2.3. Define f : X → V (P ′) by letting f(zv) = fv for each v ∈ Y . Suppose H ′i ∪ D̄′
contains some C0 which is a copy of C ′ in which fv is copied to zv for each v ∈ Y . We will show that,
then, Hi ∪ D̄ contains a copy of C.

For each v ∈ Y , let αv and βv be the copies of dv and ev on C0, respectively. Let Pv be the path
C[{dv, bv, av, cv, ev}]. We will show that φv : Pv → Hi ∪ D̄ defined by φv(dv) = αv, φv(bv) = xv,
φv(av) = v, φv(cv) = yv and φv(ev) = βv is an embedding of Pv into Hi ∪ D̄, for each v ∈ Y .

By the choice of C ′, we have dvfv, fvev ∈ E(C ′), and hence αvzv, zvβv ∈ E(H ′i ∪ D̄′). If dvbv ∈ E(C)
and αvzv ∈ E(H ′i), then, as αvzv was added to H ′i at O1, we have αvxv ∈ E(Hi). If dvbv ∈ E(C) and
αvzv ∈ E(D̄′), then, by the choice of edges at P1, we have αvxv ∈ E(D̄). Thus, if dvbv ∈ E(C), then
αvxv ∈ E(Hi) ∪ E(D̄). Similarly, considering O2 and P2, if bvdv ∈ E(C), then xvαv ∈ E(Hi) ∪ E(D̄).
Therefore, φv restricted to {dv, bv} is an embedding of Pv[{dv, bv}] into Hi ∪ D̄. Similarly, from O3, O4,
P3, and P4, we have that φv restricted to {cv, ev} is an embedding of Pv[{cv, ev}] into Hi ∪ D̄. Finally,
by the labelling after N1–N2, we have that φv restricted to {bv, av, cv} is an embedding of Pv[{bv, av, cv}]
into Hi ∪ D̄. Thus, φv : Pv → Hi ∪ D̄ is an embedding of Pv into Hi ∪ D̄, for each v ∈ Y . As C ′ was
formed by replacing C[dv, bv, av, cv, ev] by df → fv → ev, for each v ∈ Y , if we take each path αvzvβv,
v ∈ Y , on C0, and replace it with φ(Pv), we get a copy of C in Hi ∪ D̄.
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Finally, by Theorem 2.3, with probability at least 1 − 2 exp(−2n̄), H ′i ∪ D̄′ contains a copy of C ′ in
which fv is copied to zv for each v ∈ Y . As, whenever this happens, Hi ∪ D̄ contains a copy of C, we have

P(C ⊂∼ Hi ∪ D̄) ≥ 1− exp(−2n̄) ≥ 1− exp(−n).

This finishes the proof of the claim, and thus the theorem. .

4.4 Proof of Theorem 1.1

We now show how Theorem 1.1 follows from Theorem 2.4.

Proof of Theorem 1.1 from Theorem 2.4. Note first that, by J11 in Lemma 4.2, we have, with high prob-
ability, that m1 ≥ i2 = 3n log n/4. Furthermore, Dm1+1 has no vertices with in- or out-degree 0, while
Dm1

has exactly one such vertex. By Theorem 2.4, then, for both (i) and (ii) of Theorem 1.1 it is sufficient
to show that, with high probability, there are no vertices v ∈ V (Di2) with d+

Di2
(v), d−Di2

(v) ≤ 1.

Let p1 = (i2 − n)/n(n − 1) and D = D(n, p1). Similarly as for (11), by Lemma 3.8, we have that
P(e(D) ≤ i2) = 1− o(1). Therefore, it is sufficient to show that, with high probability, D has no vertices
v ∈ V (D) with d+

D(v), d−D(v) ≤ 1. The probability that such a vertex does exist is at most

n

2∑
k=0

(
2n− 2

k

)
pk1(1− p1)2(n−1)−k ≤ 3n(2p1n)2 exp(−p1(2n− 4)) = o(1),

as required.
For (iii) in Theorem 1.1, by Theorem 2.4 it is sufficient to show that, with high probability, Dm0

has
at most n1/2 log2 n vertices with in-degree 0 or out-degree 0, and at most log5 n vertices v ∈ Dm0 with
d+
Dm0

(v) = d−Dm0
(v) = 1.

From J10 in Lemma 4.3, we have, with high probability, that m0 ≥ i1 = (n log n)/2 − n log log n.
Let p2 = (i1 − n)/n(n − 1) and D̂ = D(n, p2). Similarly as for (11), by Lemma 3.8, we have that
P(e(D̂) ≤ i1) = 1 − o(1). Therefore, it is sufficient to show that, with high probability, D2 has at
most n1/2 log2 n vertices with in-degree 0 or out-degree 0, and at most log5 n vertices v ∈ V (D2) with
d+

D̂
(v), d−

D̂
(v) ≤ 1.

Let X1 be the number of vertices with in-degree 0 or out-degree 0 in D̂. Then,

EX1 ≤ 2n(1− p2)n−1 ≤ 2n exp(−p2(n− 1)) = O(n1/2 log n).

Therefore, with high probability, X1 ≤ n1/2 log2 n.
Let X2 be the number of vertices v ∈ V (D̂) with d+

D̂
(v), d−

D̂
(v) ≤ 1. Then,

EX2 ≤ n
2∑
k=0

(
2n− 2

k

)
pk1(1− p1)2(n−1)−k ≤ 3n(2p1n)2 exp(−p2(2n− 4)) = O(log4 n).

Therefore, with high probability, X2 ≤ log5 n. This completes the proof of (iii) in Theorem 1.1.

4.5 Proof of Theorem 1.3

Finally, we deduce Theorem 1.3 from Theorem 2.4.

Proof of Theorem 1.3 from Theorem 2.4. Let Cn be the set of all n-vertex oriented cycles whose underlying
undirected cycle is the canonical cycle with vertex set [n]. Recall that, for each C ∈ Cn, λ(C) is the
number of vertices of C with in- or out-degree 0, and pC = max{log n, 2(log n − λ(C))}/2n if λ(C) > 0,
and pC = log n/n otherwise.

Let ε > 0 be small and fixed and p = p(n). Note that, for Theorem 1.3, we can assume that
(minC∈Cn pC)/(1− ε) ≤ p ≤ (maxC∈Cn pC)/(1 + ε), and thus that log n/2(1− ε)n ≤ p ≤ log n/(1 + ε)n.
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Now, (1 + ε)p ≥ (1 + ε) log n/2(1− ε)n > log n/2n, so if we have C ∈ Cn and pC ≥ (1 + ε)p, then

log n− log λ(C)

n
= pC ≥ (1 + ε)p,

and hence C has at most n exp(−(1+ε)pn) vertices with in-degree 0. On the other hand, we will show that
D = D(n, p) is likely to have more than n exp(−(1 + ε)pn) vertices with in-degree 0, and thus contain no
such cycle. Note that, for each v ∈ V (D), the probability that d−D(v) = 0 is (1−p)n−1 ≥ exp(−(1+ε/2)pn).
Furthermore, this is independent for each v ∈ V (D). Thus, as (1 + ε)pn ≤ log n and the expected number
of vertices with d−D(v) = 0 is at least n · exp(−(1 + ε/2)pn), by Lemma 3.8, with high probability there are
more than n exp(−(1 + ε)pn) vertices with degree 0 in D. Thus, with high probability, D(n, p) contains
no cycle C ∈ Cn with pC ≥ (1 + ε)p.

Now, if C ∈ Cn has pC ≤ (1− ε)p, then

log n− log λ(C)

n
≤ (1− ε)p,

and hence C has at least n exp(−(1 − ε)pn) vertices with in-degree 0. On the other hand, the expected
number of vertices in D(n, p) with out-degree 0 or in-degree 0 is at most

2n(1− p)n−1 ≤ 2n exp(−p(n− 1)) = o(n exp(−(1− ε)pn)/ log2 n).

Therefore, with high probability, D(n, p) has at most n exp(−(1 − ε)pn)/ log2 n vertices with in- or out-
degree 0. Furthermore, as log n/2(1 − ε)n ≤ p ≤ log n/(1 + ε)n, the probability that D(n, p) contains a
vertex with total in- and out-degree less than 3 is at most

n ·
2∑
i=0

(
2n− 2

i

)
pi(1− p)2(n−1)−i ≤ 3n(2np)2 exp(−p(2n− 4)) = o(1).

Therefore, with high probability, each vertex in D(n, p) has total in- and out-degree at least 3 (and hence,
in particular, no vertices with in- and out-degree both 1).

Let P be the property of digraphs D such that, for all s, t and n, if D has n vertices, s of which have
in-degree 0 or out-degree 0 and t of which have in-degree 1 and out-degree 1, and d+

D(v) + d−D(v) ≥ 2,
then D contains a copy of every n-vertex cycle with at least 1 + (s− 1) log n changes in direction and at
most n− 1− (t− 1) log n changes in direction. Thus, it is sufficient to complete the proof of the theorem
to show that, with high probability, D(n, p) ∈ P.

Let η > 0. By Theorem 2.4, there is some n0 such that, for each 0 ≤ M ≤ n(n − 1), if Dn,M is a
random digraph chosen uniformly from those with vertex set [n] and M edges, then P(Dn,M ∈ P) ≥ 1−η.
Then,

P(D(n, p) ∈ P) =

n(n−1)∑
M=0

P(e(D(n, p)) = M) ·P(Dn,M ∈ P) ≥
n(n−1)∑
M=0

P(e(D(n, p)) = M) · (1− η) = (1− η).

Thus, as n0 was chosen depending only on η, we have, with high probability, that D(n, p) is in P, as
required.
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