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Abstract

Given a collection of graphs G = (G1, . . . , Gm) with the same vertex set, an m-edge graph H ⊂ ∪i∈[m]Gi
is a transversal if there is a bijection φ : E(H) → [m] such that e ∈ E(Gφ(e)) for each e ∈ E(H). We give

asymptotically-tight minimum degree conditions for a graph collection on an n-vertex set to have a transversal

which is a copy of a graph H, when H is an n-vertex graph which is an F -factor or a tree with maximum

degree o(n/ logn).

1 Introduction

Many important problems in Extremal Graph Theory can be expressed as subgraph containment problems, asking

what conditions on a graph G guarantee that it contains a copy of another graph H. For example, Mantel’s

theorem from 1907 states that if n ≥ 3, then any n-vertex graph with more than n2/4 edges contains a triangle.

When G and H have the same number of vertices, it is natural to impose a minimum degree condition on G, as

seen in Dirac’s theorem from 1952. That is, every graph with n ≥ 3 vertices and minimum degree at least n/2

contains a Hamilton cycle. Similarly, when r|n and H is formed of n/r vertex-disjoint copies of Kr (i.e., when

H is a Kr-factor), Hajnal and Szemerédi [11] showed that if G has n vertices and δ(G) ≥ (1 − 1/r)n, then G

contains a copy of H.

For these results on Hamilton cycles and Kr-factors, the minimum degree condition used is exactly best

possible. When considering more general classes of graphs H, exact minimum degree conditions appear more

difficult to obtain, and instead asymptotically best possible results have often been shown. For example, Komlós,

Sárközy, and Szemerédi [15] showed that, for each α > 0, there is some c > 0 and n0 ∈ N, such that any

graph with n ≥ n0 vertices and minimum degree at least (1/2 + α)n contains a copy of every n-vertex tree with

maximum degree at most cn/ log n. This is tight up to the value of c and n0. For any r-vertex graph F , Kühn

and Osthus determined the smallest value of δ such that, for each ε > 0, there is some n0 ∈ N such that any

graph with n ≥ n0 vertices and minimum degree at least (δ + ε)n contains an F -factor if r|n [18]. For more

results concerning different graphs H, see the survey by Kühn and Osthus [17].

In this paper, we will consider a generalisation of the subgraph containment problem to the study of transver-

sals, where, roughly speaking, one element is selected from each of a collection of sets so that the set of selected

elements (the transversal) has some desired property. This framework was introduced by Aharoni (see [2]), using

the terminology of rainbow colouring. More precisely, we say that G = (G1, . . . , Gm) is a graph collection on

vertex set V if, for each i ∈ [m], Gi is a graph with vertex set V . We denote the size m of the collection by
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|G|. Given G = (G1, . . . , Gm), we say that an m-edge graph H on V is a G-transversal if there is an injection

φ : E(H) → [m] such that e ∈ Gφ(e) for each e ∈ E(H). Problems expressible using this framework include

the graphical matroid case of Rota’s generalised basis conjecture, which states that if G = (G1, . . . , Gn−1) is a

collection of trees with vertex set [n], then there is a G-transversal which is itself an n-vertex tree (see [7]).

Aharoni, DeVos, de la Maza, Montejano and Šámal [2] showed that if (G1, G2, G3) is a graph collection on

[n] with e(Gi) > ( 26−2
√
7

81 )n2 for each i ∈ [3], then G contains a transversal which is a triangle. Interestingly,

as shown in [2], the constant 26−2
√
7

81 > 1/4 cannot be improved here, and therefore a stronger minimum degree

condition for the transversal triangle problem is required compared to Mantel’s theorem. As mentioned in [2], it

remains an open problem to prove a comparable result for Kr, for values of r above 3 (cf. Turán’s generalisation

of Mantel’s theorem).

Confirming a conjecture of Aharoni (see [2]) and improving on an asymptotically-tight result of Cheng, Wang,

and Zhao [9], Joos and Kim [12] showed that, if n ≥ 3, then any n-vertex graph collection G = (G1, . . . , Gn)

with δ(G) ≥ n/2 has a transversal which is an n-vertex cycle. By taking each graph in G to be the same, we can

recover Dirac’s theorem, and hence this result is similarly tight and gives a transversal generalisation of Dirac’s

theorem. Joos and Kim [12] also showed the analogous result for a G-transversal which is a matching.

In this paper, we determine asymptotically tight minimum degree conditions on a graph collection G which

guarantee a G-transversal isomorphic to an F -factor, or any specific spanning tree without a very high maximum

degree. That is, we give asymptotically tight transversal versions of the theorems of Hajnal and Szemerédi [11]

and Kühn and Osthus [18] on factors, and a transversal generalisation of the theorem of Komlós, Sárközy and

Szemerédi on spanning trees [15]. Throughout, we aim to use general methods adaptable to finding transversals

isomorphic to different graphs, using the results of the classical graph problem as a ‘black box’ as much as

possible. After giving our results below on transversal spanning trees, and transversal factors, we finish this

section with a discussion of transversals satisfying additional constraints or isomorphic to other graphs.

Spanning trees. Our first result is a direct transversal analogue of Komlós, Sárközy and Szemerédi’s theorem

on spanning trees in dense graphs [15]. That is, defining δ(G) to be the smallest minimum degree among the

graphs in G, we prove the following.

Theorem 1.1. For each α > 0, there exist c > 0 and n0 ∈ N such that the following holds for all n ≥ n0.

Suppose G is a graph collection on [n] with |G| = n− 1 and δ(G) ≥ (1/2 +α)n. If T is an n-vertex tree with

maximum degree at most cn/ log n, then there is a G-transversal which is isomorphic to T .

Setting each graph Gi in Theorem 1.1 to be the same graph G with minimum degree at least (1/2 + α)n,

recovers Komlós, Sárközy, and Szemerédi’s theorem; thus, Theorem 1.1 is similarly tight up to the value of c

and n0.

Transversal factors. For each graph F , let δF be the smallest real number δ ≥ 0 such that, for each ε > 0 there

is some n0 such that, for every n ≥ n0 with |F | dividing n, if an n-vertex graph H has minimum degree at least

(δ+ε)n, then H contains an F -factor. As recalled above, for each r ≥ 3, we have that δKr
= 1−1/r by the result

of Hajnal and Szemerédi [11], while in general the value of δF was determined by Kühn and Osthus [18]. In most

cases, δF is linked to the critical chromatic number, while we always have 1− 1/(χ(F )− 1) < δF ≤ 1− 1/χ(F )

(for more details see [18]).

We will show that, in most cases, the same minimum degree bound is asymptotically sufficient for the existence

of F -factor transversals, as follows.

Theorem 1.2. Let ε > 0 and let F be a graph on r vertices with t edges. If δF ≥ 1/2 or F has a bridge, then

let δTF = δF , and otherwise let δTF = 1/2. Then, there is some n0 such that the following holds for all n ≥ n0.

Suppose G is a graph collection on [rn] with |G| = tn and δ(G) ≥ (δTF +ε)rn. Then, G contains a transversal

which is an F -factor.
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As the classical graph problem can be deduced by again taking G to be copies of the same graph, it follows

from the minimality of δF that to show Theorem 1.2 is asymptotically tight we need only show that if F has

no bridge then Theorem 1.2 does not hold for any value of δTF below 1/2. To see this, suppose F has no bridge,

and take two disjoint sets A and B with size brn/2c and drn/2e respectively. For each i ∈ [tn − 1], let Gi be

the union of a clique on A and a clique on B. Let Gtn be the complete bipartite graph with bipartition (A,B),

and let G = (G1, . . . , Gtn). If G contains a transversal which is an F -factor, then the copy of F with an edge

in Gtn can have only this edge between the sets A and B, and thus F has a bridge, a contradiction. Therefore,

G contains no F -factor transversal. As δ(G) = brn/2c − 1, Theorem 1.2 thus does not hold for any value of δTF
below 1/2.

Our methods to prove Theorem 1.2 allow some control over which edges in the F -factor appear in which

graphs in G. Namely, using the same framework, we also prove the following natural variation of Theorem 1.2.

Theorem 1.3. Let ε > 0 and let F be an r-vertex graph. Then, there is some n0 such that the following holds

for all n ≥ n0.

Suppose G is a graph collection on [rn] with |G| = n and δ(G) ≥ (δF + ε)rn. Then, there are vertex-disjoint

F -copies Fi ⊂ Gi, i ∈ [n].

When F is a clique, the above result has connections to the study of cooperative colourings, a variation on

graph colourings introduced in [3] (see also [1]). Given a graph collection (G1, . . . , Gm) on V , we say that the

collection can be cooperatively coloured if there exists a choice of independent sets Ii ⊆ Gi (i ∈ [m]) such that⋃
i∈[m] Ii = V . By taking complements, the F = Kr case of Theorem 1.3 could be viewed as giving a sufficient

condition for a graph collection to be equitably cooperatively coloured, that is, via independent sets of the same

size.

Stronger conditions on transversals. In the problems we have considered, we have typically sought a copy

of a graph H in a graph collection where each edge of the copy of H is provided by a different graph in the

collection. We could also specify which edge of H should have its copy provided by which graph. We will sketch

how our proofs can be modified to show that this is possible in Theorem 1.2 if F is a clique (see Section 6), but also

that in general the minimum degree condition may need to be raised for this to be possible (see Proposition 6.4).

Other transversals and our techniques. Throughout the paper, we use as general techniques as possible

to move from embedding graphs using minimum degree conditions to embedding graphs as transversals using

minimum degree conditions. These techniques are described in Section 2.2. The methods we use form a good

starting framework for finding transversals isomorphic to other graphs. For example, due to Komlós, Sárközy

and Szemerédi it is known that, for each k ≥ 1, there is some n0 such that any graph with n ≥ n0 vertices and

minimum degree at least kn/(k + 1) contains the kth power of a Hamilton cycle [16]. It seems likely that the

kth power of a Hamilton cycle can be found as a transversal in any n-vertex graph collection with minimum

degree (k/(k + 1) + α)n, if n is large relative to k and 1/α, and that this could be shown by adapting our

techniques and proving slightly strengthened versions of the non-transversal embedding problem. To see what

kind of modifications to the non-transversal embedding problem is required by our approach, see Section 4.2.

Recent related results. During the final preparation of this manuscript, Cheng, Han, Wang, and Wang

released a manuscript [8] proving Theorem 1.2 in the special case that F is a clique, along with analogous results

for hypergraph transversals.

In the next section, after covering our notation, we discuss our proofs before giving an outline of the rest of

the paper.

3



2 Proof sketch and preliminaries

For convenience, we will use colour terminology for the rest of the paper. Given a graph collection G =

(G1, . . . , Gm), we consider each graph Gi to have a colour i. Given a subgraph H ⊂ ∪i∈[m]Gi, we allow each

edge e ∈ E(H) to be assigned the colour i if e ∈ E(Gi). Then, H is a transversal if each edge can be assigned

a different colour. As often in the area of edge colourings, we call graphs with a different colour for each edge

rainbow. When we say H ⊂ ∪i∈[m]Gi is uncoloured, we are simply highlighting that we have not yet assigned a

colouring to H.

2.1 Notation

We use standard graph theory notation throughout, but describe here some of the more common notation we

use. A graph G has e(G) edges and |G| vertices, while, given any set V ⊂ V (G) and a vertex v ∈ V (G), d(v, V )

is the number of neighbours of v in V . We often describe finding a copy, S say, of a graph T in a graph G.

When we do so we implicitly assume that we have found an embedding φ : T → G with image S. Thus, when

we say that s is the copy of a vertex t ∈ V (T ) in S, we mean that s = φ(t) without referencing or labelling the

function φ.

Recall that a graph collection G = (G1, . . . , Gm) is a collection of (not necessarily distinct) graphs Gi, i ∈ [m],

which all have the same vertex set, and δ(G) = mini∈[m] δ(Gi). Given a graph collection G = (G1, . . . , Gm) with

vertex set V , and a set U ⊂ V , G[U ] is the collection of graphs Gi[U ], i ∈ [m], induced on the vertex set U . We

set |G| to denote the size of G = (G1, . . . , Gm), so that, in this case, |G| = m.

We use standard hierachical notation for constants, writing x� y to mean that there is a fixed positive non-

decreasing function on (0, 1] such that the subsequent statements hold for x ≤ f(y). Where multiple constants

appear in a hierarchy, they are chosen from right to left. We omit rounding signs where they are not crucial.

2.2 Proof sketch

We first sketch how we embed spanning trees before discussing the adaptations we make to embed factors. We

start by discussing two key techniques, and then give an overview of the structure of the proof.

Rainbow subgraphs using surplus colours. In the proof of Theorem 1.1, we will embed the n-vertex tree

T one small subtree at a time into randomly sampled vertex subsets of the appropriate size. More precisely,

suppose we are trying to embed in a rainbow fashion a subtree T ′ ⊆ T on a vertex subset S ⊆ [n] where S is

sampled randomly amongst |T ′|-sized subsets. As the graph collection G[S] will have δ(G) ≥ (1/2+α/2)|S| with

high probability, this problem is quite similar to the original problem of embedding T in G. The key difference is

that, assuming T ′ is small, |G[S]| is much larger than we need it to be to find a rainbow embedding of T ′ on S.

For example, if |T ′| = o(n), |G[S]| = n− 1, so that G has C times more graphs than we need to find a rainbow

embedding, where C is a large constant. Hence, the problem of embedding T ′ is equivalent to proving a version

of Theorem 1.1 where the graph collection has size Cn, as opposed to n− 1.

To illustrate how much simpler this problem is in comparison, suppose 1/n � 1/C � α, m = Cn and let

G = (G1, . . . , Gm) be a graph collection on [n] with δ(G) ≥ (1/2 + α)n. We let G be the graph with vertex set

[n] formed by the edges which appear in at least 2n graphs Gi. As m is much larger than 2n, it follows that G has

almost as good a minimum degree condition as G (see Proposition 2.1), so that we will have δ(G) ≥ (1/2+α/2)n.

If we can use an uncoloured embedding result to find a copy of an n-vertex tree T in G, then we can greedily

colour its edges using different colours as each edge has at least 2n possible colours in G.

By embedding T as a sequence of subtrees, deleting colours used on each embedded rainbow subtree as we go

along, we can iteratively apply the above argument to prove a version of Theorem 1.1 where the graph collection

has size (1 + o(1))n as opposed to Cn (see Section 4.3).

4



Colour absorption. To move from a version of Theorem 1.1 with (1 + o(1))n graphs in G to the actual

statement of Theorem 1.1 , we use absorption, as first codified by Rödl, Ruciński and Szemerédi [22]. Suppose

first that in G with |G| = n − 1 we could embed a small subtree of T , say S, such that given any e(S)-sized

subset C̃ of [n− 1], we can colour the (uncoloured) image of S using exactly the colours in C̃. Here, we will have

e(S)� n− 1. Leaving the image of S uncoloured, we then extend the embedding to T while giving each newly

embedded edge a different colour, relying on the e(S) surplus colours we have to do this. Finally, we take the

e(S) unused colours and use them to give a rainbow colouring to S. In the language of absorption we say the

embedding of S absorbs these unused colours.

Unfortunately, our embedding of S will not be able to absorb any set of e(S) colours. Instead, we find disjoint

subsets C,A ⊆ [n− 1], such that the embedding of S has a rainbow colouring using exactly the colours in C̃ ∪A,

for any set C̃ ⊂ C of e(S)−|A| colours (see Step 1 in the proof overview below). Thus, C functions as a reservoir

of colours to assist with extending the embedding of S to one of T while colouring the newly embedded edges

with different colours in [n− 1] \A. Here, we will have that e(S), |A| � |C| � n− 1.

The only additional complication here is that we need to ensure we use every colour outside of C ∪A at some

earlier stage in the embedding (see Step 2 and Step 3 below), so that any remaining colour is absorbable by

the embedding of S.

We now discuss how we embed S (and find sets A,C) with this absorber-reservoir property. Let 0 < 1/n�
ε � α. Using an auxiliary graph similar to G above, we can embed S, an εn-edge subtree of T , into G =

(G1, . . . , Gn−1), so that each embedded edge is in at least 2εn graphs in G. Edge-by-edge, we randomly give

each edge of S one of its possible colours, ensuring that this results in a rainbow colouring. Letting φ be the

embedding of S, note that if an edge e of φ(S) has colour i, then we can alter the colouring of φ(S) by recolouring

e with any unused colour j with e ∈ E(Gj). This gives a rainbow colouring of φ(S) in which the colour i has

been switched for j, and can be done for at least εn values of j for each colour i appearing on the image of S.

We can now combine many switchings of the above form to build chains of switchings with which we can

build the desired reservoir property. Consider an auxiliary digraph K with vertex set [n− 1] where ~ij is an edge

whenever there is an edge with colour i in φ(S) which appears in E(Gj), noting that this graph will have Ωε(n
2)

edges. Let 0 < µ� ε. Suppose we could find a large set C of colours not on φ(S) and a set B of ` := µn colours

on φ(S) such that, given any set C̃ ⊂ C of ` colours, there are ` vertex-disjoint directed paths from B to C̃ in

K. Then, the set C and the set A of colours of φ(S) not in B, together have the property we want. Indeed,

given any set C̃ ⊂ C of ` colours, we can use ` vertex-disjoint paths from B to C̃ in K to carry out a sequence

of switchings along each path, resulting in φ(S) being coloured with exactly the colours in A ∪ C̃.

This illustrates the mechanism behind our colour absorption technique. In practice, to find the sets C and

B with this property, we consider the subgraph K ′ ⊂ K of edges ~ij ∈ E(K) for which we also have ~ji ∈ E(K).

It will be easy to see that the random embedding of S will likely result in K ′ also having Ωε(n
2) edges. This

allows us to apply a famous theorem of Mader to find a well-connected subgraph of the underlying undirected

graph of K ′, in which we can then use a version of Menger’s theorem to find vertex-disjoint paths. Any colours

with sufficiently many out-neighbours in K into the well-connected subgraph can then be allocated to the colour

reservoir C. More details on this can be found in Section 3.

Overview. To embed an n-vertex graph H which is a tree or a factor in a rainbow fashion in G, we use the

following overview, which is a common framework for embeddings using absorption. Where the n-vertex m-edge

graph H is a tree or an F -factor, we start by dividing H into four subgraphs H1 ∪H2 ∪H3 ∪H4 with carefully

chosen sizes, before embedding the subgraphs one by one into G = (G1, . . . , Gm) in the following five steps.

Step 1 Find a colour absorber. We embed H1 into ∪i∈[m]Gi, while finding disjoint sets A,C ⊂ [m] such that

given any e(H1) − |A| colours in C, we can give the embedding of H1 a rainbow colouring using exactly

those colours and the colours in A.
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Step 2 Use most of the colours not in A ∪ C. We extend the embedding of H1 to one of H1 ∪H2, colouring

the newly embedded edges in a rainbow fashion using most of the colours outside of A ∪ C.

Step 3 Use the last of the colours not in A∪C. We extend the embedding of H1∪H2 to one of H1∪H2∪H3,

using colours in C as well as every unused colour outside of A ∪ C for the newly embedded edges while

maintaining a rainbow colouring.

Step 4 Embed the last of the vertices of H using colours in C. We extend the embedding of H1 ∪H2 ∪H3

to one of H1 ∪H2 ∪H3 ∪H4, using unused colours in C for the newly embedded edges while maintaining

a rainbow colouring.

Step 5 Use the colour absorber. Finally, we use the remaining unused colours in C along with those in A to

colour the embedding of H1.

For Step 1 we use the colour absorption technique described above (and carried out in Section 3), and the

property we find allows us to later carry out Step 5. For Step 2 and Step 4 we further divide H2 and H4 into

subgraphs so that we can iteratively embed the smaller pieces while having relatively many surplus colours (as

described above, and as carried out in Section 4.3). For Step 3, by choosing H3 to be the smallest of H1, H2,

H3 and H4, we will ensure that we have many spare vertices and colours (from C) at this step to make it as easy

as possible to use the last of the colours not in A ∪ C.

Techniques for factors. The above techniques for spanning trees also work well for embedding F -factors so

that each edge is a different colour. However, we need to use a different approach for finding F -factors where the

edges of each copy of F have the same colour, which is different for each copy of F (that is, for Theorem 1.3).

The main difference is in finding F -factors with different coloured copies of F in graph collections where we

have more colours than we need. Suppose 1/n� 1/C � α, 1/r and G = (G1, . . . , GCn) is a graph collection on

[rn] with δ(G) ≥ (δF + α)rn, where F is an r-vertex graph. Set m := Cn. We wish to find n vertex disjoint

copies of F which can be each given a different colour. Taking some integer k with 1/n� 1/k � 1/C, consider a

random subset V of [rn] with rk vertices. It is very likely that, for most colours i ∈ [m], δ(Gi[V ]) ≥ (δF +α/2)|V |
(see Proposition 2.3), and, for each such i ∈ [m], Gi[V ] contains an F -factor. As the number of colours (Cn) is

very large, and the number of different F -factors with vertex set V is certainly at most (rk)!, we will be able to

find an F -factor H of G[V ] such that H ⊂ Gi for Ωk,r(n) colours i ∈ [m]. Thus, we can colour each copy of F in

H a different colour. Of course, this finds a coloured F -factor of G[V ], not G. However, by partitioning [rn] into

vertex sets V1 ∪ . . . ∪ V` with size around rk in which most colours have a good minimum degree condition (see

Lemma 2.5), we can iteratively apply this technique to find such an F -factor of G[Vi] in turn for i = 1, . . . , `,

each time using new colours (see Section 5.1).

Note that picking such a random subset V finds copies of F which can be coloured with many different colours

(see Claim 5.9). Therefore, we can use this to develop a colour absorber using the same ideas in the earlier sketch,

and in particular apply the same underlying result (Lemma 3.3) to an appropriate auxiliary graph.

Paper structure. In the rest of this section, we give some preliminary results we will use, most notably

proving our partitioning lemmas. In Section 3, we develop our colour absorption structures. In Section 4, we

prove Theorem 1.1. In Section 5, we prove Theorems 1.2 and 1.3. Finally, in Section 6, we discuss F -factors with

stronger conditions on the edge colouring.

2.3 Edges in many graphs in a graph collection

We now give the simple proposition that underpins our initial rainbow embedding using uncoloured embedding

results, as described in Section 2.2.
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Proposition 2.1. Let 0 ≤ α, δ ≤ 1 and m,n ∈ N. Let G be a graph collection on [n] with |G| = m and

δ(G) ≥ δn. Let G be the graph with vertex set [n], where e is an edge of G if e ∈ E(Gi) for at least αm values

of i ∈ [m]. Then, δ(G) ≥ (δ − α)n.

Proof. For each v ∈ [n], we have

m · δn ≤
∑
i∈[m]

dGi
(v) ≤ m · dG(v) + n · αm,

and therefore dG(v) ≥ (δ − α)n. Thus, δ(G) ≥ (δ − α)n.

2.4 Partitioning the vertex set

Here we will prove our two main results for partitioning the vertex set of a graph collection (Lemmas 2.4 and

2.5). For these we use the following standard concentration result (see, for example, [4]), followed by a simple

proposition on a single vertex subset chosen randomly.

Lemma 2.2. Let X be a hypergeometric random variable with parameters N , n and m1. Then, for any t > 0,

P(|X − E(X)| ≥ t) ≤ 2e−2t
2/n.

Proposition 2.3. Let 0 < δ′ < δ and k ≤ n ∈ N with 1/k � δ′. Let G be an n-vertex graph containing a vertex

set V with |V | ≥ k such that dG(v, V ) ≥ δn + 1 for each v ∈ V (G), and let w ∈ V (G). Then, if A ⊆ V is a

vertex set of size k chosen uniformly at random, we have

P (δ(G[{w} ∪A]) < δ′k) ≤ e−(δ−δ
′)2k.

Proof. Let t = (δ − δ′)k
√

2/3. For each v ∈ V , note that, conditioned on v ∈ A, dG(v,A) is hypergeometrically

distributed with parameters |V |−1, k−1 and dG(v, V ), and mean (k−1)·dG(v, V )/(|V |−1) ≥ (k−1)δn/(n−1) >

δ′k + t, where we have used that 1/k � δ′. Thus, by Lemma 2.2 applied with t we have

P (dG(v,A) < δ′k) ≤ 2e−
4
3 (δ−δ

′)2k.

Similarly, we have that P(dG(w,A) < δ′k) ≤ 2 exp(−4(δ − δ′)2k/3). Therefore, the probability that we have

δ(G[{w} ∪A]) < δ′k is at most

P(dG(w,A) < δ′k) +
∑
v∈V

P(v ∈ A) · P (dG(v,A) < δ′k|v ∈ A) ≤ 2(k + 1)e−
4
3 (δ−δ

′)2k ≤ e−(δ−δ
′)2k,

as required.

For embedding spanning trees, we use the following partition result into constantly many vertex sets.

Lemma 2.4. Let 0 < 1/n� ε, α ≤ 1, and let δ > 0, n ∈ N and m ≤ n/ε. Suppose G = (G1, . . . , Gm) is a graph

collection with vertex set [n] and suppose V ⊂ [n] such that dGi
(v, V ) ≥ (δ + ε)n for each i ∈ [m] and v ∈ [n].

Let k ∈ N, and let n1, . . . , nk ≥ αn be integers such that
∑
i∈[k] ni = |V |.

Then, there is a partition V = V1 ∪ . . .∪ Vk such that, for each i ∈ [k], |Vi| = ni and dGj (v, Vi) ≥ (δ + ε/2)ni
for each j ∈ [m] and v ∈ [n].

Proof. Pick a partition [n] = V1 ∪ . . . ∪ Vk uniformly at random from such partitions where, for each i ∈ [k],

|Vi| = ni. As ni ≥ αn for each i ∈ [k], we have that the probability there is an i ∈ [k], j ∈ [m] and v ∈ [n] with

dGj
(v, Vi) < (δ + ε/2)ni is, by Proposition 2.3, at most k ·m · n · exp(−ε2αn/4) = o(1). Therefore, there is some

partition for which the desired property holds.

1A hypergeometric random variable with parameters N , n and m takes value k with probability
(m
k

)(N−m
n−k

)
/
(N
n

)
.
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For embedding factors, we use the following partitioning result into many vertex subsets which each have

constant size. The proof is by an iterative partitioning, using calculations based on those by Barber, Kühn, Lo

and Osthus [5].

Lemma 2.5. Let 0 < 1/k � ε ≤ 1, and let δ > 0 and n ∈ N. Suppose G is a graph collection on vertex set [n]

with δ(G) ≥ (δ + ε)n. Let ` ∈ N, and let n1, . . . , n` ≥ k be integers such that
∑
i∈[`] ni = n. Let m = |G|.

Then, there is a partition [n] = V1 ∪ . . . ∪ V` such that, for each i ∈ [`], |Vi| = ni, and, for all but at most

m/k2 values of j ∈ [m], we have δ(Gj [Vi]) ≥ (δ + ε/2)ni.

Proof. For each r ∈ N and η ≥ 0, call I = (I1, . . . , Is) an (r, η)-good partition of [`] if there is a partition

U1 ∪ . . . ∪ Us of [n] satisfying the following.

A1 For each i ∈ [s], r/2 ≤ |Ii| ≤ r.

A2 For each i ∈ [s], |Ui| =
∑
j∈Ii nj .

A3 For each i ∈ [s], for all but at most ηm/k2 values of j ∈ [m], we have δ(Gj [Ui]) ≥ (δ + ε− η) |Ui|.

Note that I = ([`]) is an (`, 0)-good partition of [`], and, as ε ≤ 1, to show the lemma it is sufficient to show

that [`] has a (1, ε/2)-good partition. We will show such a partition exists by repeatedly applying the following

claim.

Claim 2.6. For each m, m̄ ≥ 1 with m/2 ≤ m̄ ≤ m ≤ ` and η > 0, if [`] has an (m, η)-good partition, then it

has an (m̄, η + (km̄)−1/3)-good partition.

Proof. Let (I1, . . . , Is) be an (m, η)-good partition of [`] with accompanying partition U1 ∪ . . . ∪ Us of [n]. For

each i ∈ [s], let mi = b2|Ii|/m̄c, so that, by A1, mi ≤ 4, and let Ii be a partition of Ii into sets Ii,1 ∪ . . . ∪ Ii,mi

with m̄/2 ≤ |Ii,j | ≤ m̄ for each j ∈ [mi]. For each i ∈ [s], partition Ui as ∪j∈[mi]Ui,j uniformly at random so that

|Ui,j | =
∑
i′∈Ii,j ni′ for each j ∈ [mi]. Note that this is possible by A2.

Let η̄ = (km̄)−1/3. For each i ∈ [s], let Ji be the set of j ∈ [m] with δ(Gj [Ui]) ≥ (δ + ε− η) |Ui|, so that |[m]\
Ji| ≤ ηm/k2 by A3. For each j′ ∈ [mi], let Ji,j′ be the set of j ∈ [m] with δ(Gj [Ui,j′ ]) ≥ (δ + ε− η − η̄) |Ui,j′ |.
Let p = exp(−(km̄)−1/4). Then, by Proposition 2.3, for each j ∈ Ji, as |Ui,j′ | ≥ k|Ii,j′ | ≥ km̄/2, we have

P(j /∈ Ji,j′) = P(δ(Gj [Ui,j′ ]) < (δ + ε− η − η̄)|Ui,j′ |) ≤ exp(−η̄2|Ui,j′ |) ≤ exp(−η̄2km̄/2) ≤ p.

Therefore, as |[m] \ Ji| ≤ ηm/k2, using Markov’s inequality we have, for each j′ ∈ [mi],

P(|[m] \ Ji,j′ | ≥ (η + η̄)m/k2) ≤ P(|Ji \ Ji,j′ | ≥ η̄m/k2) ≤ pm

η̄m/k2
≤ 1/10, (1)

as 1/k � 1. For each i ∈ [s], let Ei be the event that, for each j ∈ [mi], we have |[m] \ Ji,j | ≥ (η + η̄)m/k2. As

mi ≤ 4, by (1), we have that Ei holds with positive probability.

Noting that any events Ei and Ej are independent if i 6= j, we can therefore choose partitions Ui,j , i ∈ [s]

and j ∈ [mi], such that Ei holds for each i ∈ [s]. Let s′ =
∑
i∈[s]mi and relabel the sets Ii,j and Ui,j , i ∈ [s] and

j ∈ [mi], as I ′1, . . . , I
′
s′ and U ′1, . . . , U

′
s′ to get an (m̄, η + (km̄)−1/3)-good partition, as required.

For the appropriate integer a ≤ 2 log2 `, take the shortest sequence of integers `0 = `, . . . , `a = 1 with

`i = d`i−1/2e for each i ∈ [a]. Now, [`] has an (`, 0)-good partition, and therefore, by repeated application

of Claim 2.6, it has an (`a,
∑a
i=0(k`i)

−1/3)-good partition. Note that
∑a
i=0(k`i)

−1/3 ≤ k−1/3
∑a
i=0 2−i/3 ≤

3k−1/3
∑∞
i=0 2−i = 6k−1/3 ≤ ε/2, as 1/k � ε. As `a = 1, we thus have that [`] has a (1, ε/2)-good partition, as

required.
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3 Colour absorption

We now detail our colour absorption, as described in Section 2.2. We start by recalling a famous theorem of

Mader and a version of Menger’s theorem (see, for example, [6]), as follows.

Theorem 3.1. Every graph with average degree at least 4k has a (k + 1)-connected subgraph.

Theorem 3.2. If a graph G is k-connected and contains two disjoint subsets A,B ⊂ V (G) with size k, then G

contains k vertex-disjoint paths from A to B.

We now prove a lemma (Lemma 3.3), which allows us to find the sets A and C described in Section 2.2.

We prove this in a more general setting to be applied to an auxiliary bipartite graph. This shows that in an

unbalanced dense bipartite graph we can robustly find a matching covering the smaller class, as follows.

Lemma 3.3. Let α ∈ (0, 1) and let n,m and ` ≥ 1 be integers satisfying ` ≤ α7m/105 and α2n ≥ 8m. Let H be

a bipartite graph on vertex classes A and B such that |A| = m, |B| = n and, for each v ∈ A, dH(v) ≥ αn.

Then, there are disjoint subsets B0, B1 ⊂ B with B0 = m− ` and |B1| ≥ α7n/105, and the following property.

Given any set U ⊂ B1 of size `, there is a perfect matching between A and B0 ∪ U in H.

Proof. Label the vertices of A as a1, . . . , am. Note that, using Jensen’s inequality,∑
{i,j}∈[m](2)

|N(ai) ∩N(aj)| =
∑
b∈B

(
dH(b)

2

)
≥ n ·

(
e(H)/n

2

)
≥ n ·

(
(m · αn)/n

2

)
≥ α2m2n

4
. (2)

Now, the pairs {i, j} ∈ [m](2) with |N(ai) ∩ N(aj)| < α2n/4 collectively contribute at most α2m2n/8 to the

sum on the left hand side of (2), so that the sum over the other terms must be at least α2m2n/8. Therefore, as

|N(ai) ∩N(aj)| ≤ n for each {i, j} ∈ [m](2), there are at least α2m2n/8n such terms. That is, letting I be the

set of pairs {i, j} ∈ [m](2) with |N(ai) ∩N(aj)| ≥ α2n/4, we have |I| ≥ α2m2/8.

For each i = 1, . . . ,m in turn, chose bi uniformly at random from N(ai) \ {b1, . . . , bi−1}, noting that this is

possible as dH(ai) ≥ αn > m. Note further that, for each {i, j} ∈ I with i < j, given any choices for b1, . . . , bi−1,

we have, as m ≤ α2n/8, that

P(bi ∈ N(aj)) ≥
|N(ai) ∩N(aj)| −m

n
≥ α2

8
,

and, similarly, given any choices for b1, . . . , bj−1, we have P(bj ∈ N(ai)) ≥ α2/8. Therefore, for each {i, j} ∈ I,

we have P(bi ∈ N(aj) and bj ∈ N(ai)) ≥ α4/64.

Let K be the auxiliary graph with vertex set [m], where ij is an edge exactly if bi ∈ N(aj) and bj ∈ N(ai).

Now,

E(e(K)) ≥
∑
{i,j}∈I

P(bi ∈ N(aj) and bj ∈ N(ai)) ≥ |I| · α4/64 ≥ α6m2/512.

Therefore, there is some choice of b1, . . . , bm for which e(K) ≥ α6m2/512, so that K has average degree at least

α6m/256. Now, by Theorem 3.1, we can take a subgraph K ′ ⊂ K which is (α6m/104)-connected. Let U1 = V (K ′)

and note that |U1| ≥ α6m/104 ≥ 10`/α ≥ 10`. Pick a subset U0 ⊂ U1 of size `. Let B0 = {bi : i ∈ [m] \ U0} and

A0 = {ai : i ∈ U1 \ U0}. Let B1 = {v ∈ B \ {b1, . . . , bm} : dH(v,A0) ≥ `}. We claim that B0 and B1 have the

desired properties.

First note that |A0| = |U1| − ` ≥ α6m/104 − ` ≥ 9α6m/105. Then, as dH(v) ≥ αn for each v ∈ A0, we have

|B1| ≥
e(A0, B \ {b1, . . . , bm})− `n

m
≥ 9α6m/105 · (αn−m)− `n

m
≥ α7n

105
,

as required. Now, take an arbitrary subset U ⊂ B1 with size `, and label U as {u1, . . . , u`}. As u1, . . . , u` ∈ B1,

we can take distinct d1, . . . , ds ∈ U1 \U0 such that ui ∈ NH(adi) for each i ∈ [`]. As K ′ is (α6m/104)-connected,
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and hence `-connected, by Theorem 3.2 there is a set of ` vertex-disjoint paths in K ′ between the vertex disjoint

sets {d1, . . . , d`} and U0. Say these paths are P1, . . . , P`, and direct their edges from {d1, . . . , d`} to U0.

We are now ready to define an injection φ : A → B0 ∪ U so that {aφ(a) : a ∈ A} is a matching in H. For

each i ∈ [m], do the following to define φ(ai).

• If i ∈ [m] \ (∪j∈[`]V (Pj)), then let φ(ai) = bi.

• If i ∈ ∪j′∈[`]V (Pj′), and there is some j such that ~ji ∈ ∪j′∈[`]E(Pj′), then let φ(ai) = bj . (Note that, as

ij ∈ E(K), bj ∈ NH(ai).)

• If i ∈ ∪j′∈[`]V (Pj′), and there is no j such that ~ji ∈ ∪j′∈[`]E(Pj′), then, using that i ∈ {d1, . . . , d`}, find

j ∈ [`] such that dj = i and let φ(ai) = uj . (Note that, by the choice of the indices dj , we have that

uj ∈ NH(ai).)

Note that, for each j ∈ [m], except for the end vertices of the directed paths Pi, i ∈ [`], we have φ(ak) = bj
for exactly one value of k ∈ [m], whereas for the end-vertices there is no such value of k. The end vertices of

these paths are exactly the vertices in U0, and therefore every vertex in B0 appears as some φ(ai) exactly once.

Furthermore, under φ, the starting vertices j of the paths Pi, i ∈ [`], have the corresponding vertices aj mapped

injectively by φ to U = {u1, . . . , u`}. Therefore, {aφ(a) : a ∈ A} is a matching from A to B0 ∪ U .

We now give the form of our colour absorption lemma that we use for spanning trees (though we state it more

generally). As noted in Section 2.2, the colour absorption we use for factors is very similar, but altered so that

it can be used for Theorem 1.3, and we implement this in Section 5.

Lemma 3.4. Let 1/n � γ � β � α and δ ≥ 0. Let H be a graph with e(H) = βn and such that any n-

vertex graph with minimum degree at least δn contains a copy of H. Let G be a graph collection on [n] with

δ(G) ≥ (δ + α)n and |G| = m ≥ αn.

Then, there is a copy S of H in ∪i∈[m]Gi and disjoint sets A,C ⊂ [m], with |A| = e(H)−γn and |C| ≥ 10βm

such that the following property holds. Given any subset B ⊂ C with |B| = γn, there is a rainbow colouring of S

in G using colours in A ∪B.

Proof. Let G be the graph with vertex set [n], where e ∈ [n](2) is an edge of G exactly when e ∈ E(Gi) for at

least αm values of i ∈ [m]. Then, by Proposition 2.1, δ(G) ≥ δn, and, therefore, G contains a copy of H, S say.

Let K be the bipartite graph with vertex classes E(S) and [m], where ei is an edge exactly if e ∈ Gi. Note

that, for each e ∈ E(S), as e ∈ E(G), we have that dK(e) ≥ αm. Then, as γ � β � α, by Lemma 3.3 with

` = γn, m = βn, n = m, there are disjoint sets A,C ⊂ [m] with |A| = e(H)− γn and |C| ≥ 10βm, such that, for

any set B ⊂ C of size γn there is a perfect matching between E(S) and A ∪ B. Note that for such a matching

M , the function φ : E(S) → A ∪ B, defined by eφ(e) ∈ M for each e ∈ E(S), gives a rainbow colouring of S in

G using colours in A ∪B, as required.

4 Transversal spanning trees

We now embed spanning trees in a rainbow fashion using Step 1 to Step 5 in the outline in Section 2.2. In

Section 4.1, we give some simple results we use to partition trees into pieces in order to carry out these steps,

as well as to prove our results for these steps. In Section 4.2, we deduce a version of Komlós, Sárközy and

Szemerédi’s tree embedding theorem in which one vertex of the tree is embedded to a pre-specified vertex. In

Section 4.3, we embed a tree using a small but linear number of surplus colours, as motivated in the proof sketch

in Section 2.2. In Section 4.4, we embed a tree while using specific colours when we have many surplus vertices,

meaning that the vertex set of the tree we are embedding is smaller than the vertex subset we are trying to

embed the tree to. In Section 4.5 we then carry out the outline in Section 2.2 to prove Theorem 1.1.
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4.1 Partitioning trees

We will use the following simple proposition to divide a tree into subtrees (see, for example, [21, Proposition 3.22]).

Proposition 4.1. Let n,m ∈ N satisfy 1 ≤ m ≤ n/3. Given any n-vertex tree T containing a vertex t ∈ V (T ),

there are two edge-disjoint trees T1, T2 ⊂ T such that E(T1) ∪ E(T2) = E(T ), t ∈ V (T1) and m ≤ |T2| ≤ 3m.

The first implication of this we will use is that a tree can be divided into many pieces of roughly equal size,

as follows.

Corollary 4.2. Let n,m ∈ N satisfy m ≤ n. Given any n-vertex tree T , there is some ` ∈ N and edge-disjoint

trees T1, . . . , T` ⊂ T such that ∪i∈[`]E(Ti) = E(T ) and, for each i ∈ [`], m ≤ |Ti| ≤ 4m.

Proof. Let ` be the largest integer for which there are edge-disjoint trees T1, . . . , T` ⊂ T such that ∪i∈[`]E(Ti) =

E(T ) and, for each i ∈ [`], |Ti| ≥ m. If |Ti| > 4m, for any i ∈ [`], then by Proposition 4.1 there are two edge-

disjoint trees S1, S2 ⊂ Ti such that E(S1)∪E(S2) = E(Ti) and m ≤ |S2| ≤ 3m. Note that |S2| = |Ti|− |S1|+1 ≥
m. Replacing Ti in T1, . . . , T` with S1 and S2 gives a sequence of edge-disjoint trees which contradicts the

maximality of `.

When embedding a spanning tree T , we will divide it into subtrees T1, T2, T3 and T4, before embedding them

in that order in the steps laid out in Section 2.2. This division will follow from the following proposition.

Proposition 4.3. Let n,m1,m3,m4 ∈ N satisfy 1 ≤ m1,m3,m4 ≤ n/10. Given any tree T with n vertices,

we can find four edge-disjoint trees T1, T2, T3 and T4 such that E(T ) = ∪i∈[4]E(Ti), mi ≤ |Ti| ≤ 3mi for each

i ∈ {1, 3, 4}, and T1 ∪ T2 and T1 ∪ T2 ∪ T3 are connected trees.

Proof. Using Proposition 4.1, find edge-disjoint trees T ′ and T1 such that E(T ) = E(T ′) ∪ E(T1) and m1 ≤
|T1| ≤ 3m1. Let t1 be the vertex in both T1 and T ′. Noting that |T ′| ≥ 7n/10 ≥ 3m4, using Proposition 4.1 find

edge-disjoint trees T ′′ and T4 such that E(T ′) = E(T ′′) ∪E(T4), m4 ≤ |T4| ≤ 3m4 and t1 ∈ V (T ′′). Noting that

|T ′′| ≥ 4n/10 ≥ 3m3, using Proposition 4.1, find edge-disjoint trees T2 and T3 such that E(T ′) = E(T2)∪E(T3),

m3 ≤ |T3| ≤ 3m3 and t1 ∈ V (T2).

Note that, as t1 ∈ V (T1) ∩ V (T2), T1 ∪ T2 is connected, and as T2 ∪ T3 = T ′′, T1 ∪ T2 ∪ T3 is also connected.

Therefore, the trees T1, T2, T3 and T4 satisfy the required conditions.

4.2 Embedding trees with a fixed vertex

We need a simple strengthening of Komlós, Sárközy and Szemerédi’s tree embedding theorem in which we have

the extra condition that one vertex of the tree is embedded to a pre-specified vertex in the graph, as follows.

Theorem 4.4. Let 1/n � c � α. Let G be an n-vertex graph with δ(G) ≥ (1/2 + α)n. Let T be an n-vertex

tree with ∆(T ) ≤ cn/ log n. Let t ∈ V (T ) and v ∈ V (G). Then, G contains a copy of T with t copied to v.

To record this precisely (and to prove it without regularity), we use the following two results from a recent

proof of a directed version of Komlós, Sárközy and Szemerédi’s theorem by the first author and Kathapurkar [13].

The results we cite below can be deduced directly from Theorem 2.1 and Theorem 2.2 in [13] by applying them

to a directed graph formed by adding directed edges in both directions between any vertex pair connected by an

edge in a graph G. Additionally, in the statement of Lemma 4.5, we record a strengthened version of Theorem 2.1

from [13] in which the vertex t is copied is specified beforehand. This strengthened statement follows from the

proof of Theorem 2.1 in [13] as the proof begins by embedding t to an arbitrary vertex of G.

Lemma 4.5. Let 1/n � c � ε � µ � α. Let G be a graph with vertex set [n] with δ(G) ≥ (1/2 + α)n. Let T

be a tree with µn vertices and suppose ∆(T ) ≤ cn/ log n. Let t ∈ V (T ) and v ∈ [n].

Then, there exists some A ⊆ [n] of size (µ − ε)n with v ∈ A such that for any set V ⊆ [n]\A of size εn,

G[A ∪ V ] contains a copy of T in which t is copied to v.
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Lemma 4.6. Let 1/n� c� ε, α. Let G be an n-vertex graph with δ(G) ≥ (1/2 + α)n. Let T be a tree with at

most (1− ε)n vertices and suppose ∆(T ) ≤ cn/ log n. Let t ∈ V (T ) and v ∈ V (G).

Then, there exists a copy of T in G in which t is copied to v.

Using these results, we can now prove Theorem 4.4.

Proof of Theorem 4.4. Let ε and µ satisfy c � ε � µ � α. Using Proposition 4.1, take two edge-disjoint trees

T1 and T2 such that E(T ) = E(T1)∪E(T2), t ∈ V (T2), and µn ≤ |T1| ≤ 3µn. Let s be the vertex common to T1
and T2 and assume that V (G) = [n]. We now embed T into G differently according to whether s = t (Case I),

st ∈ E(T ) (Case II), or neither of these hold (Case III).

Case I: if s = t. Using Lemma 4.5, there is some V1 ⊆ [n] of size |T1| − 2εn with v ∈ V1 such that the following

holds. For any set V ⊆ [n] with V1 ⊂ V and |V | = |T1|, G[V ] contains a copy of T1 in which t is copied to v.

Let V2 = {v} ∪ ([n] \ V1), so that |[n] \ V2| ≤ |V1| ≤ 3µn. Therefore, as µ � α, for each w ∈ [n], we have

dG(w, V2) ≥ (1/2 + α/2)n ≥ (1/2 + α/2)|V2|. As |V2| ≥ n − |V1| ≥ |T2| + εn, by Lemma 4.6, there is a copy S2

of T2 in G[V2] in which t is copied to v. Using the property of V , there is a copy, S1 say, in G− (V (S2) \ {v}) of

T1 in which t is copied to v. Combining S1 and S2 gives the desired copy of T .

Case II: if s 6= t and st ∈ E(T ). Let T ′1 = T1 and let T ′2, T
′
3 be the two components of T2 − st, labelling them

so that s ∈ V (T ′2) and t ∈ V (T ′3). Let vs be a neighbour of v in G. Using Lemma 4.5 applied to G− v, there is

some V1 ⊆ [n] \ {v} of size |T ′1| − 3εn with vs ∈ V1 such that the following holds. For any set V ⊆ [n] \ {v} with

V1 ⊂ V and |V | = |T ′1|, G[V ] contains a copy of T ′1 where s is copied to vs.

Now, for each w ∈ [n], we have dG(w, [n]\V1) ≥ (1/2+α/2)n. Furthermore, |[n]\(V1∪{v})| ≥ n−|T ′1|+3εn ≥
|T ′2|+|T ′3|+2εn. Therefore, by Lemma 2.4, there is some partition [n]\(V1∪{v}) = V2∪V3 such that |V2| ≥ |T ′2|+εn
and |V3| = |T ′3|+ εn, and d(w, Vi) ≥ (1/2 + α/4)|Vi| for each w ∈ [n] and i ∈ {2, 3}.

Therefore, by Lemma 4.6, there is a copy S2 of T ′2 in G[V2 ∪ {vs}] in which s is copied to vs. Similarly,

there is a copy S3 of T ′3 in G[V3] in which t is copied to v. Using the property of V , there is a copy, S1 say, in

G− ((V (S2) \ {vs})∪V (S3)) of T ′1 in which s is copied to vs. Combining S1, S2 and S3 and the edge vsv ∈ E(G)

gives the desired copy of T .

Case III: s 6= t and st /∈ E(T ). Let s0 = s and label vertices so that s0s1s2 are the initial vertices of the path

from s to t in T2. Note that this is possible as such a path has length at least 2 as s 6= t and st /∈ E(T ). Let

T ′1 = T1. Let T ′2, T ′3 and T ′4 be the components of T2 − {s0s1, s1s2} containing s0, s1 and s2 respectively. Note

that t ∈ V (T ′4). Pick w0 ∈ [n] \ {v} arbitrarily. Applying Lemma 4.5 to G− v, there is some V1 ⊆ [n] \ {v} of size

|T ′1| − 5εn with w0 ∈ V1 such that the following holds. For any set V ⊆ [n] \ {v} with V1 ⊂ V and |V | = |T ′1|,
G[V ] contains a copy of T ′1 in which s0 is copied to w0.

Now, for each w ∈ [n], we have dG(w, [n] \ (V1 ∪ {v})) ≥ (1/2 + α/2)n. Furthermore, |[n] \ (V1 ∪ {v})| ≥
|T ′2| + |T ′3| + |T ′4| + 4εn. Therefore, by Lemma 2.4, there is some partition [n] \ (V1 ∪ {v}) = V2 ∪ V3 ∪ V4 ∪W
such that |Vi| ≥ |T ′i |+ εn for each i ∈ {2, 3, 4} and |W | = εn, and, for each w ∈ [n], d(w,W ) ≥ (1/2 + α/4)|W |
and d(w, Vi) ≥ (1/2 + α/4)|Vi| for each i ∈ {2, 3, 4}.

Therefore, as |V4 ∪ {v}| ≥ |T ′4|+ εn, there is a copy S4 of T ′4 in G[V4 ∪ {v}] in which t is copied to v. Let w2

be the copy of s2 in S4. Using the minimum degree condition into W , pick w1 ∈ W so that it is a neighbour of

w0 and w2. Using that |V2 ∪{w0}| ≥ |T ′2|+ εn, and Lemma 4.6, there is a copy S2 of T ′2 in G[V2 ∪{w0}] in which

s0 = s is copied to w0. Similarly, using Lemma 4.6, there is a copy S3 of T ′3 in G[V3 ∪{w1}] in which s1 is copied

to w1. Using the property of V , there is a copy, S1 say, in G− ((V (S2) ∪ V (S3) ∪ V (S4)) \ {w0}) of T ′1 in which

s0 is copied to w0. Combining S1, S2, S3 and S4 along with the path w0w1w2 gives the desired copy of T .
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4.3 Embedding spanning trees with surplus colours

For Step 2 and Step 4, we now embed a spanning tree when we have surplus colours by dividing the tree into

constantly many roughly-equal pieces and iteratively embedding each piece into randomly chosen subsets in a

rainbow fashion. By dividing the tree into pieces we boost the proportion of surplus colours at each iteration,

allowing us to embed using the following simple lemma.

Lemma 4.7. Let 1/n� c, 1/C � α and let G be a graph collection on [n] with |G| = Cn and δ(G) ≥ (1/2+α)n.

Let T be an n-vertex tree with ∆(T ) ≤ cn/ log n. Let t ∈ V (T ) and v ∈ [n].

Then, there exists a rainbow copy of T in G in which t is copied to v.

Proof. Let G be the graph on [n] where e ∈ [n](2) is an edge exactly if |{i ∈ [Cn] : e ∈ E(Gi)}| ≥ n − 1. By

Proposition 2.1, we have that δ(G) ≥ (1/2 + α/2)n. By Theorem 4.4, then, G contains a copy of T in which t is

copied to v. As the copy of T has n − 1 edges, each of which appears in at least n − 1 graphs Gi, i ∈ [Cn], we

may greedily select a distinct colour of G for each such edge, giving a rainbow copy of T in G.

Having proved Lemma 4.7 for the iterative step, we can now prove our result for Step 2 and Step 4.

Lemma 4.8. Let 1/n � c � ε, α. Let G be a graph collection with vertex set [n], |G| ≥ (1 + ε)n and

δ(G) ≥ (1/2 + α)n. Let T be an n-vertex tree with ∆(T ) ≤ cn/ log n. Let t ∈ V (T ) and v ∈ [n].

Then, there exists a rainbow copy of T in G in which t is copied to v.

Proof. Let m = |G| ≥ (1 + ε)n. Let µ satisfy c� µ� ε, α and let C = 10/
√
µ. By Corollary 4.2, we can find for

some ` ∈ N, edge-disjoint subtrees T1, . . . , T` such that E(T ) = ∪i∈[`]E(Ti), and, for each i ∈ [`], µn ≤ |Ti| ≤ 4µn.

Without loss of generality, we may assume T1 ∪ . . . ∪ Ti is a tree for each i ∈ [`], and that t ∈ V (T1). For each

i ∈ [`], let ni = |Ti|− 1. Note that
∑
i∈[`] ni = n− 1. Using Lemma 2.4, let [n] \ {v} = V1 ∪ . . .∪V` be a partition

with |Vi| = ni for each i ∈ [`] and dGi
(w, Vj) ≥ (1/2 + α/2)nj for each w ∈ [n], j ∈ [`] and i ∈ [m].

Now, noting that |G| ≥ C · e(T1) and c � µ, 1/C � ε, α, and using Lemma 4.7, embed T1 to G[V1] in

a rainbow manner so that t is embedded to v. Now, suppose for some j ∈ [` − 1] that T1 ∪ . . . ∪ Tj has

been embedded in a rainbow manner into G[V1 ∪ . . . ∪ Vj ]. We describe how to embed Tj+1. Let t′ be the

vertex common to Tj+1 and T1 ∪ . . . Tj , and let v′ ∈ [n] be the image of t′ under the embedding. Note that

δ(Gi[{v′} ∪ Vj+1]) ≥ (1/2 + α/4)(1 + nj+1) and there are at least εn− 1 ≥ C · e(Tj+1) graphs Gi that have not

been used in the rainbow embedding of T1 ∪ . . .∪Tj . Then, by Lemma 4.7 there is a rainbow embedding of Tj+1

into G[Vj+1] in which t′ is embedded to v′ and which uses colours not used in the embedding of T1 ∪ . . . ∪ Tj .
Thus, the embeddings combine to give a rainbow embedding of T1 ∪ . . .∪Tj+1 into G[V1 ∪ . . .∪Vj+1]. Therefore,

we can reach a rainbow embedding of T = T1 ∪ . . . ∪ T` into G, as desired, in which, furthermore, t is copied to

v.

4.4 Covering colours

In this section, we prove a result that allows us to perform Step 3 for embedding spanning trees. It is straightfor-

ward to embed a tree in a rainbow fashion using exactly a fixed set of colours in a graph collection with minimum

degree higher than the number of edges of a tree, as follows.

Lemma 4.9. Let m,n ∈ N satisfy m ≤ n− 1. Let G be a graph collection on [n] with |G| = m and δ(G) ≥ m.

Let T be an m-edge tree. Let t ∈ V (T ) and v ∈ [n].

Then, G contains a rainbow copy of T in which t is copied to v.

Proof of Lemma 4.9. Let t0 = t. By iteratively removing leaves which are not t, label the vertices of V (T ) \ {t}
as t1, . . . , tm so that T [{t0, . . . , ti}] is a tree for each i ∈ [m]. For each i ∈ [m], let si be the neighbour of ti in

T [{t0, . . . , ti}].

13



Let G = (G1, . . . , Gm) be the graph collection, and set φ(t0) = v. Greedily, for each i ∈ [m] in turn, select

φ(ti) ∈ [n] \ {φ(tj) : j < i} such that φ(si)φ(ti) ∈ E(Gi). Note that this is always possible as δ(G) ≥ m. Finally,

note that φ(T ) with each edge φ(si)φ(ti), i ∈ [m], given colour i is a rainbow copy of T in G in which t0 = t is

copied to φ(t0) = v.

4.5 Proof of Theorem 1.1

We can now prove Theorem 1.1, using the five steps outlined in Section 2.2. Given any set of colours C, we say

a graph is C-rainbow if its edges have been given distinct colours in C.

Proof of Theorem 1.1. Let γ, β be such that c� γ � β � α. By Proposition 4.3, we can find four edge-disjoint

trees T1, T2, T3 and T4 such that T1 ∪ T2 and T1 ∪ T2 ∪ T3 are connected trees, E(T ) = ∪i∈[4]E(Ti), and the

following holds. We have βn ≤ |T1|, |T4| ≤ 3βn and γn ≤ |T3| ≤ 3γn. Let m = n− 1 and label the graphs in G

so that G = (G1, . . . , Gm).

Step 1. By Lemma 3.4, there is an uncoloured copy S1 of T1 in ∪i∈[m]Gi, and disjoint sets A,C ⊂ [m] with

|A| = e(T1)− γn and |C| ≥ 4βm such that the following property holds.

P Given any subset B ⊂ C with |B| = γn, there is an (A ∪B)-rainbow colouring of S1 in G.

By removing elements of C, assume that |C| = e(T4) + γn.

Step 2. Let V1 = V (S1) and n1 = |T1|. Let n2 = |T2|−1 and n3 = |T3|+ |T4|−2. Note that n−n1 = n2 +n3
and, for each v ∈ [n] and i ∈ [m],

dGi
(v, [n] \ V1) ≥ (1/2 + α)n− |V1| ≥ (1/2 + α/2)n ≥ (1/2 + α/2)(n2 + n3).

Therefore, by Lemma 2.4, there is a partition [n] \ V1 = V2 ∪ V3 such that |V2| = n2, |V3| = n3, and, for each

j ∈ {2, 3}, v ∈ [n] and i ∈ [m], dGi(v, Vj) ≥ (1/2 + α/4)nj .

Let t1 be the vertex common to both T1 and T2, and let v1 be the copy of t1 in S1. Note that, for each v ∈ [n]

and i ∈ [m], dGi
(v, V2 ∪ {v1}) ≥ (1/2 + α/8)(n2 + 1). Furthermore, note that

|[m] \ (A ∪ C)| = e(T )− (e(T1)− γn)− (e(T4) + γn) = e(T2) + e(T3) ≥ |T2|+ γn/2. (3)

Therefore, by Lemma 4.8, there is an ([m] \ (A ∪ C))-rainbow copy S2 of T2 in G with vertex set V2 ∪ {v1} in

which t1 is copied to v1.

Step 3. Let B be the set of colours in [m] \ (A ∪ C) not used for S2, and note that

|B| = m− |A ∪ C| − e(T2)
(3)
= (e(T2) + e(T3))− e(T2) = e(T3).

Let t2 be the vertex common to both T1 ∪ T2 and T3, and let v2 be the copy of t2 in S1 ∪ S2. Note that, for

each v ∈ [n] and i ∈ [m], dGi(v, V3 ∪ {v2}) ≥ (1/2 + α/8)(n3 + 1). Furthermore, n3 ≥ |T4| ≥ βn, |T3| ≤ 3γn and

γ � β. Therefore, by Lemma 4.9, there is a B-rainbow copy S3 of T3 in G[V3 ∪ {v2}] in which t2 is copied to v2.

Step 4. Let V4 = V3 \ V (S3), so that |V4| = |T4| − 1. Let t3 be the vertex common to both T1 ∪ T2 ∪ T3 and

T4, and let v3 be the copy of t3 in S1 ∪ S2 ∪ S3. Note that, for each v ∈ [n] and i ∈ [m], as γ � β,

dGi
(v, V4 ∪ {v3}) ≥ (1/2 + α/4)n3 − |S3| ≥ (1/2 + α/8)n3 ≥ (1/2 + α/8)|T4|.

Recall that |C| = e(T4) + γn. Therefore, by Lemma 4.8, there is a C-rainbow copy S4 of T4 in G[V4 ∪ {v3}] in

which t3 is copied to v3.

Step 5. Let B′ be the set of colours in [m] not used on S2 ∪S3 ∪S4, so that A ⊂ B′ and |B′| = e(T1). Using

P, colour S1 so that is it B′-rainbow. Then, S1 ∪ S2 ∪ S3 ∪ S4 is a rainbow copy of T in G, as required.
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5 Transversal factors

In this section, we prove Theorem 1.2 and Theorem 1.3. We do this under one statement (Theorem 5.2), using

the following definition. A t-copy of a graph F is a copy of F with an edge-colouring using exactly t colours.

Definition 5.1. Let F be an r-vertex graph with at least t edges, and let G be a graph collection on vertex

set [rn]. An (F, t)-factor in G is a vertex-disjoint union of t-copies of F in G, such that these t-copies share no

colours, and every vertex appears in some t-copy.

As an (F, e(F ))-factor in G is a simply a rainbow F -factor, and an (F, 1)-factor is a collection of monochromatic

copies of F using different colours, Theorems 1.2 and 1.3 follow immediately from the following result.

Theorem 5.2. Let 1/n � α, 1/r, let F be a graph on r vertices with at least 1 edge, and let t ∈ {1, e(F )}. If

δF ≥ 1/2 or F has a bridge, then let δTF = δF , and otherwise let δTF = 1/2.

Suppose G is a graph collection on [rn] with |G| = tn. If t = 1, then suppose δ(G) ≥ (δF + α)rn, while if

t = e(F ), then suppose δ(G) ≥ (δTF + α)rn. Then, G contains an (F, t)-factor.

We prove Theorem 5.2 using the outline in Section 2.2. In Section 5.1 we embed factors when we have many

spare colours, for Step 2 and Step 4. In Section 5.2, we find (F, t)-copies while making sure we use a set of

specified colours, for Step 3. In Section 5.3, we then give the proof of Theorem 5.2.

5.1 Factors with spare colours

We show here that Theorem 5.2 holds if the graph collection G has linearly more elements than we need, as

follows.

Lemma 5.3. Let 1/n � ε, η, 1/r, 1/t. Let F be an r-vertex graph with at least t edges, and let m = (1 + η)nt.

Suppose G is a graph collection with vertex set [rn], with |G| = m and δ(G) ≥ (δF + ε)rn. Then, G contains an

(F, t)-factor.

Proof. Let k ∈ N satisfy 1/n � 1/k � ε, η, 1/r, 1/t. Choose ` ∈ N, and k ≤ n1, . . . , n` ≤ 2k such that

n =
∑
i∈[`] ni. By Lemma 2.5, there is a partition [rn] = V1 ∪ . . . ∪ V` with |Vi| = rni for each i ∈ [`], and for all

but at most m/k2 ≤ ηnt/2 values of j ∈ [`], we have δ(Gj [Vi]) ≥ (δF + ε/2)|Vi|.
Let j ≤ ` be the largest integer for which G[V1∪. . .∪Vj ] contains an (F, t)-factor, F̄ say. Assume that j < `, for

otherwise we are done. Let Ij+1 ⊂ [m] be the set of colours i not used on F̄ for which δGi
(Vj+1) ≥ (δF+ε/2)|Vj+1|,

noting that

|Ij+1| ≥ m− t ·
∑
i∈[j]

ni − ηnt/2 ≥ m− n− ηnt/2 ≥ ηnt/2.

Now, for each i ∈ Ij+1, Gi[Vj+1] contains an F -factor as 1/k � ε, 1/r. There are at most (rnj+1)! ≤ (2rk)!

distinct F -factors on rnj+1 vertices, so as 1/n � η, 1/k, 1/r, 1/t, there is some vertex-disjoint union of nj+1

copies of F , F ′ say, such that F ′ ⊂ Gi[Vj+1] for at least tnj+1 values of i ∈ Ij+1. Greedily colour the edges of F ′

using t colours from Ij+1 for each copy of F , and using different colours for different copies of F . Then, F̄ ∪ F ′
is an (F, t)-factor of G[V1 ∪ . . . ∪ Vj+1], which contradicts the maximality of j.

5.2 Using specific colours in factors

In this section, we find (F, t)-factors which exhaust a given large set of colours (for Step 3 in Section 2.2).

We begin by collecting some useful auxiliary results. The following lemma is a consequence of the standard

(regularity-free) proof of the Erdős-Stone theorem (see, for example, [6]). Recall that Kr(t) is a complete r-

partite graph with t vertices in each vertex class.
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Lemma 5.4. Let 1/n� 1/T � 1/t� ε, 1/r. Suppose G is an n-vertex graph with δ(G) ≥ (1− 1/(r− 1) + ε)n,

and K is a copy of Kr−1(T ) contained in G. Then, G contains a copy of Kr(t) whose intersection with K is a

copy of Kr−1(t).

The following lemma is a standard consequence of the Kővári-Sós-Turán theorem.

Lemma 5.5. Let 1/n� γ, 1/t. Then, any n-vertex graph with at least γn2 edges contains a copy of Kt,t.

Finally, we recall the following well known fact (see [18]).

Fact 5.6. For any graph F with at least 1 edge, δF > 1− 1/(χ(F )− 1).

We first prove a lemma that allows us to ensure we use one given colour while finding an (F, t)-copy, as follows.

Lemma 5.7. Let 1/n� 1/m� ε, 1/r. Let F be an r-vertex graph with at least 1 edge and let t ∈ {1, e(F )}. Let

G = (G1, . . . , Gm) be a graph collection on vertex set [n] with δ(G) ≥ (δF + ε)n. Suppose that F has a bridge,

or δ(G) ≥ (1/2 + ε)n, or t = 1. Then G contains a t-copy of F which uses at least one edge from G1.

Proof. Note that this follows directly from the definition of δF when t = 1. Suppose, then, that t = e(F ).

Let G be the graph with vertex set [n] and edges exactly those which appear in at least t graphs in G. We

will now find an edge e ∈ E(G1) and a copy F ′ of F in G + e containing e. Giving e ∈ E(F ′) colour 1, and,

greedily, giving each other edge of F ′ (which is in E(G)) a distinct colour in [m] \ {1} completes the required

(F, t)-copy.

It is left then to find e and F ′, which we do differently depending on whether δ(G) ≥ (1/2 + ε)n (Case 1) or

whether F is a bipartite graph containing a bridge (Case 2). Note that, by Fact 5.6, if χ(F ) ≥ 3 then δF ≥ 1/2,

and thus these cases cover all eventualities.

Case 1: δ(G) ≥ (1/2+ε)n. Then, as 1/n� ε, 1/t, by Proposition 2.1, δ(G) ≥ max{(1/2+ε/2)n, (δF+ε/2)n}.
Let s = χ(F ) − 1, so that δF ≥ 1 − 1/s by Fact 5.6. Take integers r1, r2, . . . , rs so that rs = r and we have

1/n� 1/r1 � r2 � . . .� 1/rs, ε.

Now, for each v ∈ [n],

|NG(v) ∩NG1
(v)| ≥ (1/2 + ε/2)n+ (1/2 + ε)n− n = 3εn/2,

so that e(G ∩G1) ≥ 3εn2/4. Therefore, by Lemma 5.5, G ∩G1 contains a copy of K2(r1), K say. By Fact 5.6,

we have δ(G) ≥ (1− 1/s+ ε/2)n. Thus, applying Lemma 5.4 for each i = 2, . . . , s in turn, G contains a copy of

Ki+1(ri) whose intersection with K is a copy of K2(ri).

As rs = r, this gives us that G contains a a copy of Ks+1(r) whose intersection with K ⊂ G1 ∩ G is a copy

of K2(r). Note that this contains a copy of F , F ′ say, with at least one edge, e say, in K ⊂ G1, so that we have

e and F ′ as required.

Case 2: F is a bipartite graph containing a bridge. Then, as 1/n � ε, 1/t, by Proposition 2.1, δ(G) ≥
(δF + ε/2)n ≥ εn/2. Let xy be a bridge of F , and let F1 and F2 each be a union of components of F − xy,

choosing them to be vertex disjoint subgraphs and such that F − xy = F1 ∪ F2, x ∈ V (F1) and y ∈ V (F2).

As δ(G) ≥ (δF + ε/2)n, G contains some copy of F1, S1 say. Let s1 be the copy of x in S1. Using that

δ(G1) ≥ εn, let A ⊂ NG1
(s1) \ V (F1) be a set with size εn/4, and let B = [n] \ (V (S1) ∪ A). Let G′ be the

bipartite graph with vertex classes A and B with edges those in G between A and B. Note that, for each v ∈ A,

dG′(v) ≥ dG(v)− |A| − |S1| ≥ εn/5, so that e(G′) ≥ ε2n2/20. Then, by Lemma 5.5, G′ contains a copy of Kr,r,

and hence some copy of F2, S2 say, in which y is copied to some s2 ∈ A. Note that e := s1s2 ∈ E(G1), so that

F ′ = (S1 ∪ S2) + e is a copy of F in G+ e containing e, as required.

We use Lemma 5.7 iteratively to prove the following corollary, which we apply for Step 3 from Section 2.2.
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Corollary 5.8. Let 1/n � γ � ε, 1/r, let F be an r-vertex graph and let t ∈ {1, e(F )}. Suppose G =

(G1, . . . , Gm) is a graph collection with vertex set [rn], m ≥ 2tγn and δ(G) ≥ (δF + ε)rn. Let C ⊂ [m] satisfy

|C| ≤ γn. Suppose that t = 1, or δ(G) ≥ (1/2 + ε)rn, or F has a bridge.

Then, there is a set A ⊂ [rn] with |A| = rγn such that G[A] contains an (F, t)-factor which uses every colour

in C.

Proof. Note that we can assume that |C| = γn. Let C ′ ⊂ C be a maximal set for which there are vertex disjoint

subgraphs Fi, i ∈ C ′, such that, for each i ∈ C ′, Fi is an (F, t)-copy of F in G using colours in {i} ∪ ([m] \ C)

which has some edge of colour i and which uses no colours which appear on any Fi′ , i
′ ∈ C ′ \ {i}.

Noting that we are done by simply letting A = ∪i∈C′V (Fi) if C ′ = C, for contradiction assume there is some

j ∈ C \ C ′. Let B be the set of colours in [m] \ C which are not used on any of Fi, i ∈ C ′, and note that

|B| ≥ m − t|C ′| ≥ tγn. Let V = [rn] \ (∪i∈C′V (Fi)), and note that δ(G[V ]) ≥ δ(G) − εrn/2. Therefore, by

Lemma 5.7, there is an (F, t)-copy of F in δ(G[V ]) using colours in {j} ∪ B which has some edge of colour j.

Thus, the subgraphs Fi, i ∈ C ′ ∪ {j}, contradict the choice of C ′.

5.3 Proof of Theorem 5.2

We can now prove Theorem 5.2, again using the five steps in Section 2.2.

Proof of Theorem 5.2. Let γ, β and β̄ satisfy 1/n� γ � β � β̄ � α, 1/r.

If t = 1, then let δTF = δF . If t = e(F ), then let δTF = 1/2 if δF ≤ 1/2 and F does not have a bridge, and let

δTF = δF otherwise. Let G = (G1, . . . , Gtn) be a graph collection with vertex set [rn] for which δ(G) ≥ (δTF +α)rn.

To prove the theorem, it is then sufficient to find an (F, t)-factor in G.

Let n1 = βn/2, n3 = γn, n4 = βn and n2 = n− n1 − n3 − n4. At each step i in the outline in Section 2.2 we

will find ni more vertex-disjoint copies of F . We begin by proving the following claim for Step 1.

Claim 5.9. Given any set U ⊂ [rn] with |U | ≤ n1r, there is a copy F ′ of F with vertices in [rn] \ U such that

F ′ ⊂ Gj for at least β̄tn values of j ∈ [tn].

Proof of Claim 5.9. Let k satisfy β̄ � 1/k � α, 1/r and note that δ(G([n]\U ])) ≥ (δTF +α/2)rn. Take a random

subset V ⊂ [rn] \ U with size rk and let J ⊂ [m] be the set of j ∈ [tn] such that δ(Gj [V ]) ≥ (δTF + α/4)rk. Note

that, by Lemma 2.3, E|J | ≥ tn/2, and therefore we can find such a set V for which |J | ≥ tn/2. For each j ∈ J ,

there is some copy Fj of F in Gj [V ]. As β̄ � 1/k, and there are at most (rk)r copies of F with vertices in V ,

there is some copy F ′ of F in ∪i∈[tn]Gi[V ] for which F ′ ⊂ Gj for at least β̄tn values of j ∈ J ⊂ [tn].

We now carry out our proof using the five steps sketched in Section 2.2.

Step 1. Using Claim 5.9, iteratively find vertex-disjoint copies F1, . . . , Fn1
of F in ∪i∈[tn]Gi such that, for each

i ∈ [n1], Fi ⊂ Gj for at least β̄tn values of j ∈ [tn]. Let K be the auxiliary bipartite graph with vertex classes

[n1]× [t] and [tn], where there is an edge between (i, i′) and j exactly if Fi ⊂ Gj .
By Lemma 3.3, there are disjoint subsets A,C ⊂ [tn] with |A| = tn1 − γn and |C| ≥ 2βtn, such that the

following holds.

Q Given any set U ⊂ A ∪ C with A ⊂ tn1 and |U | = tn1 there is a perfect matching between [n1] × [t] and

A ∪ U in K.

By removing elements of C, assume that |C| = tn4 + γn+ (t− 1)n3.

Step 2. Let V1 = ∪i∈[n1]V (Fi). Note that, for each v ∈ [n] and i ∈ [tn],

dGi
(v, [rn] \ V1) ≥ (δTF + α)rn− |V1| ≥ (δTF + α/2)rn ≥ (δTF + α/2)(n2 + n3 + n4).
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Therefore, by Lemma 2.4, there is a partition [n] \ V1 = V2 ∪ V3 with |V2| = n2 and V3 = n3 + n4 such that, for

each j ∈ {2, 3}, v ∈ [n] and i ∈ [tn], dGi(v, Vj) ≥ (δTF + α/4)|Vj |. Note that

|[tn] \ (A ∪ C)| = tn− (tn1 − γn)− (tn4 + γn+ (t− 1)n3) = tn2 + n3 ≥ (1 + γ2)tn2. (4)

Therefore, by Lemma 5.3, G[V2] contains a rainbow (F, t)-factor F̂2 using colours in [m] \ (A ∪ C).

Step 3. Let B be the set of colours in [m] \ (A ∪ C) not used for F̂2, and note that

|B| = |[tn] \ (A ∪ C)| − tn2
(4)
= (tn2 + n3)− tn2 = n3.

As, for each v ∈ [n] and i ∈ [m], dGi(v, V3) ≥ (1/2 + α/4)|V3|, and |C| ≥ tn4, by Corollary 5.8, there is a set

V ′3 ⊂ V3 with size rn3 such that G[V3] contains a rainbow (F, t)-factor F̂3 using colours in B ∪C such that every

colour in B appears on at least one edge.

Step 4. Let V4 = V3 \ V (S3), so that |V4| = rn4. Note that, for each v ∈ [n] and i ∈ [m], as γ � β,

dGi
(v, V4) ≥ (1/2 + α/4)r(n3 + n4)− rn3 ≥ (1/2 + α/8)rn4.

Let C̃ be the set of colours in C not used in F̂3. Note that A ∪ C̃ = tn − tn2 − tn3 = tn1 + tn4, and therefore

|C̃| = tn4 + γn. Therefore, by Lemma 5.3, as γ � β, there is a rainbow (F, t)-factor F̂4 using colours in C̃.

Step 5. Let B′ be the set of colours in [m] not used on F̂2 ∪ F̂3 ∪ F̂4, so that A ⊂ B′ and |B′| = tn1. Using Q,

colour F̂1 = F1∪ . . .∪Fn1
so that this forms an (F, t)-factor of G[V1] using colours in B′. Then, F̂1∪ F̂2∪ F̂3∪ F̂4

is an (F, t)-factor in G, as required.

6 Factors with a specified colouring

As mentioned in Section 1, we now discuss the following strengthened problem for factors. Given a graph

F formed of n vertex-disjoint copies of a fixed r-vertex t-edge graph H, and an injective colouring function

φ(E(H))→ [tn], what minimum degree conditions on a graph collection G = (G1, . . . , Gtn) with vertex set [rn]

suffice to find a copy of H in G in which the copy of each edge e ∈ E(H) has colour φ(e)? Note that we consider

only injective functions φ for convenience, and by including graphs multiple times in G we can extend to any

function φ(E(H))→ [tn].

To discuss this problem, let us first define the following minimum degree threshold for F -factors in r-partite

graphs.

Definition 6.1. Given a graph F with vertex set [r], let δpF be the smallest real number δ such that, for each

ε > 0, there exists n0 such that, for every n ≥ n0, the following holds.

Let H be a balanced r-partite graph with vertex classes V1, ..., Vr of size n. Suppose that, for each ij ∈ E(F ),

δ(H[Vi ∪ Vj ]) ≥ (δ + ε)n. Then, H contains an F -factor in which every copy of F has its i-th vertex in Vi.

The following result follows by modifying the techniques in Section 5 only slightly (as described below).

Theorem 6.2. Let 0 < 1/n� ε, 1/r and let F be an r-vertex graph with t edges. Let H be the disjoint union of

n copies of H and let φ : E(H)→ [tn] be a bijection.

Suppose G is a graph collection with vertex set [rn] with |G| = tn and δ(G) ≥ (δpF + ε) rn. Then G contains

a copy H ′ of H such that e ∈ Gφ(e) for each e ∈ E(H ′).

We remark that a simple random partitioning argument shows that δpF ≥ δF , and by a result in [14] (see

also [20]) it follows that δpKr
= δKr

= 1 − 1/r. A more recent result concerning cycles (see [10]) shows that
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δpCk
= (1 + 1/k) /2. More generally, the exact value of δpF is largely unknown. Furthermore, we do not know in

general whether the constant δpF in Theorem 6.2 is tight.

We now sketch the changes necessary to the proofs in Section 5 in order to prove Theorem 6.2. For this,

it is most convenient to consider how we found F -factors where each copy of F in G had a different colour

from [n] (i.e., the case of Theorem 5.2 when t = 1). Instead of n different colours, suppose we have n patterns

φi : E(F )→ [tn], i ∈ [n], where each φ is an injection and φi(E(F )), i ∈ [n], partition [tn]. Then, given a graph

collection with vertex set [rn] with |G| = tn and δ(G) ≥ (δpF + ε) rn, we wish to find n vertex-disjoint copies,

F1, . . . , Fn, of F in G, so that each e ∈ E(Fi) has colour φi(e). This allows us to follow the proof of Theorem 5.2

with t = 1 while replacing the n colours 1, . . . , n with the n patterns φ1, . . . , φn. Instead of repeating this at

length, we highlight only the two main adaptations required. The first is that in place of Lemma 5.7, we need

the following (much simpler) lemma to use the unused patterns outside the absorber at Step 3.

Lemma 6.3. Let 1/n� ε, 1/r. Let F be an r-vertex graph with t edges and let φ : E(F )→ [t] be an injection.

Let G = (G1, . . . , Gt) be a graph collection on vertex set [rn] with δ(G) ≥ (δpF + ε)rn. Then G contains n vertex

disjoint copies of F in which the copy of each edge e ∈ E(F ) has colour φ(e).

Proof. By Lemma 2.4, there is a partition [rn] = ∪t∈V (F )Vt such that |Vt| = n for each t ∈ V (F ) and dGj
(v, Vt) ≥

(δpF + ε/2)n for each t ∈ V (F ), v ∈ [n] and j ∈ [t]. Let G be the graph with vertex set [rn] where there is an edge

between v ∈ Vs and w ∈ Vt if and only if st ∈ E(F ) and vw ∈ E(Gφ(st)). Then, as 1/n� ε, 1/r, by the definition

of δpF , G contains an F -factor in which every copy of F has each vertex t ∈ V (F ) copied into Vt. Noting that

each e ∈ E(F ) lies in Gφ(e) shows that these copies of F have the required property.

The second adaptation is required in considering the colours i which maintain good minimum degree in Gi[V ]

for a random vertex set V . Instead, each time we need to consider which patterns φi have good minimum degree

in Gj [V ] for each colour j in the pattern φi (i.e., for each j ∈ φi(E(F ))). However, as each pattern only has t

colours, it will still hold that a very large proportion of patterns will satisfy this. This would allow us to apply

Lemma 6.3 in place of invoking the definition of δF in the proof of Lemma 5.3 and Claim 5.9.

Finally, using an example related to that given in [19], we show that the minimum degree bound in Theorem 6.2

needs to be larger than that used in Theorems 1.2 and 1.3 in certain cases. For each ε > 0, we show that there

exist graph collections of minimum degree at least (1− ε)n which do not contain every colouring of a sufficiently

large complete bipartite graph.

Proposition 6.4. Let 1/n � 1/t � ε. There exists a graph collection G on vertex set [n] with |G| = t2 and a

function φ : e(Kt,t)→ [t2] such that δ(G) ≥ (1− ε)n, and G contains no copy of Kt,t in which the copy of each

edge e ∈ E(Kt,t) has colour φ(e).

Proof. Let k be an odd integer such that 1/t� 1/k � ε and suppose Kt,t has vertex classes A and B and edges

{e1, . . . , et2}. For each edge e ∈ Kt,t, select ψ(e) uniformly at random from [k]. Given any two sets A′ ⊂ A and

B′ ⊂ B such that |A′|, |B′| ≥ ` := t/10k, the probability there is some j ∈ [k] and no edge e between A′ and

B′ with ψ(e) = k is at most k(1 − 1/k)`
2 ≤ k exp(−`2/k) = exp(−Ω(t2/k4)) = o(e−2t) as 1/t � 1/k. As there

are certainly at most 22t pairs of sets A′ ⊂ A and B′ ⊂ B of this size, by a union bound we can assume that

ψ : E(Kt,t)→ [k] has the following property.

R For any A′ ⊆ A and B′ ⊆ B such that |A′|, |B′| ≥ t/10k, ψ(A′ ×B′) = [k] .

We now construct a graph collection G = (G1, ..., Gt2) as follows. Let A1, . . . , Ak+1 be a nearly balanced

partition of [n]. Note that, as k+ 1 is even, Kk+1 admits a decomposition into k perfect matchings M1, . . . ,Mk.

Now, for each i ∈ [t2], let Gi be the graph obtained by removing all edges e ∈ Aj × Aj′ where {j, j′} ∈ Mψ(ei)

from the complete (k + 1)-partite graph with vertex partition A1, . . . , Ak+1. As 1/k � ε, δ(Gi) ≥ (1 − ε)n for

each i ∈ [t2].
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For each i ∈ [t2], let φ(ei) = i. Suppose, for contradiction, that F is a copy of Kt,t in G with vertex classes

U and V with edges {f1, . . . , ft2} such that, for each i ∈ [t2], fi is the copy of ei and fi ∈ E(Gφ(i)). Then, by

averaging, there are some j, j′ ∈ [k+ 1] with |U ∩Aj | ≥ t/(k+ 1) and |V ∩Aj′ | ≥ t/(k+ 1). For some i ∈ [k+ 1],

we have jj′ ∈ Mi. Now, let U ′, V ′ ⊂ V (Kt,t) be the sets copied to U ∩ Aj and V ∩ Aj′ respectively. Then, by

R, there is some i′ ∈ [t2] for which the edge ei′ lies between U ′ and V ′ and has ψ(ei′) = i. Therefore, as it is a

copy of ei′ , the edge fi′ lies between U ∩ Aj and V ∩ Aj′ and appears in Gφ(i′) = Gi′ . However, as ψ(ei′) = i,

fi′ ∈ Aj ×Aj′ and jj′ ∈Mi, this is a contradiction.
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