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Abstract

In the 1960’s, Erdős and Gallai conjectured that the edges of any n-vertex graph can be decomposed into O(n)

cycles and edges. We improve upon the previous best bound of O(n log log n) cycles and edges due to Conlon, Fox
and Sudakov, by showing an n-vertex graph can always be decomposed into O(n log⋆ n) cycles and edges, where
log⋆ n is the iterated logarithm function.

1 Introduction

When is it possible to decompose a graph into edge disjoint subgraphs with certain properties? Many classical problems
in extremal combinatorics fall within this framework and its natural hypergraph generalisation, while decomposition
problems have strong links to many other fields, including the design of experiments, coding theory, complexity theory
and distributed computing (see, for example, [3, 10, 32]). The particular case where we seek to decompose a graph
into cycles has a long history, dating back to the 18th century and Euler’s result on the existence of Euler tours. As
Veblen [53, 54] observed for his algebraic approach to the Four-Colour Theorem, Euler’s result immediately implies
that any graph with even vertex degrees (i.e., any Eulerian graph) has a decomposition into cycles. As it is immediate
that any graph with a vertex of odd degree cannot be decomposed into cycles, this exactly characterises which graphs
have cycle decompositions.

Another very classical cycle decomposition result is due to Walecki [44] from 1892, who showed it is possible to
decompose any complete graph with an odd number of vertices into Hamilton cycles. This gives a cycle decomposition
into few cycles, indeed, into optimally few cycles. This raises a very natural question of whether every Eulerian graph
has a cycle decomposition into few cycles? That only O(n) cycles might be needed to decompose any n-vertex Eulerian
graph is easily seen to be equivalent to the following classical conjecture of Erdős and Gallai [18] dating back to the
1960’s, which is one of the major open problems on graph decompositions.

Conjecture 1. Any n-vertex graph can be decomposed into O(n) cycles and edges.

While Conjecture 1 is equivalent to conjecturing that every n-vertex Eulerian graph can be decomposed into O(n)

cycles, as noted above, if they both hold then the optimal implicit constants in these conjectures seem likely to be
different. For the Eulerian problem, Hajós conjectured that n

2 cycles should be sufficient [43] (see also [6, 9, 12, 20, 23]),
while the best known lower bound for the number of cycles and edges required in Conjecture 1 is ( 32−o(1))n, as observed
by Erdős in 1983 [17], improving on a previous construction of Gallai [18] (see Section 6).

Since its formulation, the Erdős-Gallai Conjecture has often been highlighted (see, for example, [6, 11, 23, 25, 36, 48,
49]), with Erdős himself mentioning it in many of his open problem collections [14, 15, 16, 17]. Despite this attention,
and a lot of work on related problems over the years, direct progress towards the Erdős-Gallai Conjecture has only
been made within the last decade. The previous related results, which we discuss first, are mostly on the analogous
path decomposition problem and the covering version of the Erdős-Gallai conjecture.
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Path decompositions. In the 1960’s, Gallai [43] posed the analogous path decomposition version of Conjecture 1. In
particular, he conjectured that any connected n-vertex graph can be decomposed into at most n+1

2 paths. Lovász [43] in
1968 proved that any graph can be decomposed into at most n−1 paths. This follows easily from his complete solution
to the problem of how many paths or cycles one needs to decompose an n-vertex graph, to which the answer is

⌊
n
2

⌋
.

Currently the best general bound in the path decomposition problem is due independently to Dean and Kouider [13]
and Yan [56], who showed that any graph can be decomposed into at most ⌊ 2

3n⌋ paths. Gallai’s path decomposition
conjecture is known to hold for quite a few special classes of graphs, with connected planar graphs being the most
recent addition to the list. This latest result is due to Blanché, Bonamy and Bonichon in [5], where a more exhaustive
list of partial results can also be found.

Covering problems. Another interesting direction which has attracted a lot of attention is the covering version of
Conjecture 1, in which we do not insist that the cycles we find should be disjoint, only that together they contain all
the edges of the host graph. In 1985, Pyber [47] proved the covering version of the Erdős-Gallai conjecture, showing
that the edges of any n-vertex graph can be covered with n − 1 cycles and edges. The analogous covering version of
Gallai’s conjecture, raised by Chung [9] in 1980, has been settled first approximately by Pyber [49] in 1996 and then
completely by Fan [19] in 2002, who showed that the edges of any connected graph can be covered by

⌈
n
2

⌉
paths. The

covering version of Hajós’s conjecture was also solved by Fan [20], who showed that any n-vertex Eulerian graph can be
covered by at most ⌊n−1

2 ⌋ cycles, settling another conjecture of Chung. As with the other two covering results above,
this bound is best possible.

Results on the Erdős-Gallai conjecture. In more recent years, the Erdős-Gallai conjecture (along with more
accurate results on the implicit bounds) has been shown to hold for two large specific classes of graphs – random
graphs and graphs with linear minimum degree. The conjecture was first established for a typical binomial random
graph G(n, p) (for any p = p(n)) by Conlon, Fox and Sudakov [11]. Korándi, Krivelevich, and Sudakov [36] found the
correct leading constant here, showing that ( 14+

p
2+o(1))n cycles and edges are typically sufficient to decompose G(n, p).

For constant edge probability p, Glock, Kühn, and Osthus [25] were even able to determine with high probability the
exact minimum number of cycles and edges required to decompose a (quasi)random graph. On the other hand, the
Erdős-Gallai conjecture was first shown to hold for graphs with linear minimum degree again by Conlon, Fox and
Sudakov [11]. Very recently, the asymptotically correct bound of ( 32 + o(1))n cycles and edges has been proved by
Girão, Granet, Kühn, and Osthus [23] for large graphs with linear minimum degree.

A fundamental challenge towards establishing the Erdős-Gallai conjecture is its generality, and indeed these previous
results make progress only by imposing a fairly strong constraint on the structure or randomness of the graph. For
almost 50 years, the best known bound in the general case of the Erdős-Gallai conjecture (as observed by Erdős and
Gallai) came from a simple argument involving the iterative removal of a longest cycle, which shows that an n-vertex
graph can always be decomposed into O(n log n) cycles and edges. In 2014, Fox, Conlon and Sudakov [11] made the
first major breakthrough on this problem, showing that such a decomposition with only O(n log log n) cycles and edges
always exists. Here we will give the following improvement on this bound, where log⋆ n is the iterated logarithm
function.

Theorem 2. Any n-vertex graph can be decomposed into O(n log⋆ n) cycles and edges.

Key to the decompositions used by Conlon, Fox and Sudakov [11] was to show that a) graphs H with certain expansion
properties can be decomposed into O(|H|) cycles and few edges and b) any n-vertex graph G can be decomposed nicely
into such ‘expanders’ H and a small number of leftover edges. Combined, this gives a decomposition of G into O(n)

cycles and some leftover edges, and it can be shown that iterating this on the leftover edges while removing any
particularly long cycles causes the average degree of the leftover edges to drop significantly each time, so that after
log log n iterations the decomposition given by [11] is achieved.

To prove Theorem 2, essentially we need the average degree of the leftover edges to drop much faster, and so at b) we
have to take a much weaker condition on the ‘expanders’ H. Effectively we replace the strong expansion used in [11],
with a very weak sublinear expansion (as introduced by Komlós and Szemerédi [34, 35]), in particular using a robust
sublinear expansion where sets expand sublinearly despite the additional removal of a possibly-superlinear set of edges
(see Section 3.1 for a discussion of these forms of expansion and their background).

Using this much weaker form of expansion introduces a raft of issues when we decompose an expander into few cycles
and edges (for a) above), resulting in a very different approach to that used in [11]. In order to do this, we introduce a
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range of new tools, which we hope will find further applications. In particular, we would highlight a new approach to
robust sublinear expansion (see Section 3) and the (surprisingly difficult) result that randomly sampling the vertices of
an expander is likely to induce a subgraph with a (somewhat weaker) expansion property (see Lemma 19). Additional
new tools include a similar result but while randomly sampling edges, the (almost) decomposition of any graph into
robust sublinear expanders, and the finding of a sparse ‘connective skeleton’ in expanders to connect vertex pairs with
paths. These, and other tools, and how they come together to prove Theorem 2, are discussed in Section 2.2.

As discussed in Section 3.1, sublinear expansion has been useful in many different settings in which our tools may
also be useful (see Section 6 for some examples). In particular, robust sublinear expansion (specifically considering
the deletion of superlinearly many edges) is a very recent concept and we hope our new perspective and tools will
contribute to its development and use. Several of our intermediate results and tools might also ultimately prove useful
towards proving the Erdős-Gallai conjecture in full as they often decompose any n-vertex graph into O(n) cycles and
a graph with some other structure imposed. This is discussed further in our concluding remarks in Section 6.

2 Preliminaries

After we introduce our notation, we give a detailed sketch of our methods before outlining the rest of the paper.

2.1 Notation

Given a graph G we will denote by V (G) and E(G) its vertex and edge set, respectively. Given a vertex v ∈ V (G),
we denote its degree by dG(v) and the set of its neighbours by NG(v). We write ∆(G) for the maximum degree of a
vertex in a graph G. Given a subset of vertices U ⊆ V (G) we denote by NG(U) the set of vertices in V (G) \ U which
have a neighbour in U . Given U ⊆ V (G) we define Bi

G(U) as the set of vertices at distance at most i from a vertex
of U in the graph G, i.e. the ball of radius i around U in G, and write simply BG(U) = B1

G(U). Given V ⊆ V (G) we
write G[V ] for the subgraph of G induced by the vertex set V , and write G \ V for G[V (G) \ V ]. Given F ⊆ E(G) we
write G− F for the subgraph of G obtained by deleting all the edges in F . Given multiple (hyper)graphs H1, . . . ,Ht

we write H1 ∪ . . . ∪Ht for the (hyper)graph with vertex set
⋃

i∈[t] V (Hi) and edge set
⋃

i∈[t] E(Hi). Given vertices v

and u, by a vu-path/walk we refer to a path/walk joining v and u.

We write X ∼ Bin(n, p) to mean that X is a random variable distributed according to the binomial distribution with
parameters n and p. We denote by G(n, p) the binomial random graph defined as the graph with vertex set [n] in which
we sample every edge with probability p independently from all other edges. We write G ∼ G(n, p) to mean that G is
sampled according to G(n, p).

All our logarithms have base two. For each k ≥ 1, let log[k](n) = log log . . . log︸ ︷︷ ︸
k times

n, and let log[0] n = n. The iterated

logarithm function log⋆ n is the minimum number of times we need to apply the logarithm function to n until it becomes
at most one, that is, the least k ≥ 0 such that log[k] n ≤ 1.

Throughout the paper we make no attempt to optimise constants and logarithmic factors; often we are wasteful to
improve readability. With the same goal, we also omit floor and ceiling signs wherever they are not crucial.

2.2 Proof sketch

Our methods to find an (edge) decomposition into cycles and edges is iterative, where a single iteration, applied to an
n-vertex graph G with average degree d, performs the following steps for some appropriately large constant C.

• Repeatedly remove any cycle of length at least d and add it to the decomposition, giving at most n
2 new cycles.

• Decompose G into edge disjoint subgraphs Ri with a certain expansion property which, combined with the lack of
long cycles, guarantees that |Ri| = O(d log4 d). These subgraphs are almost vertex disjoint, so that

∑
i |Ri| ≤ 2n.

• Decompose each of the subgraphs Ri into cycles and edges, using in total O(n) cycles and O(n logC d) edges.
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This finds a decomposition of G into O(n) cycles and a subgraph consisting of leftover edges of average degree at most
O(logC d). We now iterate by applying the same argument to our much sparser graph consisting of leftover edges.
After at most O(log⋆ d) iterations we will be left with a graph of constant average degree. We then simply make all its
edges part of our decomposition, which together with the O(n) cycles we found at each of the O(log⋆ d) iterations gives
our desired decomposition for Theorem 2 – in fact, using only O(n log⋆ d) edges for any n-vertex graph with average
degree d.

The majority of our work lies in carrying out the final step in this iteration, where the key part of this step is to show
the following intermediate result.

Theorem 3. There exists C > 0 such that any r-vertex graph decomposes into O(r) cycles and O(r logC r) edges.

Note that this intermediate result is applied to graphs Ri, each of which has order at most O(d log4 d), so that, as∑
i |Ri| ≤ 2n, we get in total O(n) cycles and O(

∑
i |Ri| logC |Ri|) = O(

∑
i |Ri| logC d) = O(n logC d) edges in total

from the decomposition in the final step of the iteration.

Though we use a slightly modified iteration argument, till now our approach has the same structure as the one taken
by Conlon, Fox and Sudakov in [11], where they prove a weaker version of Theorem 3 in which they allow, instead of
O(r logC r), up to O(r2−1/10) edges in the decomposition. This much weaker bound leads them to iterate O(log log d)

times and thus use a decomposition using O(n log log d) cycles and edges in total. The key difference is that we are able
to replace the extremely strong expansion properties used in [11] with a very weak form of expansion. To make this
change successfully, we need to carefully develop the weak expansion property we use (which originates with Komlós
and Szemerédi [34, 35]) as well as solve the variety of problems caused by working with this weak expansion. For this
development, the main insight is the new perspective we bring to robust sublinear expansion. That we can decompose an
arbitrary graph into edges and expanders follows relatively naturally from the definition of robust sublinear expansion
(see Section 3.3 for more details on the expander partitioning lemma), and the same decomposition result allows us to
carry out the second step of the iteration mentioned above. This leaves the difficult task of decomposing an expander
graph into few cycles and edges, which we now discuss.

Decomposing expanders into few cycles and edges. For some constant C > 0, we now assume that we wish to
decompose an n-vertex graph G with the following (slightly simplified) expansion condition (see Section 3 for the full
condition we use): for each U ⊆ V (G) and F ⊆ E(G) with |U | ≤ 2

3n and |F | ≤ |U | logC n, we have

|NG−F (U)| ≥ 1

log2 n
|U |. (1)

As the size of the neighbourhood guaranteed in (1) is smaller than |U |, this type of expansion is known as sublinear
expansion.

Roughly speaking, our main strategy is to set aside a ‘sparse connecting skeleton’ H ⊆ G, before initially decomposing
the edges of G −H into O(n) paths and cycles using a result of Lovász [43] stated in the introduction. We then use
short paths from the connecting skeleton H to connect up each initial path into a cycle, before simply taking each
unused edge of H as part of our decomposition. In order for this to produce a correct decomposition we need H to be
very sparse, in particular with at most n logO(1) n edges.

To aid the connection of the paths from the initial path/cycle decomposition, we need that each vertex does not appear
too often as an endvertex of these paths. This we ensure by proving a simple, but crucial, corollary of Lovász’s result
(see Corollary 22), which will allow us to decompose G − H into a collection P of O(n) paths in which each vertex
appears as an endvertex at most twice, so that the endvertices of the paths are well spread across the graph.

More problematically, note that in order to get an actual cycle we need to connect the endvertices of each path P ∈ P
using a path in H which is internally vertex disjoint from P . To deal with this, we change this outline slightly as
follows. We partition V (G) = V1∪V2∪V3 by placing each vertex independently into a set Vi uniformly at random, and
show that G contains sparse subgraphs H1, H2, H3 (each with n logO(1) n edges) with the following property for each
i ∈ [3], where a path through Vi is one whose interior vertices are all in Vi. We place no restriction on the endvertices
themselves, so in particular a single edge path is a path through any set since it contains no interior vertices.
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P For any set P ⊆
(
V (G)

2

)
such that each vertex appears in at most 2 pairs in P, there are edge disjoint paths Pxy,

{x, y} ∈ P, such that, for each {x, y} ∈ P, Pxy is an xy-path through Vi in Hi with length O(log7 n).

We then split the edges of G−H1 −H2 −H3 into three subgraphs G1, G2, G3 in such a way that V (Gi) = Vi+1 ∪Vi+2,

for each i ∈ [3], with indices taken modulo 3. Applying our path decomposition corollary to each Gi then gives
a decomposition of all the edges outside of H1 ∪ H2 ∪ H3 into paths whose endvertices are well spread across the
graph. Note that the paths decomposing Gi completely avoid Vi so by using the property P we can connect each of
these paths into actual cycles using edges of Hi. In total we find O(n) edge disjoint cycles which use all the edges of
G−H1 −H2 −H3 so the total number of uncovered edges, which all belong to H1 ∪H2 ∪H3, is small.

With such a weak expansion property as that at (1), whether we can do this is initially far from clear. Building up to
this, we ask the following three questions.

i) Can we connect pairs of vertices with edge disjoint paths using the whole of G?
I.e., does property P hold if Hi = G and Vi = V (G)?

ii) If so, can we do this using only a random subset of vertices Vi for the interior vertices of the paths?
I.e., does property P hold if Hi = G?

iii) If so, can we do this using only a sparse subgraph Hi of G?
I.e., can we find a sparse Hi ⊆ G so that property P holds for Hi?

i) Finding edge disjoint paths in G. The expansion condition on G at (1) is sufficient to imply that any pair of
vertices in H are connected by a path of length O(log3 n) by expanding the neighbourhoods around each of the two
vertices until they become large enough that they must overlap. Moreover, the robustness of our condition at (1) (i.e.,
that this expansion can avoid using an arbitrary, but not too large, set of edges F ) allows us, with only a bit more
work, to show that, for any collection P of pairs of vertices as in property P, we could find at least Θ(log4 n) · |P| edge
disjoint paths in G which each connect some vertex pair in P and have length O(log3 n). As this holds in fact for any
subset P ′ ⊆ P in place of P, this allows us to use the Aharoni-Haxell hypergraph matching theorem (see Theorem 6)
to select, for each pair {x, y} ∈ P, an xy-path in G, so that all these paths are edge disjoint. In total this allows us to
answer question i) positively.

ii) Connecting through the random vertex subset Vi. With i ∈ [3] and Vi a random subset of V with size approx-
imately n

3 as chosen above, unfortunately it seems it does not follow easily that H[Vi] likely satisfies a similar expansion
property to (1). Indeed, firstly, if the inequality (1) is tight for a set U , then with probability exp(−Θ(|U |/ log2 n))
we have that U has no neighbours selected into our random subset Vi, too high a probability to naively take a union
bound to avoid this event over all sets U with any fixed size. Secondly, the robustness condition we need in order to
find multiple edge disjoint paths (to then apply the Aharoni-Haxell hypergraph matching theorem) requires us to avoid
an arbitrary set of |U | logO(1) n edges, and again there are too many choices to just take a union bound.

The first problem here is the most difficult to overcome. The second problem can be overcome by splitting the edges
of G randomly into t subgraphs Gi, i ∈ [t], for some t = logO(1) n, and showing then that (with high probability) each
of these has some (slightly weaker) expansion property (see Lemma 15). When we look for edge disjoint collections of
paths in each graph Gi separately for the application of the Aharoni-Haxell hypergraph matching theorem, by finding
1
t fraction of the required paths in each graph Gi we need to avoid fewer edges by expanding in each Gi separately
rather than G. Thus, we have fewer sets of edges over which to take a union bound, solving the second problem above.

Solving the first problem to get some weak expansion into Vi is the crux of this paper, and is where our new perspective
on robust sublinear expansion is critical. We will show that it follows from this new perspective that, for such sets U

and F , we have either

1. NG−F (U) is actually much larger than guaranteed by (1), or

2. there is a set U ′ ⊆ U which is much smaller than U but whose neighbourhood alone contains at least |U |
log2 n

vertices in NG−F (U).
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Given this, a natural approach is to take a union bound over all ‘well-expanding’ sets U , meaning that they fall under
condition 1. above, to guarantee a constant fraction of their neighbourhood gets sampled into our random set Vi. Since
the subset U ′ from condition 2. is well-expanding this will guarantee us that it expands inside Vi. We would now
like to use the fact that U ′ expands inside Vi to conclude the same happens for the original set U from condition
2. above containing U ′. However, a major issue here is that in order to achieve this we would need a bound on
|(NG−F (U

′) \ U) ∩ Vi| to get the expansion for any relevant set U for which we use the well-expanding subset U ′ –
having to bound a random variable depending on U ′ and U spoils our union bound approach over the smaller sets U ′.
For the first expansion of U into Vi this is avoidable (by only considering such sets disjoint from Vi), but we need to
expand multiple times to reach most of the vertices in Vi and, after the first expansion, avoiding expanding sets that
contain vertices in Vi is unavoidable.

To get around this, when we identify the well-expanding set U ′, we look at its successive neighbourhoods in G−F and
show that enough of these vertices are chosen to be in Vi together with all the vertices along a path going back to U ′

so that U ′ expands via such short paths to reach more than half of the vertices of Vi. In an early draft of this work,
this was shown by carefully analysing an intricate random process. Fortunately, however, we will instead give here
a much easier proof by combining our new perspective on robust sublinear expansion with an adaptation of a clever
application of the sprinkling method appearing in a very recent work of Tomon [52]. We defer a more detailed sketch
for this part of the argument to Section 4, in particular until after we have introduced in full our new perspective on
robust sublinear expansion, which remains crucial for this new approach.

In total, though, this will allow us to answer question ii) positively. I.e., property P holds if we are allowed to use all
the edges of G to make connections through Vi. Let us also stress an important point, which already played a role at
various points in the above arguments and that is that the paths Pxy we find will always be short, namely of length
logO(1) n. This again plays an important role in answering the next question, namely finding an appropriate sparse
subgraph Hi ⊆ G with the same property, which we turn to next.

iii) Finding sparse connecting skeletons. Before we look for a subgraph Hi ⊆ G with the property P and
n logO(1) n edges, can we even find any graph with these properties? A binomial random graph is a natural candidate
for such a graph, and, indeed, if H is a binomial random graph with vertex set V (G) and edge probability p = ω

(
logn
n

)
then it will have, with high probability, the property P if we replace Hi with H and choose Vi to be any fixed set of
linear size. (We prove this as Lemma 10, with a larger than optimal value of p for simplicity.) We then use H as a
template to construct the sparse expanding skeleton Hi. We first sample our large random subset of vertices Vi, and
use our answer to question ii) to guarantee that property P holds with high probability in a slightly stronger form
where every vertex is allowed to appear in O(log5 n) pairs in P. In particular, we will use it with P being the set of
pairs of vertices making an edge of our template graph H, which we choose to be sparse and well-connected through Vi,
as well as have maximum degree O(log5 n). For each edge xy ∈ E(H), we find an xy-path Pxy through Vi with length
logO(1) n in G so that all these paths are edge disjoint. We then let Hi be the union of all these paths, noting that, as
H is sparse and the paths Pxy are relatively short, Hi is also relatively sparse. Then, given an arbitrary collection P
of pairs to connect, we first find edge disjoint paths connecting them through Vi in H, before replacing each edge xy

on one of these paths in H with the corresponding path Pxy through Vi. This creates a set of edge disjoint xy-walks
through Vi in Hi — as each such walk contains an xy-path, we can find the paths required by property P. Note that,
when we do this for each i ∈ [3], we need to ensure that the graphs Hi we find are edge disjoint, but this is easy to
do by reusing some of our previous work, splitting G into a union of edge disjoint expanders G1, G2, G3, before finding
each subgraph Hi in the respective subgraph Gi.

2.3 Organisation of the paper

In the rest of this section we will introduce some general preliminary results, including some concentration results in
Section 2.4 and the Aharoni-Haxell hypergraph matching theorem in Section 2.5, before showing strongly expanding
graphs (namely G(n, p)) satisfy a certain strong connectivity property in Section 2.6. In Section 3, we introduce robust
sublinear expansion and prove a number of useful properties of this type of expansion. In Section 4, we establish
that our weaker expansion implies a similar (though weaker) connectivity property as that used in Section 2.6. In
Section 5, we use the machinery we developed to prove our main result, Theorem 2. Finally, in Section 6, we make
some concluding remarks.
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2.4 Concentration inequalities

We will often use a basic version of Chernoff’s inequality for the binomial random variable (see, for example, [2]).

Theorem 4 (Chernoff’s bound). Let n be an integer and 0 ≤ δ, p ≤ 1. If X ∼ Bin(n, p), then, setting µ = EX = np,

we have

P(X > (1 + δ)µ) ≤ e−δ2µ/2, and P(X < (1− δ)µ) ≤ e−δ2µ/3.

We will also make use of the following well-known martingale concentration result (see Chapter 7 of [2]).

Lemma 5. Suppose that X :
∏N

i=1 Ωi → R is k-Lipschitz. Then, for each t > 0,

P(|X − EX| > t) ≤ 2 exp

(
−2t2

k2N

)
.

2.5 The Aharoni-Haxell hypergraph matching theorem and edge disjoint paths

We will use the following hypergraph version of Hall’s theorem due to Aharoni and Haxell, which is an immediate
consequence of Corollary 1.2 in [1] (noting that we can add new, unique, vertices to each edge in the theorem to make
the hypergraphs ℓ-uniform). A matching in a hypergraph is a collection of pairwise vertex disjoint edges.

Theorem 6. Let r ∈ N, and let H1, . . . ,Hr be a collection of hypergraphs with at most ℓ vertices in each edge. Suppose
that, for each I ⊆ [r], there is a matching in

⋃
i∈I Hi containing more than ℓ(|I| − 1) edges. Then, there is an injective

function f : [r] →
⋃

i∈[r] E(Hi) such that f(i) ∈ E(Hi) for each i ∈ [r] and {f(i) : i ∈ [r]} is a matching of r edges.

We will use Theorem 6 to find edge disjoint paths between vertex pairs, to show that a graph is well-connected under
the following definition, recalling that a path through V is a path with all its internal vertices in V .

Definition 7. A graph G is (ℓ, t)-path connected through a vertex subset V ⊆ V (G) if, for any P ⊆
(
V (G)

2

)
in which

every vertex appears in at most t pairs in P, there are edge disjoint paths P{x,y}, {x, y} ∈ P, such that, for each
{x, y} ∈ P, P{x,y} is an xy-path through V with length at most ℓ.

We denote by
(
V (G)

2

)
the multiset of pairs of distinct vertices of G, so in particular the same pair may appear multiple

times in the collection P. Typically, t will be a small constant and ℓ will be at most polylogarithmic in the number of
vertices.

Given a graph G, a vertex set V ⊆ V (G) and a collection P ⊆
(
V (G)

2

)
, we translate the pair connectivity property

into a hypergraph matching problem as follows. For some ℓ ∈ N, and each {x, y} ∈ P, let H{x,y} be the hypergraph
with vertex set E(G) and add as an edge the set E(P ) for each xy-path P in G with interior vertices in V and length
at most ℓ. If there is an injective function f : P →

⋃
{x,y}∈P E(H{x,y}) such that f({x, y}) ∈ E(H{x,y}) for each

{x, y} ∈ P and {f({x, y}) : {x, y} ∈ P} is a matching, then, for each {x, y} ∈ P, let P{x,y} be the path in G with
edge set f({x, y}). By the definition of H{x,y}, each path P{x,y} is an xy-path in G with length at most ℓ and interior
vertices in V , and, as {f({x, y}) : {x, y} ∈ P} is a matching, these paths are all edge disjoint. Therefore, in order
to prove that G is (ℓ, t)-path connected through V , it suffices to take a general such collection P, define the relevant
hypergraphs H{x,y}, and prove that the associated condition holds for an application of Theorem 6.

2.6 Existence of well-connected sparse graphs

Random graphs typically present a natural candidate for a sparse, well-connected, graph, and we use this to prove
the existence of our template in Lemma 10 (using the connectivity property in Definition 7). Similar properties have
been studied before in random graphs for various applications (see e.g. [7, 24, 29]), and our main lemma (Lemma 10)
can be obtained as a (not quite immediate) corollary of Lemma 3.4. from [46] combined with a multi-round exposure
argument like the one we use below. We include a different proof of Lemma 10 for completeness but also use this to

7



introduce two intermediate results (Proposition 8 and Lemma 9) that we later use in the same manner to prove our
key technical result, Theorem 16.

We first remind the reader that a path through a subset of vertices V is a path whose internal vertices are all in V .
Let us also introduce, given U, V ⊆ V (G), the ball of radius i around U within V which we will denote as Bi

G(U, V ),
namely it is the set of vertices in V which can be reached by a path through V of length at most i starting from a
vertex in U . The starting vertex in U is not required to be in V itself, as is usual with our definition of paths through
a set. We do, however, only consider reachable vertices within V , so that Bi

G(U, V ) ⊆ V .

For Proposition 8, we take an expansion property of sets of size t ∈ N and use this to connect a pair of vertices from a
set of 2t− 1 pairs (c.f. the collection P in Definition 7).

Proposition 8. Let 1 ≤ ℓ, t ≤ n. Let G be an n-vertex graph and let V ⊆ V (G) be of size |V | ≥ 4t− 2 such that, for
every U ⊆ V (G) with size |U | = t, we have |Bℓ

G(U, V )| > |V |
2 . Let x1, . . . , x2t−1, y1, . . . , y2t−1 be distinct vertices of G.

Then, for some j ∈ [2t− 1], there is an xjyj-path in G through V with length at most 4ℓ log n.

Proof. Let Ix be the set of i ∈ [2t− 1] for which |B2ℓ logn
G (xi, V )| ≤ |V |

2 and let Iy be the set of i ∈ [2t− 1] for which
|B2ℓ logn

G (yi, V )| ≤ |V |
2 . Note that the required path can be found if there exists some j ∈ [2t − 1] with j /∈ Ix and

j /∈ Iy, for then B2ℓ logn
G (xj , V ) and B2ℓ logn

G (yj , V ) each have size larger than |V |
2 and must therefore intersect. Thus,

we can assume that there is no such j, and, therefore, without loss of generality, that |Ix| ≥ t.

Let r ≥ 0 be the largest integer for which there is a set X ⊆ {xi : i ∈ Ix} for which |X| ≤ t
(
2
3

)r and |B(r+1)ℓ
G (X,V )| >

|V |
2 , and let X be any such set. Note that this is possible as |Ix| ≥ t and any subset of {xi : i ∈ Ix} with size t satisfies

these conditions for r = 0 by the assumption of the proposition.

Now, as X ̸= ∅, we have that t
(
2
3

)r ≥ 1, so that r ≤ 2 log t ≤ 2 log n
2 (using

(
2
3

)2
< 1

2 and n ≥ |V | ≥ 4t − 2 ≥ 2t)
and thus r < (2 log n)− 1. Thus, by the definition of Ix, |B(r+1)ℓ

G (xi, V )| ≤ |B2ℓ logn
G (xi, V )| ≤ |V |

2 for each i ∈ Ix, and
hence |X| ≥ 2. This allows us to partition X = X0 ∪X1 with |X0|, |X1| ≤ 2

3 |X| ≤ t
(
2
3

)r+1. As

|B(r+1)ℓ
G (X0, V )|+ |B(r+1)ℓ

G (X1, V )| ≥ |B(r+1)ℓ
G (X0 ∪X1, V )| = |B(r+1)ℓ

G (X,V )| > |V |
2

≥ 2t− 1,

we can pick j ∈ [2] such that |B(r+1)ℓ
G (Xj , V )| ≥ t. Therefore, using the expansion of t-sets into V , we have

|B(r+2)ℓ
G (Xj , V )| > |V |

2 , contradicting the maximality of r as |Xj | ≤ t
(
2
3

)r.
We now take a stronger expansion property and use Proposition 8 in combination with the Aharoni-Haxell hypergraph
matching theorem (Theorem 6) to find edge disjoint paths connecting a set of vertex pairs (see also the discussion after
Theorem 6), proving Lemma 9.

Lemma 9. Let n ≥ 2 and 1 ≤ ℓ, k ≤ n. Let G be an n-vertex graph and let V ⊆ V (G) so that |V | ≥ n
8 + 1 and

suppose, for each U ⊆ V (G) and F ⊆ E(G) with U ̸= ∅ and |F | ≤ 29k|U |(ℓ log n)2, we have |Bℓ
G−F (U, V )| > |V |

2 .

Then, G is (4ℓ log n, k)-path connected through V .

Proof. To show that G is (4ℓ log n, k)-path connected through V , let P ⊆
(
V (G)

2

)
be an arbitrary collection of vertex

pairs such that each vertex appears in at most k pairs in P. Let r = |P|, and order the pairs in P. For each i ∈ [r],
let Hi be the hypergraph with vertex set E(G) and edge set corresponding to the edge sets of paths through V with
length at most 4ℓ log n connecting the i-th pair of vertices in P, noting that the size of any edge is at most 4ℓ log n.

Now, for each I ⊆ [r], let MI be a maximal matching in
⋃

i∈I Hi. We will show that |MI | ≥ 4ℓ log n · |I| for each
I ⊆ [r]. Towards a contradiction, suppose that, for some I ⊆ [r], we have |MI | < 4ℓ log n · |I|, noting that we must
have I ̸= ∅. Let F be the set of edges of G in any path corresponding to an edge in MI , so that F =

⋃
e∈MI

V (e). Note
that |F | < 4ℓ log n · 4ℓ log n · |I| = (4ℓ log n)2|I|. Let I ′ be a maximal subset of I such that no vertex appears in a pair
in I ′ more than once, so that 2k|I ′| ≥ |I|. Note also that this ensures that |I ′| ≤ n

2 . Now, let t = ⌈|I ′|/16⌉ ≥ 1, so that
2t−1 ≤ 16t−15 ≤ |I ′| ≤ 16t and 4t−2 ≤

⌈
n
8

⌉
+1 ≤ |V |. Note that |F | < (4ℓ log n)2|I| ≤ k |I′|

2 (8ℓ log n)2 ≤ 8kt(8ℓ log n)2,
and therefore any set U ⊆ V (G) with size t satisfies |Bℓ

G−F (U, V )| > |V |
2 . Then, by Proposition 8 applied to G−F , for
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some j ∈ I ′ there is a path in G−F between the j-th pair in P with interior vertices in V and length at most 4ℓ log n.
Such a path corresponds to an edge of Hj with no vertices in F , a contradiction to the maximality of MI . Thus, we
must have |MI | ≥ 4ℓ log n · |I|.

Therefore, by Theorem 6, there is a set of paths Pi, i ∈ [r], in G with E(Pi) ∈ Hi for each i ∈ [r], such that E(Pi),
i ∈ [r], form edge disjoint sets. Thus, G is (4ℓ log n, k)-path connected through V .

We now prove the existence of our template graph, by showing an appropriate expansion condition is likely in a certain
binomial random graph and applying Lemma 9.

Lemma 10. For any large enough n, there exists an n-vertex graph G with ∆(G) ≤ 28 log5 n and a set V ⊆ V (G)

with |V | = n
6 such that G is

(
1
4 log

2 n, 2
)
-path connected through V .

Proof. Let p = 150 log5 n
n , let V ⊆ [n] be a set of size n

6 and let G ∼ G (n, p). As p = ω
(

logn
n

)
, a standard application

of Chernoff’s inequality (Theorem 4) shows that, with high probability, ∆(G) ≤ 3
2pn = 225 log5 n. Therefore, it is

sufficient to show that, with high probability, G is
(
1
4 log

2 n, 2
)
-path connected through V .

Claim. With high probability, for each U ⊆ V (G) and each F ⊆ E(G) with U ̸= ∅ and |F | ≤ 4|U | log4 n we have

|BG−F (U, V )| > min

{
216|U |, |V |

2

}
. (2)

Proof. For large n, we will show for each U ⊆ V (G) and F ⊆ E(G) with U ̸= ∅ and |F | ≤ 4|U | log4 n that (2) holds
with probability at least 1 − 2−10|U | log5 n, so that (2) holds for all U ⊆ V (G) and F ⊆ E(G) with |F | ≤ 4|U | log4 n
with probability at least

1−
n∑

u=1

(
n

u

) 4u log4 n∑
f=0

((n
2

)
f

)
· 2−10u log5 n ≥ 1−

n∑
u=1

nu · n2 · n8u log4 n · 2−10u log5 n ≥ 1−
n∑

u=1

n−2 = 1− n−1,

and the claim holds.

Let then U ⊆ V (G) with u = |U | ≥ 1 and F ⊆ E(G) with f = |F | ≤ 4u log4 n. Note that if |BG−F (U, V )| ≤ min
{
216u, |V |

2

}
,

then there is some set X = BG−F (U, V ) with size at most 216u such that |V \X| ≥ |V |
2 and there are no edges between

U and V \X other than in F . The probability of such a set X existing is at most

216u∑
i=0

(
n

i

)
· (1− p)u·

|V |
2 −|F | ≤ n216u+1 · e−p(un/12−f) ≤ e−pun/15 ≤ 2−10u log5 n,

as required.

With high probability then, we have that the conclusion of the claim holds for G. For any U ⊆ V (G) and F ⊆ E(G)

with U ̸= ∅ and |F | ≤ 4|U | log4 n, we have then by induction that, for each i ≥ 0,

|Bi
G−F (U, V )| > min

{
216i|U |, |V |

2

}
.

Setting i = ℓ = logn
16 , we thus have |Bℓ

G−F (U) ∩ V | > |V |
2 . Thus, by Lemma 9 with ℓ = logn

16 and k = 2, we have that
G is

(
1
4 log

2 n, 2
)
-connected through V .

3 Robust sublinear expansion

In this section we will explain the expansion we use and its background, our new perspective on this type of expansion,
and prove some key results using the expansion. Before doing so, for convenience we state the definition of expansion
that we use, as follows.
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Definition 11. An n-vertex graph G is an (ε, s)-expander if, for every U ⊆ V (G) and F ⊆ E(G) with 1 ≤ |U | ≤ 2
3n

and |F | ≤ s|U |, we have

|NG−F (U)| ≥ ε|U |
log2 n

. (3)

As the bound on the size of the neighbourhood guaranteed at (3) is o(|U |) as n → ∞, we consider this to be sublinear
expansion. We often use Definition 11 when s is polylogarithmic in n, so that the set of edges F may be of size ω(|U |)
as n → ∞, and call this robust sublinear expansion. This is discussed in more detail with the relevant background
in Section 3.1. In Section 3.2, we then introduce an alternative perspective of this expansion. In Section 3.3, we
prove a lemma which almost decomposes an arbitrary graph into expanders. Finally, in Section 3.4 we prove sublinear
expanders can be (edge) partitioned into expanders (with only slightly weaker expansion parameters).

3.1 Expansion

Classical graph expansion is an immensely powerful idea in graph theory and computer science that has seen a very wide
variety of applications (see for example the survey [30]). A typical such property in a graph G says that |NG(U)| ≥ λ|U |
for any set U ⊆ V (G) which is not too large, where λ ≥ 2, though other notions have been considered instead of requiring
a large |NG(U)|, for example bounding the number of edges in G between U and V (G) \U (as indeed used by Conlon,
Fox and Sudakov [11]). Sublinear expansion is a weaker notion of this classical expansion introduced by Komlós and
Szemerédi [34, 35], where we take a much smaller value of λ, but which is significant as every graph contains a sublinear
expander H with λ = Θ(1/ log2 |H|) (and even has a nice decomposition into sublinear expanders, as we will prove and
use). Komlós and Szemerédi used sublinear expansion to find minors in sparse graphs, and more recently sublinear
expansion has found a host of other applications (see, for example, [8, 21, 22, 26, 27, 33, 39, 40, 41, 42, 45, 50]).

Such sublinear expansion in a graph G has some very weak robustness properties, in that if λ|U |/2 vertices in V (G)\U
are removed from the graph then the set U will still expand (with the neighbourhood of U still having at least λ|U |/2
vertices), and this property is used in many of the applications of sublinear expansion cited above. However, we will
distinguish robust sublinear expansion to be that where U expands despite the removal of any set F of at most s|U |
edges in G, where s grows with |G| so that this bound is superlinear in |U |, as in Definition 11. Such robust sublinear
expansion has recently been developed essentially independently by groups of different authors, appearing in some form
in work by Haslegrave, Kim, and Liu [28] and by Sudakov and Tomon [51] (with the parallel clearer in the expansion
used in subsequent work by Jiang, Methuku and Yepremyan [31] and by Tomon [52]). Roughly speaking, the expansion
we use, as given in Definition 11, is a slightly weaker version of that used by Haslegrave, Kim, and Liu [28] (so that we
can find an almost-decomposition into such expanders) and a stronger version than subsequent developments of the
expansion used by Sudakov and Tomon [51] (which makes it more powerful when we use it).

3.2 An alternative notion of robustness

In Definition 11, we consider the expansion to be robust as sets expand despite an arbitrary removal of a small number
of edges. This can be alternatively encoded by recording that every vertex subset U either expands very well (by
some factor greater than 1) or that its ‘robust neighbourhood’ of vertices with plenty of edges towards U expands well,
though perhaps sublinearly (as in Proposition 12 below). It will be convenient to define this robust neighbourhood for
any parameter d as

NG,d(U) := {v ∈ V (G) \ U : |NG(v) ∩ U | ≥ d},

that is, the set of vertices in a graph G, outside of a subset of vertices U , which have degree at least d towards U .

Proposition 12. Let G be an n-vertex (ε, s)-expander, U ⊆ V (G), |U | ≤ 2
3n and F a set of at most s|U |/2 edges.

Then, for any 0 < d ≤ s, either

a) |NG−F (U)| ≥ s|U |
2d

, or b) |NG−F,d(U)| ≥ ε|U |
log2 n

.
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Proof. Suppose a) is not satisfied, so that |NG−F (U)| < s|U |
2d . Let X = NG−F (U) \ NG−F,d(U), so that |X| < s|U |

2d .
Let F ′ be the edges of G−F between U and X, so that |F ′| < |X|d ≤ s|U |/2, and hence |F |+ |F ′| ≤ s|U |. Note that,
by the definition of F ′, we have NG−F,d(U) = NG−F−F ′(U). As G is an (ε, s)-expander, we thus have

|NG−F,d(U)| = |NG−F−F ′(U)| ≥ ε|U |
log2 n

,

and therefore b) holds, as required.

The following proposition shows more structure can be found in both outcomes of the above proposition. Though a
more general variant follows easily, the parameters are tailored for our intended application.

Proposition 13. There is an n0 such that the following holds for each n ≥ n0, ε ≥ 2−9 and s ≥ 8 log13 n. Let G be
an n-vertex (ε, s)-expander, let U ⊆ V (G) have size |U | ≤ 2

3n and let F be a set of at most s|U |/4 edges. Then, in
G− F we can find either

a) |U |
log7 n

vertex disjoint stars, each with log9 n leaves, centre in U and all its leaves in V (G) \ U , or

b) a bipartite subgraph H with vertex classes U and X ⊆ V (G) \ U such that

• |X| ≥ ε|U |
2 log2 n

and

• every vertex in X has degree at least log4 n in H and every vertex of U has degree at most 2 log9 n in H.

Proof. Take a maximal collection of vertex disjoint stars in G − F with log9 n leaves and centre in U and leaves
outside of U . Let C ⊆ U be the set of centres of these star and L ⊆ V (G) \ U be the set consisting of all their leaves.
Assuming a) does not hold, we can thus assume that |C| ≤ |U |

log7 n
, |L| ≤ |U | log2 n, and, by the maximality, that there

is no vertex in U \ C with at least log9 n neighbours in G− F in V (G) \ (U ∪ L). Thus,

|NG−F (U \ C)| ≤ |C|+ |L|+ |U \ C| · log9 n ≤ |U |
log7 n

+ |U | log2 n+ |U | log9 n < 2|U | log9 n. (4)

Let d = log4 n and ∆ = 2 log9 n. We now construct the set X ⊆ V (G) \ U and the bipartite subgraph H through the
following process, starting with X0 = ∅ and setting H0 to be the graph with vertex set U ∪ X0 and no edges. Let
r = |V (G) \ U | and label the vertices of V (G) \ U arbitrarily as v1, . . . , vr. For each i ≥ 1, if possible pick a star Si in
G−F with centre vi and d leaves in U such that Hi−1∪Si has maximum degree at most ∆, and let Hi = Hi−1∪Si and
Xi = Xi−1 ∪ {vi}, while otherwise we set Hi = Hi−1 and Xi = Xi−1. Finally, let H = Hr and X = Xr = V (Hr) \ U .
We will show that b) holds for this choice of H with bipartition (U,X).

Firstly, observe that ∆(Hi) ≤ ∆ for each i ∈ [r] by construction, and that every vertex vi in X has degree exactly d

in H, so the second condition in b) holds. Thus, we only need to show that |X| ≥ ε|U |
2 log2 n

holds, which will follow as
no vertex in U \ C has ∆

2 = log9 n neighbours in G− F in X \ L due to the maximality of our family of disjoint stars
defining C and L.

Indeed, let U ′ be the set of vertices in U \ C with degree exactly ∆ in H. As each vertex in U \ C has fewer than
∆
2 neighbours in G − F in X \ L, it must have at least ∆

2 neighbours in H in X ∩ L. As each vertex in X ∩ L has d

neighbours in H, we have

|U ′| ≤ d|X ∩ L|
∆/2

≤ 2d|L|
∆

≤ 2d · |U | log2 n
∆

=
2 log4 n · |U | log2 n

2 log9 n
≤ ε|U |

8 log2 n
,

where the last inequality follows for sufficiently large n.

Let B = C ∪ U ′, so that

|B| ≤ |U |
log7 n

+
ε|U |

8 log2 n
≤ ε|U |

4 log2 n
,

and, in particular, |U \B| ≥ |U |
2 .
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Then, by Proposition 12 applied to U \ B and F with d, using that |F | ≤ s|U |/4 ≤ s|U \ B|/2, we have either
|NG−F (U \B)| ≥ s|U\B|

2d or |NG−F,d(U \B)| ≥ ε|U\B|
log2 n

. As

s|U \B|
2d

≥ s|U |
4d

≥ 2|U | log9 n,

the former contradicts (4), and therefore we must have that |NG−F,d(U \B)| ≥ ε|U\B|
log2 n

. Every vertex vi in NG−F,d(U \B)

has at least d neighbours in G− F in U \B which, not being in B = U ′ ∪ C, by definition of U ′ must all have degree
strictly less than ∆ in H. This implies vi ∈ X, since we could add it together with some d of these neighbours. Hence,
we must have NG−F,d(U \B) ⊆ X, and

|X| ≥ |NG−F,d(U \B)| ≥ ε|U \B|
log2 n

≥ ε|U |
2 log2 n

,

as required.

3.3 Almost decomposing an arbitrary graph into expanders

The following lemma almost decomposes a graph into robust sublinear expanders with, on average, very little overlap
between their vertex sets. Setting s = 0 in the below lemma (as we do in one application) obtains a full decomposition,
although without any robustness.

Lemma 14. Given an n-vertex graph G, a non-negative integer s and ε ≤ 2−5 we can delete up to 4sn log n edges
from G so that the remaining edges may be partitioned into graphs G1, . . . , Gr such that

∑r
i=1 |Gi| ≤ 2n and each Gi

is an (ε, s)-expander.

Proof. We prove this by induction on n, under the stronger condition that the graphs G1, . . . , Gr in the partition
satisfy

∑r
i=1 |Gi| ≤ 2n− 2n

2+logn . Since 2n− 2n
2+logn ≥ n, and any 1-vertex graph G is trivially an (ε, s)-expander, the

lemma holds for n = 1 with G1 = G. Let us then assume n ≥ 2 and that the claim holds for all graphs with at most
n− 1 vertices.

Letting G be an n-vertex graph, note that, as 2n − 2n
2+logn ≥ n, if G is an (ε, s)-expander then the trivial partition

of G1 = G demonstrates the claim holds for G. Thus, we can assume G is not an (ε, s)-expander, and in particular
that there exists a non-empty set of vertices U ⊆ V (G) with |U | ≤ 2

3n and a set F of at most s|U | edges such that
|NG−F (U)| < ε|U |

log2 n
. Let G1 = G[U ∪ NG−F (U)] − F and let G2 = G \ U − E(G1) − F , so that G1 and G2 form an

edge partition of G− F and, setting n1 = |G1| and n2 = G2, we have

n1 + n2 = |G1|+ |G2| = |G|+ |NG−F (U)| < n+
ε|U |
log2 n

≤ n+
εn1

log2 n
. (5)

Now, n2 = n− |U | < n and

n1 ≤ |U |+ ε|U |
log2 n

≤ 2

3
n+ εn ≤ 3

4
n < n, (6)

so there exist sets E1 ⊆ E(G1) and E2 ⊆ E(G2) and partitions G1,1, . . . , G1,r1 and G2,1, . . . , G2,r2 of G1 − E1 and
G2 − E2 into edge disjoint (ε, s)-expanders so that, for each i ∈ [2], |Ei| ≤ 4sni log ni, and

ri∑
j=1

|Gi,j | ≤ 2ni −
2ni

2 + log ni
.

Therefore, we can remove F ∪E1∪E2 from G and decompose the remaining edges into (ε, s)-expanders G1,1, . . . , G1,r1 ,
G2,1, . . . , G2,r2 . We need then only check that |F ∪ E1 ∪ E2| ≤ 4sn log n and that the sum of the vertices of the
expanders in this decomposition is at most 2n− 2n

2+logn .
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Firstly, note that, from (6), we have log n1 ≤ log 3
4n < log n− 2

5 , so that

1

s
(|F |+ |E1|+ |E2|) ≤ |U |+ 4n1 log n1 + 4n2 log n2 ≤ n1 + 4n1

(
log n− 2

5

)
+ 4n2 log n

= 4(n1 + n2) log n− 3

5
n1

(5)
≤ 4

(
n+

εn1

log2 n

)
log n− 3

5
n1

≤ 4n log n. (7)

Secondly, again as log 3
4n < log n− 2

5 , we have

2n1

2 + log n1

(6)
≥ 2n1

2 + log(3n/4)
≥ 2n1

8/5 + log n
=

2n1

2 + log n
+

2n1 · 2/5
(8/5 + log n)(2 + log n)

>
2n1

2 + log n
+

n1

10 log2 n
, (8)

so that
2∑

i=1

ri∑
j=1

|Gi,j | ≤ 2n1 + 2n2 −
2n1

2 + log n1
− 2n2

2 + log n2

(8)
< (n1 + n2)

(
2− 2

2 + log n

)
− n1

10 log2 n

(5)
≤
(
n+

εn1

log2 n

)(
2− 2

2 + log n

)
− n1

10 log2 n
≤ 2n− 2n

2 + log n
.

In combination with (7), this shows that G has the required decomposition, completing the inductive step and hence
the proof.

3.4 Decomposing an expander into many expanders

The following lemma partitions the edges of an expander into a chosen number of expanders with the same vertex set
(and a slightly weaker expansion condition).

Lemma 15. Let n, k, s ∈ N and 0 < ε ≤ 1. Suppose that G is an n-vertex (ε, s)-expander and s ≥ 212ε−1k2 log4 n.
Then, there are edge disjoint graphs G1, . . . , Gk such that E(G) =

⋃
i∈[k] E(Gi) and, for each i ∈ [k], Gi is an(

ε
4 ,

√
sε

8k logn

)
-expander with vertex set V (G).

Proof. If n = 1 then the claim is trivially true so let us assume that n ≥ 2. Furthermore, observe that as ε > 0, we
must have s ≤ δ(G) for otherwise we can remove all the neighbours of a vertex with minimum degree by removing at
most s edges, contradicting that G is an (ε, s)-expander, so certainly s ≤ n.

Let H be a random subgraph of G with vertex set V (G) which contains every edge independently with probability
1
k . Then, assign every edge of G to one of the graphs G1, . . . , Gk uniformly and independently at random, so that
each Gi is a random subgraph with the same distribution as H. Letting s′ =

√
sε

8k logn ≥ 8 log n, we will show that the
probability H is not an

(
ε
4 , s

′)-expander is strictly less than 1
k . Thus, by a union bound, the probability that each Gi

is an
(
ε
4 , s

′)-expander is strictly positive, so some decomposition as required by the lemma must exist.

To show that H is not an
(
ε
4 , s

′)-expander with probability less then 1
k , we will take a union bound over all subsets U

of V (G) for the event that U fails the conditions of ( ε4 , s
′)-expansion in H. For this, set d =

√
s/ε log n and note that

s
d = 8ks′, s′ = εd

8k log2 n
and s ≥

√
s ·
√
ε−1 log2 n = d ≥ 64k.

Let U ⊆ V (G) and u = |U | ≤ 2n
3 . By Proposition 12 with d, U and F = ∅, we have either a) |NG(U)| ≥ su

2d = 4ks′u

or b) |NG,d(U)| ≥ εu
log2 n

.

If a) holds, then |NH(U)| is dominated by Bin(4ks′u, 1/k), so that P(|NH(U)| ≥ 2s′u) ≥ 1−e−s′u/2 by a Chernoff bound
(Theorem 4). Note that if |NH(U)| ≥ 2s′u then for any F ⊆ E(H) with |F | ≤ s′u we have |NH−F (U)| ≥ s′u ≥ εu

4 log2 n
.

Thus, when a) holds, the probability U fails the
(
ε
4 , s

′)-expansion condition is at most e−s′u/2 ≤ e−4u logn as s′ ≥ 8 log n.

If b) holds, then note first that the probability that any vertex v ∈ NG,d(U) is not in NH,d/2k(U) is at most p :=

P
(
Bin

(
d, 1

k

)
< d

2k

)
, where we have once again by a Chernoff bound that

p ≤ e−d/8k. (9)
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Therefore, as |NG,d(U)| ≥ εu
log2 n

, we have

P
(
|NH,d/2k(U)| < εu

2 log2 n

)
≤
( εu

log2 n
εu

2 log2 n

)
· p

εu
2 log2 n ≤ 2

εu
log2 n · p

εu
2 log2 n

(9)
≤ e

−εud

32k log2 n = e−s′u/4 ≤ e−2u logn. (10)

Note that, if |NH,d/2k(U)| ≥ εu
2 log2 n

, then, for any F ⊆ E(H) with |F | ≤ s′u, we have

|NH−F (U)| ≥ |NH,d/2k(U)| − |F |
d/2k

≥ εu

2 log2 n
− 2ks′u

d
=

εu

2 log2 n
− su

4d2
=

εu

4 log2 n
.

Thus, (10) implies that the probability U does not satisfy the (ε/4, s′)-expansion condition is at most e−2u logn.

Therefore, whichever of a) or b) holds, the probability U does not satisfy the (ε/4, s′)-expansion condition is at most
e−2u logn. Hence, the probability that H is not an (ε/4, s′)-expander is at most

2n/3∑
u=1

(
n

u

)
e−2u logn ≤

2n/3∑
u=1

nu · n−2u ≤ n−1 +

2n/3∑
u=2

n−2 ≤ 2

n
<

1

k
,

as required, where in the last inequality we make use of the observation that n ≥ s ≥ 212ε−1k2 log4 n > 2k.

4 Finding edge disjoint paths through random vertex sets

We will now show that a robust sublinear expander is not only well-connected (in the sense of Definition 7), but is
likely to be well-connected through any large random vertex subset. That is, we prove the following result.

Theorem 16. Let G be an n-vertex (ε, s)-expander with 1 ≥ ε ≥ 2−7 and s ≥ log135 n. Let V ⊆ V (G) be a random
subset chosen by including each vertex independently at random with probability 1

3 . Then, with high probability, G is
(4 log5 n, 28 log5 n)-path connected through V .

The challenge of proving Theorem 16 is discussed in Section 2.2, and in particular in the answer to question ii) there.
Having since then proved Lemma 9, let us note that, for suitable polylogarithmic parameters s̄ and ℓ, by this lemma,
to prove Theorem 16 it is sufficient to show that, with high probability, |Bℓ

G−F (U, V )| > |V |
2 for each U ⊆ V (G) and

F ⊆ E(G) with |F | ≤ s̄|U |.

We show this property in three stages. Firstly, in Section 4.1, we show that for any set U ⊆ V (G) with |NG(U)| ≥
|U | log24 n and any F ⊆ E(G) with |F | ≤ |U | we have |Bℓ

G−F (U, V )| > |V |
2 holds with probability 1−exp(−Ω(|U | log2 n)).

That is, we show the desired property holds for a well-expanding set U with high enough probability that we can take
a union bound over all well-expanding sets U (and any edge set F with say |F | ≤ |U |) to get that this property holds
for all well-expanding sets with probability 1− o(1/n). As discussed in Section 2.2, if the set U does not expand well
then we can not guarantee it has the property we want with high enough probability for a union bound over all sets
U , so we only consider well-expanding sets U here. Then, in Section 4.2, we show that every set U in our expander
contains a well-expanding set U ′ which is not that much smaller than U (see Proposition 18), indeed, we will find
such a U ′ satisfying |U ′| ≥ s′|U |, where s′ ≥ 1/ log27 n. Thus, for any edge set F with |F | ≤ s′|U | ≤ |U ′| we have
|Bℓ

G−F (U, V )| ≥ |Bℓ
G−F (U

′, V )| > |V |
2 . This is almost the condition we need to apply Lemma 9, however s′ is too

small, namely by a polylogarithmic factor smaller than the value of s̄ that we need. Therefore, in Section 4.3, we
find the stronger expansion property we need by first splitting an (ε, s)-expander into polylogarithmically many edge
disjoint expanders via Lemma 15, before showing that with high probability each one of these has the above-mentioned
weaker expansion property into V . Finally, we combine these properties to show that indeed G has the desired stronger
expansion property into V . This allows us to apply Lemma 9, completing the proof of Theorem 16.

4.1 Expansion of well-expanding sets into a random vertex set

In an n-vertex (ε, s)-expander G, given U ⊆ V (G) such that |NG(U)| ≥ |U | log24 n and F ⊆ E(G) with |F | ≤ s|U |/4,
when V ⊆ V (G) is chosen by selecting each vertex independently at random with probability 1

3 , we wish to show that,
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with some large probability, we have |Bℓ
G−F (U, V )| > |V |

2 , for some appropriate parameters ε, s and ℓ (thus proving
Lemma 17 below). To prove this we will adapt a ‘sprinkling’ argument from a very recent work of Tomon [52], thus
avoiding a much more complex argument from initial versions of this work. To prove this we will reveal the vertices
in V in ℓ batches, using the so-called sprinkling method, by partitioning V randomly into sets V1 ∪ . . . ∪ Vℓ, weighted
so that most of the vertices in V are likely to be in Vℓ. A natural approach here would be to prove a likely bound
on Bi

G−F (U, V1 ∪ . . . ∪ Vi) for each i ∈ [ℓ], resulting in a bound on Bℓ
G−F (U, V1 ∪ . . . ∪ Vℓ) = Bℓ

G−F (U, V ), so let us
emphasise that this is not what we do.

Instead, for 0 ≤ i ≤ ℓ we track the size of sets Bi which are defined as the set of vertices v ∈ V (G) which can be
reached from U by a path all of whose internal vertices are in V1 ∪ . . .∪Vi−1 (i.e., a path through this set) of length at
most i. It is crucial here that we do not insist v belongs to either U or V1 ∪ . . . ∪ Vi. One can think of vertices in Bi

as having potential of making all their neighbours in G− F reachable in the same way (so being in Bi+1) if they get
sampled into our next random subset Vi. In particular, every vertex with a neighbour in Bi which gets sampled into Vi

will join Bi+1. This combined with our notion of robust expansion (as discussed further below) allows us to show that
it is likely that Bi+1 will increase in size compared to Bi until for some i ≤ ℓ− 1 its size is at least 2

3n. In particular,
we will have Bℓ ≥ 2

3n. The final stage is slightly different, here since Bℓ is independent of our final random set Vℓ we
will likely have almost 2

3 of the vertices of Vℓ belonging to Bℓ. As our random sets are weighted heavily towards Vℓ, it
is likely to contain more than 3

4 of the vertices of V so that we will likely have |Vℓ ∩Bℓ| > |V |
2 , so that, finally, we have

|Bℓ
G−F (U, V )| ≥ |Vℓ ∩Bℓ| >

|V |
2

,

as required.

That the sets Bi, 1 ≤ i ≤ ℓ−1, are very likely to increase notably in size will follow from our notion of robust expansion
(as proved in the claim below). In particular, at step i, Proposition 13 tells us that one of two cases a) or b) may
occur.

a) Bi has many large vertex disjoint stars extending from Bi. In this case we use that, for each centre sampled into Vi,
the (many) corresponding leaves are added to Bi+1. We will have that many more leaves are added for each successful
centre than the sampling probability for Vi, so that this is a good increase in size.

b) Bi has a large robust neighbourhood whose vertices have many neighbours in G − F in Bi. Each vertex in this
robust neighbourhood is likely to have at least one of these neighbours in Bi sampled into Vi, whereupon it will then
be in Bi+1. (In fact, we need a slightly stronger property to hold so that the sampling of each vertex in Bi does not
have too strong an influence on the size of Bi+1 \ Bi, which is why we use the subgraph H provided by case b) of
Proposition 13.)

Thus, in either case |Bi| is likely to increase.

Lemma 17. Suppose that G is an n-vertex (ε, s)-expander with 2−9 ≤ ε ≤ 1 and s ≥ 8 log13 n. Let U ⊆ V (G) satisfy
|NG(U)| ≥ |U | log24 n and let F ⊆ E(G) satisfy |F | ≤ |U |. Let V ⊆ V (G) be a random subset chosen by including each
vertex independently at random with probability 1

3 .

Then, with probability 1− e−Ω(|U | log2 n),

|Blog4 n
G−F (U, V )| > |V |

2
. (11)

Proof. Let ℓ = log4 n, q = 3
11 and let p be such that 1− (1− p)ℓ−1(1− q) = 1

3 , i.e., that (1− p)ℓ−1 = 11
12 , so that

p ≥ 1

15 log4 n
. (12)

Let G be an n-vertex (ε, s)-expander, U ⊆ V (G) with |NG(U)| ≥ |U | log24 n and F ⊆ E(G) with |F | ≤ |U |. Indepen-
dently, for each i ∈ {1, . . . , ℓ}, let Vi be a random subset of V (G) with each vertex included independently at random
with probability p if i ≤ ℓ − 1 and with probability q if i = ℓ. Set V = V1 ∪ . . . ∪ Vℓ, and note that each vertex is
included in V independently at random with probability 1

3 . Thus, we wish to show that, with probability at least
1− e−Ω(|U |log2 n) we have |Bℓ

G−F (U, V )| > |V |
2 .
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For each 0 ≤ i ≤ ℓ, let Bi be the set of vertices of G which can be reached via a path in G − F which starts in U

and has length at most i and whose internal vertices (if there are any) are in V1 ∪ . . . ∪ Vi−1. In particular, then, we
have B0 = U and B1 = BG−F (U). Observe also that B0 ⊆ B1 ⊆ . . . ⊆ Bℓ. We emphasise that the vertices of Bi do
not have to themselves be inside V1 ∪ . . . ∪ Vi−1, only the interior vertices of some path from U to the vertex in Bi

are required to be inside V1 ∪ . . . ∪ Vi−1. An important property of Bi is that it is completely determined by the sets
U, V1, . . . , Vi−1, so is in particular independent of Vi. Note also that any vertex in NG−F (Bi) with a neighbour in Bi

that gets sampled into Vi belongs to Bi+1. These two observations will be the key behind why the sets Bi+1 will grow
in size until they occupy most of the set V (G). In particular, finally, observe that

Bℓ ∩ Vℓ ⊆ Bℓ
G−F (U, V ). (13)

We now show that indeed, for each 1 ≤ i ≤ ℓ− 1, that, unless Bi is already very large, Bi+1 is likely to be larger than
Bi, as follows.

Claim. For each 1 ≤ i ≤ ℓ− 1, with probability 1− e−Ω(|U |log2 n), either |Bi| ≥ 2
3n, or

|Bi+1 \Bi| ≥
ε|Bi|

26 log2 n
.

Proof. For each v ∈ NG−F (Bi), v is in Bi+1 if at least one of its neighbours in G − F in Bi gets sampled into Vi.
That is,

{v ∈ NG−F (Bi) : NG−F (v,Bi) ∩ Vi ̸= ∅} ⊆ Bi+1 \Bi. (14)

We will show that, for any set W ⊆ V (G) with |W | ≤ 2
3n and B1 ⊆ W

P
(
|{v ∈ NG−F (W ) : NG−F (v,W ) ∩ Vi ̸= ∅}| ≥ ε|W |

26 log2 n

)
≥ 1− e−Ω(|B1|/log22 n). (15)

Thus, we will have for all 1 ≤ i ≤ ℓ− 1

P
(
|Bi| ≥

2

3
n or |Bi+1 \Bi| ≥

ε|Bi|
26 log2 n

)
(14)
≥ P

(
|Bi+1 \Bi| ≥

ε|Bi|
26 log2 n

∣∣ |Bi| ≤
2

3
n

)
(14)
≥ P

(
|{v ∈ NG−F (Bi) : NG−F (v,Bi) ∩ Vi ̸= ∅}| ≥ ε|Bi|

26 log2 n

∣∣ |Bi| ≤
2

3
n

)
(15)
≥ 1− e−Ω(|B1|/log22 n) ≥ 1− e−Ω(|U |log2 n),

where in the last inequality we used |B1| = |BG−F (U)| ≥ |U | log24 n− |F | ≥ 1
2 |U | log24 n.

Let then W ⊆ V (G) with |W | ≤ 2
3n and B1 ⊆ W . As |W | ≤ 2

3n, and |F | ≤ |U | ≤ |B1| ≤ |W | ≤ s|W |/4 we can apply
Proposition 13 to W and F to show one of two cases a) or b) holds and we will show that (15) holds in either case.

a) Suppose G − F contains |W |
log7 n

vertex disjoint stars with log9 n leaves, with the centre in W and all leaves in
NG−F (W ). Let C ⊆ W be the set of centres of such a collection of stars, and note that

|{v ∈ NG−F (W ) : NG−F (v,W ) ∩ Vi ̸= ∅| ≥ |C ∩ Vi| log9 n. (16)

By a Chernoff bound (Theorem 4) and (12), with probability at least 1 − e−p|C|/8 = 1 − e−Ω(|W |/log11 n), we have
|C ∩ Vi| ≥ p|C|

2 ≥ |W |
26 log11 n

. Thus, in combination with (16), we have that (15) holds as ε ≤ 1.

b) Suppose instead that there is a bipartite subgraph H ⊆ G− F with vertex classes W and X such that

• |X| ≥ ε|W |
2 log2 n

and

• every vertex in X has degree at least log4 n in H and every vertex of U has degree at most ∆ := 2 log9 n in H.

For each v ∈ X, the probability that v has no neighbours in H in Vi is at most

(1− p)log
4 n ≤ e−p log4 n

(12)
≤ e1/15 ≤ 15

16
.
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Let Y be the random variable counting the number of vertices of X having a neighbour in Vi in H, so that EY ≥ |X|
16 .

Observe also that Y is ∆-Lipschitz since for each v ∈ W the event {v ∈ Vi} affects Y by at most dH(v) ≤ ∆. Hence,
by Lemma 5 with k = ∆, t = |X|

32 and N = |W |, we have

P
(
Y <

|X|
32

)
≤ P

(
Y < EY − |X|

32

)
≤ 2 exp

(
−2−9|X|2

∆2|W |

)
= e−Ω(|W |/log22 n).

Each vertex in X with a neighbour in Vi in H lies in {v ∈ NG−F (W ) : NG−F (v,W ) ∩ Vi ̸= ∅}, so therefore, with
probability at least 1 − e−Ω(|W |/log22 n), we have |{v ∈ NG−F (W ) : NG−F (v,W ) ∩ Vi ̸= ∅}| ≥ Y ≥ |X|

32 ≥ ε|W |
26 log2 n

and
thus (15) holds as well in case b), completing the proof.

As Bℓ and Vℓ are independent and q = 3
11 (so that 2q

3 = 2
11 < 4

23 ), by Chernoff’s bound (Theorem 4), we have that

P
(
|Bℓ ∩ Vℓ| ≤

4

23
n
∣∣ |Bℓ| ≥

2

3
n

)
≤ P

(
Bin

(
2

3
n, q

)
≤ 4

23
n

)
≤ e−Θ(n),

and, similarly, as 1
3 < 8

23 we have P
(
|V | ≥ 8

23n
)
≤ e−Θ(n).

Thus, by the claim, we have in total that

i) for each i ∈ [ℓ− 1], |Bi| ≥ 2
3n or |Bi+1 \Bi| ≥ ε|Bi|

26 log2 n
, and

ii) |Bℓ| < 2
3n or |Bℓ ∩ Vℓ| > 4

23n, and

iii) |V | ≤ 8
23n

with probability at least

1− log4 n · e−Ω(|U |log2 n) − 2−Θ(n) ≥ 1− e−Ω(|U |log2 n).

However, if i)–iii) all hold, then, for each i ∈ [ℓ− 1], we have

|Bi| ≥ min

{
2

3
n,

(
1 +

ε

26 log2 n

)i

|U |

}
≥ min

{
2

3
n, exp

(
εi

27 log2 n

)}
,

so that, setting i = ℓ = log4 n, we conclude |Bℓ| ≥ 2
3n, and hence, by ii) and iii), that |Bℓ ∩ Vℓ| > |V |

2 .

Thus, by (13), we have that |Bℓ
G−F (U, V )| > |V |

2 with probability at least 1− e−Ω(|U |log2 n).

4.2 Expansion into a random vertex set

Having picked V ⊆ V (G) with vertex probability 1
3 in an n-vertex (ε, s)-expander G, Lemma 17 tells us that for any

fixed, well-expanding subset of vertices U and small set F of edges we can reach more than one half of the vertices of
V by short paths through V in G − F with pretty high probability. We now want to use this to show that a similar
property holds simultaneously for all vertex subsets U . As we cannot directly take a union bound over all subsets U ,
we first show that any vertex subset U in an (ε, s)-expander contains a subset U ′ ⊆ U which expands particularly well
and which is not much smaller than U . This follows easily from the definition of expansion but is perhaps easier to
immediately see why it is true from the perspective introduced in Proposition 12.

Proposition 18. Let n ≥ 2, 0 < ε ≤ 1 and s ≥ log24 n. Let G be an n-vertex (ε, s)-expander and let U ⊆ V (G) have
size |U | ≤ 2

3n.

Then, there is a set U ′ ⊆ U with |NG(U
′)| ≥ |U ′| log24 n and |U ′| ≥ ε|U |

3 log26 n
.

Proof. Let U ′ ⊆ U be maximal subject to |NG(U
′)| ≥ |U ′| log24 n, noting this is possible as U ′ = ∅ satisfies these

conditions. Suppose that U ̸= U ′, for otherwise U satisfies the conditions itself. Then |NG(U
′)| < (|U ′|+1) log24 n+1 or

we could add an arbitrary vertex to U ′ and contradict maximality. Similarly we know that, for every vertex v ∈ U \U ′,
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v has at most log24 n neighbours outside of U ′ ∪NG(U
′), for otherwise U ′ ∪ {v} contradicts the maximality. Let F be

the set of edges between U \U ′ and V (G) \ (U ′ ∪NG(U
′)), so that |F | ≤ |U \U ′| log24 n ≤ s|U |. Thus, we have by the

definition of expansion that

ε|U |
log2 n

≤ |NG−F (U)| ≤ |NG(U
′)| ≤ (|U ′|+ 1) log24 n+ 1,

so that |U ′| ≥ ε|U |
3 log26 n

, as required.

We now show that we can ensure the conclusion of Lemma 17 holds for all well-expanding sets simultaneously by
taking a union bound, and then use Proposition 18 to deduce an expansion property for all sets, as follows.

Lemma 19. Suppose that G is an n-vertex (ε, s)-expander with 2−9 ≤ ε ≤ 1 and s ≥ 2 log24 n. Let V ⊆ V (G) be a
random subset chosen by including each vertex independently at random with probability 1

3 .

Then, with probability at least 1− o (1/n), for every U ⊆ V (G) and every set F ⊆ E(G) with |F | ≤ |U |
log27 n

|Blog4 n
G−F (U, V )| > |V |

2
. (17)

Proof. Say a set U ′ ⊆ V (G) expands well in G if |NG(U
′)| ≥ |U ′| log24 n. Given a non-empty well-expanding set

U ′ ⊆ V (G) and a set of edges F of size at most |U ′|, Lemma 17 applied to U ′ implies that

|Blog4 n
G−F (U ′, V )| > |V |

2
(18)

fails with probability at most e−Ω(|U ′| log2 n).

Now a union bound over all pairs (U ′, F ) such that U ′ is a well-expanding set in G and F is a set of at most |U ′| edges
tells us that some such pair (U ′, F ) fails (18) with probability at most

∑
(U ′,F )

e−Ω(|U ′| log2 n) ≤
n∑

u=1

u∑
f=1

(
n

u

)(
n2

f

)
· e−Ω(u log2 n)

≤
n∑

u=1

u · n3u · e−Ω(u log2 n) ≤
n∑

u=1

e−Ω(u log2 n) = o(1/n).

Thus, with probability 1 − o(1/n), we can assume that (18) holds for every well-expanding set U ′ and set F ⊆ E(G)

with |F | ≤ |U ′|. We will now show that this implies (17) holds for all U ⊆ V (G) and F ⊆ E(G) with |F | ≤ |U |
log27 n

,
completing the proof.

Let then U ⊆ V (G) with |U | ≤ 2
3n and let F ⊆ E(G) satisfy the (slightly weaker) condition |F | ≤ 2|U |

log27 n
. Then, by

Proposition 18, there is a set U ′ ⊆ U which is well-expanding for which |U ′| ≥ ε|U |
3 log26 n

. Noting that |F | ≤ |U ′| (as we
may assume n is large with probability 1− o(1/n)), we therefore have that

|Blog4 n(U, V )| ≥ |Blog4 n(U ′, V )| > |V |
2

.

Finally, consider U ⊆ V (G) with |U | > 2
3n and let F ⊆ E(G) satisfy |F | ≤ |U |

log27 n
. Let Ū ⊆ U be an arbitrary subset

with n
2 ≤ |Ū | ≤ 2

3n, so that we have |F | ≤ 2|Ū |
log27 n

, and hence, from what we have just shown,

|Blog4 n(U, V )| ≥ |Blog4 n(Ū , V )| > |V |
2

,

as required.

4.3 Path connectedness through a random subset in expanders

We are now ready to prove Theorem 16. As discussed at the start of this section, we first split the edges of the graph G

into expanders, before applying Lemma 19 to each of these, to get (with high probability), a strong enough expansion
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condition to apply Lemma 9.

Proof of Theorem 16. To recap: we have an n-vertex (ε, s)-expander, G, with 2−7 ≤ ε ≤ 1 and s ≥ log135 n, and
a random subset V ⊆ V (G) where each vertex is included independently at random with probability 1

3 . To prove
Theorem 16, we need to show that, with high probability, G is (4 log5 n, 28 log5 n)-path connected through V .

Let k = 217 log42 n, so that s ≥ 212ε−1k2 log4 n, and let s′ =
√
sε

8k logn ≥ 2 log24 n. Using Lemma 15, take edge disjoint
graphs G1, . . . , Gk such that E(G) =

⋃
i∈[k] E(Gi) and, for each i ∈ [k], Gi is an

(
ε
4 , s

′)-expander.

Then, by Lemma 19 and a union bound over the k graphs Gi, with high probability we can assume that, for each
i ∈ [k] and every U ⊆ V (Gi) and F ⊆ E(Gi) with |F | ≤ |U |

log27 n
,

|Blog4 n
Gi−F (U, V )| > |V |

2
.

Now, let U ⊆ V (G) and F ⊆ E(G) with |F | ≤ 217|U | log15 n. As the graphs Gi, i ∈ [k], are edge disjoint, there must
be some i ∈ [k] with |F ∩ E(Gi)| ≤ 217|U | log15 n

k = |U |
log27 n

, and therefore

|Blog4 n
G−F (U, V )| ≥ |Blog4 n

Gi−F (U, V )| > |V |
2

.

Thus, by Lemma 9, applied with k = 28 log5 n and ℓ = log4 n we conclude that G is (4 log5 n, 28 log5 n)-connected, as
desired.

5 Cycle decompositions

In this section we will prove our main results, Theorems 2 and 3. Before doing this we need to put together a few
final ingredients. In Section 4, we established a very robust connectivity property of expanders. In Section 5.1 we will
show that in an expander one can find a subgraph with few edges and yet (effectively) the same connectivity property
through a random subset V , with high probability. We will refer to this subgraph as a skeleton of our graph, divide
the vertex set into three as V (G) = V1 ∪ V2 ∪ V3, and find three matching skeletons. In Section 5.2 we show that
any graph can be decomposed into few paths in such a way that no vertex is used as an endvertex many times. In
Section 5.3 we combine these results to decompose any expander into linearly many cycles and a few leftover edges. As
outlined in Section 2.2, we achieve this by setting aside the skeletons, then decomposing the remainder of the graph
into three sets of paths and finally using the connection properties of the skeletons to join the endvertices of these sets
of paths, where the sets of paths are matched to the skeletons to ensure this creates edge disjoint cycles. These cycles
decompose all the edges in the graph which are not in the skeleton and since the skeleton is chosen to be sparse this
gives us the result.

The final ingredient in the proof of Theorem 3, given in Section 5.4, is to decompose an arbitrary graph into expanders
and a few leftover edges via Lemma 23, to each of which we can apply our expander decomposition result. All that
will remain, then, is to iteratively apply Theorem 3 in Section 5.6, while removing some additional cycles, to deduce
Theorem 2.

5.1 Finding the skeletons

To find the skeletons, we will use Theorem 16 to embed a sparse well-connected ‘template’ graph (from Lemma 10)
with its edges replaced by relatively short edge disjoint paths, and show that the image of this embedding has the
properties we need of a skeleton, as follows.

Lemma 20. Let G be an n-vertex graph which is an (ε, s)-expander with 2−7 ≤ ε ≤ 1 and s ≥ log135 n. Let V ⊆ V (G)

be chosen by including each vertex independently at random with probability 1
3 . Then, with high probability, there is a

subgraph of G with at most 29n log10 n edges which is (log7 n, 2)-path connected through V .
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Proof. By Theorem 16 applied to G and V , G is with high probability (4 log5 n, 28 log5 n)-path connected through
V . Note that, by Chernoff’s inequality (Theorem 4), we can in addition ensure with high probability that |V | ≥ n

6 ,
and since our goal is to show a statement with high probability we may assume that n is large enough to apply
Lemma 10. That is, by that lemma we may assume there is an auxiliary graph H with vertex set V (H) = V (G) which
is
(
1
4 log

2 n, 2
)
-path connected through V , and such that ∆(H) ≤ 28 log5 n.

Note that E(H) is a collection of pairs of vertices in V (G) with the property that every vertex appears in at most
∆(H) ≤ 28 log5 n pairs. Hence, since G is (4 log5 n, 28 log5 n)-path connected through V , we can find for each e ∈ E(H)

a path Pe through V of length at most 4 log5 n, such that all the paths Pe, e ∈ E(H), are edge disjoint. Let G′ have
vertex set E(G) and edge set

⋃
e∈E(H) E(Pe), noting that

|E(G′)| ≤ 4 log5 n · |E(H)| ≤ 2n log5 n ·∆(H) ≤ 2n log5 n · 28 log5 n = 29n log10 n.

Therefore, we need only show that G′ is (log7 n, 2)-path connected. For this, let P ⊆
(
V (G)

2

)
be a family of pairs of

vertices from V (G) with each vertex appearing in at most 2 different pairs. Since H is
(
1
4 log

2 n, 2
)
-path connected

through V we can find edge disjoint paths in H through V , each of length at most 1
4 log

2 n, through V , joining each
pair in P. If we now replace each edge e of H used by one of these paths with Pe we obtain a collection of edge disjoint
walks in G′ of length at most log7 n, through V , joining each pair in P. Replacing each of the walks with its shortest
subwalk joining the same endvertices, we obtain paths which are edge disjoint, each have length at most log7 n, and
which connect the vertex pairs in P. Thus, G′ is (log7 n, 2)-path connected, as claimed.

5.2 Lovász path covering with well-spread endvertices

As quoted in the introduction, Lovász proved the following classical decomposition result in 1968.

Theorem 21 (Lovász [43]). Every n-vertex graph can be decomposed into at most n
2 paths and cycles.

Theorem 21 almost provides the path decompositions that we need. At the expense of using perhaps slightly more
paths, we can ensure in addition that no vertex is used often as an endvertex of the paths in the decomposition through
the following simple deduction.

Corollary 22. Every n-vertex graph G can be decomposed into paths so that each vertex of G is an endvertex of at
most two paths in the decomposition.

Proof. Form a graph G′ from G by adding a new vertex v0 and an edge from v0 to each vertex v ∈ V (G) for which
dG(v) is even. By Theorem 21, there is a collection C of at most n+1

2 cycles and paths which decomposes G′. Note that
each vertex v ∈ V (G) has odd degree in G′, and therefore must be an endvertex of an odd number of paths in C, and
thus, in particular, must be an endvertex of some path in C. As the paths in C together have at most n+1 endvertices,
each vertex in G is the endvertex of at most 1 path in C, as otherwise there would need to be n − 1 + 3 > n + 1

endvertices. Note that, furthermore, as there must be at least n endvertices together for the paths in C, we must have
that C contains at least n

2 paths. Thus, as |C| ≤ n+1
2 , C is in fact a collection consisting only of paths, with no cycles.

Now, for each path P ∈ C, if v0 ∈ V (P ) then remove the vertex v0 from P , and let C′ be the collection of all the
resulting paths. Then, C′ is a decomposition of G into paths. Furthermore, observe that each vertex v ∈ V (G) is an
endvertex of a path P ∈ C only if v was an endvertex of some path in C which contained P or if P was created by
removing the edge vv0 from a path in C. Thus, each vertex is an endvertex of at most two paths in C′, so that C′

decomposes G as required.

5.3 Decomposing expanders

In this section we will decompose an expander into linearly many cycles and a few leftover edges, as follows.

Lemma 23. Any sufficiently large n-vertex graph G which is an (ε, s)-expander with 2−5 ≤ ε ≤ 1 and s ≥ log273 n

can be decomposed into at most 3n cycles and at most 211n log10 n edges.
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Proof. Let s′ =
√
sε

24 logn ≥ log135 n. Using Lemma 15 with k = 3, take edge disjoint
(
ε
4 , s

′)-expander subgraphs G1, G2

and G3 of G, each with vertex set V (G), so that E(G) = E(G1)∪E(G2)∪E(G3). Next, partition V (G) = V1∪V2∪V3

by assigning each vertex to a set in the partition uniformly and independently at random. Using Lemma 20, for each
i ∈ [3], find a subgraph G′

i ⊆ Gi with at most 29n log10 n edges which is (log7 n, 2)-path connected through Vi.

For each i ∈ [3], let Hi be the graph with vertex set V (G) \ Vi whose edges are the edges of G−G′
1 −G′

2 −G′
3 lying

within Vi+1 or between Vi+1 and Vi+2, with these indices taken appropriately modulo 3, noting that these graphs
partition G−G′

1 −G′
2 −G′

3. For each i ∈ [3], then, apply Corollary 22 to decompose Hi into a collection of paths Pi

with the property that no vertex is an endvertex of more than two of the paths in Pi, noting that, in particular, this
implies that |Pi| ≤ n. Since G′

i is (log7 n, 2)-path connected through Vi and the paths in Pi have no vertices in Vi, for
each path P ∈ Pi, we can find a path QP through Vi in G′

i joining the endvertices of P , so that all these new paths are
edge disjoint. As V (Hi)∩ Vi = ∅, for each P ∈ Pi, P ∪QP is a cycle, and furthermore, as Hi and G′

i are edge disjoint,
the cycles form a collection, Ci say, of at most n edge disjoint cycles whose edges contain all of the edges of Hi.

As the subgraphs Hi ∪ G′
i, i ∈ [3], are edge disjoint, C1 ∪ C2 ∪ C3 is a collection of at most 3n cycles which contains

every edge of G except for, perhaps, some edges in G′
1 ∪G′

2 ∪G′
3. Thus, these cycles cover all but at most 211n log10 n

edges, giving us the desired decomposition.

5.4 Decomposing a general graph

We are now ready to prove Theorem 3, which we do in the following more quantitative form for convenience.

Theorem 24. Any n-vertex graph can be decomposed into at most 6n cycles and O(n log274 n) edges.

Proof. Let n0 ≥ 212 be sufficiently large so that the statement of Lemma 23 holds for every graph with at least n0

vertices, and let C = 3n0. Let s = log273 n and ε = 2−5. Using Lemma 14, decompose G into subgraphs G1, . . . , Gr

and at most 4sn log n edges so that |G1| + . . . + |Gr| ≤ 2n and, for each i ∈ [r], Gi is an (ε, s)-expander. Let I ⊆ [r]

be the set of i ∈ [r] with |Gi| ≥ n0, so that

∣∣E(G) \
(⋃
i∈I

E(Gi)
)∣∣ ≤ n0 ·

r∑
i=1

|Gi|+ 4sn log n ≤ 2n0s · n log n.

For each i ∈ I, using Lemma 23, decompose Gi into at most 3|Gi| cycles and 211|Gi| log10 n edges, giving in total at
most 3|G1| + . . . + 3|Gr| ≤ 6n cycles and at most 211(|G1| + . . . + |Gr|) log10 n ≤ n0s · n log n edges. In combination
with the edges of G −

⋃
i∈I Gi this gives a decomposition of G into at most 6n cycles and 3n0sn log n = Cn log274 n

edges.

5.5 Long cycles in expanders

A final ingredient we need before proving Theorem 2 is to show that, after removing long cycles and adding them to
a decomposition, any expander in the resulting graph must be quite small. That is to say, any expander contains a
long cycle even if it has no robustness at all. This follows from a result of Krivelevich [37] although since we do not
need the full power or generality of that result, for completeness we include a short proof using the Depth First Search
(DFS) algorithm (first used in this manner in [4]), as follows.

Lemma 25. Any n-vertex (ε, 0)-expander, with ε ≥ 2−5 and n ≥ 230/ε2, contains a cycle of length Ω
(

n
log4 n

)
.

Proof. Let G be our (ε, 0)-expander. Observe first that the expansion condition guarantees G is connected, since
otherwise we could find a connected component of G of size less than |G|

2 , whose vertex set then does not expand at
all.

We now run the DFS algorithm on G as follows. At any point during the process we have the set of unexplored vertices
U , the path P with active endvertex t(P ), and the set of processed vertices R. Picking an arbitrary vertex r ∈ V (G),
We start with U = V (G) \ {r}, R = ∅ and with P being the path with vertex set {r}, and set t(P ) = r. At each step,
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if there is a neighbour v of t(P ) in U we add it to P with the edge t(P )v and let t(P ) = v. Otherwise, we move t(P )

from P to R and set its neighbour in P as the new t(P ).

In the above process, in each step we either move precisely one vertex from U to P or precisely one vertex from P to
R. Note also that at any point in the process there are no edges between U and R since a vertex is only moved to R

once it has no neighbours in U , and U only ever has vertices removed from it. Finally, as G is connected, note that
the process finishes with all the vertices being in R and P , and U being empty.

Thus, we start with |U | = n − 1 and |R| = 0 and finish with |U | = 0 and |R| = n, at each step reducing |U |
by one or increasing |R| by one. Therefore, at some point in the process we must have |U | = |R|. Since there
are no edges between U and R we know that all the neighbours of U must belong to P , which therefore has size
|P | = n− 2|U | ≥ |NG(U)| ≥ ε|U |

log2 n
, where the last inequality follows by the expansion property applied to U , which we

can do since |U | = n−|P |
2 ≤ n

2 . This in turn implies that |P | ≥ εn
3 log2 n

since either |U | ≥ n
3 or |P | = n− 2|U | ≥ n

3 .

Now, let X, Y , Z be sets of consecutive vertices of P in that order which partition V (P ) so that |X|, |Z| ≥ |P |
3 and

ε2n
18 log4 n

≤ |Y | < ε2n
9 log4 n

. If X and Z are connected by some path in G \ Y , then take a shortest path, Q say, between
X and Z in G \ Y and note that, combined with the segment of P between the endvertices of Q, this gives a cycle
containing each vertex in Y , which thus has size Ω

(
n

log4 n

)
. If X and Z are not connected by a path in G \Y , then we

can take a partition V (G) \ Y = X ′ ∪ Z ′ with no edges between X ′ and Z ′ in G, and X ⊆ X ′ and Z ⊆ Z ′. Without
loss of generality, suppose that |X| ≤ n

2 . By the expansion condition we have |NG(X)| ≥ ε|X|
log2 n

≥ ε|P |
3 log2 n

≥ ε2n
9 log4 n

, yet
we also have |NG(X)| ≤ |Y | < εn

9 log4 n
, a contradiction.

5.6 Proof of Theorem 2

To decompose a graph into cycles and edges and prove Theorem 2, we now repeatedly do the following:

• letting d be the average degree of the graph consisting of the remaining edges, we remove maximally many edge
disjoint cycles with length at least d,

• we then decompose the remaining edges exactly into expanders (using Theorem 14 with s = 0) and show that these
must be small subgraphs as they each have no cycle with length at least d (using Lemma 25),

• and finally we decompose each of these small subgraphs into cycles and edges using Theorem 24.

Together this comprises the iterative step we use, which decomposes the n-vertex graph G with average degree d into
O(n) cycles and n logO(1) d edges. We then iterate on the graph of the edges in this decomposition, noting that its
average degree is much smaller than d. We state and prove the outcome of one iterative step as the following lemma,
for convenience and its own interest.

Lemma 26. Any n-vertex graph G with average degree d ≥ 2 can be decomposed into O(n) cycles and a subgraph with
average degree O(log274 d).

Proof. Let C be a maximal collection of edge disjoint cycles with length at least d in G. As there are nd
2 edges in

G, we have |C| ≤ n
2 . Let G′ be G with the edges of the cycles in C removed, so that G′ has no cycles with length at

least d. Apply Lemma 14 with s = 0 and ε = 2−5 to obtain a full decomposition (since s = 0) of G′ into subgraphs
G1, . . . , Gk, such that |G1|+ . . .+ |Gk| ≤ 2n and, for each i ∈ [k], Gi is a (2−5, 0)-expander. For each i ∈ [k], as G′ and
hence Gi has no cycle with length at least d, we have by Lemma 25 that |Gi| = O(d log4 d). Using Theorem 24, we
decompose each Gi into at most 6|Gi| cycles and O(|Gi| log274 |Gi|) = O(|Gi| log274 d) edges. Collecting these cycles
and edges over all i ∈ [k], and including the cycles in C, we get a decomposition of G into at most

n

2
+

k∑
i=1

6|Gi| ≤ 13n
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cycles and

O

(
k∑

i=1

|Gi| log274 d

)
= O(n log274 d)

edges. Noting these edges form a subgraph with average degree O(log274 d) completes the proof.

Finally, by iterating Lemma 26, we can prove Theorem 2, i.e., that any n-vertex graph can be decomposed into
O(n log∗ n) cycles and edges.

Proof of Theorem 2. Using Lemma 26, let C ≥ 1 be large enough that any n-vertex graph with average degree d ≥ 2

has a decomposition into at most Cn cycles and a subgraph with average degree at most C log274 n. Let G0 be any
n-vertex graph, and, for each i ≥ 0, let Gi+1 be a graph with the fewest edges that can be formed by removing at most
Cn edge disjoint cycles from Gi. For each i ≥ 0, let di be the average degree of Gi, so that we have di+1 ≤ C log274 di
for each i ≥ 0 for which di ≥ 2.

Let ℓ be the largest integer such that the log function applied iteratively ℓ times to n is still above 300C, i.e., the
largest integer such that log[ℓ] n ≥ 300C. Note that ℓ ≤ log∗ n and log[ℓ] n < 2300C . We will show, for each 0 ≤ i ≤ ℓ,
that di ≤ C(300 log[i] n)274. Note that d0 ≤ n, so that this easily holds with i = 0. Then, assuming it is true for some
0 ≤ i ≤ ℓ− 1 and that di ≥ 2 (for otherwise di−1 ≤ di ≤ 2), we have

di+1 ≤ C log274 di ≤ C(log(C(300 log[i] n)274))274

= C(logC + 274 log 300 + 274 log[i+1] n)274 ≤ C(300 log[i] n)274, (19)

where in the last inequality we used 26 log[i+1] n ≥ 26 log[ℓ] n ≥ 26 · 300C ≥ logC + 274 log 300.

Thus, in particular, we have that the average degree of Gℓ is at most C(300 log[ℓ] n)274 ≤ C(300 · 2300C)274 = O(1).
Furthermore, to get from G0 to Gℓ we have removed at most Cℓ ≤ Cn log⋆ n cycles. Therefore, G0 has a decomposition
into O(n log∗ n) cycles and O(n) edges, which, as G0 is an arbitrary n-vertex graph, completes the proof.

6 Concluding remarks

Our results. In this paper, we gave new bounds on two of the most central open problems on cycle decompositions
– the Erdős-Gallai conjecture from 1966 that any n-vertex graph can be decomposed into O(n) cycles and edges, and
Hajós’s conjecture from 1968 asserting that any n-vertex Eulerian graph can be decomposed into at most n

2 cycles,
where the bound in Hajós’s conjecture follows easily from Theorem 2. Indeed, given any n-vertex Eulerian graph, we
can apply this result first to remove O(n log⋆ n) cycles and leave only O(n log⋆ n) remaining edges. The remaining
edges then still form an Eulerian graph, which has a cycle decomposition by the observation of Veblen quoted in the
introduction. As this cycle decomposition has fewer cycles than the number of these edges, we get, altogether, a
decomposition of the original Eulerian graph into O(n log⋆ n) cycles.

Lower bounds for the Erdős-Gallai conjecture. As noted in the introduction, Hajós’s conjecture implies the
Erdős-Gallai conjecture, as any n-vertex graph can be decomposed into an Eulerian graph and at most n − 1 edges
— for example by taking the union of a maximal collection of disjoint cycles, and the edges in the remaining acyclic
subgraph. Therefore, if Hajós’s conjecture holds, then any n-vertex graph would have a decomposition into at most
n
2 cycles and at most n − 1 edges, and thus at most 3

2n cycles and edges. It is known that only ( 32 + o(1))n cycles
and edges are needed to decompose any n-vertex graph with linear minimum degree (due to Girão, Granet, Kühn,
and Osthus [23]), and also that 3

2 is best possible here. This latter fact was observed by Erdős [17] in 1983 who
remarked that there are graphs requiring ( 32 − o(1))n cycles and edges, likely referring to the following generalisation
of an example of Gallai (see [18]). Take k ∈ N and consider the complete bipartite graph G with disjoint vertex classes
A and B with |A| = 2k+1 and |B| = n− 2k− 1. Each vertex in |B| has odd degree in G, and G[B] contains no edges,
so any decomposition of G into cycles and edges must contain at least |B| edges. As each cycle in G has length at
most 2|A|, there is thus no decomposition of G into fewer than

|B|+ |A||B| − |B|
2|A|

=

(
3

2
− 1

2|A|

)
|B| =

(
3

2
− 1

4k + 2
− o(1)

)
n
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cycles and edges.

Our tools. Many of our tools decompose an n-vertex graph into O(n) cycles and a ‘leftover’ subgraph, and might
prove useful towards settling the conjecture in full. For example, the proof of Lemma 26 shows that any n-vertex graph
with no cycles longer than t decomposes into O(n) cycles and O(n log274 t) edges. Furthermore, for any constant k,
running our iteration argument using Lemma 26 k + 1 times shows that any n-vertex graph can be decomposed into
O(kn) cycles and O(n log[k] n) edges (see (19)). This latter result reduces the Erdős-Gallai conjecture to the case of
arbitrarily sparse graphs, although this seems only to focus on the most difficult case. The main bottleneck in our
argument seems to be the number of edges left uncovered in the almost decomposition into robust expanders, i.e. when
applying Lemma 14. It appears hard to reduce the number of edges enough to make an improvement on Theorem 2
while getting enough properties in the expansion (robust or otherwise) to aid any cycle decomposition.

Potential further applications. In addition to their application towards the Erdős-Gallai conjecture, we believe
the tools developed here could be useful in other settings due to the variety of applications that have been found for
sublinear expansion since its introduction in its original form by Komlós and Szemerédi, as well as the only very recent
use of the robust sublinear expansion discussed in Section 3.1. In fact, one can use some of our ideas, specifically a
more precise version of Proposition 12, to give a simpler proof of a result of Tomon [52] on finding rainbow cycles
in properly coloured graphs, and give a different proof on a result of Wang [55] (itself an improvement of a result of
Tomon [52]). In addition, Letzter [38] has very recently adapted some of our methods in order to find separating paths
systems.
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