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Abstract

A Latin square of order n is an n by n grid filled using n symbols so that each symbol appears
exactly once in each row and column. A transversal in a Latin square is a collection of cells which
share no symbol, row or column. The Ryser-Brualdi-Stein conjecture, with origins from 1967, states
that every Latin square of order n contains a transversal with n−1 cells, and a transversal with n cells
if n is odd. Keevash, Pokrovskiy, Sudakov and Yepremyan recently improved the long-standing best
known bounds towards this conjecture by showing that every Latin square of order n has a transversal
with n − O(logn/ log log n) cells. Here, we show, for sufficiently large n, that every Latin square of
order n has a transversal with n− 1 cells.

We also apply our methods to show that, for sufficiently large n, every Steiner triple system of
order n has a matching containing at least (n− 4)/3 edges. This improves a recent result of Keevash,
Pokrovskiy, Sudakov and Yepremyan, who found such matchings with n/3−O(logn/ log log n) edges,
and proves a conjecture of Brouwer from 1981 for large n.
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1 Introduction

The study of transversals in Latin squares dates back at least to the 18th century when Euler considered
Latin squares which can be decomposed into full transversals [22]. A Latin square of order n is an n
by n grid filled with n symbols, so that every symbol appears exactly once in each row and column. A
transversal of a Latin square of order n is a collection of cells in the grid which share no row, column or
symbol, while a full transversal is a transversal with n cells. For more background on Latin squares, see
the surveys by Andersen [6], Wanless [55], and the current author [44].

Key examples of Latin squares include the multiplication tables of finite groups, which easily provide
examples that, if n is even, then there are Latin squares of order n with no full transversal (e.g., the
multiplication table for Z2). In 1967, Ryser [51] conjectured that no such Latin square of order n exists
when n is odd (see also [10]). Brualdi (see [14]) later conjectured that every Latin square of order n has a
transversal with n− 1 cells, while Stein [53] made some related, stronger, conjectures in the 1970’s. The
following combined conjecture has become known as the Ryser-Brualdi-Stein conjecture and is the most
significant open problem on transversals in Latin squares.

Conjecture 1.1 (The Ryser-Brualdi-Stein conjecture). Every Latin square of order n has a transversal
with n− 1 cells, and a full transversal if n is odd.

Towards Conjecture 1.1, increasingly large transversals were shown to exist in any Latin square by
Koksma [35], and Drake [18], before Brouwer, De Vries and Wieringa [13] and Woolbright [57] indepen-
dently showed that every Latin square of order n has a transversal with at least n −

√
n cells. In 1982,

Shor [52] showed that a transversal with n−O(log2 n) cells exists in any Latin square of order n, though
the proof had an error that was only noticed and corrected by Hatami and Shor in 2008 [28]. This bound
stood until the breakthrough work of Keevash, Pokrovskiy, Sudakov and Yepremyan [32] in 2020, which
showed that every Latin square of order n has a transversal with n − O(log n/ log log n) elements. Here
the bound O(log n/ log log n) on the missing elements is a natural barrier, and it seems likely this is the
best bound achievable with methods that approach each Latin square in the same manner.

In this paper, we introduce the first techniques to identify and exploit the possible algebraic properties
behind the entries in a Latin square. This will allow us to find transversals missing at most one symbol
in large Latin squares, as follows.

Theorem 1.2. There is some n0 ∈ N such that every Latin square of order n ≥ n0 contains a transversal
with n− 1 cells.

As noted above, the multiplication tables of finite groups give important examples of Latin squares, and
even in this particular case the Ryser-Brualdi-Stein conjecture is very difficult. For these examples, Hall
and Paige [26] considered when a full transversal should exist in such a Latin square corresponding to the
multiplication table of a finite group, conjecturing in 1955 that it is exactly when the 2-Sylow subgroups of
the corresponding group are trivial or non-cyclic (and, thus, in particular, such a transversal should always
exist in a group of odd order). This conjecture was eventually confirmed through a combination of work by
Wilcox, Evans, and Bray [56, 23], completed in 2009, using computer algebra and the classification of finite
simple groups. For large groups, an alternative proof of the conjecture (along with sharp asymptotics for
the number of transversals) was given by Eberhard, Manners and Mrazović [19] using tools from analytic
number theory. Very recently, a combinatorial proof of the Hall-Paige conjecture was given for large
groups by Müyesser and Pokrovskiy [47], as part of a more general result.

A generalised Latin square, or Latin array, of order n is an n by n grid filled with symbols so that
every symbol appears at most once in each row and each column (thus allowing more than n symbols).
In [45], the current author showed with Pokrovskiy and Sudakov that any large Latin array which is
sufficiently far from a Latin square has a full transversal (see Theorem 3.13). For large n, the Latin arrays
not covered by the results in [45] are close enough to Latin squares to apply the techniques introduced
here for Theorem 1.2, allowing the following generalisation of Theorem 1.2 without much additional work.

Theorem 1.3. There is some n0 ∈ N such that every Latin array of order n ≥ n0 contains a transversal
with n− 1 cells.

3



Theorem 3.13, as quoted from [45], shows that Latin arrays of order n in which at most (1 − o(1))n
symbols appear more than (1 − o(1))n times have a full transversal. Another possible condition forcing
Latin arrays to have a full transversal was suggested by Akbari and Alipour [1], who conjectured that any
Latin array of order n containing at least n2/2 different symbols should contain a full transversal. This
was confirmed for large n in a strong sense by the results of [45], as well as in independent work by Keevash
and Yepremyan [33] who showed the stronger bound that, for large n, Latin arrays of order n with at least
n399/200 different symbols contain a full transversal. In their recent work, Keevash, Pokrovskiy, Sudakov
and Yepremyan [32] improved this much further, showing that O(n log n/ log log n) different symbols can
suffice to force a full transversal. Using our techniques for Theorem 1.2, we will show that in fact O(n)
different symbols can suffice.

Theorem 1.4. There is some n0 ∈ N such that every Latin array of order n ≥ n0 with at least 250n
different symbols contains a full transversal.

The constant 250 in Theorem 1.4 could be lowered using the techniques in this paper, but doing so
would not give a likely optimal constant. Considering the known extremal examples for Theorem 1.2, it
is feasible that Theorem 1.4 could hold with 250n replaced even by n+ 1.

The Ryser-Brualdi-Stein conjecture has a natural expression as a hypergraph matching problem, and,
similarly, we can apply our methods for Theorem 1.2 to find large matchings in Steiner triple systems. A
Steiner triple system of order n is an n-vertex 3-uniform hypergraph in which each pair of vertices is in
exactly one edge, while a matching is a set of edges which share no vertices. Steiner triple systems are
a type of design, a general combinatorial object whose study dates back to the 19th century. While the
existence of designs in general was not proved until the famous result of Keevash from 2014 [31], Steiner
triple systems were shown to exist for each n ≡ 1, 3 mod 6 by Kirkman in 1847 [34]. Simple divisibility
conditions show that no Steiner triple system of order n exists if n 6≡ 1, 3 mod 6. In 1981, Brouwer [12]
conjectured that Steiner triple systems should contain matchings missing at most 4 vertices, as follows.

Conjecture 1.5 (Brouwer). Every Steiner triple system of order n contains a matching with at least
(n− 4)/3 edges.

Due to constructions of Wilson (see [17]) and Bryant and Horsley [15, 16], it is known that Brouwer’s
conjecture would be tight for infinitely many values of n. Towards the conjecture, increasingly large
matchings were shown to exist in any Steiner triple system by Wang [54], Lindner and Phelps [41] and
then Brouwer [12], before Alon, Kim and Spencer [3] showed that any Steiner triple system of order n has

a matching containing all but O(n1/2 log3/2 n) vertices. Keevash, Pokrovskiy, Sudakov and Yepremyan ap-
plied their methods in [32] to drastically reduce this to find matchings containing all but O(log n/ log log n)
vertices, by translating the problem to one on rainbow matchings in pseudorandom bipartite graphs.
Following this translation, our methods require a little modification, but allow us to prove Brouwer’s
conjecture for large Steiner triple systems, as follows.

Theorem 1.6. There is some n0 ∈ N such that every Steiner triple system of order n ≥ n0 contains a
matching with at least (n− 4)/3 edges.

To prove our results, we use a combination of the semi-random method and the absorption method.
Since its codification in 2006 as a general approach by Rödl, Ruciński and Szemerédi [50], absorption has
been a critical tool in turning approximate results into exact results. That is, we aim to find a transversal
with (1 − o(1))n cells in a Latin square of order n using known methods (in particular, here, the semi-
random method), before using the absorption method to turn this into a transversal with n cells. However,
the extremal examples showing a full transversal may not always exist (when n is even) demonstrate the
challenge of using the absorption method in this setting. In these examples, the same algebraic properties
behind the entries in the Latin square prevent the existence of the typical absorbers used for an application
of the absorbing method. Latin squares arising as the multiplication tables of groups are good examples
of such algebraic properties, but other extremal examples show these properties can be more complicated
still (see Section 2.3.1).

To prove Theorem 1.2, we introduce the first methods to identify and exploit algebraic properties of
the entries of Latin squares. We use this to construct an ‘absorption structure’ with a natural but limited
absorption property. We then introduce an ‘addition structure’ and use this to strengthen the properties
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of the absorption structure. In combination, the absorption structure and addition structure will allow us
to adjust a transversal with (1− o(1))n cells to one with n− 1 cells. Each of the main three parts of our
proof (identifying the algebraic properties, creating and using the absorption structure, and creating and
using the addition structure) carries significant novelty and we sketch each of these in detail in Section 2.3.

In this paper, we will work throughout with the now-standard equivalent formulation of Latin squares
as properly coloured complete bipartite graphs. In Section 2, we recall this formulation and state some
basic notation, before giving a brief snapshot of the proof for readers very familiar with techniques in
the area and then discussing our proofs in more detail. The rest of the paper is outlined at the start of
Section 3, but we finish in Section 11 by discussing the potential of the methods introduced here, the
difficulty of finding full transversals, and further related problems.

2 Exposition

As is often standard (see, for example, [32, 45]) for the results in Section 1, we will work in the equivalent
setup of rainbow matchings in properly coloured bipartite graphs. An edge colouring is proper if no pair of
edges of the same colour share a vertex, an optimal colouring is a proper colouring which uses the minimum
number of colours, and a graph is rainbow if each edge in the graph has a different colour. Given a Latin
square L of order n, we form a complete bipartite edge-coloured graph G(L) by creating a vertex for each
row and each column, and for each row/column pair putting an edge between the corresponding vertices
whose ‘colour’ is the symbol in the cell of the Latin square in that row and column. The matchings in
G(L) correspond exactly to the sets of cells in L sharing no row or column, and the rainbow matchings in
G(L) correspond exactly to the transversals in L. Similarly, given an optimal colouring of the complete
bipartite graph with n vertices in each class, Kn,n, we can create a corresponding Latin square.

To show Theorem 1.2, we thus need to demonstrate that, for sufficiently large n, any optimally coloured
Kn,n has a rainbow matching with at least n − 1 edges. For Theorems 1.3 and 1.4 we use a similar
translation into coloured graphs (potentially using more than n colours). Transforming the problem of
finding matchings in Steiner triple systems into a rainbow matching problem for the proof of Theorem 1.6
is a little more involved, and here we follow Keevash, Pokrovskiy, Sudakov and Yepremyan [32] (See
Section 10). This results not in a complete bipartite graph, but in a dense bipartite graph with certain
‘pseudorandomness’ conditions. In order to prove our main theorems in a unified manner, we carry out
our proofs for a class of dense pseudorandom bipartite graphs (see Section 3.5).

2.1 Notation

Our notation is generally standard, but we note here the most important. A graph G has vertex set V (G)
and edge set E(G), and |G| = |V (G)| and e(G) = |E(G)|. If G has an edge colouring, then C(G) is the set
of colours appearing on the edges of G, and, for each c ∈ C(G), Ec(G) is the set of edges of G with colour c.
The colour of an edge e ∈ E(G) is C(e) and its vertex set is V (e). Given a vertex set A of a graph G, G[A]
is the induced subgraph of G with vertex set A and edge set {uv ∈ E(G) : u, v ∈ A}. Given a further vertex
subset B ⊂ V (G), G[A,B] is the graph with vertex set A ∪ B and edge set {uv ∈ E(G) : u ∈ A, v ∈ B}
and eG(A,B) = |{(u, v) : u ∈ A, v ∈ B, uv ∈ E(G)}|. Given an edge set E ⊂ E(G), V (E) = ∪e∈EV (e).
Given graphs G and H, G−H has vertex set V (G) and edge set E(G) \E(H). Given V ⊂ V (G), G− V
is the graph G[V (G) \ V ]. Given U ⊂ V (G), for each i ≥ 0, BiG(U) is the ball of radius i around U in G,
that is, the set of vertices within distance i of U in G.

Given a ground set V and p ∈ [0, 1], a set A ⊂ V is p-random if each element of V is included in A
independently at random with probability p. A matching in a graph (or hypergraph) is a set of edges
which share no vertices. In a coloured graph, a subgraph is C-rainbow if it is rainbow with edge colours in
C, and exactly-C-rainbow if it has exactly one edge of each colour in C, with no other colours appearing.
A balanced bipartite graph is one where the two vertex classes have the same size.

We use hierarchies of constants to record dependencies between the constants in our proofs. We write
α � β to mean there exists some positive increasing function f : (0, 1] → R so that the remainder of

the proof follows if α ≤ f(β). We use α
poly

� β to mean there exists some fixed C > 0 such that the
remainder of the proof follows if α ≤ βC/C. Where there are several constants in the hierarchy, the
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constants/functions are chosen from right to left. For more details on this notation, see [45, Section 3.2].
We also use ‘big O’ notation, where the functions involved are always functions of n. Given a, b ∈ R and
c ≥ 0, we say x = (a ± c)b if (a − c)b ≤ x ≤ (a + c)b. For each integer ` ≥ 1, we use [`] = {1, . . . , `} and
[`]0 = {0, 1, . . . , `}.

2.2 Proof snapshot

Before discussing the proof in detail, we make some remarks for readers very familiar with absorption
techniques and the Ryser-Brualdi-Stein conjecture. Other readers may find it more helpful to move on to
Section 2.3 and return here for later reference. A discussion of the proof in similar terms to that which
we give now, but with a little more detail, also appears in a recent survey paper by the author [44].

Suppose we have a graph G which is an optimally coloured copy of Kn,n, and wish to find a large
rainbow matching using absorption and the semi-random method. In order to use absorption, for some
` ∈ N, we would like to find sets V abs ⊂ V (G) and Cabs ⊂ C(G) so that (V abs, Cabs) can absorb any
balanced set W ⊂ V (G) \ V abs of size 2` (by finding an exactly-Cabs-rainbow matching with vertex set
V abs ∪W ). However, if, for example, G corresponds to the addition∗ table of some abelian group H, then
simple calculations (like those later at (2)) would show that, if such a matching exists for W ⊂ V (G),
then ∑

v∈W
v =

∑
c∈Cabs

c−
∑

v∈V abs

v, (1)

so, for example, we might only hope to be able to absorb vertex sets W that sum to 0. This is related
to the absorption of ‘zero-sum’ sets in recent work of Müyesser and Pokrovskiy [47] and Bowtell and
Keevash [11], but in contrast for our general colourings we are not given an algebraic structure which
gives an clear condition for which sets we should be able to absorb.

Instead, we pick (fairly arbitrarily) an ‘identity colour’ c0, and the condition for absorption is that
the vertex set W above must additionally be the vertex set of a matching of colour-c0 edges. Where
the colouring of G arises from an abelian group H as above, note that if c0 = 0 then any such vertex
set sums to 0, so this is more restrictive than the ‘zero-sum’ condition. Where there is a corresponding
abelian group H, the construction of our absorber could be a fairly straightforward implementation of
distributive absorption (by constructing small absorbers which can absorb the vertex set of one of 100
specified colour-c0 edges). In general, the construction of the absorber is the same at heart, but in
practice considerably more complex as we need to construct this in conjunction with our work finding
some approximate algebraic structure in the colouring. This latter work is hard to introduce more briefly
than in Section 2.3.1, so we do not elaborate on this aspect here, but instead discuss our addition structure.

The condition we have for absorption is quite restrictive, and so we introduce an addition structure
(V add, Cadd), which takes a more general vertex set W ⊂ V (G)\V add and outputs two ‘remainder vertices’
and a vertex set Ŵ which does satisfy the absorption condition. More specifically, given any small enough
balanced set W ⊂ V (G) \ V add, there are vertex-disjoint matchings M rb and M id and vertices w and z
such that together they have vertex set V add ∪W , M rb is an exactly-Cadd-rainbow matching, and M id

is a matching of colour-c0 edges (whose vertex set Ŵ = V (M id) thus satisfies the absorption condition).
The set Ŵ will then be absorbed, while the vertices w and z are the two vertices not used in the final
(n− 1)-edge rainbow matching.

Thus, leaving aside for now the analysis of the colouring, we do the following.

• Find an absorption structure and an addition structure.

• Find a large rainbow matching using most of the remaining vertices and all but one of the remaining
colours (using the semi-random method, and that we set aside fewer vertices than colours for the
absorption and addition structures).

• Transform the small set of unused vertices using the addition structure, giving us the two vertices
to omit and a vertex set which is then absorbed by the absorption structure.

The addition structure works iteratively. Essentially we start with the two matchings M rb and M id

and two remainder vertices w and z and set V add = V (M rb ∪M id) ∪ {w, z} and Cadd = V (M rb). Then,

∗For examples and as an analogy we consider from now on only abelian groups, and use addition rather than multiplication
for its group rule.
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we iteratively update these with small adjustments to cover together more and more vertices. In this,
M id increases in size but is always a matching of colour-c0 edges, and M rb is always an exactly-Cadd-
rainbow matching. Where G has a corresponding abelian group H, the sum of V (M rb)∪ V (M id) is fixed
(=
∑
c∈Cadd c) so the remainder vertices w, z may have to sum to any element of H depending on the sum

of W . Here, it is very important that we have two spare vertices so that this is possible. The construction
of the addition structure is discussed in detail in Section 2.3.3.

2.3 Proof sketch

Our sketch here has a lot of detail, but the actual implementation is more complicated in various places
and thus varies a little from the proof sketch. Where these differences arise they are highlighted at the
start of the relevant section. Once we have introduced the main components of our proof along with some
notation, we give an overview of the proof using this notation, as highlighted by lines in the margin.

Instead of proving the theorems given in Section 1 directly, we will prove a more general and technical
result finding rainbow matchings with n − 1 edges in properly-pseudorandom bipartite graphs with 2n
vertices (see Theorem 3.1), along with a variant which, under slightly stronger conditions, can find n-edge
rainbow matchings (see Theorem 3.2). These theorems follow without any additional conceptual difficulty
from our methods applied more directly for Theorem 1.2, and so here we will discuss only our methods in
this setting. That is, we will take an optimally coloured complete bipartite graph G with vertex classes A
and B of size n, where n is large, and look for a rainbow matching with n − 1 edges. To find a rainbow
matching in G with n− 1 edges, we use the semi-random method and the absorption method.

The semi-random method. The semi-random method (also known as the Rödl nibble) was introduced
by Rödl [49] in 1985 to find (equivalently) large matchings in complete hypergraphs (and, hence, approx-
imate designs). Frankl and Rödl [24], and, in unpublished work, Pippenger showed that this method
could, more generally, find large matchings in almost-regular hypergraphs (for details on subsequent de-
velopments, see the recent survey by Kang, Kelly, Kühn, Osthus and Methuku [30]). Our graph G has a
natural expression as a regular (uncoloured) 3-partite 3-uniform hypergraph, which allows the semi-random
method to be applied as standard to find a large matching in this hypergraph, which then corresponds to
a large rainbow matching in G. The application of the semi-random method we use (via quoted results)
is standard, requiring only the record of good bounds on the error terms involved.

More specifically, we will use a standard result from the semi-random method (see Corollary 4.7) to
show that we can find large matchings in G using only some chosen vertices and colours, as long as a
significant proportion of these vertices and colours are chosen randomly. In this, we follow the work
of the current author, Pokrovskiy and Sudakov proving Ringel’s conjecture on tree packings in large
complete graphs [46]. More specifically, we will set aside random sets V s-r ⊂ V (G) and Cs-r ⊂ C(G)
for the application of the semi-random method, choosing them by including each element independently
at random with probability 3/4 (i.e., they are independent (3/4)-random subsets). Then, with high
probability (i.e., with probability 1− o(1)), the following property will hold (as we show in Section 4).

A1 Given any balanced V ⊂ V (G) and C ⊂ C(G), with |V | = 2|C|, Cs-r ⊂ C and V s-r ⊂ V , there is a
C-rainbow matching in G[V ] with (1− o(1))|C| edges.

This allows us to use colours in C(G) \Cs-r and vertices in V (G) \ V s-r to construct substructures within
G, before covering most of the unused vertices with a rainbow matching using most of the unused colours.
Our goal is to construct such a substructure that will allow us to extend the rainbow matching from the
semi-random method to a rainbow matching with n− 1 edges. That is, we use the absorption method.

The absorption method. Following its origins in the work of Erdős, Gyárfás and Pyber [21] and
Krivelevich [38], absorption was introduced as a general method by Rödl, Ruciński and Szemerédi [50]
in 2006, since when it has been used extensively for embedding and packing problems in many different
contexts. When using it to find a rainbow matching, we aim to find a rainbow matching in G (as our
absorption structure) to which we could make adjustments (adding and removing edges) in order to extend
the matching to precisely use some extra vertices and colours. These ‘extra vertices and colours’ would
ultimately be those left unused after a large rainbow matching is found disjointly from the absorption
structure using the semi-random method.
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For simplicity, let us think about only absorbing the ‘extra vertices’. An ideal implementation of
absorption for this would, for the random sets V ⊂ V (G) and C ⊂ C(G) described above and ` = εn for
some small ε > 0, find a balanced set V abs ⊂ V (G) \ V (that is, with equally many vertices in A and B)
and a set Cabs ⊂ C(G) \ C with |V abs| = 2|Cabs| − 2` such that the following holds

A2 Given any balanced set W ⊂ V (G) \V abs with |W | = 2`, there is an exactly-Cabs-rainbow matching
in G[V abs ∪W ]. (That is, a matching using each colour in Cabs exactly once, and so which has the
vertex set V abs ∪W .)

If such sets V abs ⊂ V (G) \ V and Cabs ⊂ C(G) \C exist when n is large, then, it is not hard to find a
rainbow perfect matching in G. Indeed, by A1, there is a rainbow matching M1 in G[V (G) \ V abs] with
colours in C(G)\Cabs and at least n−|Cabs|− εn edges. As |V abs| = 2|Cabs|−2`, there are more vertices
in V (G) \ (V abs ∪ V (M1)) than colours in C(G) \ (Cabs ∪ C(M1)), and this makes it relatively easy to
find a rainbow matching M2 within these vertices using exactly these colours∗. Then, by A2, there is
an exactly-Cabs-rainbow matching M3 in G[V (G) \ V (M1 ∪M2)], and M1 ∪M2 ∪M3 is then an n-edge
rainbow matching in G.

Of course, we know such a matching need not exist, and thus it is not always possible to find sets
V abs and Cabs satisfying A2. Indeed, in certain colourings with some algebraic properties, the possible
colour sets C(M) of a matching M may be restricted by the vertex set V (M) (i.e., once V abs and Cabs

are chosen, there are only certain sets W for which A2 can hold).

Our approach. We will take a two stage approach to create our full absorption property. First, with
` = εn, we will create an absorption structure with sets V abs and Cabs such that |V abs| = 2|Cabs| − 2` so
that A2 holds for sets W with size 2` satisfying a certain condition. Having picked an ‘identity colour’, c0,
this condition is (essentially) that W is the vertex set of a matching with ` colour-c0 edges. Crucially, we
are using this as a condition for which sets can be absorbed and the colour-c0 edges do not end up in the
rainbow matching (which may have no colour-c0 edges) resulting from the absorption. This condition is
quite limiting, so we create an ‘addition structure’ separately from the absorption structure which allows
us to transform more general vertex subsets into a set suitable for the absorption structure, while also
identifying two vertices which we leave out of the final matching.

The proof is described in more detail in what remains of this sketch. We start in Section 2.3.1
by describing some more extremal colourings (those without perfect rainbow matchings) and then how
we analyse any given colouring to find colour classes with approximate algebraic properties. Then, in
Section 2.3.2, we discuss the absorption structure further, before discussing the addition structure in
Section 2.3.3. Finally, in Section 2.3.4, we note some complications that arise for proving Theorem 1.6,
for which we need to make some adjustments to our methods as outlined in this sketch.

2.3.1 Colourings with algebraic properties

Here, we first discuss extremal colourings arising from group addition tables, before highlighting a key
algebraic property of these colourings (Property P below). Not every extremal colouring will have this
property, but if the property does not hold then we will see that this allows us to ‘switch’ between two
colours and we will discuss how we develop a partition of colour classes so that a) we can ‘switch’ between
using any two colours of the same class and b) these classes have instead some (at least approximate)
algebraic property. We then illustrate this with an example from a more general collection of extremal
colourings. Finally, we give a very brief summary of some of the tools we use to find our colour partition
in general and then comment on some of the variables we use. The use of the ‘switching’ properties of the
colour classes we find is highlighted in our subsequent description of the absorption structure.

Extremal colourings from group addition tables. Given an abelian group H of order n, let G(H)
be the coloured bipartite graph corresponding to the addition table of H. That is, G(H) has two disjoint
copies of H, A and B say, where the edge between a ∈ A and b ∈ B has colour C(ab) = a + b. If G(H)
contains a perfect rainbow matching, M = {xiyi : i ∈ [n]} say, then∑

v∈H
v =

∑
i∈[n]

C(xiyi) =
∑
i∈[n]

(xi + yi) = 2
∑
v∈H

v, (2)

∗If we have ensured a random-like set of vertices appears among them. As this is not actually how the proof proceeds,
we skip over this to keep our illustration as simple as possible.

8



and hence
∑
v∈H v = 0. Thus, if

∑
v∈H v 6= 0, then G(H) has no perfect rainbow matching. In particular,

when n is even, G(Zn) contains no perfect rainbow matching, and this is the canonical extremal example
for Conjecture 1.1 known to Euler. More generally (and including non-abelian groups), G(H) has no
perfect rainbow matching if H has a non-trivial cyclic Sylow 2-subgroup and this is the topic of the
Hall-Paige conjecture discussed in the introduction.

Our key algebraic property. For each abelian∗ group H, G(H) has the following property.

P Given any two paths with length 3 with the same colours on their edges in the same order, the edges
completing each path into a cycle have the same colour.

Indeed, for any path P = v1v2v3v4 in G(H), whose edges have colour c1, c2, c3 ∈ G in that order, we have

v1 + v4 = v1 + v2 − (v2 + v3) + v3 + v4 = c1 − c2 + c3,

and therefore the colour of v1v4 is always c1 − c2 + c3 ∈ H.
On the other hand, if the colouring of G has property P, it is possible to see that it must arise from

the addition table of some abelian group. Indeed, after choosing an identity colour c0, we can take the
sum of any two non-identity colours c and d to be the colour of any edge completing a length 3 path with
colours c, c0, d (in that order) into a cycle. It it not hard to show that this will give an abelian group
structure on C(G), nor to then label vertices with elements of C(G) and show that the colouring of G can
thus arise as the addition table of this group.

Colour classes with the key algebraic property. Now, suppose that, in the colouring of G, the
Property P fails for many pairs of length 3 paths, as follows. Suppose we have two vertex-disjoint
paths P1 = w1x1y1z1 and P2 = w2x2y2z2 with edge colours c1, c2, c3 in that order, but that w1z1 has
colour c and w2z2 has colour d with c 6= d (see Figure 1). Let M1 = {x1y1, w1z1, w2x2, y2z2} and
M2 = {w1x1, y1z1, x2y2, w2z2}. Then, M1 and M2 are rainbow matchings with the same vertex set
V (M1) = V (M2) but M1 uses colours c1, c2, c3 and c and M2 uses colours c1, c2, c3 and d (see again
Figure 1). We will say that M1 and M2 allow us to switch between using c and using d: if we include M1

in any rainbow matching, then by switching M1 for M2 we can switch c out of the colour set and d into
the colour set without changing the other colours or the vertex set. We will say that (M1,M2) forms a
c, d-colour-switcher of order |M1| = |M2| = 4 (see Definition 5.1). For brevity we will usually call this a
c, d-switcher if it is clear we are switching between colours; we also later use edge switchers (see Figure 3).

Effectively, we will find a set of colour classes† C such that, for each C ∈ C, given any distinct c, d ∈ C
we can find many c, d-switchers in G with order O(log4 n), while, moreover, without using some other
vertices or colours we wish to avoid (so long as, roughly speaking, we do not try to avoid too many
colours in C). The ‘exchangeable’ classes of colours we use are defined in Definition 5.2, and found by
Theorem 5.4. Our aim is to find such classes so that overall the colour classes have an approximate version
of the following analogue of property P for colour classes (see I3 in Definition 5.2).

P’ Given any two paths with length 3 with the same colours on their edges in the same order, the edges
completing each path into a cycle have colours within in the same colour class.

∗For non-abelian groups H, G(H) does not quite have this property, as the colour of the 4th edge can depend on which
vertex class the path begins in.

†Our colour classes are sets of colours. We use classes here to distinguish between the sets in C and the other sets of
colours we use like Cabs as they play a very different role.

x1 x2

y1 y2

z1 z2

w1 w2

c1

c3
c2 c

c1

c3
c2 d

x1 x2

y1 y2

z1 z2

w1 w2

c1

c3
c2 cM1:

x1 x2

y1 y2

z1 z2

w1 w2

c1

c3
c2 dM2:

Figure 1: A c, d-colour-switcher of order 4 on the left with vertex set {w1, x1, y1, z1, w2, x2, y2, z2} and
colour set {c1, c2, c3} (see Definition 5.1), along with matchings M1 and M2 demonstrating its properties.
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An example: further extremal colourings. We can use the extremal colourings from group addition
tables described above to generate other extremal colourings with no perfect rainbow matching and a less
obvious algebraic structure, using the following ‘blow-up’ construction (see Figure 2 for an example with
H = Z2). Suppose H is an abelian group of order n and let m ∈ N. Take disjoint sets Av, Bv, Cv,
v ∈ H, all with size m. Form a complete bipartite graph with vertex classes ∪v∈HAv and ∪v∈HBv. For
each v, w ∈ H, colour the edges between Av and Bw using the colours from Cv+w in any proper manner.
This can be easily seen to give an optimally coloured copy of Kmn,mn, where, if there is a perfect rainbow
matching xiyi, i ∈ [mn], then, letting vi and wi be such that xi ∈ Avi and yi ∈ Bwi for each i ∈ [mn], the
corresponding calculation to (2) is that

m ·
∑
v∈H

v =
∑
v∈H
|Cv| · v =

∑
v∈H

∑
i∈[mn]:C(xiyi)∈Cu

u =
∑
i∈[mn]

(vi + wi) = 2m ·
∑
v∈H

v,

and therefore if m ·
∑
v∈H v 6= 0 then there is no perfect rainbow matching in G(H). More specifically,

taking and odd m and H = Zn for any even n gives an optimally bipartite coloured graph with no rainbow
matching, recovering a construction for the corresponding Latin squares given by Maillet [42] in 1894.

In these examples, for Property P’, the colour classes Cv, v ∈ H, would be a good starting point for
our partition of colours. However, depending on the colourings we chose between the sets Ax and By (and
whether these colourings have some algebraic structure) we may need to refine this partition of colours to
get classes that satisfy P’ approximately.

Tools for developing colour classes. As we introduced above, if P fails for many pairs of paths, then
we will be able to find switchers of order 4 for many pairs of colours c, d. To develop our colour classes,
we will consider the auxiliary graph whose vertex set is the set of colours and whose edges between pairs
of colours are weighted by the number of switchers of order 4 for that colour pair in G. This auxiliary
graph can be very different for different colourings: it can be dense with generally low edge weights or
sparse with high edge weights, or indeed some combination of these cases and anything in between. Very
roughly speaking, we partition the edges of the auxiliary graph into O(log n) parts based on these edge-
weights before finding well-connected subgraphs in each part. For most of these parts, this is done using
Komlós-Szemerédi sublinear graph expansion (as discussed in Section 3.9). Within these subgraphs we
can then build switchers for any pair of colours by chaining together colour switchers of order 4 (where it
is important that these chains are not too long). This is discussed further in Section 5.

A comment on our variables. We now comment briefly on our main variables, as, though loosely
worded at this stage, it may give some intuition over their use. The typical overarching hierarchy∗ we use
for finding an (n− 1)-edge rainbow matching in G is

1

n

poly

� ε
poly

� η
poly

� γ
poly

� β
poly

� log−1 n. (3)

Due to our use of Komlós-Szemerédi sublinear graph expansion, the switchers we construct in the auxiliary
graph have size O(log4 n) and we split the auxiliary graph into O(log n) graphs. This explains the right-
most variable of (3), and we will then be able to construct substructures in G using around βn colours

∗The use of ‘
poly
� ’ is described in Section 2.1, but let us note here that (3) means that there are increasingly large

constants Cβ , Cγ , Cη , Cε, C0 for which our proof holds after setting β = 1
Cβ

log−Cβ n, γ = 1
Cγ

log−Cγ n, η = 1
Cη

log−Cη n

and ε = 1
Cε

log−Cε n, and ensuring that 1
n
≤ 1

C0
log−C0 n by taking n to be sufficiently large.

A0 A1

B0 B1

C0 C0C1

Figure 2: An extremal colouring formed by taking disjoint equal-sized sets A0, A1, B0, B1, C0, C1 with
equal odd order, and optimally colouring the complete bipartite graph with classes A0 ∪A1 and B0 ∪B1

so that, for each i, j ∈ Z2, edges between Ai and Bj have colour in Ci+j .
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and vertices while using colour switchers if β
poly

� log−1 n. Creating an absorption structure of such a size

will allow us to absorb the vertex set of around γn ‘identity colour’ edges with γ
poly

� β. The addition

structure will then be able to take a set of around ηn vertices with η
poly

� γ and put out a rainbow matching
(with a specified colour set) and a set which is the vertex set of γn ‘identity colour’ edges (which is then
‘absorbed’ by the absorption structure). Therefore, we need to find an almost-perfect rainbow matching
covering all but around ηn vertices not in the addition or absorption structure, using colours not set aside
for these structures. To do this we show the subgraph G′ of G formed by the removal of these vertices
and the removal of edges with these colours has vertex degrees (1± ε)D for some D = (1− o(1))n, where

we want 1/n
poly

� ε
poly

� η so that we can apply the semi-random method. However, by setting aside random
sets of vertices and colours with probability 3/4 we can ensure that this regularity condition holds for
ε = n−α for some small universal constant α > 0 (see the proof of Lemma 4.8), and thus (for large n) we
can choose the variables we require as in (3). Beyond this sketch, for our more general theorems, G will
be only approximately regular with errors proportional to ε and there we show the graph G′ has vertex

degrees (1± ε′)D for some D, where ε
poly

� ε′
poly

� η.

2.3.2 Absorption structure

To discuss the absorption structure, for simplification we will now assume that the colouring has property
P. As we have noted, this is equivalent to the colouring arising from the addition table for an abelian group
H of order n, so that Theorem 1.2 was determined long ago in a stronger form by Hall and Paige [26]. This
simplification allows us to discuss the main mechanism of our construction, without the complications due
to the colour classes (though we highlight at the key moment where colour switchers could be used if we
do not have this property).

As discussed above, we will construct an absorber which can absorb any vertex set W as long as it is
the vertex set of a matching of the right number of colour-c0 edges, where c0 is some (fairly arbitrarily)
chosen ‘identity colour’. (Moreover, we will have that W is a subset of some larger vertex set so that the
size of the absorption structure constructed is manageable.) To do this we will use distributive absorption,
a form of absorption introduced by the current author in [43] which has proven very useful in the efficient
creation of absorption properties and in using absorption for rather rigid substructures. We start, then, by
recalling the use of distributive absorption, and how it can be used to create a global absorption property
from a robust local absorption property. Next, we describe how to ‘switch’ in a matching between using
the vertex sets of two edges with the same colour. Finally, we describe how we use this to create a local
absorption property.

Distributive absorption. The following is a typical aim when finding our absorption structure. For
some colour c0 and large m (for example m ≈ γn in our discussion at the end of Section 2.3.1), we wish
to take a set E of 2m edges in G with colour c0 and find sets V abs ⊂ V (G) \ V (M) and Cabs ⊂ C(G)
with |V abs| = 2|Cabs| − 2`1 such that, given any set E′ ⊂ E of `1 edges, there is an exactly-Cabs-rainbow
matching in G[V abs∪V (E′)]. We can think of this as finding an absorption structure (V abs, Cabs) that can
absorb any set W ⊂ V (E) which is the vertex set of `1 edges with colour c0. Using distributive absorption
we can build this efficiently if we can do it robustly for small `1 using small absorbers, using a ‘template
graph’ such as that provided by the following lemma.

Lemma 2.1 ([43]). There is a constant h0 ∈ N such that, for every h ≥ h0 with 3|h, there exists a
bipartite graph K with maximum degree at most 100 and vertex classes X and Y ∪ Z, with |X| = h, and
|Y | = |Z| = 2h/3, so that the following is true. If Z0 ⊆ Z and |Z0| = h/3, then there is a matching
between X and Y ∪ Z0.

Using the template from Lemma 2.1 (sometimes known as a robustly matchable bipartite graph)
with h = 3m, we can use this to combine small absorbers into an absorber with a global absorption
property as described above for vertex sets from V (E), as follows. Let E′ ⊂ Ec0(G) be a set of 2m edges
disjoint from E, and identify E′ with Y and E with Z in K. Suppose we can find disjoint vertex sets
Vx ⊂ V (G) \ V (E ∪ E′), x ∈ X, and disjoint colour sets Cx ⊂ C(G), x ∈ X, such that, for each x ∈ X,
|Vx| = 2|Cx| − 2, and, for each e ∈ NK(x), there is an exactly-Cx-rainbow matching in G[Vx ∪ V (e)]. We
say that (Vx, Cx) is an absorber for the edges in NK(x) (noting that the vertex set of the edge is used but
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the edge itself is not usually used in the final matching). Then, we can combine these absorbers to get an
absorber for any vertex set from V (E) which is the vertex set of m edges. Indeed, consider (V abs, Cabs),
where V abs = (∪x∈XVx) ∪ V (E′) and Cabs = ∪c∈CCx. Letting Ē ⊂ E be an arbitrary set of m edges,
we show that (V abs, Cabs) can absorb V (Ē). By the property of K, there is a matching between X and
Ē ∪E′ in K, say with edges xφ(x), x ∈ X. Combining, for each x ∈ X, an exactly-Cx-rainbow matching
in G[Vx ∪ V (φ(x))], this gives an exactly-Cabs-rainbow matching with vertex set

∪x∈X(Vx ∪ V (φ(x))) = (∪x∈XVx) ∪ V (φ(X)) = (∪x∈XVx) ∪ V (E ∪ Ē) = V abs ∪ V (Ē),

showing that (V abs, Cabs) can absorb V (Ē), as required. As ∆(K) ≤ 100, we need only construct absorbers
for small sets of edges, and, as the graph K is sparse, we can build the global absorption property while
using a modest number of absorbers.

Switching between edges of the same colour. To build these small absorbers, we start by building
switchers between edges with the same colour. Suppose e1 = u1v1 and e2 = u2v2 are two edges in G with
the same colour, c say (see Figure 3). Pick two colours d, d′ ∈ C(G) such that, if wi and xi are the d-
and d′-neighbour of ui and vi respectively for each i ∈ [2], then u1, v1, w1, x1, u2, v2, w2, x2 are distinct
vertices and w1x1 does not have colour c. By property P, w1x1 and w2x2 have the same colour, c′ say.
Let Ĉ = {d, d′, c′} and V̂ = {w1, x1, w2, x2}, and note that each of G[V̂ ∪ V (e1)] and G[V̂ ∪ V (e2)] has an
exactly-Ĉ-rainbow matching. We call here (V̂ , Ĉ) an e1, e2-edge-switcher (of order 4) which we can turn
to cover either V (e1) or V (e2) (see also Definition 6.1). As with colour switchers, we will usually call this
an e1, e2-switcher when it is clear from context that we are switching between edges.

A note on more difficult colourings. If we do not have property P, then w1x1 and w2x2 may not
have the same colour. However, we will have started by finding a set of colour classes C such that, for
typical choices of the edges and vertices, the colour of w1x1 and w2x2, c′ and c′′ say, are in some colour
class C ∈ C together (i.e., such that an approximate version of property P’ holds). This class will have the
property that we can find a set V̂ ′ of unused vertices and a set Ĉ ′ of unused colours so that |V̂ ′| = 2|Ĉ|+2
such that G[V̂ ′] has an exactly-(Ĉ ∪{c′})-rainbow matching and an exactly-(Ĉ ∪{c′′})-rainbow matching,
i.e. we will find a colour switcher which can switch between using c′ and c′′. We can then observe that
(V̂ ∪ V̂ ′, Ĉ ∪ Ĉ ′ ∪ {c′′}) is an e1, e2-switcher.

Absorbing one edge from a set of 100 monochromatic edges. Suppose then we have colour c0-
edges ei = uivi, i ∈ [100], and, as above, find colours d, d′, c′ and label vertices such that, for each i ∈ [100],
uivixiwiui is a 4-cycle in G with edge colours c0, d, c

′, d′ in that order, where these 4-cycles are all vertex
disjoint (see Figure 4). Using new vertices and colours, and a new edge wx with colour c′, suppose that
we can find, disjointly, for each i ∈ [100], a wixi, wx-switcher (V̂i, Ĉi). Then,

({w, x} ∪ (∪i∈[100]V̂i ∪ {wi, xi}), {d, d′} ∪ (∪i∈[100]Ĉi))

can ‘absorb’ V (ei) for any one edge ei, i ∈ [100]. Indeed, for each i ∈ [100], if we wish to absorb V (ei),
then we can use the edges uiwi, vixi to cover V (ei)∪ {wi, xi}, use the switch (V̂i, Ĉi) to cover {w, x}, and
use each switch (V̂j , Ĉj), j ∈ [100] \ {i} to cover {wj , xj} (see Figure 4 for a depiction with i = 2).

When we do not have property P, carrying out this construction while additionally switching between
colours in the same class is certainly more difficult, but this approach using distribution absorption (via
Lemma 2.1) and the constructions depicted in Figures 3 and 4, is the heart of our construction.

v1 v2

u1 u2

w1 w2

x1 x2

e1 e2 cc

d′

d
c′

d′

d
c′

v1 v2

u1 u2

w1 w2

x1 x2

d′

d
c′

v1 v2

u1 u2

w1 w2

x1 x2

d′

d
c′

Figure 3: An e1, e2-edge-switcher of order 4 depicted on the left with vertex set V̂ = {w1, x1, w2, x2} and
colour set Ĉ = {d, d′, c′} (see Definition 6.1), along with two exactly-{d, d′, c′}-rainbow matchings with
vertex set V̂ ∪ {u2, v2} and V̂ ∪ {u1, v1}, respectively.
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u1 u2v1 v2 u100 v100

x1 x2w1 w2
x100

w100

e1 e2 e100

w x

d′ d
c0

c′

c′

c0
d′ d

c′

c0
d′ d

c′

(V̂2, Ĉ2)(V̂1, Ĉ1) (V̂100, Ĉ100)

u1 u2v1 v2 u100 v100

x1 x2w1 w2
x100

w100

e1 e2 e100

w x

d′ d

(V̂2, Ĉ2)(V̂1, Ĉ1) (V̂100, Ĉ100)

Figure 4: An absorber on the left with vertex set {w, x} ∪ (∪i∈[100]V̂i ∪ {wi, xi}) and colour set {d, d′} ∪
(∪i∈[100]Ĉi) (see Definition 8.4), which can absorb the two vertices in {ui, vi} for any one i ∈ [100],

and incorporates the wx,wixi-switchers (V̂i, Ĉi), i ∈ [100]. On the right, u2 and v2 are absorbed by
turning (V̂2, Ĉ2) to cover x and w, turning each other switch (V̂i, Ĉi) to cover xi and wi, and using the
exactly-{d, d′}-rainbow matching {u2w2, v2x2} to cover u2, v2, w2 and x2.

2.3.3 Addition structure

As indicated above, we want to construct an addition structure, which will take as its input a general
balanced vertex subset (disjoint from the addition structure) of a certain size and output a rainbow
matching with predictable colour set (added to the final matching) and a matching of identity colour
edges, whose vertex set can then be absorbed, as well as two vertices (which we think of as ‘remainder
vertices’). Having selected some (relatively arbitrary) identity colour c0, the addition structure will, for
some `0 ≤ `1, consist of sets V add ⊂ V (G) and Cadd ⊂ C(G) \ {c0} with |V add| = 2|Cadd| − 2`0 − 2`1
such that, for any balanced set W ⊂ V (G) \ V add of 2`0 + 2 vertices, G[V add ∪W ] contains an exactly-
Cadd-rainbow matching M rb and a matching of `1 colour-c0 edges M id such that these matchings are
vertex-disjoint and thus together cover all but 2 vertices in V add ∪W (which we call the two ‘remainder
vertices’). Furthermore, we ensure that all the edges of the colour-c0 matching are in G[V add], so that we
may create our absorption structure only for the vertex sets of colour-c0 matchings in G[V add].

Overview. We can now give an overview of the structure of the proof (using illustrative variables matching
those in (3)), where the vertex and colour partitions used are depicted in Figure 5. We set aside random sets
V s-r, V ex ⊂ V (G) and Cs-r ⊂ C(G) such that V s-r and Cs-r are (3/4)-random and V ex is an extra η-random
set which we use to incorporate unused colours before applying the addition and absorption structures to
the remaining vertices. For `0 = ηn and `1 = γn, we find disjointly V abs, V add ⊂ V (G) \ (V s-r ∪ V ex) and
Cabs, Cadd ⊂ C(G) \Cs-r with the properties we have discussed (with more detail as we use them below).
As |V ex| ≈ 2γn = 2`0 (with high probability), and thus |V add|+ |V ex| ≈ 2|Cadd|,

|V (G) \ (V abs ∪ V add ∪ V ex)| ≈ 2|C(G) \ (Cabs ∪ Cadd)|, (4)

so using A1 we find a rainbow matching M1 covering all but 2εn vertices and εn colours in the sets

whose sizes are compared in (4) (where ε
poly

� η). Then, using that V ex has many more vertices than the
remaining εn colours and is chosen randomly, we expect to be able to greedily find a rainbow matching
M2 in G[V ex] using all but one of these colours∗, c say. That is, together we have M1 ∪M2, a rainbow
matching disjoint from V abs ∪ V add which uses all the colours not in Cabs ∪ Cadd, except for c. Setting
W = V (G) \ (V abs ∪ V add ∪ V (M1 ∪M2)), we observe that |W | = 2`0. Then, using the addition structure
property we find in G[V add ∪W ] an exactly-Cadd-rainbow matching M rb and a matching of `1 colour-c0
edges M id such that these matchings are vertex-disjoint and thus together cover all but 2 vertices in
V add ∪W – say these two vertices are w and x. Then, we set M3 = M rb and Ŵ = V (M id), where we will
additionally have that Ŵ ⊂ V add. As Ŵ is the vertex set of `1 colour-c0 edges, we then will have a version
of A2 for such sets within V add and so can find an exactly-Cabs-rainbow matching M4 with vertex set
V abs ∪W . Putting this all together, we will have that M1 ∪M2 ∪M3 ∪M4 is a rainbow matching covering
all the vertices of V (G) except for w and z (and using all the colours except for c), which, therefore, has
n− 1 edges.

∗Or, if we wished, all of the colours, but we need to leave out one colour at some point.
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iii)i) V s-r V ex V add V abs Cs-r Cadd Cabs

iii)ii) M1 V ex V add V abs M1 Cadd Cabs

iii)iii) M1 M2 W V add V abs M1 M2 Cadd Cabs

iii)iv) M1 M2 M3 Ŵ V abs M1 M2 M3 Cabs

iii)v) M1 M2 M3 M4 M1 M2 M3 M4

Figure 5: The initial partition of V (G) and C(G) at i), and the subsequent development of these partitions
as the matchings M1 to M4 are found, where one colour and two vertices in G are not used.

The mechanism of the addition structure. Our addition structure (as depicted at the top of Figure 6)
will consist of two large vertex-disjoint matchings (M̂ id and M̂ rb) and two ‘remainder vertices’ (ŵ and ẑ),
which we iteratively update to incorporate two more vertices (from different sides of the bipartition) each
time. We set V add = V (M̂ id ∪ M̂ rb) ∪ {ŵ, ẑ} and Cadd = C(M̂ rb), where (V add, Cadd) is then formally
the addition structure. One of the two matchings (M̂ id) is, essentially, a randomly chosen monochromatic
matching of identity colour edges, while the other matching (M̂ rb) is also chosen randomly, but in a much
more careful manner. We will outline this choice later, but we will first describe one iterative step to
update M̂ id, M̂ rb, ŵ and ẑ to cover 2 more vertices. This iterative step will be robust enough that, given
a balanced set of 2`0 vertices W as above, we can pair the vertices and then apply the iterative step `0
times. Thus, to keep things simpler, let us assume that `0 = 1 and W = {x, y}, so that we need only
apply our iterative step once.

When we apply the addition structure to W = {x, y}, we want to make small alterations to the
matchings to find new remainder vertices and get (M id,M rb, w, z) so that they together cover the vertices
appearing in (M̂ id, M̂ rb, ŵ, ẑ) as well as the vertices x and y. Like M̂ rb, M rb is an exactly-Cadd-rainbow
matching and, like M̂ id, M id is a matching of colour-c0 edges, but has one more edge as the addition
structure after this step also covers x and y.

To find (M id,M rb, w, z), we will use the following three stages (depicted in Figure 6).

i) We find a set E1 ⊂ M̂ id of 4 edges such that G[V (E1)∪{ŵ, x, y, ẑ}] contains a Cadd-rainbow matching
F1 with 6 edges.

ii) We find a set E2 of 24 colour-c0 edges such that there is a matching F2 ⊂ M̂ rb with 24 edges and
vertex set V (E2) such that C(F1) ⊂ C(F2).

iii) We find a set of 19 colour-c0 edges E3 ⊂ M̂ id \E1 such that there is a matching F3 of 18 edges and
vertices w, z with V (F3) ∪ {w, z} = V (E3), such that F3 is exactly-(C(F2) \ C(F1))-rainbow.

Now, removing E1, adding E2 and removing E3 from M̂ id to get M id adds 1 colour-c0 edge in total,
while adding the vertices in V (E2) and removing the vertices in V (E1 ∪ E3). On the other hand, adding
F1, removing F2 and adding F3 to M̂ rb to get M rb adds and removes one edge with each colour in C(F2) to
make no overall change in C(M2), while adding the vertices in V (F1)∪V (F3) = (V (E1)∪V (E3)∪{ŵ, ẑ})\
{w, z} and removing the vertices in V (F2) = V (E2). Thus, (M id,M rb, w, z) will have the properties we
required above.

To understand this structure, it may be helpful to consider the case where the colouring arises from
an n-element abelian group H where c0 is the identity, and note that the sum of colours in M id ∪M rb is
the same as M̂ id ∪ M̂ rb. In stage i), the colours of F1 have sum ŵ+ x+ y+ ẑ + 4c0 = ŵ+ x+ y+ ẑ ∈ H,
and we want to add the edges of F1 to M̂ rb. To do this we drop the edges with colour in C(F1) which
are already in M̂ rb, but we want the vertex set of any edges we drop from M̂ rb to be the vertex set of a
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M̂ id

M̂ rb

x yŵ ẑ

↓

w

z
yŵ ẑx

E1 ∪ F1 :

E2 ∪ F2 :

E3 ∪ F3 :

↓

w

z
x yŵ ẑ

Figure 6: The initial addition structure with vertices x and y to cover, and one iterative step finding
matchings E1, F1, E2, F2, E3, F3 in the middle, to then produce below two new matchings and two new
remainder vertices w and z.

colour-c0 matching that we can then add to M̂ id. As we may have w+x+ y+ z 6= 0, we will have to drop
additional edges whose sum is the inverse of w + x+ y + z, dropping in total the edges in F2 in stage ii).
We then need to add an edge of each colour in C(F2) \C(F1) back into M2, which we do in stage iii) with
the matching F3. To get M id disjoint from M̂ rb we will need to drop any colour-c0 edge in M̂ id with a
vertex in F3 (here dropped vertices would become remainder vertices), so we want V (F3) to touch as few
colour-c0 edges as possible. As the sum of the colours in C(F3) = C(F2)\C(F1) is −(w+x+y+ z) which
may not be 0, we cannot always do this so that V (F3) is the vertex set of a colour-c0 matching in M1, but
we do manage this so that we only need to drop |F3| + 1 colour-c0 edges from M1, where the additional
two vertices not in V (F3) are the ‘remainder vertices’ w and z, which will have sum ŵ+x+ y+ ẑ, so that
the sum of the ‘remainder vertices’ will have increased by x+ y.

Notes on finding the addition structure. We now discuss in more detail how we find the addition
structure so that stages i) to iii) above of an iterative step can be performed. While we only discuss
one alteration to cover x, y, enough of the small paths and cycles discussed will exist in order to do the
alterations iteratively while avoiding previously used colours, vertices and edges.

Stage i). The large colour-c0 matching M̂ id will be chosen randomly along with a random colour set
C0. In the colouring of G, it is easy to observe that, between any two vertices u, v there are many paths
of length 5 whose 2nd and 4th edge have colour-c0 and which are otherwise rainbow without colour c0.
Indeed, there are enough of these paths that, with high probability, for each u, v, for many of these paths
the two colour-c0 edges will lie in M̂ id and the other colours will lie in C0. Then, for any vertices x and y
in stage i) above, taking such paths Pwx and Pyz between w and x and y and z respectively (see Figure 6),
so that their vertices and non-c0-colours are disjoint, we can collect together the colour-c0 edges of Pwx
and Pyz to give E1 and let the other edges be F1. (The property we use to find these paths is later stated
as F4 in Section 3.5.)

Stage ii). Instead of finding the matchings E2 and F2 at once, we find a pair of matchings E2,c and
F2,c for each c ∈ C(F1), each with size 4, so that c ∈ C(F2,c), V (E2,c) = V (F2,c), E2,c is a colour-c0
matching, and F2,c is a rainbow matching, finding them so that we can take E2 = ∪c∈C(F1)E2,c and
F2 = ∪c∈C(F1)F2,c. For any c ∈ C0, we can see that there are many options for such a pair of matchings.
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Indeed, selecting a colour-c edge, and picking its two neighbouring colour-c0 edges, if two more colour-
c0 edges are selected, then it is likely the three edges completing these edges into an 8-cycle have new,
different, colours. To find M rb, we take our random set of colours C0 and, vertex-disjointly from M̂ id, find,
for each c ∈ C0, the matchings F2,c and E2,c, so that the matchings F2,c are colour- and vertex-disjoint,

and set M̂ rb = ∪c∈C0F2,c. (The property we use to find these cycles is later stated as F5 in Section 3.5.)

Thinking of the case where the colouring is from an abelian group again, this is setting up M̂ id so that
for any c ∈ C0 which we might want to use in the matching E1, an edge with colour c is sitting in M̂ id

with three other edges whose sum is −c, so that we can drop the colour c out of M̂ id at the expense of
also dropping out the other three colours representing the inverse of c so that the vertices on their edges
can be covered by 4 identity coloured edges.

Stage iii). For stage iii), we observe that in our colouring of G (as every colour appears at every
vertex), for a typical set D of 18 colours, we can typically start at an arbitrary vertex w′ and alternate
in a path between an edge with colour c0 and an edge with colour in D (so that each such colour is used
once). Furthermore, if M̂ id is a relatively large matching then (though a small proportion) many such
paths will have all their colour-c0 edges in M̂ id. When D = C(F2) \ C(F1) in stage ii), letting E3 be
the colour-c0 edges of such a path, and letting F3 be the edges with colour in D, we have the required
matchings (where w and z are the endvertices of the path). There will be enough of these paths that we
will be able to do this while avoiding vertices in V (E1) ⊂ V (M̂ id). For some sets D, alternating edges
between colour c0 and different colours in D may not result in a path, so we may need to take a collection
of cycles in addition to a path (whose union is the same as E3 ∪F3), but this does not add any additional
difficulty as our graph is bipartite. The property we need in G for this to be possible as sketched is below,
which we record as we now discuss how we have to alter this sketch for Theorem 1.6, where the coloured
graph we consider may not have this property.

(†) For some small, fixed α, the following holds. For any c0 ∈ C(G) and any D ⊂ C(G) \ {c0} with
|D| = 18, there are vertex-disjoint sets V̄1, . . . , V̄αn ⊂ V (G) such that, for each i ∈ [αn], |V̄i| = 38
and G[V̄i] contains both a matching of 19 colour-c0 edges and a D-rainbow matching with 18 edges.

2.3.4 Changes due to Theorem 1.6

The approach sketched above works well for Theorem 1.2, but an issue arises when applied for Theorem 1.6.
Before discussing this further, we recall the approach of Keevash, Pokrovskiy, Sudakov and Yepremyan [32]
for studying matchings in Steiner triple systems (STSs) via rainbow matchings. Let S be a Steiner triple
system (STS) with vertex set [n], and assume that n ≡ 3 mod 6 (the case n ≡ 1 mod 6 follows similarly
after the deletion of an arbitrary vertex). Let m = n/3, and let [3m] = A ∪B ∪ C be a partition created
by, for each i ∈ [3m], choosing the set for i independently at random such that P(v ∈ A) = P(v ∈ B) =
P(v ∈ C) = 1/3. Let G be the bipartite graph with vertex classes A and B where ab with a ∈ A and
b ∈ B is an edge with colour c exactly when abc ∈ S.

It is not hard to see that G is a properly coloured bipartite graph. Furthermore, if M is a rainbow
matching in G, then {abc ∈ S : ab ∈ E(M)} is a matching in S, so to prove Theorem 1.6 it would suffice
to find an (m − 1)-edge rainbow matching in G (for some partition A ∪ B ∪ C). However, G is not a
complete bipartite graph; instead we expect its edges to have density around 1/3. Keevash, Pokrovskiy,
Sudakov and Yepremyan [32] showed that, roughly speaking, with positive probability |A| = |B| = |C|
and G satisfies some natural pseudorandomness conditions. However, for our constructions we require
some more esoteric conditions. In particular, in the auxiliary coloured bipartite graph used, we cannot
show that (†) is likely to hold, and so must modify our sketch.

In the sketch above, using the property from (†), in stage iii) we could incorporate any set of 18 colours
while dropping out two new remainder vertices. Now, instead of (†), we show that if we have in addition
72 more colours which have not yet been incorporated, within these 18 + 72 = 90 colours there is a set of
18 that can be incorporated into the matching at the expense of two remainder vertices (see F6). Roughly
speaking (and by leaving out stage iii) in the final iteration), we will be able to use this to incorporate all
of the vertices from W and all but at most 100 of the missing colours.

Our final task then is, given a set D of at most 100 colours to incorporate all of them, where we can
leave out two remainder vertices and one colour. As we cannot use a corresponding version of (†), we do
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this separately from the main addition structure using a supplementary addition structure with a similar
structure, which also has a rainbow matching and a colour-c0 matching. We first use the rainbow matching
to drop out another set of 100 colours D′ which looks quite random subject to their edges in the rainbow
matching forming a cycle with colour-c0 edges (see F7 for the actual condition we use). As D′ looks quite
random, we will have a version of (†) that holds for D ∪D′ with one colour removed, which we can then
use with the matching of colour-c0 edges in the supplementary addition structure to incorporate all but 1
of the missing colours in D ∪D′ while finding the final two remainder vertices. This is elaborated further
when it is carried out, in Section 9.

3 Preliminaries

As noted in Section 2, we will carry out our main techniques in a wider class of coloured graphs than
bipartite complete graphs, a class that we call properly-pseudorandom. We postpone the technical defini-
tion of an (n, p, ε)-properly-pseudorandom bipartite graph G to Section 3.5, and, before then, note only
that a good example is a graph G formed from an optimally-coloured copy of Kn,n by selecting each edge
independently at random with probability p, where ε represents the proportionate deviation of some ran-
dom variables (like vertex degrees) from their mean, and p (and, where it appears, q), are small constants,
which are fixed outside of the hierarchy of variables discussed in Section 3.5. We have two main results
on rainbow matchings in properly-pseudorandom graphs: one finding a rainbow matching missing two
vertices (Theorem 3.1) and one finding a perfect rainbow matching under the condition there are slightly
more colours (Theorem 3.2). These are stated in Section 3.1.

As sketched in Section 2.3, our approach uses the semi-random method in combination with an ab-
sorption structure and an addition structure. In Section 3.2, we state our main result covering each of
these three components, Theorems 3.3–3.5 respectively, along with a variant result, Theorem 3.6, for
the addition structure used for the second technical theorem, Theorem 3.2. Developing an approximate
algebraic structure for colours is a critical part of our proof, but this is carried out within the proof of
the absorption result (as discussed further below when describing the relevant sections). The statement
of the component results then allows us to prove the technical theorems from them in Section 3.3. This
allows us to cover the main structure of the proof, as sketched in the outline in Section 2.3.3, but with
the appropriate detail.

We then discuss typicality of hypergraphs for the semi-random results in Section 3.4 and give our
definition of pseudorandomness in Section 3.5. We deduce Theorem 1.2 and Theorem 1.3 from Theorem 3.1
in Section 3.6 and Section 3.7 respectively. We deduce Theorem 1.4 from Theorem 3.2 in Section 3.8.
In Section 3.9, we detail the graph expansion that we use and prove two key results, Theorem 3.17 and
Lemma 3.22. Finally, to complete our preliminaries, we state the concentration results we will use in
Section 3.10 and cover a simple counting result for 4-cycles in Section 3.11.

This leads us to the proofs of the main components in the remaining sections, which are outlined in
more detail at the start of each section. In Section 4, we prove the component theorem that gives us the
large rainbow matching from the semi-random method (Theorem 3.3). In Section 5, we find colour classes
with, approximately, the algebraic property discussed in Section 2.3.1. In Section 6, we use this to build
‘edge switchers’ which can switch between covering the vertices of one edge with another, when the edges
have the same colour (for most of the edges in the graph). In Section 7, we do this similarly with edges
which have colour in the same class (again for most of the edges). In Section 8, we use this to construct
our absorption structure, while in Section 9 we construct our addition structure, thus completing the proof
of our technical theorems. In Section 10, we prove Theorem 1.6 from these technical theorems. We then
finish with some concluding remarks in Section 11.

3.1 Technical theorems and component results

For Theorems 1.2, 1.3 and 1.6, we will prove the following unified technical theorem, where, as noted above,
the full definition of an (n, p, ε)-properly-pseudorandom bipartite graph is postponed to Section 3.5.

Theorem 3.1. Let 1/n � p ≤ 1 and 1/n
poly

� ε
poly

� log−1 n. Then, any (n, p, ε)-properly-pseudorandom
bipartite graph contains a rainbow matching with n− 1 edges.
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For Theorem 1.4, we prove the following variant where a perfect rainbow matching is found if the
properly-pseudorandom graph has slightly more than n colours.

Theorem 3.2. Let 1/n � p ≤ 1 and 1/n
poly

� ε
poly

� log−1 n. Then, any (n, p, ε)-properly-pseudorandom
bipartite graph G with |C(G)| ≥ n+ 100 contains a rainbow matching with n edges.

3.2 Main component results

We can now state the main theorem that covers each of the three components for the technical theorems,
along with a variant. The variables used in this section fit into the hierarchy

1

n

poly

� ε
poly

� η
poly

� γ
poly

� β
poly

� α
poly

� log−1 n

which corresponds to the discussion of the hierarchy at (3) in Section 2. The extra variable α here, though,
governs the ‘approximate’ nature of the algebraic properties of the colours, where (for example) there are
at most αn colours which we avoid when picking the ‘identity colour’.

We start with our result finding an almost-perfect rainbow matching in a subgraph whose vertices and
colours contain a large random set of vertices and colours, respectively, which represents the ‘semi-random’
portion of the proof (proved in Section 4).

Theorem 3.3 (Almost-perfect rainbow matchings). Let 1/n � p, q ≤ 1 and 1/n
poly

� ε
poly

� η
poly

� log−1 n.
Let 2q/3 ≤ qV , qC ≤ q. Let G be an (n, p, ε)-properly-pseudorandom bipartite graph with vertex classes A
and B. Independently, let V s−r be a qV -random subset of V (G) and let Cs−r be a qC-random subset of
C(G). Then, with high probability, the following holds.

Given any sets Ā ⊂ A, B̄ ⊂ B, C̄ ⊂ C(G) with size qn such that V s−r ⊂ Ā ∪ B̄ and Cs−r ⊂ C̄, there
is a C̄-rainbow matching in G[Ā, B̄] with at least qn− ηn edges.

Our next theorem allows us to find our absorption structure (and is proved across Sections 5–8). To
tie this in to the proof sketch, we note that, at (•) in B below, (V abs, Cabs) can ‘absorb’ W = V (Ē), which
is the vertex set of a colour-c matching (to be used where c = c0 is the ‘identity colour’). The purpose
of the sets V ′ and C ′ in B is so that the absorption structure can be found disjointly from the addition
structure.

Theorem 3.4 (Absorption structure). Let 1/n� p, qV , qC ≤ 1. Let 1/n
poly

� ε
poly

� γ
poly

� β
poly

� α
poly

� log−1 n.
Let G be an (n, p, ε)-properly-pseudorandom bipartite graph with vertex classes A and B. Independently, let
V be a qV -random subset of V (G) and let C be a qC-random subset of C(G). Then, with high probability,
for all but at most αn colours c ∈ C, there is a set Ec ⊂ Ec(G) with |Ec(G[V ]) \ Ec| ≤ αn such that the
following hold.

B For each 0 ≤ `0 ≤ `1 ≤ γn, and sets E ⊂ Ec with |E| = `1, and V ′ ⊂ V (G) and C ′ ⊂ C(G)
with |C ′|, |V ′| ≤ 10γn, there are sets V abs ⊂ V \ (V (E′) ∪ V ′) and Cabs ⊂ C \ C ′ such that
|A ∩ V abs| = |B ∩ V abs| = βn− `0 and |Cabs| = βn, and the following property holds.

(•) For any set Ē ⊂ E with |Ē| = `0, G[V abs ∪ V (Ē)] has a Cabs-rainbow matching with size βn.

Next, we give our result which can find our addition structure. Beyond the description in Section 2, we
augment the power of this structure slightly so that (as at C2 below) the structure found, (V add, Cadd)
takes as its input a small set of colours Ĉ in addition to a small set of vertices Â∪ B̂, and finds two vertex-
disjoint matchings which use exactly all but two vertices in V add∪Â∪B̂ such that one is a monochromatic
matching with a specific colour and the other is a rainbow matching using exactly all but one of the colours
in Cadd ∪ Ĉ. This augmentation is easy to do, and convenient for the application of the structure.

Theorem 3.5 (Addition structure). Let 1/n � p, qV , qC ≤ 1. Let 1/n
poly

� ε
poly

� η
poly

� γ
poly

� α
poly

� log−1 n.
Let G be an (n, p, ε)-properly-pseudorandom bipartite graph with vertex classes A and B. Independently, let
V be a qV -random subset of V (G) and let C be a qC-random subset of C(G). Then, with high probability,
the following holds.

Given any c ∈ C(G) and any Ec ⊂ Ec(G) with |Ec(G) \ Ec| ≤ αn, there are sets V add ⊂ V and
Cadd ⊂ C such that
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C1 |A ∩ V add| = |B ∩ V add| = 2γn+ 1 and |Cadd| = γn+ 1, and,

C2 for any Â ⊂ V (G) \ V add and B̂ ⊂ V (G) \ V add with |Â| = |B̂| ≤ ηn, and any Ĉ ⊂ C(G) \ Cadd

with |Ĉ| ≤ ηn, G[V add ∪ Â∪ B̂] contains vertex-disjoint matchings M id and M rb such that M id has
γn + |Â| − |Ĉ| edges in Ec with both vertices in V add and M rb is a (Cadd ∪ Ĉ)-rainbow matching
with size |Cadd ∪ Ĉ| − 1.

For Theorem 1.4, we use a slight variant of Theorem 3.5, as follows, where the matchings M id and
M rb that are ultimately found in the addition structure use exactly the vertices V add ∪ Â ∪ B̂, but there
is now more than 1 colour missing from M rb as Cadd is slightly larger.

Theorem 3.6 (Addition structure variant). Let 1/n � p, qV , qC ≤ 1. Let 1/n
poly

� ε
poly

� η
poly

� γ
poly

� α
poly

�
log−1 n. Let G be an (n, p, ε)-properly-pseudorandom bipartite graph with vertex classes A and B. Let V
be a qV -random subset of V (G) and let C be a qC-random subset of C(G). Then, with high probability,
the following holds.

Given any c ∈ C(G) and any Ec ⊂ Ec(G) with |Ec(G) \ Ec| ≤ αn, there are sets V add ⊂ V and
Cadd ⊂ C such that

D1 |A ∩ V add| = |B ∩ V add| = 2γn and |Cadd| = γn+ 100, and,

D2 for any Â ⊂ V (G) \ V add and B̂ ⊂ V (G) \ V add with |Â| = |B̂| ≤ ηn, and any Ĉ ⊂ C(G) \ Cadd

with |Ĉ| ≤ ηn, G[V add ∪ Â∪ B̂] contains vertex-disjoint matchings M id and M rb such that M id has
γn + |Â| − |Ĉ| edges in Ec with both vertices in V add and M rb is a (Cadd ∪ Ĉ)-rainbow matching
with size |Cadd ∪ Ĉ| − 100.

3.3 Proof of the technical theorems from the component results

Given Theorems 3.3, 3.4, and 3.5, we can now combine them to prove Theorem 3.1.

Proof of Theorem 3.1 from Theorems 3.3, 3.4, and 3.5. Let η, γ, β and α satisfy

1

n

poly

� ε
poly

� η
poly

� γ
poly

� β
poly

� α
poly

� log−1 n.

Let G be an (n, p, ε)-properly-pseudorandom bipartite graph on vertex classes A and B, where this will
imply that (see F1 later) |A| = |B| = n and n ≤ |C(G)| ≤ (1 + ε)n. Let V0 ∪ V s−r be a random partition
of V (G) so that V0 is (1/4)-random and V s−r is (3/4)-random. Independently, let C0 ∪Cs−r be a random
partition of V (G) so that C0 is (1/4)-random and Cs−r is (3/4)-random. As E|Cs−r| ≤ 3(1 + ε)n/4, we
have, by a simple application of Chernoff’s bound (see Lemma 3.23 later), that |Cs−r| ≤ 7n/8 with high
probability. Thus, by Theorems 3.3, 3.4 (applied with γ′ = 2γ), and 3.5, we can assume the following
properties hold concurrently.

E1 |Cs−r| ≤ 7n/8.

E2 For any sets Ā ⊂ A, B̄ ⊂ B, C̄ ⊂ C(G) with |Ā| = |B̄| = |C̄| and such that V s−r ⊂ Ā ∪ B̄ and
Cs−r ⊂ C̄, there is a C̄-rainbow matching in G[Ā, B̄] with at least |C̄| − ηn edges.

E3 For all but at most αn colours c ∈ C(G), there is a set Ec ⊂ Ec(G[V0]) with |Ec(G[V0]) \ Ec| ≤ αn
such that the following holds.

i) For each set E ⊂ Ec with |E| ≤ 2γn and sets V̄ ⊂ V0 and C̄ ⊂ C0 with |V̄ |, |C̄| ≤ 10γn,
and 0 ≤ ` ≤ |E|, there are sets V abs ⊂ V0 \ (V̄ ∪ V (E)) and Cabs ⊂ C0 \ C̄ such that
|A ∩ V abs| = |B ∩ V abs| = βn− ` and |Cabs| = βn, and the following property holds.

• For any Ē ⊂ E with |Ē| = `, G[V abs ∪ V (Ē)] has a Cabs-rainbow matching with size βn.

E4 Given any c ∈ C(G) and any E0 ⊂ Ec(G[V ]) with |Ec(G[V ]) \ E0| ≤ αn, there are sets V add ⊂ V0

and Cadd ⊂ C0 such that

ii) |A ∩ V add| = |B ∩ V add| = 2γn+ 1 and |Cadd| = γn+ 1, and,
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iii) for any Â ⊂ A \ V add and B̂ ⊂ B \ V add with |Â| = |B̂| ≤ ηn, and any Ĉ ⊂ C(G) \ Cadd with
|Ĉ| ≤ ηn, G[V add ∪ Â∪ B̂] contains two vertex-disjoint matchings: one of γn+ |Â| − |Ĉ| edges
in E0 with vertices in V add, and one a (Cadd ∪ Ĉ)-rainbow matching of size |Cadd ∪ Ĉ| − 1.

Using E3 (and that |C(G)| ≥ n), pick c0 ∈ C(G) and a set E0 ⊂ Ec(G[V ]) with |Ec(G[V ])\E0| ≤ αn so
that i) holds with c = c0 and Ec = E0. Using E4, find sets V add ⊂ V0 and Cadd ⊂ C0 such that ii) and iii)
hold. Let E1 be the set of edges in E0 with both vertices in V add, noting that |E1| ≤ |V add|/2 ≤ 2γn. Using
i), find sets V abs ⊂ V0 \ (V add∪V (E1)) and Cabs ⊂ C0 \Cadd such that |A∩V abs| = |B∩V abs| = βn−γn
and |Cabs| = βn and the following holds.

iv) For any set Ē ⊂ E1 with |Ē| = γn, G[V abs ∪ V (Ē)] contains a Cabs-rainbow matching with size βn.

Now, V add and V abs both have an equal number of vertices in A and B, and V add ∪ V abs ⊂ V0. Let
Ā = A \ (V add ∪ V abs) and B̄ = B \ (V add ∪ V abs), so that |Ā| = |B̄| = n − (βn − γn) − (2γn + 1) =
n− βn− γn− 1 and V s−r = V (G) \ V0 ⊂ Ā ∪ B̄. We have, as |Cadd| = γn+ 1 and |Cabs| = βn,

|C(G) \ (Cadd ∪ Cabs)| ≥ n− (γn+ 1)− βn = |Ā|. (5)

Thus, as, using E1, we have n − (γn + 1) − βn ≥ |Cs−r|, we can choose C̄ ⊂ C(G) \ (Cadd ∪ Cabs) with
Cs−r ⊂ C̄ and |C̄| = |Ā| (so that, then, |C̄| = n− |Cadd| − |Cabs|). Therefore, by E2, G[Ā ∪ B̄] contains
a C̄-rainbow matching, M1 say, with at least |C̄| − ηn edges.

Let Â = Ā \ V (M1), B̂ = B̄ \ V (M1) and Ĉ = C̄ \C(M1), so that |Â| = |B̂| = |Ĉ| = |C̄| − |M1| ≤ ηn.
Then, by iii), G[V add ∪ Â∪ B̂] contains vertex disjoint matchings M2 and M ′2 so that M2 is a (Cadd ∪ Ĉ)-
rainbow matching with |Cadd ∪ Ĉ| − 1 edges and M ′2 ⊂ E0 ∩ Ec(G[V add]) is a matching of γn edges in
E1.

Then, using iv), G[V abs ∩ V (M ′2)] contains a Cabs-rainbow matching M3 with size |Cabs| = βn. Let
M = M1 ∪ M2 ∪ M3. Noting that V add ∪ V abs ∪ (Ā ∪ B̄) = V add ∪ V abs ∪ V (M1) ∪ (Â ∪ B̂) are
partitions of V (G), and recalling that M ′2 and M2 are vertex-disjoint matchings in G[V add ∪ Â ∪ B̂]
and V (M3) ⊂ V abs ∪ V (M ′2), we have that M is the union of vertex-disjoint matchings. Furthermore,
C(M1) = C̄ \ Ĉ, C(M2) ⊂ (Cadd ∪ Ĉ) and C(M3) = Cabs, and Cadd and Cadd are disjoint sets, while
Ĉ ⊂ Ĉ. Thus, M is a union of 3 rainbow matchings with disjoint colour sets, and is thus rainbow. Finally,

|M | = |M1|+ |M2|+ |M3| = |C̄ \ Ĉ|+ |Cadd ∪ Ĉ| − 1 + |Cabs| = |C̄|+ |Cadd|+ |Cabs| − 1 = n− 1, (6)

so that M is a rainbow matching with n− 1 edges, as required.

Very similarly, we can also now prove Theorem 3.2, except using Theorem 3.6 in place of Theorem 3.5,
as follows.

Proof of Theorem 3.2 from Theorems 3.3, 3.4, and 3.6. This proceeds identically to the proof of Theo-
rem 3.1, except we apply Theorem 3.6 instead of Theorem 3.5, so that ii) and iii) becomes

ii)’ |A ∩ V add| = |B ∩ V add| = 2γn and |Cadd| = γn+ 100, and,

iii)’ for any Â ⊂ A \ V add and B̂ ⊂ B \ V add with |Â| = |B̂| ≤ ηn, and any Ĉ ⊂ C(G) \ Cadd with
|Ĉ| ≤ ηn, G[V add ∪ Â ∪ B̂] contains two vertex-disjoint matchings: one of γn + |Â| − |Ĉ| edges in
E0 with vertices in V add, and one a (Cadd ∪ Ĉ)-rainbow matching of size |Cadd ∪ Ĉ| − 100.

Then, proceeding as above, we have instead that |Ā| = |B̄| = n− (βn− γn)− (2γn) = n− βn− γn and
(5) becomes

|C(G) \ (Cadd ∪ Cabs)| = |C(G)| − γn− βn ≥ n+ 100− γn− βn ≥ |Ā|+ 100,

so we choose C̄ as above, but so that |C̄| = |Ā|+ 100, and hence |C̄|+ |Cadd|+ |Cabs| = n+ 100. Finally,
continuing as above, we can instead have when applying iii)’ instead of iii) that M2 is a (Cadd∪Ĉ)-rainbow
matching with |Cadd ∪ Ĉ| − 100 edges, so that (6) becomes

|M | = |M1|+ |M2|+ |M3| = |C̄ \ Ĉ|+ |Cadd ∪ Ĉ| − 100 + |Cabs| = |C̄|+ |Cadd|+ |Cabs| − 100 = n,

so that the matching found has n edges, as required.
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3.4 Typical hypergraphs

To apply results shown using the semi-random method, we will work with 3-partite 3-uniform hypergraphs
formed from our coloured graphs as follows.

Definition 3.7. Given a coloured bipartite graph G with vertex classes A and B, we denote by H(G) the
3-partite 3-uniform hypergraph with vertex classes A, B and C(G), and edge set {abc : a ∈ A, b ∈ B, c ∈
C(G), ab ∈ Ec(G)}.

Note that if G is properly coloured, then H(G) is simple (i.e., each pair of vertices is in at most
one edge). A common application of the semi-random method is to show that an almost-regular simple
hypergraph will contain an almost-perfect matching (see, for example, Corollary 4.7). To find almost-
perfect matchings in subgraphs (with a large portion of random vertices), we will use the stronger condition
of typicality. Here, our definition of typicality for a 3-partite balanced 3-uniform hypergraph follows that
of Keevash, Pokrovskiy, Sudakov and Yepremyan [32] (stated equivalently for coloured bipartite graphs),
but we record the error term in the definition differently to match our polynomial bounds. This is only
relevant later when we use one result from [32] (see Lemma 4.4). We start by defining a typical bipartite
graph as follows.

Definition 3.8. A bipartite graph H with vertex classes A and B is (n, p, ε)-typical if the following hold.

• |A| = (1± ε)n and |B| = (1± ε)n.

• For each v ∈ V (H), dH(v) = (1± ε)pn.

• For each distinct u, v ∈ V (H) with u, v ∈ A or u, v ∈ B, we have |NH(u) ∩NH(v)| = (1± ε)p2n.

Essentially, a 3-partite simple 3-uniform hypergraph is typical if removing the vertices in any vertex
class from V (H) and from each edge in E(H) gives a typical bipartite graph. To formalise this we use the
following two definitions.

Definition 3.9. Given a 3-uniform hypergraph H and any disjoint sets X,Y ⊂ V (H), let HX,Y be the
bipartite graph with vertex classes X and Y , with edges xy exactly those x ∈ X and y ∈ Y for which
there exists some z ∈ V (H) \ {x, y} with {x, y, z} ∈ E(H).

Definition 3.10. A 3-partite simple 3-uniform hypergraph H with vertex classes A, B and C is (n, p, ε)-
typical if each of HAB , HBC and HAC is (n, p, ε)-typical.

3.5 Proper-pseudorandomness

We now state precisely our definition of proper pseudorandomness (Definition 3.11), where the canonical
example of an (n, p, ε)-properly-pseudorandom graph is an optimally coloured copy of Kn,n with each edge
deleted independently at random with probability p. Definition 3.11 contains conditions F1–F7. Of these
conditions, F1 and F2 are natural conditions for pseudorandomness here, while F3 is used in creating
the absorption structure (more specifically, to ensure 4-cycles depicted in Figure 4 exist), and F4–F7 are
used for the addition structure. Of these last four conditions, in Figure 6, F4 is used to find the w, x- and
y, z-paths in E1 ∪ F1 while F5 is used to find the 8-cycles in E2 ∪ F2. As discussed in Section 2.3.4, the
path E3 ∪ F3 cannot be found in Figure 6 using exactly the colours we wish, but F6 will allow us to do
this if we have 80 extra colours, while F7 will allow us to complete the final step where we incorporate
all but 1 of the final colours we are incorporating. The structures discussed in F3–F5 are pictured in
Figure 7 (with labelling for the proof of a later result, Proposition 3.12).

Definition 3.11. A bipartite graph G, with vertex classes A and B, is (n, p, ε)-properly-pseudorandom if
it is properly coloured and the following hold with α = p12/10100.

F1 |A| = |B| = n and n ≤ |C(G)| ≤ (1 + ε)n.

F2 H(G) is (n, p, ε)-typical.
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F3 For each c ∈ C(G) and e ∈ Ec(G), for all but at most
√
n edges f ∈ Ec(G) \ {e}, there are at

least αn2 pairs (S1, S2) such that S1 and S2 are vertex-disjoint rainbow 4-cycles with e ∈ E(S1) and
f ∈ E(S2), and the colour sets of the neighbouring edges of e in S1 and the neighbouring edges of
f in S2 are the same.

F4 For each u ∈ A, v ∈ B and c0 ∈ C(G), there are disjoint sets V1, . . . , Vαn ⊂ V (G)\{u, v} and disjoint
sets C1, . . . , Cαn in C(G) \ {c0} such that, for each i ∈ [αn], |Vi| = 4, |Ci| = 3, G[Vi] contains 2
colour-c0 edges and G[{u, v} ∪ Vi] contains an exactly-Ci-rainbow matching in E(G) \ {uv}.

F5 For each distinct c0, d ∈ C(G), there are disjoint sets V1, . . . , Vαn/12 in V (G) and disjoint sets
C1, . . . , Cαn/12 in C(G) \ {c0, d}, so that, for each i ∈ [αn/12], |Vi| = 8 and |Ci| = 3, and G[Vi]
contains a matching of 4 colour-c0 edges and an exactly-(Ci ∪ {d})-rainbow matching.

F6 For any c0 ∈ C(G), 0 ≤ k ≤ 20, and any C̄ ⊂ C(G)\{c0} with |C̄| ≥ 5k, there are vertex-disjoint sets
V̄1, . . . , V̄αn ⊂ V (G) such that, for each i ∈ [αn], |V̄i| = 2k + 2 and G[V̄i] contains both a matching
of k + 1 colour-c0 edges and a C̄-rainbow matching with k edges.

F7 Setting k = 100, for each c0 ∈ C(G), there is some r ∈ N and disjoint sets V1, . . . , Vr in V (G)
and disjoint sets C1, . . . , Cr in C(G) \ {c0} with |Vi| = 2k and |Ci| = k for each i ∈ [r] such that
G[Vi] contains an exactly-Ci-rainbow matching and a perfect matching of colour-c0 edges, and the
following holds. For every C̄ ⊂ C(G) \ {c0} with |C̄| ≤ k, for at least α2n values of i ∈ [r], there
are vertex-disjoint sets V̄1, . . . , V̄αn ⊂ V (G) such that, for each j ∈ [αn], |V̄j | = 2k + 2|C̄| + 2 and
G[V̄j ] contains both a matching of k+ |C̄|+ 1 colour-c0 edges and a (C̄ ∪Ci)-rainbow matching with
k + |C̄| edges.

3.6 Derivation of Theorem 1.2 from the first technical theorem

In order to prove Theorem 1.2 from Theorem 3.1, we show that, for large n, an optimally coloured copy
of Kn,n is properly pseudorandom, using the following slightly more general result which is also used to
deduce Theorems 1.3 and 1.4 in Sections 3.7 and 3.8. Some of the structures considered in the proof are
depicted in Figure 7 with appropriate labelling.

Proposition 3.12. Let 1/n
poly

� η
poly

� ε ≤ 1. Let G be a properly coloured bipartite graph with vertex
classes A and B such that |A| = |B| = n, |C(G)| ≥ n and δ(G) ≥ (1 − η)n. Suppose that each colour of
G appears at least (1− η)n times on the edges of G.

Then, G is (n, 1, ε)-properly-pseudorandom.

Proof. Let p = 1 and α = p12/10100 = 1/10100. Let C = C(G) and note that n ≤ |C| ≤ n2/(1 − η)n ≤
(1 + ε)n, so that F1 holds. Furthermore, H(G) is a 3-partite simple 3-uniform hypergraph with vertex
degrees at least (1−η)n. Therefore, H(G)AB , H(G)BC and H(G)AC are all bipartite graphs with (1±2η)n
vertices in each class and with minimum degree at least (1− η)n, so that, then, vertices in the same class
have common neighbourhood with size at least (1 − 4η)n. Therefore, each of these graphs is (n, 1, 4η)-
typical, and hence (n, 1, ε)-typical, so that F2 holds. We will now show that F3–F7 hold.
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Figure 7: Relevant structures for F3, F4 and F5 respectively in the definition of proper-pseudorandomness
(see Definition 3.11), with labels relevant for the proof of Proposition 3.12. In the picture for F3, in F3 we
have e = u1u2 and f = v1v2. In the picture for F4, in F4 we would take, for some i, Vi = {w1, w2, w3, w4}
and Ci = {c1, c2, c3}. In the picture for F5, the dotted lines have colour c0, and in F5 we would take, for
some i, Vi to be the set of pictured vertices and Ci = {c1, c2, c3}.
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F3: We will prove the slightly stronger result, that, for each c ∈ C(G) and e ∈ Ec(G) there are no such
edges f as in F3. For this, let c ∈ C(G) and let e = u1u2, f = v1v2 ∈ Ec(G) be distinct, so that {u1, u2}
and {v1, v2} are disjoint as the colouring is proper. We will show that there are at least n2/2 choices for
(c′, c′′) such that there are a pair of vertex-disjoint rainbow 4 cycles containing e and f respectively which
each have edges with colour c′ and c′′ next to the edge with colour c (that is, e or f).

Note that, for each vertex v ∈ V (G), v has a neighbouring edge of all but at most 3ηn colours of G,
as |C(G)| ≤ (1 + 2η)n and δ(G) ≥ (1 − η)n, and v has at most n − δ(G) ≤ ηn non-neighbours. Pick
c′ ∈ C(G) which does not appear on G[V ({e, f})] so that both u2 and v2 have colour-c′ neighbours in G,
noting that there are at least n − 4 − 6ηn ≥ n − 7ηn choices for c′. Let u3 be the colour-c′ neighbour of
u2 in G and let v3 be the colour-c′ neighbour of v2 in G. Note that u3, v3 /∈ {u1, u2, v1, v2} by the choice
of c′, and u3 6= v3 as both u2u3 and v2v3 have colour c′ and G is properly coloured.

Pick c′′ ∈ C(G) which does not appear on G[V ({u1, u2, u3, v1, v2, v3})] for which the following hold.

i) There is no path in G of length 2 with colours c′′ and c between two vertices in {u1, u2, u3, v1, v2, v3}.
ii) Both u3 and v3 have a neighbouring edge with colour c′′ in G, and the neighbour along this edge

is also a neighbour of u2 and v2, respectively. (Note that vertices in the same class have at least
(1 − 2η)n common neighbours, so that all but at most 4ηn colours appear from u3 to a common
neighbour of u2 and u3, for example.)

Note that there are at least n −
(

6
2

)
(1 + 2) − 2 · 4ηn ≥ n − 9ηn choices for c′′. Let u4 be the colour-

c′′ neighbour of u1 in G and let v4 be the colour c′′ neighbour of v1 in G (possible by ii)). Note that
u4, v4 /∈ {u1, u2, u3, v1, v2, v3} by i), that u3u4, v3v4 ∈ E(G) by ii), and that u4 6= v4 as both u1u4 and
v1v4 have colour c′′ and G is properly coloured. By i), we have that neither of the edges u3u4 or v3v4 have
colour c (or, as the colouring is proper, either c′ or c′′). Let S1 and S2 be the 4-cycles in G with vertices
u1u2u3u4 and v1v2v3v4 in that order, respectively, noting that we have that these are rainbow cycles with
e = u1u2 ∈ E(S1) and f = v1v2 ∈ E(S2). Furthermore, the colour sets of the neighbouring edges of e in
S1 and the neighbouring edges of f in S2 are both {c′, c′′}.

Therefore, as we had at least (n − 7ηn)(n − 9ηn) ≥ n2/2 choices for (c′, c′′), and any pair of such
4-cycles (S1, S2) uniquely determines {c′, c′′} from the colours of the edges neighbouring e, we have that
there are at least n2/4 ≥ αn2 pairs (S1, S2) such that S1 and S2 are vertex-disjoint rainbow 4-cycles with
e ∈ E(S1) and f ∈ E(S2) and the colour sets of the neighbouring edges of e in S1 and the neighbouring
edges of f in S2 are the same. As this holds for arbitrary c ∈ C(G) and distinct e, f ∈ Ec(G), we have
that F3 holds.

F4: Let u ∈ A, v ∈ B and c0 ∈ C(G). Let s be the largest integer for which there are disjoint sets
V1, . . . , Vs ⊂ V (G) with size 4 and disjoint sets C1, . . . , Cs ⊂ C(G) \ {c0} with size 3 such that, for each
i ∈ [s], G[Vi] contains 2 colour-c0 edges and G[{u, v} ∪ Vi] contains a Ci-rainbow matching of order 3.
Suppose, for contradiction, that s < αn. Let V = ∪i∈[s]Vi and C = ∪i∈[s]Ci, so that |V | ≤ 4αn and
|C| ≤ 3αn.

Recall that G contains at least (1− η)n edges with colour c0, at most |V | of which have an edge in V .
Thus, there are at least (1− η)n− |V | − 3ηn− |C| ≥ n/2 choices for a colour-c0 edge w1w2 so that w1 is
a neighbour of u, uw1 has colour, c1 say, not in C, and w1, w2 /∈ V . Given such an w1w2, there are then
at least (1− η)n− (|V |+ 1)− 3ηn− 2(|C|+ 1) ≥ n/2 choices for a colour-c0-edge w3w4 so that w2w3 and
w4v are edges of G with colours, c2 and c3 say, which are not in C ∪ {c1}, and w3, w4 /∈ V ∪ {w1, w2}.
Note that, given any c ∈ C(G) \ {c0}, there is at most 1 choice for (w1, w2, w3, w4, c1, c2, c3) for which
c2 = c3 = c. Therefore, as (n/2)2−n > 0, we can choose (w1, w2, w3, w4, c1, c2, c3) so that c2 6= c3. Setting
Vs+1 = {w1, w2, w3, w4} ⊂ V (G) \ V and Cs+1 = {c1, c2, c3} ⊂ C(G) \C, observe that G[Vs+1] contains 2
colour-c0 edges (w1w2 and w3w4) and G[Vs+1 ∪ {u, v}] contains the matching {uw1, w2w3, w4v} which is
Cs+1-rainbow, where |Cs+1| = 3. This contradicts the choice of s, and therefore s ≥ αn. Thus, F4 holds.

For F5–F7, we first prove the following stronger version of F6:

F6’ For any c0 ∈ C(G), 0 ≤ k ≤ 120, and any C̄ ⊂ C(G)\{c0} with |C̄| = k, there are vertex-disjoint sets
V̄1, . . . , V̄αn ⊂ V (G) such that, for each i ∈ [αn], |V̄i| = 2k + 2 and G[Vi] contains both a matching
of k + 1 colour-c0 edges and a C̄-rainbow matching with k edges.

Let c0 ∈ C(G), 0 ≤ k ≤ 120 and C̄ ⊂ C(G) \ {c0} with |C̄| = k. Let s be the largest integer for which
there are disjoint sets V̄1, . . . , V̄s ⊂ V (G) with size 2k+ 2 such that, for each i ∈ [αn], G[V̄i] contains both
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a matching of k + 1 colour-c0 edges and a C̄-rainbow matching with k edges. Suppose, for contradiction,
that s < αn, and let V = ∪i∈[s]Vi, so that |Vi| ≤ (2k + 2)αn. Let V̂ ⊂ V (G) \ V be a maximal set for

which there is a set Ĉ ⊂ C̄ with |V̂ | = 2|C̄ ′| such that G[V̂ ] contains an exactly-Ĉ-rainbow matching and
|Ĉ| colour-c0 edges. If Ĉ = C̄, then, using that |Ec0(G)| ≥ (1− η)n, let e be a colour-c0 edge of G with no
vertices in V̂ ∪ V̄ . Then, setting V̄s+1 = V̂ ∪ V (e), note that G[V̄s+1] contains both a matching of k + 1
colour-c0 edges and a C̄-rainbow matching with k edges, contradicting the maximality of s. Therefore, we
can assume that Ĉ 6= C̄.

Let V ′ be the set of vertices that are reachable from V ∪ V̂ by a path with length at most k which
has colours in C̄ ∪ {c0}, and note that |V ′| ≤

∑2k+2
i=0 (k + 1)i|V ∪ V̂ | ≤ 2(k + 1)2k+2 · 2αn ≤ n/2. Let

` = |C̄ \ Ĉ| ≥ 1 and label the colours in C̄ \ Ĉ as c1, . . . , c`. For each vertex v ∈ V (G) \ V ′, consider the
maximal path Pv starting at v which uses colours c0, c1, c0, c2, . . . , c0, c`, c0 in that order (possibly stopping
early), and note that V (Pv) is disjoint from V ∪ V̂ . Note that, for each i ∈ [2` + 2], the ith vertices of
the paths Pv, v ∈ V (G) \ V ′, are distinct where they exist as the colouring is proper, and, as each colour
has (1 − η)n edges, for each i ∈ [2` + 2], at most ηn paths Pv, v ∈ V (G) \ V ′, reach the ith vertex with
no neighbour of the right colour to extend this to find an (i+ 1)th vertex. Thus, the number of paths Pv,
v ∈ V (G) \ V ′, with length 2` + 1 is at least n/2 − 2` · ηn > 0. That is, using the vertices of some path
Pv with length 2` + 1, we can find vertices v0v1 . . . v2`+1 in V (G) \ (V ∪ V̂ ) such that v0v1 has colour c0
and, for each 1 ≤ i ≤ `, v2i−1v2i has colour ci and v2i,2i+1 has colour c0.

Observe that if vi = vj for some 0 ≤ i < j ≤ 2` + 1 which minimises j − i, then vi, . . . , vj is
an even cycle (as G is bipartite) with edges which alternate in colour between c0 and distinct colours
in C̄ \ Ĉ = {c1, . . . , c`}. Then, V̂ ∪ {vi, . . . , vj} contradicts the maximality of V̂ . Thus, the vertices

v0, v1, . . . , v2` are distinct vertices in V (G) \ (V ∪ V̂ ). Finally, noting that Vs+1 = V̂ ∪ {v0, v1, . . . , v2`+1}
contains |Ĉ|+`+1 = |C̄|+1 colour-c0 edges, and, as C̄ = Ĉ∪{c1, . . . , c`}, an exactly-C̄-rainbow matching,
this contradicts the choice of s. Thus, we have s ≥ αn. Therefore, F6’ holds.

We now prove F5–F7. First, note that F6 follows directly from F6’.

F5: Let c0, d ∈ C(G) be distinct. Let s be the largest integer for which there are vertex-disjoint sets
V1, . . . , Vs ⊂ V (G) with size 8 and disjoint sets C1, . . . , Cs ⊂ C(G) \ {c0, d} of size 3 such that, for each
i ∈ [s], G[Vi] contains both a matching of 4 colour-c0 edges and an exactly-({d} ∪ Ci)-rainbow matching.
Suppose, for contradiction, that s < αn/12, and let V = ∪i∈[s]Vi and C = ∪i∈[s]Ci, so that |V | < 2αn/3

and |C| ≤ αn/4. Using F6’ with k = 1 and C̄ = {d}, find a set V̂ ⊂ V (G) \ V of 4 vertices such that
G[V̂ ] contains 2 edges of colour c0 and one edge of colour d. Label vertices u, v ∈ V̂ so that u ∈ A, v ∈ B,
and the edge of G[V̂ \ {u, v}] has colour d. Using F4, take a set V̂ ′ ⊂ V (G) \ (V ∪ V̂ ) of 4 vertices and a
set Ĉ ′ ⊂ C(G) \ (C ∪ {c0, d}) of 3 colours such that G[V̂ ′] contains 2 colour-c0 edges and G[V̂ ′′ ∪ {u, v}]
contains an exactly-Ĉ ′-rainbow matching. Letting Vs+1 = V̂ ∪ V̂ ′ and Cs+1 = Ĉ ′ contradicts the choice
of s, and therefore s ≥ αn/12. Thus, F5 holds.

F7: Set k = 100 and let c0 ∈ C(G). Take the largest r ∈ N for which there are disjoint sets V1, . . . , Vr
in V (G) and disjoint sets C1, . . . , Cr in C \ {c0} with |Vi| = 2k and |Ci| = k for each i ∈ [r] such that
G[Vi] contains an exactly-Ci-rainbow matching and a perfect matching of colour-c0 edges, and fix such
sets Vi and Ci, i ∈ [r]. Suppose, for contradiction, that r < 2α2n. Let s ≤ 15 be maximal such that there
are disjoint sets W1, . . . ,Ws in V (G) \ (V1 ∪ . . .∪Vr) and disjoint sets D1, . . . , Ds in C(G) \ (C1 ∪ . . .∪Cr)
with |Wi| = 8 and |Di| = 4 for each i ∈ [s], so that G[Wi] contains a matching of 4 colour-c0 edges
and a perfectly-Di-rainbow matching. Note that if s < 15 then we can easily reach a contradiction by
F5 as | ∪i∈[r] Vi| ≤ 4kα2n. Thus, s = 15, whence letting Vr+1 = ∪i∈[s]Wi and Cr+1 = ∪i∈[s]Di gives a
contradiction to the choice of r, so we have r ≥ 2α2n.

Now, we show that the sets Vi and Ci, i ∈ [r], have the property for F7. Let C̄ ⊂ C(G) \ {c0} with
|C̄| ≤ k. For each i ∈ [r] with C̄ ∩ Ci = ∅ (and thus for at least α2n values of i ∈ [r]), by F6’, there
are vertex-disjoint sets V̄1, . . . , V̄αn ⊂ V (G) such that, for each j ∈ [αn], |V̄j | = 2k + 2|C̄| + 2 and G[Vj ]
contains both a matching of k + |C̄| + 1 colour-c0 edges and a (C̄ ∪ Ci)-rainbow matching with k + |C̄|
edges. Thus, F7 holds.

Using Proposition 3.12, we can now deduce Theorem 1.2 from Theorem 3.1, as follows.

Proof of Theorem 1.2 from Theorem 3.1. Let n be large enough that we can choose η and ε to satisfy

1/n
poly

� η
poly

� ε
poly

� log−1 n. Let L be a Latin square of order n, and let G be the corresponding edge-
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coloured copy of L as described at the start of Section 3. Then, as G is properly coloured with n colours, by
Proposition 3.12, G is (n, 1, ε)-properly-pseudorandom. Therefore, by Theorem 3.1, G contains a rainbow
matching with at least n− 1 edges, and thus L contains a transversal with at least n− 1 cells.

3.7 Derivation of Theorem 1.3 from the first technical theorem

For Theorem 1.3, we want to show that if G is a properly coloured copy of Kn,n, and n is large, then G
has a rainbow matching with at least n − 1 edges. If G is far from an optimally coloured copy of Kn,n,
then we use the following result, which is a simplified version of a result by the current author, Pokrovskiy
and Sudakov [45].

Theorem 3.13. [45, Theorem 1.9] Let 1/n
poly

� ε. Let G be a properly coloured copy of Kn,n with at most
(1− ε)n colours having more than (1− ε)n edges. Then, G contains a rainbow matching with n edges.

When G does not satisfy the condition of Theorem 3.13, then, letting C0 be the set of colours that
appear on almost n edges, we wish to find a small rainbow matching with n − |C0| edges in the rarer
colours, where C0 has size close to n. Removing this small rainbow matching will then give a |C0| by |C0|
bipartite graph with |C0| large colours. We will then remove a further small rainbow matching covering
the few vertices which do not have high degree in the subgraph only with edges which have large colours.
Finally, then, we can apply Proposition 3.12 to show that it is properly pseudorandom, before applying
Theorem 3.1. To find the initial small rainbow matching, we will use the following result for the rarest
colours, finding a rainbow matching using the colours that are far from having n edges. To interpret this
result, it may be helpful to note that a rainbow bipartite graph with d vertices in each class connected to
all vertices in the other class, and no other edges, has a maximal rainbow matching of at most 2d edges
but minimum degree d, and hence the matching with size 1.8d in Proposition 3.14 is relatively close to
optimal. (For Theorem 1.3 we will only use a rainbow matching with d edges from Proposition 3.14, but
use the stronger bound for Theorem 1.4 later.)

Proposition 3.14. Let d, n ∈ N with d ≤ n/100. Let G be a properly coloured bipartite graph, with n
vertices in each class and δ(G) ≥ d, in which each colour appears at most n/100 times.

Then, G contains a rainbow matching with at least 1.8d edges.

Proof. Let A and B be the vertex classes of G. Let M be a maximal rainbow matching in G and suppose,
for contradiction, that r = |M | < 1.8d. Label vertices so that M = {aibi : i ∈ [r]} with ai ∈ A and bi ∈ B
for each i ∈ [r]. By the maximality of M , the colour of every edge with no vertex in V (M) must be in
C(M), so that there are at most 1.8d · n/100 edges with no vertex in V (M). Therefore, as δ(G) ≥ d and
|V (G) \ V (M)| ≥ 2(n− 1.8d), the number of edges of G with a vertex in M is at least

2(n− 1.8d)d− 2 · 1.8d · n

100
≥ 2nd− 4d2 − 0.04nd ≥ 2nd− 0.08nd = 0.92nd, (7)

as d ≤ n/100.
Now, suppose there is some i ∈ [r] such that d(ai), d(bi) ≥ 4d. Then, as ai has at least 1.8d + 1

neighbours in B \ V (M), we can select some b′i ∈ N(ai) \ V (M) such that aib
′
i does not have colour in

C(M). Similarly, as bi has at least 1.8d+2 neighbours in A\V (M), we can select some a′i ∈ N(bi)\V (M)
such that a′ibi does not have colour in C(M) or the same colour as aib

′
i. Then, M − aibi + aib

′
i + a′ibi is a

larger rainbow matching in G, a contradiction. Thus, we can assume that, for each i ∈ [r], we have either
d(ai) < 4d or d(bi) < 4d, so that d(ai) + d(bi) < n+ 4d. Thus, the number of edges with a vertex in M is
at most (n + 4d) · 1.8d ≤ 1.8nd + 8d2 ≤ 1.88nd as d ≤ n/100, contradicting (7). Thus, we have r ≥ 1.8d
and the desired matching exists.

Using Propositions 3.12 and 3.14 and Theorem 3.13, we can now deduce Theorem 1.3 from Theorem 3.1,
as follows.

Proof of Theorem 1.3 from Theorem 3.1. Let n be large enough that we can choose η, γ and ε to satisfy

1/n
poly

� η
poly

� γ
poly

� ε
poly

� log−1 n. Let L be a Latin array of order n, and let G be the corresponding
edge-coloured copy of Kn,n as described at the start of Section 3. Let C0 be the set of colours that have

25



at least (1 − η)n edges in G. If |C0| ≤ (1 − η)n then, by Theorem 3.13, G contains a rainbow matching
with n edges, and therefore L contains a full transversal, so we may assume that |C0| ≥ (1− η)n.

Let C1 be the set of colours not in C0 that have at least n/100 edges in G, and let C2 = C(G)\(C1∪C2).
Let d = max{0, n− |C0 ∪C1|}, and note that d ≤ ηn and, if G′ is the subgraph of G of edges with colour
in C2, then δ(G′) ≥ d. Thus, by Proposition 3.14, G′ contains a C2-rainbow matching, M2 say, with d
edges. Let d′ = max{0, n − |C2| − d}, so that d′ ≤ |C1| and d′ ≤ ηn. Greedily, using that each colour in
C1 has at least n/100 edges, let M1 be a C1-rainbow matching with d′ edges in G− V (M2).

Let V be the set of vertices in G adjacent to at most (1−γ)n edges with colour in C0. Note that there
are at least (1− η)2n2 edges with colour in C0 in G, and hence G has at most 2ηn2 edges with colour not

in C0, so that |V | ≤ γn as η
poly

� γ. Using that |M1 ∪M2| ≤ 2ηn, greedily, then, find a rainbow matching
M3 in G− V (M1 ∪M2) of |V | edges which uses colours not in V (M1 ∪M2) and such that V ⊂ V (M3).

Now, let G′′ be the subgraph of G−V (M1∪M2∪M3) with colours in C0\C(M3), and let m = |G′′|/2 =
n − |M1 ∪M2 ∪M3|. Note that G′′ is a bipartite graph with m ≥ (1 − 2η − γ)n ≥ (1 − 2γ)n vertices
in each class, and each colour in C0 \ C(M3) appears at least (1 − η)n − 2|M1 ∪M2 ∪M3| ≥ (1 − 3γ)n
times on G′. Finally, each v ∈ V (G′′) ⊂ V (G) \ V has dG′′(v) ≥ (1− γ)n− |M1 ∪M2 ∪M3| ≥ (1− 3γ)n.
Thus, as m = n − |M1 ∪ M2 ∪ M3| = n − d − d′ − |M3| ≤ |C0 \ C(M3)|, by Proposition 3.12, G′′ is
(m, 1, ε)-properly-pseudorandom. Therefore, by Theorem 3.1, G′′ contains a rainbow matching, M0 say,
with at least m− 1 edges. Noting that M0 ∪M1 ∪M2 ∪M3 is a rainbow matching with n− 1 edges, we
have that G contains such a matching, so L contains a transversal with at least n−1 cells, as required.

3.8 Derivation of Theorem 1.4 from the second technical theorem

To prove Theorem 1.4 we work similarly to our proof of Theorem 1.3, but wish to use the extra colours
present in the corresponding coloured graph to remove a slightly larger rainbow matching. To aid with
this, we first prove the following proposition.

Proposition 3.15. Let 1/n
poly

� η � 1. Suppose G is a copy of Kn,n which is properly coloured. Let
C0 ⊂ C(G) be the set of colours which appear on G at least (1−η)n times, and suppose that |C0| ≥ (1−η)n.
If G has at least 250n colours, then it contains a rainbow matching of at least n − |C0| + 100 edges with
no colours in C0.

Proof. Let C1 be the set of colours in C(G) \ C0 which appear at least n/100 times in G, and let C2 =
C(G) \ (C0 ∪ C1). As there are at least (1− η)2n2 edges with colour in C0 in G, there are at most 2ηn2

edges with colour in C1 in G, so that |C1| ≤ 200ηn ≤ n/103. As |C0| ≤ n2/(1 − η)n ≤ 3n/2, then, we
have |C2| ≥ 148n.

Let d = max{n − |C1| − |C2|, 0} ≤ ηn. Let G′ be the subgraph of G of edges with colour in C2, and
note that δ(G′) ≥ d. If d ≥ 125, then, by Proposition 3.14, there is a C2-rainbow matching M ⊂ G′ with
|M | ≥ 1.8d ≥ d+100. If d ≤ 125, then let M be a maximal C2-rainbow matching in G. Form H ⊂ G with
M ⊂ E(H) by taking one edge with each colour in C2 in G. Note that, for each edge in M , at most 1
vertex has a neighbour in H outside of V (M), and that H has no edges with no vertices in V (M). Thus,
|C2| = e(H) ≤ |M |2 + |M |(n− |M |) = n|M |, and hence |M | ≥ |C2|/n ≥ 225 ≥ d+ 100. Therefore, in each
case, we can take a C2-rainbow matching M with d+ 100 edges in G.

Using that |C1| ≤ n/103 and d+ 100 ≤ ηn+ 100, greedily find an exactly C1-rainbow matching M ′ in
G − V (M). Then, we have that M ∪M ′ is a rainbow matching in G with no colours in C0 and at least
|C1|+ d+ 100 ≥ n− |C0|+ 100, as required.

Using Propositions 3.12 and 3.15 and Theorem 3.13, we can now deduce Theorem 1.4 from Theorem 3.2.

Proof of Theorem 1.4 from Theorem 3.2. Let n be large enough that we can choose η, γ and ε to satisfy

1/n
poly

� η
poly

� γ
poly

� ε
poly

� log−1 n. Let L be a Latin array of order n with at least 150n symbols, and let G
be the corresponding edge-coloured copy of Kn,n as described at the start of Section 3. Let C0 be the set
of colours that have at least (1 − η)n edges in G. If |C0| ≤ (1 − η)n then, by Theorem 3.13, G contains
a rainbow matching with n edges, and therefore L contains a full transversal, so we may assume that
|C0| ≥ (1− η)n.

Now, by Proposition 3.15, G contains a rainbow matching, M say, with max{0, n− |C0|+ 100} edges
and no colours in C0. Note that |M | ≤ ηn + 100 ≤ 2ηn. Let V be the set of vertices in V (G) \ V (M)
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with at least γn neighbouring edges in G with colour not in C0. Note that there are at most 2ηn2 edges
in G without colour in C0, so that |V | ≤ γn. Greedily, then, we can find a matching M ′ of |V | edges with
colours not in C(M) and V ⊂ V (M ′).

Let G′ be the graph on V (G) \ V (M ∪M ′) with colours in C0 \ C(M ′) and let m = |G′|/2. Note
that G′ is a bipartite graph with m ≥ (1 − 2η − γ)n vertices in each class. Furthermore, each colour in
C0 appears at least (1 − η)n − 2(2η + γ)n ≥ (1 − 3γ)m times on G′, and each vertex in V (G′) has at
least m − γn − |V | ≥ (1 − 3γ)m neighbours in G′. Thus, by Proposition 3.12, G′ is (m, 1, ε)-properly-
pseudorandom. Finally, the number of colours in G′ is

|C0 \ C(M ′)| ≥ |C0| − |M ′| ≥ (n− |M |+ 100)− |M ′| = m+ 100,

so that, by Theorem 3.2, G′ contains a C-rainbow matching with m edges. In combination with M ∪M ′,
this demonstrates that G contains a rainbow matching with |M ∪M ′| + m = n edges, and therefore L
contains a full transversal.

3.9 Sublinear graph expansion

As discussed in Section 2.3.1, when developing our colour classes we will find expander subgraphs in an
auxiliary graph and then connect pairs of vertices despite the deletion of vertices or edges. For a general
overview of sublinear expansion and its uses, see the recent survey by Letzter [40]. We use an natural
alteration of Komlós-Szemerédi expansion (see [36, 37]) that requires sets to expand while avoiding edges
in an arbitrary subgraph with low degree (see also, for example, a similar expansion in [27]). The expansion
we use is sublinear, but we will find expanders with at most n vertices yet minimum degree at least logC n
(for some large constant C) so do not need to be as careful with the rate of expansion for small sets as
[36, 37], allowing us to use the following simpler definition of expansion (where we will ultimately use this
with α = Θ(1/ log n)).

Definition 3.16. An n-vertex graph G is an (α,∆)-expander if, for every subgraph K ⊂ G with ∆(K) ≤
∆, and every U ⊂ V (G) with |U | ≤ 2n/3, we have

|NG−K(U)| ≥ α|U |.

Following Komlós and Szemerédi [36, 37] with only small modifications due to the graph K in this
definition, we can show that any graph G contains an expander of this form with comparable average
degree. We note that the following theorem and Lemma 3.22 are the only results proved here that we use
outside of this section.

Theorem 3.17. Let n ≥ 2 and α = 1/16 log n. Then, every n-vertex graph G contains a subgraph H ⊂ G
which is an (α, α · d(H))-expander with d(H) ≥ d(G)/2 and δ(H) ≥ d(H)/2.

Before proving Theorem 3.17, we prove the following result for the iterative step in the process.

Proposition 3.18. Let d, α > 0. Suppose that G is a graph with d(G) = d, that K ⊂ G has ∆(K) ≤ αd,
and that U ⊂ V (G) satisfies |NG−K(U)| < α|U |.

Then, either d(G− U) ≥ d or d(G[U ∪NG−K(U)]) ≥ (1− 2α)d.

Proof. Suppose otherwise, so that d(G−U) < d and d(G[U∪NG−K(U)]) < (1−2α)d. Then, with n = |G|,
we have

2e(G) ≤ 2e(G− U) + eK(U, V (G) \ U) + 2e(G[U ∪NG−K(U)])

< d · (n− |U |) + |U | ·∆(K) + (1− 2α)d · |U ∪NG−K(U)|
≤ d · (n− |U |) + |U | · αd+ (1− 2α)d · (|U |+ α|U |)
= dn− 2α2d|U | ≤ dn,

a contradiction to d(G) = d.

27



Proof of Theorem 3.17. Set G0 = G and carry out the following process indexed by `, starting with ` = 0.

• If δ(G`) ≥ d(G`)/2 and G` is an (α, α · d(G`))-expander, then stop the process. Otherwise, let
d` = d(G`) and n` = |G`|, and do the following.

• If δ(G`) < d`/2, then remove a vertex with minimum degree from G` to get G`+1, noting that, as is
well known, d(G`+1) ≥ d`.

• If δ(G`) ≥ d`/2, then, using that G` is not an (α, αd`)-expander, find a set U` ⊂ V (G`) with
|U`| ≤ 2n/3 and a graph K` ⊂ G` with ∆(K`) ≤ αd` such that |NG`−K`(U`)| < α|U`|. By
Proposition 3.18, we have either d(G` − U`) ≥ d` or d(G[U` ∪ NG`−K`(U`)]) ≥ (1 − 2α)d`. In the
former case let G`+1 = G` − U`, and in the latter case let G`+1 = G[U` ∪NG`−K`(U`)]. Note that
in the latter case we have

|G`+1| ≤ (1 + α)|U`| ≤ (1 + α) · 2n`/3 ≤ 3n`/4 < n`.

As we always have 0 < |G`+1| < |G`|, this process eventually terminates (potentially with the graph
consisting of a single vertex which trivially satisfies the conditions to stop the process). Let H be the
graph at the end of the process. We have, then, that H is an (α, α · d(H))-expander with δ(H) ≥ d(H)/2,
and we need only show that d(H) ≥ d(G)/2. At each stage ` in the process apart from the final stage,
either

i) d(G`+1) ≥ d(G`), or

ii) d(G`+1) ≥ (1− 2α)d(G`) and |G`+1| ≤ 3|G`|/4.

As (3/4)4 logn|G0| < 1, the latter case occurs for at most 4 log n steps. Thus,

d(H) ≥ (1− 2α)4 lognd(G) ≥ (1− 2α · 4 log n)d(G) = d(G)/2,

as required.

As is typical, we will use expansion to connect vertices or sets by showing that iteratively expanding
a set in an expander will result in a large set, as follows.

Lemma 3.19. Let n,m ∈ N, ∆ > 0 and 1/16 log n ≤ α ≤ 1. Let H be an (α,∆)-expander with at most
n vertices. Let K ⊂ H and V ⊂ V (H) satisfy ∆(K) ≤ ∆ and |V | ≤ αm/2. Let U ⊂ V (H) \ V satisfy
|U | ≥ m and let ` = 64 log2 n.

Then, |B`H−K−V (U)| > |H|/2.

Proof. Suppose, for contradiction, that |B`H−K−V (U)| ≤ |H|/2. For each i ∈ [`]0, let Ui = BiH−K−V (U),
so that |Ui| ≤ |U`| < |H|/2 and |Ui| ≥ |U0| = |U | ≥ m. As H is an (α,∆)-expander, we have

|NH−K−V (Ui)| = |NH−K(Ui) \ V | ≥ α|Ui| − |V | ≥ α|Ui|/2.

Therefore, |Ui+1| ≥ (1 + α/2)|Ui| for each i ∈ [`− 1]0, and thus

|U`| ≥ (1 + α/2)`|U0| ≥ (1 + α · 32 log n/2)`/32 logn ≥ 2`/32 logn ≥ n ≥ |H|,

a contradiction.

For the proof of our next lemma, it is convenient to record the following very simple result.

Proposition 3.20. For any c > 0, ddce/2e ≤ d2c/3e.

Proof. If c ≥ 3, then 2c/3 ≥ (c + 1)/2 ≥ dce/2, so taking ceilings gives the result. If 3/2 < c ≤ 3, then
d2c/3e = 2 and ddce/2e ≤ d3/2e = 2. If 0 < c ≤ 3/2, then ddce/2e = 1 = d2c/3e.

Our next consequence of expansion is that if the union of some disjoint vertex sets expands despite
some deletion of vertices and edges, then one of these sets expands well despite the same deletion of
vertices and edges, as follows.
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Lemma 3.21. Let n,m ∈ N with n ≥ e50, ∆ > 0 and 1/16 log n ≤ α ≤ 1. Let H be an (α,∆)-expander
with at most n vertices. Let K ⊂ H and V ⊂ V (H) satisfy ∆(K) ≤ ∆ and |V | ≤ αm/8. Let r ∈ N and
let U1, . . . , Ur be disjoint subsets of V (H) \ V with | ∪i∈[r] Ui| ≥ m. Let ` = 195 log3 n.

Then, there is some i ∈ [r] for which |B`H−K−V (Ui)| > |H|/2.

Proof. Note that, from the conditions, we have that |H| ≥ m. Let `0 = 64 log2 n and let 0 ≤ j ≤ 1+3 log n

be the largest such j for which there is a set Ij ⊂ [r] with |Ij | ≤ dr·(2/3)je and |B`0jH−K−V (∪i∈IjUi)| > m/4.
Note that we could take j = 0 and Ij = [r] for j = 0, and therefore such a j and an accompanying Ij
must exist. If |Ij | ≥ 2, then note that, as (2/3)3 < e−1, we have j < 3 log n. Partition Ij = Ij+1 ∪ I ′j+1 as

equally as possible. Note that, by Proposition 3.20, |Ij+1|, |I ′j+1| ≤ d|Ij |/2e ≤ dr · (2/3)j+1e. Furthermore,
by Lemma 3.19, we have

|B(j+1)`0
H−K−V (∪i∈Ij+1

Ui)|+ |B(j+1)`0
H−K−V (∪i∈I′j+1

Ui))| ≥ |B`0H−K−V
(
Bj`0H−K−V (∪i∈IjUi)

)
| > |H|/2 ≥ m/2.

Therefore, either |B(j+1)`0
H−K−V (∪i∈Ij+1

Ui))| > m/4 or |B(j+1)`0
H−K−V (∪i∈I′j+1

Ui))| > m/4, a contradiction to the

choice of j. Thus, we must have that |Ij | = 1.

Let i ∈ [r] be such that Ij = {i}. Finally, note that, as |Bj`0H−K−V (Ui)| > m/4, by Lemma 3.19, we

have |B`0(j+1)
H−K−V (Ui)| > |H|/2. As n ≥ e50, we have `0(j + 1) ≤ `0(2 + 3 log n) ≤ `, and so this completes

the proof.

We now prove the main result of expansion that we use. It shows that, even if a set of edges (those in
E(K)) and a set of vertices (those in V ) are removed, we can find a large set of vertices from which we
can connect any pair of vertices with multiple internally vertex-disjoint paths.

Lemma 3.22. There exists some n0 ∈ N such that the following holds for each n ≥ n0. Let ∆ ∈ N,
1/16 log n ≤ α ≤ 1 and d ≥ 4∆. Let H be an (α,∆)-expander with at most n vertices which satisfies
δ(H) ≥ d and suppose that

r ≤ αd

106 log3 n
. (8)

Let V ⊂ V (H), and let K ⊂ H satisfy ∆(K) ≤ ∆. Then, there is a set B ⊂ V (H) with V ⊂ B and

|B| ≤ 104|V | · ∆(H)

αd
(9)

such that, given any distinct x, y in V (H) \ B, there are r x, y-paths in H −K − V with length at most
400 log3 n which are internally vertex disjoint.

Proof. Let ` = 200 log3 n and pick n0 ≥ e50. Let B′ be the set of vertices v ∈ V (H) \ V for which there is
a set Uv ⊂ V (H) \ {v} with |Uv| ≤ 2r` such that |N `

H−K−V−Uv (v)| < |H|/2, and let B = B′ ∪ V . First,
note that if (9) holds, then B has the desired property. Indeed, given any distinct x, y in V (H) \ B, let
P1, . . . , Pr′ be a largest collection of x, y-paths in H −K − V with length at most 2` = 400 log3 n which
are internally vertex disjoint and let Uxy = V (∪i∈[r′]Pi) \ {x, y}. If r′ < r, then |Uxy| < 2r`, so that,

as x, y /∈ B, |N `
H−K−V−Uxy (x)|, |N `

H−K−V−Uxy (y)| > |H|/2, and therefore H −K − V − Uxy contains an

x, y-path with length at most 2`, contradicting the choice of r′. Thus, r′ ≥ r. As x and y were arbitrary
distinct vertices in V (H) \B, B has the desired property.

Therefore, suppose, for contradiction, that (9) does not hold, so that, as ∆(H) ≥ δ(H) ≥ d and α ≤ 1

|B′| = |B| − |V | ≥ 104|V | · ∆(H)

αd
− |V | ≥ (104 − 1)|V | · ∆(H)

αd
. (10)

For the largest s possible, take distinct vertices v1, . . . , vs ∈ B′ and disjoint sets A1, . . . , As ⊂ V (H) \ V
such that Ai ⊂ NH−K(vi) for each i ∈ [s] and |Ai| = bd/2c ≥ d/4. Let A = ∪i∈[s]Ai and, suppose, for

contradiction, that |A| < 32|V |
α , and hence s = |A|/bd/2c < 128|V |

αd < |B′|/2 by (10). Then, as δ(H) ≥ d,
every vertex v ∈ B′ \ {v1, . . . , vs} has at least d− bd/2c ≥ d/2 neighbours in H in V ∪A, so that we have

eH(B′ \ {v1, . . . , vs}, V ∪A) ≥ (|B′| − s) · d
2
≥ d|B′|

4

(10)

≥ (104 − 1)|V | ·∆(H)

4α
. (11)
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On the other hand, as |A| < 32|V |
α ,

eH(B′ \ {v1, . . . , vs}, V ∪A) ≤ |V ∪A| ·∆(H) < 2 · 32|V |
α
·∆(H),

which contradicts (11) as (104 − 1)/4 ≥ 2 · 32.

Thus, |A| ≥ 32|V |
α , and hence |V | ≤ α|A|

32 . Let U = ∪i∈[s]Uvi , recalling that, for each i ∈ [s], |Uvi | ≤ 2r`

and |N `
H−K−V−Uvi

(vi)| < |H|/2. Note that, as s = |A|/bd/2c,

|U ∪ V | ≤ |U |+ α|A|
32
≤ 2r` · s+

α|A|
32
≤ 4|A|

d
· 2r`+

α|A|
32

(8)

≤ α|A|
32

.

Let A′ = A \ U and note that |U ∪ V | ≤ α|A|/16 ≤ α|A′|/8 and A′ = ∪i∈[s](Ai \ U). Therefore, by

Lemma 3.21 with m = |A′|, we have that there is some j ∈ [s] with |B`−1
H−K−U−V (Aj \ U)| > |H|/2. As

vj /∈ Uj ∪ V , we thus have |B`H−K−Uvj−V (vj)| > |H|/2, a contradiction to the choice of Uvj .

3.10 Concentration inequalities

We will use some concentration bounds for our analysis, starting with the following standard version of
Chernoff’s bound.

Lemma 3.23. Let X be a binomial random variable with parameters (n, p). Then, for each ε ∈ (0, 1), we
have

P
(
|X − pn| > εpn

)
≤ 2e−

ε2pn
3 .

We will use also the following concentration result due to McDiarmid (see, for example, [29], for an
exposition of Lipschitz random variables and, in particular, [29, Remark 2.28]).

Lemma 3.24. Suppose that a random variable X :
∏n
i=1 Ωi → R is k-Lipschitz. Then,

P(|X − EX| > t) ≤ 2 exp(−t2/k2n).

We will also use the following standard form of Azuma’s inequality for a sub-martingale (see, for
example [29], for an exposition of martingales and Azuma’s inequality, and, in particular, the note after [29,
Remark 2.26]).

Theorem 3.25 (Azuma’s inequality). If X0, X1, . . . , Xn is a sub-martingale, and |Xi − Xi−1| ≤ ci for

each 1 ≤ i ≤ n, then, for each t > 0, P(Xn −X0 ≤ −t) ≤ exp
(

−t2
2
∑n
i=1 c

2
i

)
.

3.11 Numbers of 4-cycles

We will use a lower bound on the number of 4-cycles in an n-vertex graph that depends on its number
of edges. This follows from the well-known proof of Sidorenko’s conjecture in the (simple) case for the
4-cycle using the Cauchy-Schwarz inequality. For completeness, we include this short proof, as follows.

Proposition 3.26. Let 1/n
poly

� ξ. Then, any n-vertex graph with at least ξn2 edges contains at least
10ξ4n4 labelled copies of C4.

Proof. Let r be the number of labelled copies of C4 in G, and let s be the number of 4-tuples (w, x, y, z)
of vertices in G such that wx, xy, yz, zw ∈ E(G). Note that the number of 4-tuples in which some vertex
appears at least twice is certainly at most

(
4
2

)
· n · n2 = 6n3, and hence r ≥ s− 6n3. Now,

s =
∑

w,y∈V (G)

|N(w) ∩N(y)|2 ≥ 1

n2

 ∑
w,y∈V (G)

|N(w) ∩N(y)|

2

=
1

n2

 ∑
x∈V (G)

|N(x)|2
2

≥ 1

n4

 ∑
x∈V (G)

|N(x)|

4

=
1

n4
(2e(G))

4 ≥ 16ξ4n4,

using the Cauchy-Schwarz inequality twice. Thus, as 1/n
poly

� ξ, we have r ≥ 16ξ4n4 − 6n3 ≥ 10ξ4n4.

30



4 Almost-full transversals

In this section we prove Theorem 3.3 using a result proved by the author, Pokrovskiy and Sudakov [45]
using the semi-random method, and adapting work by the author, Pokrovskiy and Sudakov [46]. We do
not use the semi-random method directly, and deduce the result we use (Theorem 3.3) mainly from known
results. For discussion of the semi-random method we refer the reader to [45], or to the recent survey by
Kang, Kelly, Kühn, Osthus and Methuku [30].

In this section, we will work with simple 3-uniform 3-partite hypergraphs, and prove the following
result, which is, effectively, Theorem 3.3 restated using simple 3-uniform 3-partite hypergraphs and using
only the condition from proper pseudorandomness required for the matching to be found (see Section 3.4
for the relevant definitions concerning typicality).

Theorem 4.1. Let 1/n
poly

� ε
poly

� η
poly

� p, q ≤ 1. Let 2q/3 ≤ qA, qB , qC ≤ q. Let H be simple 3-partite
3-uniform hypergraph which is (n, p, ε)-typical with vertex classes A, B and C. Independently, let A′ be a
qA-random subset of A, let B′ be a qB-random subset of B and let C ′ be a qC-random subset of C. Then,
with high probability, the following holds.

Given any sets Ā ⊂ A, B̄ ⊂ B, C̄ ⊂ C with size qn such that A′ ∪ B′ ∪ C ′ ⊂ Ā ∪ B̄ ∪ C̄, there is a
matching in H(Ā, B̄, C̄) with at least qn− ηn edges.

Note that Theorem 3.3 follows immediately by considering the hypergraph H(G) (see Definition 3.7)

and using F2, as it follows from 1/n � p, q and η
poly

� log−1 n that η
poly

� p, q. In Section 4.1, we will
state three results we use from [32, 45], developing them through corollaries for ease of application, before
proving Theorem 4.1 in Section 4.2.

4.1 Results of typicality

The first result we need is the following result (stated in a slightly simplified form) of the author with
Pokrovskiy and Sudakov [45] that says the subgraph of a typical bipartite graph chosen by including edges
of a random set of colours is itself likely to be typical. (The definition of typicality in [45] is for balanced
bipartite graphs only, but coincides with Definition 3.8 when |A| = |B|, though we record the parameters
in a different order.)

Lemma 4.2 ([45], Lemma 5.3a)). Let 1/n
poly

� ε, p, q ≤ 1. Let G be a properly coloured bipartite graph with
vertex classes A and B which is (n, p, ε)-typical with |A| = |B|. Let C be a random subset of C(G) formed
by including each element independently at random with probability q. Let H be the subgraph of G whose
edges are exactly those in E(G) with colour in C. Then, with high probability, H is (n, pq, 2ε)-typical.

We will use this through the following corollary, where the bipartite graph does not need to be balanced.

Corollary 4.3. Let 1/n
poly

� ε
poly

� α
poly

� p, q ≤ 1. Let G be a properly coloured bipartite graph with vertex
classes A and B which is (n, p, ε)-typical. Let C be a random subset of C(G) formed by including each
element independently at random with probability q. Let H be the subgraph of G whose edges are exactly
those in E(G) with colour in C. Then, with high probability, H is (n, pq, α)-typical.

Proof. Let G be G′ with at most 2εn vertices removed from A or B so that it is a balanced graph, and

note that G′ is (n, p, α/4)-typical as ε
poly

� α
poly

� p. Let H ′ = H[V (G′)], so that by Lemma 4.2, with high
probability H ′ is (n, p, α/2)-typical. As H ′ is H with at most 2εn vertices removed, it then follows that
H is (n, pq, α)-typical. Thus, with high probability, H is (n, pq, α)-typical.

We will also use the following implication of typicality due to Keevash, Pokrovskiy, Sudakov and
Yepremyan [32]. We note that our definition of a typical graph is recorded differently to [32], where their
(ε, p, n)-typical bipartite graph corresponds to our (n, p, n−ε)-typical bipartite graph when the class sizes
are equal.

Lemma 4.4 ([32], Lemma 2.7). Let n ∈ N, ε, p, γ ∈ (0, 1] with 8ε ≤ γ. Let G be a bipartite graph with
vertex classes A and B which is (n, p, ε)-typical with |A| = |B| = n. Then, for every X ⊂ A and Y ⊂ B
with |Y | ≥ γ−1p−2, ∣∣e(X,Y )− p|X||Y |

∣∣ ≤ 2|X|1/2|Y |γ1/2n1/2p.
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In particular, we will apply Lemma 4.4 through the following corollary.

Corollary 4.5. Let 1/n
poly

� ε
poly

� η, p, q ≤ 1. Let G be a bipartite graph with vertex classes A and B which
is (n, p, ε)-typical. Then, for every X ⊂ A and Y ⊂ B with |B| ≥ qn,∣∣e(X,Y )− p|X||Y |

∣∣ ≤ ηn2.

Proof. Let γ = 8ε, and note that qn ≥ γ−1p−2 as 1/n
poly

� ε, p, q. Then, for every X ⊂ A and Y ⊂ B with
|Y | ≥ qn, by Lemma 4.4, we have, noting that |X|, |Y | ≤ 2n∣∣e(X,Y )− p|X||Y |

∣∣ ≤ 2|X|1/2|Y |γ1/2n1/2p ≤ 16n2γ1/2p ≤ ηn2,

where we have used that ε
poly

� η, p.

Finally, we will need the following result of the author, Pokrovskiy and Sudakov [45], proved using the
semi-random method.

Lemma 4.6 ([45], Lemma 4.6). Let 1/n
poly

� ε
poly

� γ
poly

� p ≤ 1. Let G be a properly coloured balanced
bipartite graph with |G| = (1 ± ε)2n , dG(v) = (1 ± ε)pn for all v ∈ V (G), and suppose that, for each
c ∈ C(G), |Ec(G)| ≤ (1 + ε)pn. Then, G contains a rainbow matching with (1− γ)n edges.

We will apply Lemma 4.6 through the following corollary.

Corollary 4.7. Let 1/n
poly

� ε
poly

� γ
poly

� p ≤ 1. Let H be a simple 3-partite 3-uniform hypergraph, whose
vertex classes each have size (1± ε)n, such that d(v) = (1± ε)pn for each v ∈ V (H). Then, H contains a
matching with at least (1− γ)n edges.

Proof. Let ε′ satisfy ε
poly

� ε′
poly

� γ. Let the vertex classes of H be A, B and C. Let G be a coloured bipartite
graph with vertex classes A and B, with an edge ab with colour c for each a ∈ A, b ∈ B and c ∈ C with
abc ∈ E(H). Note that G is properly coloured because H is simple, and that dG(v) = (1± ε)pn for each
v ∈ V (G) and |Ec(G)| = dH(c) ≤ (1 + ε)pn for each c ∈ C(G). Let G′ be G with at most 2εn vertices
removed from A or B so that G′ is a balanced bipartite graph, and note that dG(v) = (1± ε′)pn. Then,
by Lemma 4.6, G′, and hence G, contains a rainbow matching with (1− γ)n edges. This corresponds to
a matching in H, so that H contains a matching with at least (1− γ)n edges, as required.

4.2 Proof of Theorem 4.1

Theorem 4.1 concerns matchings of edges between vertex sets Ā ⊂ A, B̄ ⊂ B and C̄ ⊂ C, where most of
the vertices in each set lie in a random set. We will first prove a lemma where two of the sets Ā, B̄ and C̄
are random and one of them is arbitrary, i.e., Lemma 4.8. In the proof of this lemma, and the subsequent
proof of Theorem 3.3, we follow work by the author, Pokrovskiy and Sudakov [46] (in a slightly different
setting).

Lemma 4.8. Let 1/n
poly

� ε
poly

� η
poly

� p, q ≤ 1. Let H be a 3-partite linear 3-uniform hypergraph with vertex
classes A, B and C which is (n, p, ε)-typical. Let A′ ⊂ A and B′ ⊂ B be subsets chosen by including each
element of A and B, respectively, independently at random with probability q.

Then, with high probability, given any set C ′ ⊂ C with size qn, there is a matching in H[A′, B′, C ′]
with size at least (q − η)n.

Proof. Let α and γ satisfy ε
poly

� α
poly

� γ
poly

� η. Let H1 be the bipartite graph with vertex sets A and C and
edges ac with colour b with a ∈ A, b ∈ B and c ∈ C if abc ∈ E(H1). As H is (n, p, ε)-typical, we have that
H1 is (n, p, ε)-typical. Let H ′1 be the subgraph of H1 of edges with colour in B′, so that, by Corollary 4.3,
with high probability, we have that H ′1 is (n, pq, α)-typical. Let H ′2 be the bipartite graph with vertex
sets B and C and edges bc with b ∈ B and c ∈ C if there is some a ∈ A′ with abc ∈ E(H). Similarly, with
high probability, we have that H ′2 is (n, pq, α)-typical. Therefore, by Corollary 4.5, with high probability
we can assume the following.
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G1 For every X ⊂ A and Y ⊂ C with |Y | ≥ qn/2, we have |eH′
1
(X,Y )− pq|X||Y || ≤ γn2.

G2 For every X ⊂ B and Y ⊂ C with |Y | ≥ qn/2, we have |eH′
2
(X,Y )− pq|X||Y || ≤ γn2.

Note that, asH is simple, for each v ∈ C, dH(v,A′∪B′) is binomially distributed with mean q2 ·dH(v) =
(1± ε)q2pn, as H is (n, p, ε)-typical. Thus, using a union bound and Lemma 3.23, we have the following
properties with high probability.

G3 For each v ∈ C, we have dH(v,A′ ∪B′) = (1± 2ε)pq2n.

G4 |A′| = (1± ε)qn and |B′| = (1± 2ε)qn.

Thus, with high probability, we can assume that G1–G4 hold. We will now show that, when this
occurs, A′ and B′ have the property in the lemma. For this, let C ′ ⊂ C be an arbitrary set with size qn.
To apply Corollary 4.7, we wish to identify an almost-regular subgraph of H[A′ ∪ B′ ∪ C ′]. We start by
showing there are few vertices in A′ with degree in H[A′ ∪B′ ∪ C ′] which is much more or less than pqn.
Let

Ā0 = {v ∈ A′ : dH(v,B′ ∪ C ′) > (1 +
√
γ)pq2n} and Ā1 = {v ∈ A′ : dH(v,B′ ∪ C ′) < (1−√γ)pq2n}.

Note that, as H is a simple hypergraph, for each vertex v and subset V ⊂ C, we have dH(v,B′ ∪ V ) =
dH′

1
(v, V ). Therefore, as |C ′| = qn, there are at least (1 +

√
γ)pq|Ā0||C ′| edges between Ā0 and C ′ in H ′1.

Thus, by G1, we have
√
γpq|Ā0||C ′| ≤ γn2, so that |Ā0| ≤ γ1/3pq2n as γ

poly

� p, q and |C ′| = qn. Similarly,

we have |Ā1| ≤ γ1/3pq2n, and, furthermore, setting

B̄0 = {v ∈ B′ : dH(v,A′ ∪ C ′) > (1 +
√
γ)pq2n} and B̄1 = {v ∈ B′ : dH(v,A′ ∪ C ′) < (1−√γ)pq2n},

it follows from G2 that |B̄0|, |B̄1| ≤ γ1/3pq2n.
Let Ā = A′ \ (Ā0 ∪ Ā1), B̄ = B′ \ (B̄0 ∪ B̄1) and C̄ = C ′. From G4, we have |Ā| = (1± 3γ1/3)qn and

|B̄| = (1± 3γ1/3)qn, and we have |C̄| = qn. Let H̄ = H[Ā ∪ B̄ ∪ C̄] and note that, for each v ∈ V (H̄), we
have (using G3 if v ∈ C and otherwise that v /∈ Ā0 ∪ Ā1 ∪ B̄0 ∪ B̄1) that

dH̄(v) = (1±√γ)pq2n± |Ā0 ∪ Ā1 ∪ B̄0 ∪ B̄1| = (1± 5γ1/3)pq2n,

where we have used that |Ā0 ∪ Ā1 ∪ B̄0 ∪ B̄1| ≤ 4γ1/3pq2n. Therefore, by Corollary 4.7, H̄, and hence
H[A′, B′, C ′], contains a matching with at least qn− ηn edges, as required.

Using Lemma 4.8, it is now straight forward to prove Theorem 4.1.

Proof of Theorem 4.1. Let q̄ satisfy q − η/4 ≤ 3q̄ ≤ q − η/10 and q̄n ∈ N. Note that, as qA, qB , qC ≥ 2q̄
we can take disjoint sets A1 ∪A2 ⊂ A′, B1 ∪B2 ⊂ B′ and C1 ∪C2 ⊂ C ′ so that A1, A2, B1, B2, C1 and C2

are each q̄-random subsets (of A, B or C). By Lemma 4.8 applied three times, and by Lemma 3.23 (and
then using 3q̄ ≤ q − η/10), with high probability, we have the following properties.

H1 For any Ā ⊂ A with |Ā| ≥ q̄n, there is a matching in H[Ā, B1, C1] with size at least (q̄ − η/4)n.

H2 For any B̄ ⊂ B with |B̄| ≥ q̄n, there is a matching in H[A1, B̄, C2] with size at least (q̄ − η/4)n.

H3 For any C̄ ⊂ C with |C̄| ≥ q̄n, there is a matching in H[A2, B2, C̄] with size at least (q̄ − η/4)n.

H4 |A1 ∪A2|, |B1 ∪B2|, |C1 ∪ C2| ≤ (2q̄ + η/20)(1 + ε)n ≤ (2q̄ + η/10)n ≤ (q − q̄)n.

We now claim that we have the property in the theorem. To see this, take arbitrary sets Ā ⊂ A,
B̄ ⊂ B, C̄ ⊂ C with size qn such that A′ ∪ B′ ∪ C ′ ⊂ Ā ∪ B̄ ∪ C̄. Let Ā′ = Ā \ A′, B̄′ = B̄ \ B′ and
C̄ ′ = C̄ \ C ′, noting that, by H4, we have |Ā′|, |B̄′|, |C̄ ′| ≥ q̄n. By H1, H2 and H3, there are matchings
in H[Ā′, B1, C1], H[A1, B̄

′, C2], and H[A2, B2, C̄
′], each with size at least (q̄ − η/4)n. Combining these

gives a matching with at least (3q̄ − 3η/4)n ≥ (q − η)n edges.
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5 Exchangeable colour classes

In this section, we find our colour classes, as discussed in Section 2.3.1. We will work more generally in an
n-vertex graph properly coloured graph G with at most kn colours, where 1/n� 1/k, so that G does not
need to be bipartite or a complete bipartite graph. If two matchings in G have the same vertex set and
the same colour set, except one has an edge of colour c while the other has an edge of colour d, then this
allows us to ‘switch’ between using edges of colour c and d. We call such a structure a colour switcher, as
follows, where we additionally restrict colour switchers to edge disjoint matchings whose union consists of
vertex-disjoint 4-cycles to simplify some counting later. A colour switcher is depicted in Figure 1.

Definition 5.1. Given colours c, d ∈ C(G), and an even integer k, a c, d-colour-switcher of order k
(often shortened to c, d-switcher) is a pair S = (M1,M2) of rainbow matchings in G of order k with
V (M1) = V (M2) such that C(M1) \ {c} = C(M2) \ {d}, c ∈ C(M1), d ∈ C(M2), and M1 ∪M2 is a union
of rainbow 4-cycles.

We say S has vertex set V (S) = V (M1) = V (M2) and colour set C(S) = C(M1) \ {c} = C(M2) \ {d}.

As discussed in Section 2.3.1, we wish to group colours together into classes so that, for each class of
colours C, we can find switchers between any pair of colours in C. We want to do this robustly, so that if
we have found some structure in G using colours in C̄ and vertices in V̄ , we can find switchers between
any pair of colours in C which do not use colours in C̄ or vertices in V̄ . For large colour classes, though,
this is too ambitious, so instead we will have that there is some small set B ⊂ C (depending on C̄ and V̄ )
so that this is true for pairs of colours from C \B. A final complication is that, in our applications, after
determining B we will need a small further robustness, further avoiding sets V̄ and C̄ in the following
definition – this plays a crucial, but small role, as the following definition is used for small values of L.

Definition 5.2. For each ε, η > 0 and L, ` ∈ N, say a colour set C ⊂ C(G) is (ε, η, L, `)-exchangeable in
G, if, for each C̄ ⊂ C(G) and V̄ ⊂ V (G) with |C ∩ C̄| ≤ ε|C| and |C̄|, |V̄ | ≤ ε|G|, there is a set B ⊂ C
with |B| ≤ η|C| and C ∩ C̄ ⊂ B such that the following hold.

• If C ∩ C̄ = ∅, then B = ∅.

• For each Ĉ ⊂ C(G) and V̂ ⊂ V (G) with |Ĉ|, |V̂ | ≤ L, and each distinct c, d ∈ C \ B, G contains a
c, d-switcher with order at most ` and no vertex in V̄ ∪ V̂ or colour in C̄ ∪ Ĉ.

Our aim in this section is to prove the next result, Theorem 5.4, which shows that given any properly
coloured n-vertex graph G, to find a collection C of set of colours so that each C ∈ C is (ε, η, L, `)-
exchangeable (for certain parameters), as in I1, and no vertex appears in too many of the sets in C, as
in I2. Finally, we want that most colour switchers of order 4 consisting of two 4-cycles switch between
colours which are C-equivalent using the following definition.

Definition 5.3. Given any collection C of sets of colours, we say c and d are C-equivalent if either c = d
or there is some C ∈ C with c, d ∈ C.

As we will see in Section 5.1, there are Θ(n5) colour switchers of order 4 in an optimally coloured Kn,n

(potentially switching between the same colour) – therefore, ‘most colour switchers’ here will mean all but
at most ξn5 switchers for some small ξ, as in I3. That is, we will prove the following result.

Theorem 5.4. Let 1/n� 1/k and 1/n
poly

� ε
poly

� η
poly

� ξ, log−1 n, 1/L. Let G be a properly coloured n-vertex
graph with |C(G)| ≤ kn. For each {c, d} ∈ C(G)(2), let wcd be the number of c, d-switchers of order 4 in
G. Then, there is a collection C of subsets of C(G) satisfying the following properties with ` = 2000 log3 n.

I1 Each C ∈ C is (ε, η, L, `)-exchangeable.

I2 Each colour c ∈ C(G) appears in at most log2 n
ξ of the sets C ∈ C with |C| > 2.

I3 If I ⊂ C(G)(2) is the set of non-C-equivalent colour pairs, then∑
e∈I

we ≤ ξn5. (12)
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We prove Theorem 5.4 in this section. To do so, we will (effectively) consider the complete auxiliary
graph R with vertex set C(G) where each edge cd ∈ E(R) is given a weight wcd, the number of c, d-
switchers in G of order 4. For w0, w1, w2 defined more precisely later, we consider edges to be very light
if they have weight at most w0 = n3−o(1), light if they have weight above w0 and at most w1 = n3−o(1),
heavy if they have weight above w2 = n4−o(1), and otherwise consider them to have moderate weight if
their weight is strictly between w1 and w2 (where we later split the moderately-weighted edges further
based on their weight, though using the same methods for each group of moderately-weighted eges).
After proving some basic counting results for colour switchers of order 4 in Section 5.1 (gathered together
in Proposition 5.5), we deal with edges with heavy weight in Section 5.2, edges with light weight in
Section 5.3, and moderately-weighted edges in Section 5.4, before proving Theorem 5.4 in Section 5.5.
Before proceeding, we first give an overview of the proof of Theorem 5.4.

Note that I2 does not consider any sets of 2 colours in the set of colour classes C, so that we may as
well add any set of 2 colours to C if it satisfies I1. When C = {c, d}, if ε, η < 1/2, then the definition
for C to be (ε, η, L, `)-exchangeable simplifies to be equivalent to the condition, for each C̃ ⊂ C(G) and
Ṽ ⊂ V (G) with |C̃|, |Ṽ | ≤ ε|G|+L, G contains a c, d-switcher with order at most ` and no vertex in Ṽ or
colour in C̃. In Section 5.2, we show that, for any heavy edge in R, the 2 colours it contains have enough
switchers between them of order 4 that they will form an exchangeable set together. Thus, we will have
the heavy edges contribute no weight to the sum in (12).

The very light edges will each have weight at most ξn3/4k2. Thus, even if every edge of R is very light
and joins two vertices which are not C-equivalent at the end of the construction of C, they will contribute
together a manageable amount to the sum in (12).

We will show that light edges corresponding to colour pairs not already in C will also contribute a
manageable amount to the sum in (12). Working by contradiction, if this is not true, so that these

edges form a relatively dense graph (i.e., with at least µ|C(G)|2 edges for some µ with 1/n
poly

� µ). Using
Proposition 3.26, we can find such a light edge, cd say, whose colours are connected in R by many paths
of light edges with length 3. We aim to use each path to find 3 switchers of order 4 and combine them to
get a c, d-switcher. There is a little added complication here in finding 3 switchers that combine well (i.e.,
that do not share vertices or colours), and this is why we need to work with edges that are not very light,
but this is done in Section 5.3.

Finding exchangeable classes using the edges of R with moderate weight is the trickiest part of this
section, and is where we use sublinear expansion as discussed in Section 3.9 along with the results given
there. If H ⊂ R is an expander subgraph (in the sense of Section 3.9) in which the weights of the edges
differ by at most a factor of 2 and are all moderate, then we can show V (H) ⊂ C(G) is an exchangeable set
of colours in G (under certain conditions). Roughly speaking, for c, d ∈ V (H), we can find a c, d-switcher
by finding a path within H using the expansion conditions, before finding a switcher of order 4 between
each of the pairs of colours which appear as an edge of this path. Once we have found such a path we find
such switchers greedily and then chain them together to get a c, d-switcher. To find switchers that chain
together without vertex or colour conflicts we need each edge in the path to have enough weight, which
will follow as they are not light, or very light, edges. (This is why we consider light edges separately.)
We will also need that H has a large enough minimum degree, and therefore the heavy edges may not
contain a suitable expander, even if their total weight would be a significant contributor to (12). (This
is why we consider heavy edges separately.) We use that the weights on the edges of H differ only by a
factor of 2 in order to get a sufficiently robust connection property in H. The conditions we require of H
are a little technical, but they are given in Section 5.4, where we prove that when these hold V (H) is an
exchangeable set of colours (see Lemma 5.8).

Having introduced our methods to deal with heavy, light, and moderately-weighted edges in Sec-
tions 5.2, 5.3 and 5.4, it is a relatively simple task to prove Theorem 5.4 in Section 5.5. Adding all pairs of
exchangeable colours to C, the above discussion indicates we need only worry about the weight of moderate
edges whose colours have not been added to C. We partition these edges into 2 log n graphs Ri so that
in each graph Ri the weight of any pair of edges differs by at most a factor of 2. Removing a maximal
collection of edge-disjoint expanders (with appropriate parameters) from each Ri, by Theorem 3.17 we
will have few edges in Ri remaining. Adding the vertex set of each expander to C will mean that only
these few remaining edges will contribute to the sum in (12), which will result in I3 holding, while I1
will hold for the colour sets added here from our work in Section 5.4. Each time a colour appears in an
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expander, a sizeable portion of the weight on its neighbouring edges in R will end up on edges in that
expander, and this will result in I2 holding.

5.1 Counting colour switchers of order 4

Suppose G is any properly coloured graph with n vertices. Considering the number of colour switchers
of order 4 in G, note that any switcher S of order 4 is the disjoint union of 2 rainbow 4-cycles, and
so is reduced to O(1) choices by the choice of the three colours in C(S) and a vertex in each of the
4-cycles (we make these arguments more precisely in the proof of Proposition 5.5 below). Thus, G will
have O(n5) switchers of order 4. We will now prove several bounds for the number of switchers in G of
order 4 satisfying additional properties, for example containing a fixed vertex. These are gathered into
Proposition 5.5, and proved in full, but let us note first that these bounds are very simple and confirm
only what is to be expected from considering the “degrees of freedom”. That is, though we have a bound
of O(n5) for the switchers S = (M,M ′) of order 4 in G, if we fix one colour in C(S) and one colour
in C(M)4C(M ′) then the number of switchers drops to O(n3) (see Proposition 5.5i)). If we require
C(M)4C(M ′) to contain a fixed colour and require V (M) to contain a fixed vertex, then the number
also drops to O(n3) (see Proposition 5.5ii)). If we specify two edges of the same colour to be in M ∪M ′
(of O(n3) choices for these two edges) and specify one further colour for C(M), then the number drops
to O(n) (see Proposition 5.5iii)). If we specify two edges of the same colour to be in M ∪M ′ and specify
one vertex for V (M) which is not in either of these two edges, then the number similarly drops to O(n)
(see Proposition 5.5iv)). Finally, if we fix only one edge for M ∪M ′ (of O(n2) choices), then the number
drops to O(n3) (see Proposition 5.5v)).

Proposition 5.5. Let G be a properly coloured n-vertex graph and c ∈ C(G). Then, the following hold.

i) If c′ ∈ C(G) \ {c}, then there are at most 20n3 switchers S in G of order 4 for which there is some
d ∈ C(G) such that S is a c, d-switcher with c′ ∈ C(S).

ii) If v ∈ V (G), then there are at most 50n3 switchers S in G of order 4 for which there is some
d ∈ C(G) such that S is a c, d-switcher with v ∈ V (S).

iii) If e, f ∈ Ec(G) are distinct and c′ ∈ C(G) \ {c}, then there are at most 103n switchers S = (M,M ′)
in G of order 4 with e, f ∈M ∪M ′ and c′ ∈ C(M ∪M ′).

iv) If e, f ∈ Ec(G) are distinct and v ∈ V (G) \ (V (e) ∪ V (f)), then there are at most 600n switchers
S = (M,M ′) in G of order 4 with e, f ∈M ∪M ′ and v ∈ V (M).

v) If e ∈ E(G), then there are at most 100n3 switchers S = (M,M ′) in G of order 4 with e ∈M ∪M ′.

Proof. First note that, given a set of 3 distinct colours C ⊂ C(G) and a vertex w ∈ V (G), a path with
length 3 which is C-rainbow and has w as an end-vertex is, as G properly coloured, determined uniquely
by the order of colours on the path’s edges starting from w. Thus, for each C ⊂ C(G) with |C| = 3 there
are at most 3n C-rainbow paths in G with length 3, and hence at most 3n rainbow 4-cycles using each
colour in C.

Note too, that, for any d, d′ ∈ C(G), if S = (M,M ′) is a d, d′-switcher of order 4 then M ∪M ′ contains
two (vertex-disjoint) rainbow 4-cycles with colour sets C(S)∪{d} and C(S)∪{d′} respectively, and, given
two such 4-cycles, choosing d from among the colours of the first cycle (with 4 choices) uniquely determines
d′,M and M ′. Thus, for each case i)–v), we will give an upper bound for the number of pairs of rainbow
4-cycles (S1, S2) sharing at least 3 colours with the natural restriction for that case (as given in each case
below) before multiplying the bound by 4.

i): Let c′ ∈ C(G)\{c}. We bound above the number of pairs of rainbow 4-cycles (S1, S2) with c, c′ ∈ C(S1)
and C(S1)\{c} ⊂ C(S2). Now, there are at most 3n2/2 choices for a 4-cycle S1 with c, c′ ∈ C(S1). Indeed,
firstly, if the edges with colour c and colour c′ share a vertex, then the 4-cycle is determined by the shared
vertex and the vertex appearing in neither edge with colour c or c′ (≤ n2 choices). Secondly, if the edges
with colour c and c′ share no vertices then the 4-cycle is determined by the colour-c edge (≤ n/2 choices),
the colour-c′ edge (≤ n/2 choices) and choosing 1 of the 2 possible ways of completing this edge pair into
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a 4-cycle, for at most n2/2 choices in this second case, and at most 3n2/2 choices in total, as claimed.
Given a rainbow 4-cycle S1 with c, c′ ∈ C(S1), from above we have that there are at most 3n rainbow
4-cycles S2 with C(S1) \ {c} ⊂ C(S2). Thus, in total, there are at most 9n3/2 ≤ 5n3 pairs of rainbow
4-cycles (S1, S2) such that c, c′ ∈ C(S1) and C(S1) \ {c} ⊂ C(S2), so that, multiplying this bound by 4,
we have that i) holds.

ii): Let v ∈ V (G). We bound above the number of pairs of rainbow 4-cycles (S1, S2) with c ∈ C(S1),
C(S1) \ {c} ⊂ C(S2) and v ∈ V (S1) ∪ V (S2), counting separately the cases when v ∈ V (S1) and when
v ∈ V (S2). There will be at most 6n3 pairs in each case, for at most 12n3 pairs in total, so that multiplying
this bound by 4 gives ii).

Note that there are at most 2n2 choices for a rainbow 4-cycle S1 with c ∈ C(S1) and v ∈ V (S1). Indeed,
firstly, if v appears in the edge of colour-c in S1 then this determines the colour-c edge in S1, and there
are at most n2 ways to extend this edge to a 4-cycle. Secondly, if v is not in the colour-c edge in S1, then
there are at most n/2 choices for the colour-c edge, at most n choices for the 4th vertex of S1 and at most
2 ways to choose a 4-cycle through these 4 vertices which contains the chosen colour-c edge, for at most
n2 choices in total here, and at most 2n2 choices then across both cases. Now, given a rainbow 4-cycle S1

with c ∈ C(S1) and v ∈ V (S1), there are at most 3n rainbow 4-cycles S2 with C(S1) \{c} ⊂ C(S2). Thus,
in total, there are at most 6n3 pairs of rainbow 4-cycles (S1, S2) such that c ∈ C(S1), C(S1)\{c} ⊂ C(S2)
and v ∈ V (S1), as required.

Now, by picking first a colour-c edge (≤ n/2 choices) and 2 other vertices in order, we have that
there are at most n3/2 rainbow 4-cycles S1 with c ∈ C(S1). If S2 is a rainbow 4-cycle containing v with
C(S1) \ {c} ⊂ C(S2), then note it contains a path with length 3 and colour set C(S1) \ {c} starting at v
(≤ 6 choices), or 2 edges neighbouring v with colour in C(S1) \ {c} (of ≤ 3 choices) with an edge attached
with the remaining colour in C(S1) \ {c} attached to one of these neighbours (≤ 2 choices), making at
most 12 choices for S2. Thus, in total, there are at most 6n3 pairs of rainbow 4-cycles (S1, S2) such that
c ∈ C(S1), C(S1) \ {c} ⊂ C(S2) and v ∈ V (S2), as required, completing the proof of ii).

iii): Let e, f ∈ Ec(G) be distinct and c′ ∈ C(G) \ {c}. We bound above the number of pairs of rainbow
4-cycles (S1, S2) sharing at least 3 colours with e, f ∈ E(S1 ∪ S2) and c′ ∈ C(S1 ∪ S2). Note that if there
are at most 54n such pairs (S1, S2) with e ∈ E(S1), f ∈ E(S2) and c′ ∈ C(S1), then by symmetry we
have that there are most 4 · 54n ≤ 250n such pairs with e, f ∈ E(S1 ∪ S2) and c′ ∈ C(S1 ∪ S2) (as e and
f appear in different 4-cycles), and then multiplying this bound by 4 gives iii).

If S1 is a rainbow 4-cycle with e ∈ E(S1) and c′ ∈ C(S1), then S1 is either determined by the vertex
in V (e) appearing in a colour-c′ edge in S1 (≤ 2 choices) and the vertex in S1 not in e or the colour-c′

edge (≤ n choices), or determined by the colour-c′ edge disjoint from e (≤ n/2 choices) and the choice
of joining this into a 4-cycle with e (≤ 2 choices), making at most 2n+ 2 · n/2 = 3n rainbow 4-cycles S1

with e ∈ E(S1) and c′ ∈ C(S1). Given such an S1, if S2 is a rainbow 4-cycle containing f which shares at
least 3 colours with S1, then S2 contains a rainbow path P of length 3 containing the edge f and having
2 colours in C(S1) \ {c}. To count such paths we can label f = xy arbitrarily, and choose the length of
the path in P − xy attached to x (3 choices), and then the choosing the colours for the non-f edges of P
(≤ 3 · 2 = 6 choices), for at most 18 choices for S2. Thus, in total, there are at most 3n · 18 = 54n pairs
of rainbow 4-cycles (S1, S2) sharing 3 colours with e ∈ E(S1), f ∈ E(S2) and c′ ∈ C(S1), as required.

iv): Let e, f ∈ Ec(G) be distinct and v ∈ V (G) \ (V (e) ∪ V (f)). We bound above the number of pairs of
rainbow 4-cycles (S1, S2) sharing at least 3 colours with e, f ∈ E(S1 ∪ S2) and v ∈ V (S1 ∪ S2). Note that
if there are at most 36n such pairs (S1, S2) with e ∈ E(S1), f ∈ E(S2) and v ∈ V (S1), then by symmetry
we have that there are most 4 · 36n ≤ 150n such pairs with e, f ∈ E(S1 ∪ S2) and v ∈ V (S1 ∪ S2), and
then multiplying this bound by 4 gives iv).

If S1 is a rainbow 4-cycle with e ∈ E(S1) and v ∈ V (S1), then, as v /∈ V (e). S1 is determined by
the vertex not appearing in V (e) ∪ {v} (≤ n choices) and the choice of the 4-cycle containing e on the
resulting 4 vertices (≤ 2 choices). That is, there are at most 2n rainbow 4-cycles S1 with e ∈ E(S1) and
v ∈ V (S1). As for iii), given such an S1, there are at most 18 choices for a rainbow 4-cycle containing f
sharing at least 3 colours with S1, and therefore, in total at most 36n pairs (S1, S2) of rainbow 4-cycles
sharing 3 colours with e ∈ E(S1), f ∈ E(S2) and v ∈ V (S1), as required.

v): Let e ∈ Ec(G). We bound above the number of pairs of rainbow 4-cycles (S1, S2) sharing 3 colours
with e ∈ E(S1)∪E(S2). Note that there are at most n2 rainbow 4-cycles S1 with e ∈ E(S1), by choosing
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the two vertices in V (S1) \ V (e) in turn. Given any such S1, and picking one of the 4 sets C ⊂ C(S1)
with size 3, we have from above that there are at most 3n rainbow 4-cycles using each colour in C. Thus,
there are at most 12n3 pairs of rainbow 4-cycles (S1, S2) sharing 3 colours with e ∈ E(S1). Similarly,
there are at most 12n3 such pairs with e ∈ E(S2) instead of e ∈ E(S1). Thus, there are at most 24n3

pairs of rainbow 4-cycles (S1, S2) sharing 3 colours with e ∈ E(S1) ∪E(S2). Multiplying this bound by 4
then gives v).

5.2 Exchangeable colour pairs: heavy edges

We can now use Proposition 5.5 to show that if there are many c, d-switchers of order 4 (i.e., if cd is a
heavy edge in the auxiliary graph described at the start of this section) then {c, d} is an exchangeable set
using only switchers of order 4, as follows.

Lemma 5.6. Let 1/n� 1/k ≤ 1 and ε ∈ (0, 1/2). Let G be a properly coloured n-vertex graph. For each
distinct c, d ∈ C(G), if there are at least 150εn4 c, d-switchers in G of order 4, then {c, d} is (ε, 0, εn, 4)-
exchangeable.

Proof. Let C = {c, d}. As ε|C| < 1, to show that C is (ε, 0, εn, 4)-exchangeable, we must have B = ∅ for
any choice of C̄, V̄ used in Definition 5.2. Thus, combining, for example, the sets C̄ and Ĉ in Definition 5.2
into C̃, it is sufficient to show that given any C̃ ⊂ C(G) and Ṽ ⊂ V (G) with |C̃|, |Ṽ | ≤ 2εn, there is a
c, d-switcher in G with order 4 and no vertices in Ṽ or colours in C̃.

Let then C̃ ⊂ C(G) and Ṽ ⊂ V (G) with |C̃|, |Ṽ | ≤ 2εn. By Proposition 5.5i) and ii) respectively,
there are at most 20n3 · |C̃| c, d-switchers containing a colour in C̃ and at most 50n3 · |Ṽ | c, d-switchers
containing a vertex in Ṽ . Therefore, as

20n3 · |C̃|+ 50n3 · |Ṽ | ≤ 140εn4 < 150εn4,

there is a c, d-switcher in G with order 4 and no vertices in Ṽ and no colours in C̃, as required.

5.3 Exchangeable colour pairs: light edges

As sketched at the start of this section, we now show that the auxiliary graph with vertex set C(G) cannot
have very many edges which are not ‘very light’, as follows, which we use to bound the number of ‘light’
edges which do not form an exchangeable colour pair.

Lemma 5.7. Let 1/n
poly

� ε
poly

� λ, ξ, 1/k. Let G be a properly coloured graph with |C(G)| ≤ kn and |G| = n.
Then, there are at most ξn2 pairs of colours c, d ∈ C(G) such that there are at least λn3 c, d-switchers of
order 4 in G but {c, d} is not (ε, 0, εn, 12)-exchangeable.

Proof. Pick ε̄ so that ε
poly

� ε̄
poly

� λ, ξ, 1/k. Let I be the set of pairs of colours c, d ∈ C(G) such that there
are at least λn3 switchers of order 4 in G but {c, d} is not (ε, 0, εn, 12)-exchangeable, and suppose, for
contradiction, that |I| > ξn2. Let R be the graph with vertex set C(G) and edge set I. Take a maximal
subgraph R′ ⊂ R with V (R′) = V (R) for which there is a set of switchers Se, e ∈ E(R′), such that the
following hold.

J1 For each e ∈ E(R′), Se is an e-switcher with order 4.

J2 For each distinct e, f ∈ E(R′) which share a vertex, Se and Sf are colour-disjoint and vertex-disjoint.

Claim 1. We have e(R′) ≥ λξn2/104.

Proof of Claim 1. Let R′′ = R \R′ and let Se, e ∈ E(R′), satisfy J1 and J2. For each c ∈ C(G) = V (R′),
let Cc = ∪y∈NR′ (c)C(Scd) and Vc = ∪d∈NR′ (c)V (Scd), and note that, by J1 and J2, |Cc| = 3dR′(c) and
|Vc| = 8dR′(c). By the maximality of R′ ⊂ R, for each edge cd ∈ E(R′′) = E(R) \ E(R′), every c, d-
switcher in G with order 4 must have a vertex in Vc ∪ Vd or a colour in Cc ∪ Cd. Using this, direct the
edges of E(R′′) such that, if ~cd ∈ E(R′′), then at least half of the c, d-switchers in G with order 4 share a
vertex with Vc or a colour with Cc. As cd ∈ I, we therefore have that at least λn3/2 c, d-switchers in G
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of order 4 which share a vertex with Vc or a colour with Cc. Therefore, for each c ∈ C(G), counting these
over d ∈ N+

R′′(c), we have, using Proposition 5.5, that

d+
R′′(c) ·

λn3

2
≤ 20n3 · |Cc|+ 50n3 · |Vc| = 460n3 · dR′(c),

and, therefore, d+
R′′(c) ≤ 920 · dR′(c)/λ. Thus, we have

e(R′′) =
∑

c∈C(G)

d+
R′′(c) ≤

∑
c∈C(G)

920 · dR′(c)

λ
=

920 · 2e(R′)
λ

.

As e(R′′) + e(R′) = e(R) ≥ ξn2, we have e(R′) ≥ ξn2/(1 + 1840 · λ−1) ≥ λξn2/104. �

Suppose then that we have switchers Se = (Ve, Ce), e ∈ E(R′), of order 4 for which J1 and J2 hold,
where e(R′) ≥ λξn2/104. By Proposition 3.26, R′ contains at least ε̄n4 labelled 4-cycles, and therefore, as
|C(G)| ≤ kn, there is some cd ∈ E(R′) such that cd is in at least ε̄n2/k2 labelled 4-cycles in R′. We will
show that {c, d} is (ε, 0, εn, 12)-exchangeable, which will be a contradiction as cd ∈ E(R′) ⊂ E(R) = I.

As in the proof of Lemma 5.6, to show this, let C̃ ⊂ C(G) and Ṽ ⊂ V (G) satisfy |C̃|, |Ṽ | ≤ 2εn.
By J2, the switchers Scc′ , c

′ ∈ NR′(c) \ {d}, are colour- and vertex-disjoint. Therefore, at most 4εn + 1
colours c′ ∈ NR′(c) \ {d} are such that Scc′ has a colour in C̃ ∪ {d} or a vertex in Ṽ . Thus, there are at
least ε̃n2/2k2 pairs c′, c′′ of distinct colours in C(G) \ {c, d} such that cc′, c′c′′, c′′d ∈ E(R′) and Scc′ has
no colour in C̃ ∪ {d} and no vertex in Ṽ .

Pick then c′ ∈ NR′(c) \ {d} such that Scc′ has no colour in C̃ ∪ {d} and no vertex in Ṽ , and there
are at least ε̄n/2k3 values of c′′ ∈ C(G) \ {c, d, c′} – say those in D – such that c′c′′, c′′d ∈ E(R′). That
is, with D = (NR′(c′) ∩NR′(d)) \ {c}, we have |D| ≥ ε̄n/2k3. Now, for each c′′ ∈ D, label the switchers
so that Sc′c′′ = (Mc′′,1,Mc′′,2) and Sdc′′ = (Mc′′,3,Mc′′,4). By J2, Sc′c′′ and Sdc′′ are colour- and vertex-
disjoint. Note, therefore, that Sc′′ := (Mc′′,1 ∪Mc′′,4,Mc′′,2 ∪Mc′′,3) is a c′, d-switcher of order 8 with
V (Sc′′) = V (Sc′c′′) ∪ V (Sdc′′) and C(Sc′′) = {c′′} ∪ C(Sc′c′′) ∪ C(Sdc′′).

By J2, each vertex in V (G) appears in at most one set V (Sc′c′′), c
′′ ∈ D, and at most one set

V (Sdc′′), c
′′ ∈ D, and therefore appears in at most 2 sets V (Sc′′), c

′′ ∈ D. Similarly, each colour in C(G)
appears in at most one set C(Sc′c′′), c

′′ ∈ D, and at most one set C(Sdc′′), c
′′ ∈ D, and at most one

set {c′′}, c′′ ∈ D, and therefore appears in at most 3 sets C(Sc′′), c
′′ ∈ D. Thus, as |D| ≥ ε̄n/2k3, and

|C̃ ∪ {c, c′, d} ∪ C(Scc′)| ≤ 3εn and |Ṽ ∪ V (Scc′)| ≤ 3εn, there is some c′′ ∈ D \ (C̃ ∪ {c, c′, d} ∪ C(Scc′))
such that C(Sc′′) has no colour in C̃ ∪ {c, c′, d} ∪ C(Scc′) or vertex in Ṽ ∪ V (Scc′).

Finally, note that, labelling matchings so that Scc′ = (M1,M2) is a c, c′-switcher and Sc′′ = (M3,M4)
is a c′, d-switcher, then (M1 ∪M3,M2 ∪M4) is a c, d-switcher of order 12 in G with no vertices in Ṽ or
colours in C̃ (with vertex set V (Scc′) ∪ V (Sc′′) and colour set C(Scc′) ∪ C(Sc′′) ∪ {c′}). Thus, {c, d} is
(ε, 0, εn, 12)-exchangeable, a contradiction. �

5.4 Exchangeable colour classes: moderately-weighted edges

We now prepare to deal with the ‘moderately-weighted’ edges from the proof sketch at the start of this
section. The following lemma shows that if a collection of these edges form the edge set of an expander,
then the colours in the vertex set of this expander form an exchangeable colour class, as follows.

Lemma 5.8. Let 1/n� 1/k and α = 1/16 log(kn). Let ε
poly

� η
poly

� log−1 n. Let G be a properly coloured
n-vertex graph with |C(G)| ≤ kn. Let L ∈ N and ` = 2000 log3 n, and suppose d̄, w and ∆̄ satisfy

d̄w ≥ 320εn4

α
, w ≥ 106Ln3 log3 n, ∆̄ ≤ d̄

η
and L ≤ d̄

1010 log4 n
. (13)

Suppose H is an (α, αd̄)-expander with δ(H) ≥ d̄, ∆(H) ≤ ∆̄ and V (H) ⊂ C(G) such that, for each
cd ∈ E(H), the number of c, d-switchers of order 4 in G is at least w.

Then, V (H) is (ε, η, L, `)-exchangeable in G.
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Proof. Let C = V (H). To show that C is (ε, η, L, `)-exchangeable in G, first take arbitrary sets C̄ ⊂ C(G)
and V̄ ⊂ V (G) with |C ∩ C̄| ≤ ε|C| and |V̄ |, |C̄| ≤ εn. We need to show that there is a set B ⊂ C with
|B| ≤ η|C| and C ∩ C̄ ⊂ B such that if C ∩ C̄ = ∅, then B = ∅, and, for every distinct c, d ∈ C \ B and
every V̂ ⊂ V (G) and Ĉ ⊂ C(G) with |V̂ |, |Ĉ| ≤ L, G contains a c, d-switcher with no vertices in V̄ ∪ V̂ or
colours in C̄ ∪ Ĉ.

We will find B by applying Lemma 3.22, for which we first choose a subgraph K ⊂ H and show that
∆(K) ≤ αd̄. For this, let K ⊂ H be the subgraph of H where cd ∈ E(H) is an edge of K if the number
of c, d-switchers in G with order 4 and a vertex in V̄ or a colour in C̄ is at least w/2.

Claim 2. We have ∆(K) ≤ αd̄.

Proof of Claim 2. For each c ∈ V (H), by Proposition 5.5i), there are at most 20n3·|C̄| switchers containing
a colour in C̄ which switch c into another colour. Similarly, by Proposition 5.5ii), there are at most 50n3·|V̄ |
switchers containing a vertex in V̄ which switch c into another colour. For each d ∈ NK(c), there are at
least w/2 c, d-switchers containing a vertex in V̄ or a colour in C̄. Therefore,

dK(c) · w/2 ≤ 20n3 · |C̄|+ 50n3 · |V̄ | ≤ 70εn4,

so that the claim follows from (13) as d̄w ≥ 320εn4/α. �

Let r = 2L and ∆ = αd̄, so that H is an (α,∆)-expander with at most kn vertices which satisfies
δ(H) ≥ d̄ and ∆(H) ≤ ∆̄. By Claim 2, we have ∆(K) ≤ ∆. Finally, note that, from (13),

r = 2L ≤ αd̄

106 log3(kn)
,

as 1/n� 1/k. By Lemma 3.22 applied with V = C ∩ C̄, then, there is a set B ⊂ C with C ∩ C̄ ⊂ B and

|B| ≤ 104|C ∩ C̄| · ∆̄

αd̄

(13)

≤ 104 · ε|C| · 1

αη
≤ η|C| (14)

such that, for each distinct c, d ∈ C\B, H−K−(C∩C̄) = H−K−C̄ contains 2L internally vertex-disjoint
c, d-paths with length at most 400 log3(kn) ≤ 500 log3 n.

We now show that B has the property required. Note that |B| ≤ η|C| and, by (14), if C ∩ C̄ = ∅ then
B = ∅. Fix, then, distinct c, d ∈ C \ B and let V̂ ⊂ V (G) and Ĉ ⊂ C(G) satisfy |V̂ |, |Ĉ| ≤ L. We have
that H − K − C̄ contains a c, d-path with length at most 500 log3 n which has no internal vertex in Ĉ.
Let P be such a path and let `0 = e(P ). Direct the edges of P from c to d, additionally labelling them

e1, . . . , e`0 in order along the path. For each i ∈ [`0], label vertices so that ei = ~cidi. For each i = 1, . . . , `0
in turn, let Si be a ci, di-switcher of order 4 in G with no vertices in V̄ ∪ V̂ ∪ (∪j<iV (Sj)) or colours in

C̄ ∪ Ĉ ∪ V (P ) ∪ (∪j<iC(Sj)).

To see this is possible, note that when we seek the switcher Si, we wish to avoid |V̂ ∪ (∪j<iV (Sj))| ≤
L+ 8`0 vertices in addition to those in V̄ and |Ĉ ∪ (∪j<iC(Sj)) ∪ V (P )| ≤ L+ 4`0 colours in addition to
those in C̄. By i) and ii) in Proposition 5.5, there are at most

50n3 · (L+ 8`0) + 20n3 · (L+ 4`0) = 70Ln3 + 480`0n
3 ≤ 100Ln3 + 2 · 105n3 log3 n

(13)
< w/2

ci, di-switchers with a vertex in V̂ ∪ (∪j<iV (Sj)) or a colour in Ĉ ∪ (∪j<iC(Sj)) ∪ V (P ). Thus, as
cidi ∈ E(H) \ E(K), we can select the required switcher Si.

Finally, note that the switchers Si, i ∈ [`0], combine to form a c, d-switcher with no vertex in V̄ ∪ V̂
or colour in C̄ ∪ Ĉ with order at most 4`0 ≤ 2000 log3 n, as required. �

5.5 Proof of Theorem 5.4

Following the sketch at the start of this section, we now use the methods we have developed to deal with
light, moderately-weighted and heavy edges, to prove Theorem 5.4.
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Proof of Theorem 5.4. Let K be such that η
poly

� 1/K
poly

� ξ, log−1 n, 1/L and let

w0 =
ξn3

4k2
, w1 = Kn3, and w2 = 150εn4. (15)

Let J0, J1, J2 and J3 be the sets of pairs of distinct colours c, d ∈ C(G) with, respectively, wcd ≤ w0,
w0 < wcd ≤ w1, w1 < wcd ≤ w2 and wcd > w2.

Let
C0 = {{c, d} : c, d ∈ C(G), c 6= d and {c, d} is (ε, η, L, `)-exchangeable}.

By Lemma 5.6, each C ∈ J3 is (ε, 0, εn, 4)-exchangeable, and hence as ` ≥ 4 and K ≤ εn, each C ∈ J3

is (ε, η, L, `)-exchangeable, and thus in C0. By Lemma 5.7 applied with ξ′ = ξ/4K and λ = ξ/4k2, at
most ξn2/4K sets C ∈ J1 are not (ε, 0, εn, 12)-exchangeable, and therefore, similarly, |J1 \ C0| ≤ ξn2/4K.
Thus, we have ∑

cd∈(J0∪J1∪J3)\C0

wcd ≤ |J0| · w0 + |J1 \ C0| · w1 ≤
(
|C(G)|

2

)
· ξn

3

4k2
+
ξn2

4K
·Kn3 ≤ ξn5

2
. (16)

Let R be the graph with vertex set C(G) and edge set J2, so that, for each cd ∈ E(R), w1 < wcd ≤ w2.
Let r = 2 log n, and note that w2 ≤ nw1. Take then integers w̄1 = w1 < w̄2 < . . . < w̄r+1 = w2 such
that w̄i+1 ≤ 2w̄i for each i ∈ [r]. For each i ∈ [r], let Ri ⊂ R be the subgraph of edges e ∈ E(R) with
w̄i < we ≤ w̄i+1. For each i ∈ [r], let

di =

(
ξ

8kr

)
n4

w̄i
and ∆i =

(
400kr

ξ

)
di. (17)

Claim 3. For each i ∈ [r], ∆(Ri) ≤ ∆i.

Proof. For each c ∈ C(G), as |G| = n, by Proposition 5.5ii), there are at most 50n4 switchers of order 4
which switch c with some other colour d ∈ C(G) \ {c}. Therefore, for each i ∈ [r], ∆(Ri) · w̄i ≤ 50n4, and
hence

∆(Ri) ≤
50n4

w̄i

(17)
=

400krdi
ξ

(17)
= ∆i. �

Let α = 1/16 log(kn). Let H1, . . . ,Hs be a maximal collection of edge-disjoint graphs such that there
are i1, . . . , is ∈ [r] for which the following hold for each j ∈ [s],

• Hj ⊂ Rij .

• Hj is an (α, α · dij )-expander with δ(Hj) ≥ dij .

For each i ∈ [r], we now check the conditions on di, w̄i,∆i corresponding to (13) to then apply
Lemma 5.8 to show that any V (Hj) with ij = i is (ε, η, L, `)-exchangeable. First note that, for each
i ∈ [r], as ε� ξ, log−1 n, we have

diw̄i
(17)
=

ξn4

8kr
≥ 320εn4

α
.

Next, for each i ∈ [r], as 1/K � log−1 n, 1/L, we have

w̄i ≥ w1
(15)
= Kn3 ≥ 106Ln3 log3 n.

Then, as η � ξ, log−1 n, for each i ∈ [r],

∆i

di

(17)
=

400kr

ξ
≤ 1

η
.

Finally, for each i ∈ [r], as ε
poly

� ξ, log−1 n, we have

di
(17)
=

ξn4

8kw̄ir
≥ ξn4

8kw2r

(15)
=

ξ

1200εkr
≥ 1010L log4 n.
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Therefore, for each j ∈ [s], as ∆(Hj) ≤ ∆(Rij ) ≤ ∆ij by Claim 3, and, for each cd ∈ E(H), the
number of c, d-switchers of order 4 in G is at least w̄ij , by Lemma 5.8, as Hj is an (α, α · dij )-expander
with δ(Hj) ≥ dij , we have that V (Hj) is (ε, η, L, `)-exchangeable. Furthermore, by the maximality of
H1, . . . ,Hs, for each i ∈ [r], we have that R′i := Ri \ (H1 ∪ . . . ∪Hs) contains no (α, α · di)-expander with
minimum degree at least di, and, hence, by Theorem 3.17, R′i has average degree at most 4di. This implies
that, for each i ∈ [r], the edges of R′i have low total weight, as follows.

Claim 4. For each i ∈ [r], ∑
cd∈E(R′

i)

wcd ≤
ξn5

2r
.

Proof of Claim 4. As |R′i| ≤ |C(G)| ≤ kn and d(R′i) ≤ 4di, we have∑
cd∈E(R′

i)

wcd ≤
d(R′i)

2
· |R′i| · w̄i+1 ≤ 2di · kn · 2w̄i

(17)
=

ξn5

2r
,

as required. �

Let C = C0 ∪ {V (Hj) : j ∈ [s]}. We will show that C satisfies the property in the theorem. We have
immediately that I1 holds from our work so far. Let I ⊂ C(G)(2) be the set of pairs of colours {c, d}
which are not C-equivalent. Then,∑

e∈I
we ≤

∑
i∈{0,1,2,3}

∑
e∈I∩Ji

we
(16)

≤ ξn5

2
+

∑
e∈I∩J2

we

≤ ξn5

2
+
∑
i∈[r]

∑
e∈E(R′

i)

we
Claim 4
≤ ξn5.

and thus I3 holds.
It is left then only to prove that I2 holds. For each c ∈ C(G), recalling that δ(Hj) ≥ dij for each

j ∈ [s], we have∑
j∈[s]:c∈V (Hj)

∑
d∈NHj (c)

wcd ≥
∑

j∈[s]:c∈V (Hj)

dHj (c) · w̄ij ≥
∑

j∈[s]:c∈V (Hj)

dij · w̄ij
(17)
=

∑
i∈[s]:c∈V (Hj)

ξn4

8kr

≥ |{C ∈ C : c ∈ C, |C| > 2}| · ξn
4

8kr
.

On the other hand, as the graphs Hi are edge-disjoint, using Proposition 5.5ii) and that |G| = n, we have∑
j∈[s]:c∈V (Hj)

∑
d∈NHj (c)

wcd ≤
∑

d∈C(G)\{c}

wcd ≤ 50n4.

Therefore, for each c ∈ C(G), |{C ∈ C : c ∈ C, |C| > 2}| ≤ 400kr/ξ, so that, as 1/n� 1/k and r = 2 log n,
we have that |{C ∈ C : c ∈ C, |C| > 2}| ≤ log2 n/ξ. Thus, I2 holds, completing the proof. �

6 Switching edges of the same colour

As discussed in Section 2.3, we will build absorbers capable of absorbing sets which are the vertex sets of
monochromatic matchings. Here, we build towards this by considering matchings with a fixed colour set,
C, but which can switch between using the vertex set V ∪ V (e) and V ∪ V (f), where e and f are edges,
making an e, f-edge-switcher (also e, f -switcher), defined as follows (see also Figure 3).

Definition 6.1. Given vertex-disjoint edges e, f ∈ E(G), and an integer k, an e, f-edge-switcher of order
k (often shortened to e, f -switcher) is a pair S = (V,C) with V ⊂ V (G) \ (V (e) ∪ V (f)) and C ⊂ C(G),
such that |V | = 2k − 2, |C| = k, and G[V ∪ V (e)] and G[V ∪ V (f)] both contain an exactly-C-rainbow
matching.

We say S has vertex set V (S) = V and colour set C(S) = C.

42



We are interested in pairs of edges e, f which have switchers avoiding any arbitrary set of vertices and
colours (which can represent part of our construction). Where we can robustly find an e, f -switcher like
this, we say the two edges are switchable, as follows.

Definition 6.2. Given β > 0 and k ∈ N, say edges e, f ∈ E(G) are (β, k)-switchable in G if, for any
V̄ ⊂ V (G) and C̄ ⊂ C(G) with |V̄ |, |C̄| ≤ β|G|, there is an e, f -switcher in G with order at most k with
no vertices in V̄ or colours in C̄.

We now state the main result of this section. In any properly coloured graph G with certain properties
(K1 and K2 below, where the latter condition will come from F3 in the definition of proper pseudoran-
domness), we find a subgraph H ⊂ G of most of the edges of G (see K3 and K4) such that any pair of
edges of the same colour in H are switchable (see K5).

Theorem 6.3. Let 1/n � p ≤ 1. Let 1/n
poly

� β
poly

� α, log−1 n. Let G be an n-vertex properly coloured
graph satisfying the following properties.

K1 For each c ∈ C(G), we have |Ec(G)| ≥ pn.

K2 For each pair of edges e and f with the same colour, cef say, there are at least pn2 triples (c, d, (M,M ′))
where c, d ∈ C(S) \ {cef} and (M,M ′) is a c, d-switcher of order 4 with e ∈M and f ∈M ′.

Then, there is a subgraph H ⊂ G such that the following hold.

K3 At most αn colours appear on G but not H.

K4 Each colour appearing in H has at most αn edges in G−H.

K5 Any e, f ∈ E(H) with the same colour are (β, 4 log4 n)-switchable.

To see how we prove Theorem 6.3, it is helpful to recall the e1, e2-edge-switcher discussed in Section 2.3
and depicted in Figure 3. Here, labelling two edges e, f ∈ E(G) with colour c as e = u1v1 and f = u2v2,
we pick two colours d, d′ ∈ C(G) such that we can let wi and xi be the d- and d′-neighbour of ui and
vi respectively for each i ∈ [2]. If w1x1 and w2x2 have the same colour, c′ say, which is not c, and
u1, v1, w1, x1, u2, v2, w2, x2 are distinct vertices, then ({w1, x1, w2, x2}, {d, d, c′}) is an e, f -edge-switcher
(see Figure 3). Due to K2, there will be many potential choices of d, d′, except we cannot guarantee
that w1x1 and w2x2 have the same colour. Instead, we apply Theorem 5.4 to get a collection of colour
classes C, and show that on average over e, f, d and d′ as above we can expect w1x1 and w2x2 to have
colours, c1 and c2 say, which are C-equivalent. Using the definition of exchangeability we can then find a
c1, c2-colour-switcher using new colours and vertices, and combine this with ({w1, x1, w2, x2}, {d, d, c′}) in
the natural way to get an e, f -edge-switcher. The necessity that the c1, c2-colour-switcher is found without
vertices in {w1, x1, w2, x2} or colours in {d, d, c′}) is the reason for the sets Ĉ, V̂ and the parameter L in
Definition 5.2.

We will prove Theorem 6.3 throughout this section, keeping our notation structure as we deduce
properties for various lemmas before completing the proof in Section 6.5. In Section 6.1, we will set
up constants we will use throughout this section and apply Theorem 5.4 to find our colour classes, C.
In Section 6.2, we prove a collective exchangeability property the classes in C share (as opposed to the
individual exchangeability guaranteed by I1). We define switchable edges in Section 6.3 and show that
any pair of switchable edges of the same colour are switchable. In Section 6.4, we show that most of the
edges of G are switchable. Finally, in Section 6.5, we define H and conclude it has the properties required
in Theorem 6.3, completing the proof of this theorem.

6.1 Proof of Theorem 6.3: set up and colour classes

Take additional constants ε, η, ξ and α0 satisfying

β
poly

� ε
poly

� η
poly

� ξ
poly

� α0

poly

� α, log−1 n

and let ` = log4 n and L = 8.
For each {c, d} ∈ C(G)(2), let wcd be the number of c, d-switchers of order 4 in G. Note that, by

K1, |C(G)| ≤ n/p. Using Theorem 5.4, let C be a collection of subsets of C(G) satisfying the following
properties.
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L1 Each C ∈ C is (ε, η, L, `)-exchangeable.

L2 Each colour c ∈ C(G) appears in at most log2 n
ξ of the sets C ∈ C.

L3 If I ⊂ C(G)(2) is the set of pairs of colours which are not C-equivalent, then∑
e∈I

we ≤ ξn5.

6.2 Proof of Theorem 6.3: colour classes are collectively robust

The exchangeability property of the classes in C given by L1 depends only on each set. Here, we turn this
into a property the sets share.

Lemma 6.4. Given any C̄ ⊂ C(G) and V̄ ⊂ V (G) with |C̄|, |V̄ | ≤ 10βn, there is a set B ⊂ C(G) with
|B| ≤ ξn and C̄ ⊂ B such that the following holds.

For each C ∈ C and distinct c, d ∈ C \B, and each Ĉ ⊂ C(G) and V̂ ⊂ V (G) with |Ĉ|, |V̂ | ≤ L, there
is a c, d-switcher with no vertices in V̄ ∪ V̂ or colours in C̄ ∪ Ĉ.

Proof. Let C̄ ⊂ C(G) and V̄ ⊂ V (G) with |C̄|, |V̄ | ≤ 10βn be arbitrary. Let r = |C| and C = {C1, . . . , Cr}.
Let I = {i ∈ [r] : |C̄∩Ci| ≥ ε|Ci| and |Ci| > 2} and B0 = ∪i∈ICi. For each i ∈ I, we have |Ci| ≤ |C̄∩Ci|/ε,
and therefore

|B0| = | ∪i∈I Ci| ≤
1

ε

∑
i∈I
|C̄ ∩ Ci|

L2
≤ 1

ε
|C̄| · log2 n

ξ
≤ 10βn · log2 n

εξ
≤ ξn

2
, (18)

as β
poly

� ε, ξ, log−1 n.
For each i ∈ [r] \ I with |Ci| = 2, let Bi = C̄ ∩ Ci. For each i ∈ [r] \ I with |Ci| > 2, using that

|C̄ ∩ Ci| ≤ ε|Ci| and that, by L1, Ci ∈ C is (ε, η, L, `)-exchangeable, let Bi ⊂ Ci satisfy |Bi| ≤ η|Ci|,
C̄ ∩ Ci ⊂ Bi and the following property.

M For each distinct c, d ∈ Ci \ Bi and each Ĉ ⊂ C(G) and V̂ ⊂ V (G) with |V̂ |, |Ĉ| ≤ L, G contains a
c, d-switcher with order at most ` and no vertices in V̄ ∪ V̂ or colours in C̄ ∪ Ĉ.

Note that, for each i ∈ [r] \ I with |Ci| = 2 we have that M also holds (trivially, if Bi ∩ Ci 6= ∅ as there
are no such distinct c, d, and, otherwise, as Ci is (ε, η, L, `)-exchangeable). Furthermore, we have

| ∪i∈[r]\I Bi| ≤ |C̄|+
∑

i∈[r]\I:|Ci|>2

η|Ci|
L2
≤ 10βn+

η · log2 n

ξ
· |C(G)|

K1
≤ 10βn+

η · log2 n · n
ξ · p

≤ ξn

2
. (19)

Let B = B0 ∪ (∪i∈[r]\IBi), so that, by (18) and (19), |B| ≤ ξn.
Now, for any i ∈ I, there are no distinct c, d ∈ Ci \ B as Ci ⊂ B0. For any i ∈ [r] \ I, we have by M

that, for any distinct c, d ∈ Ci \ B, and any Ĉ ⊂ C(G) and V̂ ⊂ V (G) with |V̂ |, |Ĉ| ≤ L, G contains a
c, d-switcher with order at most ` and no vertices in V̄ ∪ V̂ or colours in C̄ ∪ Ĉ. Thus, B has the property
we required.

6.3 Proof of Theorem 6.3: switchable edges

We now define switchable edges, and show that any two switchable edges of the same colour can be
robustly switched. While the definitions can naturally be more general, we define them formally only for
the constants β, ` which we have already chosen, as follows.

Definition 6.5. Say an edge e with colour c is (2β, 2`)-switchable in G if, for at least 2|Ec(G)|/3 edges
f 6= e with colour c, e and f are together (2β, 2`)-switchable in G.
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In combination with Definition 6.2, we have defined both a single edge and a pair of edges to be
switchable, and sometimes refer to a pair of edges as together switchable to emphasis we have the latter
definition, not that each of these edges is switchable on its own.

Lemma 6.6. Let c ∈ C(G) and suppose e1 and e2 are distinct edges in G with colour c which are both
(2β, 2`)-switchable. Then, e1 and e2 are together (β, 4`)-switchable.

Proof. Let C̄ ⊂ C(G) and V̄ ⊂ V (G) satisfy |V̄ |, |C̄| ≤ βn. By Definition 6.2 and K1, as e1, e2 are
(2β, 2`)-switchable edges with colour c, there is some edge f /∈ {e1, e2} with colour c and no vertices in V̄
such that, for each i ∈ [2], given any sets V ′ ⊂ V (G) and C ′ ⊂ C(G) with |V ′|, |C ′| ≤ 2βn, there is an
ei, f -switcher in G with order at most 2` with no vertices in V ′ or colours in C ′.

Thus, there is an e1, f -switcher S1 = (V1, C1) with vertices not in V ∪V (e2) and colours not in C, and
order at most 2`. Similarly, there is an e2, f -switcher S2 = (V2, C2) with vertices not in V ∪ V (e1) ∪ V1,
colours not in C ∪C1, and order at most 2`. Then, note that (V1∪V (f)∪V2, C1∪C2) is an e1, e2-switcher
with vertices not in V̄ and colours not in C̄. Thus, as C̄ ⊂ C(G) and V̄ ⊂ V (G) were chosen arbitrarily,
e1 and e2 are together (β, 4`)-switchable.

6.4 Proof of Theorem 6.3: switchable edges are plentiful

We now show that most of the edges of G are switchable. To do this, we first show for Lemma 6.7 below
that if two edges e, f of the same colour are not switchable then they lie in many switchers of order 4
which do not switch between colours that are C-equivalent. We prove this by contradiction, and note that
the construction of an e, f -switcher at the end of the proof lies in two cases (when d = d′ and when d 6= d′,
for some colours d, d′ found in the construction) which directly correlate to the switcher sketched at the
start of this section in two cases (there, when c1 = c2 and when c1 6= c2).

Lemma 6.7. Let c ∈ C(G) and let e, f ∈ E(G) be distinct edges with colour c which are not together
(2β, 2`)-switchable.

Then, there are at least pn2/2 triples (d, d′, (M,M ′)) such that d, d′ ∈ C(G) \ {c}, d and d′ are not
C-equivalent, and (M,M ′) is a d, d′-switcher of order 4 with e ∈M and f ∈M ′.

Proof. Let c ∈ C(G) and suppose that e, f ∈ E(G) are distinct edges with colour c which are not together
(2β, 2`)-switchable. Then, by Definition 6.2, there are sets V̄ ⊂ V (G) and C̄ ⊂ C(G) with |V̄ |, |C̄| ≤ 2βn
such that there is no e, f -switcher in G with order at most 2` and no vertices in V̄ or colours in C̄.

Let S be the set of triples (d, d, (M,M ′)) where d, d′ ∈ C(G) \ {c} and (M,M ′) is a d, d′-switcher of
order 4 with e ∈M and f ∈M ′. Note that, by K2, |S| ≥ pn2. Let S ′ be the set of triples (d, d′, S) ∈ S for
which d and d′ are C-equivalent. Suppose, for contradiction, that |S ′| > pn2/2, as, otherwise, the triples
in S \ S ′ satisfy the requirements in the lemma.

Now, using Lemma 6.4, let B ⊂ C(G) satisfy |B| ≤ ξn, C̄ ⊂ B and the following property.

N For each C ∈ C and distinct d, d′ ∈ C \ B, and each Ĉ ⊂ C(G) and V̂ ⊂ V (G) with |V̂ |, |Ĉ| ≤ L,
there is a d, d′-switcher with no vertices in V̄ ∪ V̂ or colours in C̄ ∪ Ĉ.

Note that, by Proposition 5.5iii) and iv), we have the following.

• The number of triples (d, d′, S) ∈ S ′ where C(S) ∪ {d, d′} has a colour in B is at most 103n|B|.

• The number of triples (d, d′, S) ∈ S ′ where S has a vertex in V̄ is at most 600n · |V̄ |.

Thus, recalling that 1/n� p and β, ξ � log−1 n, as

600n · |V̄ |+ 103n · |B| ≤ 103n · (2βn+ ξn) < pn2/2 < |S ′|,

there is some (d, d′, S) ∈ S ′ such that V (S) has no vertex in V̄ and C(S) ∪ {d, d′} has no colour in B.
If d = d′, then, letting S = (M,M ′), M and M ′ are two matchings of order 4 with the same vertex

set and the same colour set, and with e ∈ M and f ∈ M ′. Thus, (V (S) \ (V (e) ∪ V (f)), C(S) ∪ {d}) is
an e, f -switcher with no vertices in V̄ and no colours in C̄ and order 4, a contradiction to the choice of V̄
and C̄.
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Therefore, we must have d 6= d′. As (d, d′, S) ∈ S ′, d and d′ are C-equivalent and thus there is
some C ∈ C such that d, d′ ∈ C. As d, d′ /∈ B and |V (S)|, |C(S)| ≤ 8 = L, by N there is a d, d′-
switcher, S′ say, of order at most ` with no vertices in V̄ ∪ V (S) or colours in C̄ ∪ C(S). Note that
((V (S)∪V (S′)) \ (V (e)∪V (f)), (C(S)∪C(S′) \ {c})∪{d, d′}) is an e, f -switcher of order at most 2` with
no vertices in V̄ or colours in C̄, again contradicting the choice of V̄ and C̄.

We now show that Lemma 6.7 and L3 imply that most of the edges of G are switchable, as follows.

Lemma 6.8. All but at most α0n
2 edges of G are (2β, 2`)-switchable.

Proof. Let F be the set of edges of G which are not (2β, 2`)-switchable. For each e ∈ F , let Fe be the set
of edges f 6= e in G with the same colour as e for which there is a set, Se,f say, of at least pn2/2 triples
(d, d′, (M,M ′)) such that d and d′ are not C-equivalent and (M,M ′) is a d, d′-switcher of order 4 with
e ∈M and f ∈M ′. By Definition 6.2 and Lemma 6.7, we have, for each e ∈ F , that |Fe| ≥ |Ec(G)|/3− 1
so that, by K1, |Fe| ≥ pn/4. Thus, ∑

e∈F

∑
f∈Fe

|Se,f | ≥ |F | ·
pn

4
· pn

2

2
. (20)

Note that, given any triple (d, d′, (M,M ′)) where (M,M ′) is a d, d′-switcher of order 4, there are at
most 4 pairs of edges e ∈M and f ∈M ′ such that e and f have the same colour. Thus, if I ⊂ C(G)(2) is
the set of pairs {d, d′} which are not C-equivalent, then,∑

e∈F

∑
f∈Fe

|Se,f | ≤ 8
∑
dd′∈I

wdd′
L3
≤ 8ξn5.

Therefore, in combination with (20), and as ξ
poly

� α0 and 1/n� p, we have

|F | ≤ 8 · 8ξn5

p2n3
≤ α0n

2,

as required.

6.5 Proof of Theorem 6.3: choosing H

Finally in this section, we can now define the graph H ⊂ G required in Theorem 6.3. To do this, simply let
H be the graph with V (H) = V (G) whose edges are the (2β, 2`)-switchable edges of colours which have
at most αn edges which are not (2β, 2`)-switchable in G. Then, K4 holds directly from this definition,
while K5 holds by this definition and Lemma 6.6, as ` = log4 n.

As every colour that does not appear on H has at least αn edges which are not (2β, 2`)-switchable in
G, by Lemma 6.8, the number of such colours is at most

α0n
2

αn
≤ αn,

as α0

poly

� α. Thus, K3 holds, as required, completing the proof of Theorem 6.3.

7 Switching edges with colours from the same class

In our last section, given any graph G satisfying some mild conditions (K1 and K2), we found a subgraph
H ⊂ G containing most of edges of most the colours of G in which any pair of edges with the same colour
were switchable (K3–K5). In this relatively short section, using the same conditions (O1 and O2), we
use Theorem 6.3 to find this subgraph H, and then apply Theorem 5.4 to H. This allows us to find a
collection C of colour classes such that any pair of edges in H with C-equivalent colours are exchangeable
(see O5 below), while most of the colour switchers in H switch colours which are C-equivalent (see O6
below). This results in Theorem 7.1, which is the main result of this and the last two sections.
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In the original graph G, when we found a colour class C which was exchangeable and chose distinct
colours c, d in C, we could robustly find a c, d-colour-switcher (M,M ′) in G, but doing so while avoiding
colours in C was a delicate business (requiring the set B in Definition 5.2). Key to the proof of Theorem 7.1
is that if S = (M,M ′) is a c, d-colour-switcher in H, then we can use this to create a c, d-colour-switcher
avoiding colours in any relatively small set C̄. Indeed, for each colour c′ ∈ C(S) if e ∈M and f ∈M ′ are
distinct edges with colour c′, we can find an e, f -edge-switcher in G with no colours in C̄ or vertices in
V (M ∪M ′) (as e, f ∈ E(H)), and use this e, f -edge-switcher to cover V (e) or V (f) instead of the choice
of the colour-c′ edge from {e, f}. This gives a c, d-colour-switcher in which c′ is not used, carrying this
out for each pair of edges in M ∪M ′ with the same colour allows us to construct a c, d-colour-switcher
avoiding all the colours in C(S) while not using any additional colours in C̄.

Theorem 7.1. Let 1/n � p ≤ 1. Let 1/n
poly

� β
poly

� α, log−1 n. Let G be an n-vertex properly coloured
graph satisfying the following properties.

O1 For each c ∈ C(G), we have |Ec(G)| ≥ pn.

O2 For each pair of edges e and f with the same colour, cef say, there are at least pn2 triples (c, d, (M,M ′))
where c, d ∈ C(S) \ {cef} and (M,M ′) is a c, d-switcher of order 4 with e ∈M and f ∈M ′.

Then, there is a subgraph H ⊂ G and a collection C of subsets of C(H) satisfying the following
properties.

O3 At most αn colours appear on G but not H.

O4 Each colour appearing in H has at most αn edges in G−H.

O5 Any distinct e, e′ ∈ E(H) with C-equivalent colours are (β, 32 log8 n)-switchable in G.

O6 If I ⊂ C(H)(2) is the set of non-C-equivalent colour pairs, and, for each {c, d} ∈ C(H)(2), wcd is
the number of c, d-switchers of order 4 in H, then∑

cd∈I

wcd ≤ αn5.

Proof. Take η satisfying β
poly

� η
poly

� α, log−1 n, and let ` = 4 log4 n. By O1, O2 and Theorem 6.3 with
β′ = 2β and α′ = α, take a subgraph H ⊂ G such that O3 and O4 are satisfied and the following holds.

P1 Any edges e, f ∈ E(H) with the same colour are (2β, `)-switchable in G.

For each {c, d} ∈ C(G)(2), let wcd be the number of c, d-switchers of order 4 in H. Using Theorem 5.4
with ξ = α, let C be a collection of subsets of C(H) such that O6 is satisfied and the following holds.

P2 Each C ∈ C is (2β, η, 0, `)-exchangeable.

It is left then only to show that O5 holds. For this, let e and e′ be edges of H with colour c and c′,
respectively, such that c and c′ are C-equivalent. We will show that e and e′ are (β, 2`2)-switchable in G.
Note that, if c = c′, then e and e′ are (2β, `)-switchable in G by P1, and hence (β, 2`2)-switchable in G.
Suppose then that c 6= c′, so that there is some set C ∈ C with c, c′ ∈ C.

Let V̄ ⊂ V (G) and C̄ ⊂ C(G) be arbitrary sets satisfying |V̄ |, |C̄| ≤ βn. By P2, we have that C is
(2β, η, 0, `)-exchangeable in H. Therefore, as |V (e)∪V (e′)∪ V̄ | ≤ 4+βn ≤ 2βn, by Definition 5.2 (applied
with C̄ ′ = ∅ so that the property given holds for B = ∅), H contains a c, c′-switcher, (M,M ′) say, of order
at most ` with no vertices in V (e) ∪ V (e′) ∪ V̄ . Let r = |M | − 1 < `, and let d1, . . . , dr be the colours in
C(M) \ {c} = C(M ′) \ {c′}. For each i ∈ [r], let fi be the edge in M with colour di and let f ′i be the
edge in M ′ with colour fi (noting that f ′i 6= fi as by the definition of a c, d-switcher M ∪M ′ is a union
of 4-cycles). Let f be the edge in M with colour c and let f ′ be the edge in M ′ with colour c′, and note
that M = {f, f1, . . . , fr} and M ′ = {f ′, f ′1, . . . , f ′r}.

Note that, for each i ∈ [r], fi and f ′i are edges with the same colour in H, and therefore are (2β, `)-
switchable by P1. Greedily, then, for each i ∈ [r], find a fi, f

′
i -switcher, (Vi, Ci), in H with order at most
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` and with no vertices in V (e) ∪ V (e′) ∪ V̄ ∪ V (M) ∪ (∪j<iVj) or colours in C̄ ∪ (∪j<iCj). Note that this
is possible as, for each i ∈ [r],

|V (e) ∪ V (e′) ∪ V̄ ∪ V (M) ∪ (∪j<iVj)| ≤ 4 + βn+ 2`+ ` · 2` ≤ 2βn, (21)

and |C̄ ∪ (∪j<iCj)| ≤ βn+ ` · ` ≤ 2βn.
Now, e and f both have colour c and are in E(H), so therefore, by P1 and similar calculations to (21),

we can find an e, f -switcher (V̂ , Ĉ) with no vertices in V (e)∪ V (e′)∪ V̄ ∪ V (M)∪ (∪i∈[r]Vi) or colours in
C̄ ∪ (∪i∈[r]Ci). Similarly, as e′ and f ′ both have colour c′ and are in E(H), we can find an e′, f ′-switcher

(V̂ ′, Ĉ ′) in G with no vertices in V (e)∪V (e′)∪ V̄ ∪V (M)∪ (∪i∈[r]Vj)∪ V̂ or colours in C̄ ∪ (∪i∈[r]Cj)∪ Ĉ.

Letting Ṽ = V (M)∪ (∪i∈[r]Vi)∪ V̂ ∪ V̂ ′ and C̃ = ∪i∈[r]Ci)∪ Ĉ ∪ Ĉ ′, we can then observe that (Ṽ , C̃) is
an (e, e′)-switcher in G with no vertex in V̄ or colour in C̄ and with order at most 2`2. Indeed, for example,
there is an exactly-Ci-rainbow matching with vertex V (fi) ∪ Vi for each i ∈ [r], a perfectly Ĉ-rainbow
matching with vertex set V̂ ∪ V (f), and an exactly-Ĉ ′-rainbow matching with vertex set V̂ ′ ∪ V (e′). As
M = {f, f1, . . . , fr}, these matchings combine to give an exactly-C̃-rainbow matching with vertex set
Ṽ ∪ V (e′). If, instead, these matchings cover sets V (f ′i) ∪ Vi for each i ∈ [r], V̂ ∪ V (e) and V̂ ′ ∪ V (f ′), as
M ′ = {f ′, f ′1, . . . , f ′r} and V (M) = V (M ′), we can combine them to give an exactly-C̃-rainbow matching
with vertex set Ṽ ∪ V (e). Thus, (Ṽ , C̃) is the required (e, e′)-switcher, completing the proof.

8 Absorption structure

In any properly coloured graph G satisfying certain conditions (see Q1 and Q2 below) we now find a
subgraph H ⊂ G using most of the edges and most of the colours of G (see Q3 and Q4) such that, for
any set E of a certain number of edges of the same colour in H, we can robustly find an absorber capable
of absorbing any vertex set of the right number of edges from E (see Q5). This will give us the following,
which is the main result of this section.

Theorem 8.1. Let 1/n� p ≤ 1 and 1/n
poly

� γ
poly

� β
poly

� α, log−1 n. Let G be a properly coloured n-vertex
graph satisfying the following properties.

Q1 For each c ∈ C(G), we have |Ec(G)| ≥ pn.

Q2 For each edge e, with colour c say, for all but at most n2/3 edges f 6= e with colour c the following
holds. There are at least pn2 triples (d, d′, (M,M ′)) where d, d′ ∈ C(S) \ {c}, (M,M ′) is a d, d′-
switcher of order 4 with e ∈M and f ∈M ′, such that e, f , and the edges of M ∪M ′ with colour in
{d, d′} form a matching.

Then, there is a subgraph H ⊂ G such that the following hold.

Q3 At most αn colours appear on G but not H.

Q4 Each colour appearing in H has at most αn edges in G−H.

Q5 Given any m0,m1 ∈ N with m0 ≤ m1 ≤ γn, and any monochromatic set E ⊂ E(H) with |E| = m1,
and any sets V̄ ⊂ V (G) and C̄ ⊂ C(G) with |V̄ |, |C̄| ≤ βn, there are sets Ṽ ⊂ V (G) \ (V̄ ∪ V (E))
and C̃ ⊂ C(G) \ C̄, such that |Ṽ | = 2|C̃| − 2m0 ≤ βn and, given any E′ ⊂ E with |E′| = m0, there
is an exactly-C̃-rainbow matching in G[Ṽ ∪ V (E′)].

To prove Theorem 8.1, we start by applying Theorem 7.1 to get a large subgraph H0 ⊂ G and a
collection of colour classes C such that any pair of edges of H0 with C-equivalent colours are switchable.
The graph H ⊂ H0 is then chosen as the edges of H0 whose colour is ‘good’ for constructing absorbers for
an arbitrary set E of edges of that colour for property Q5. As discussed in Section 2.3, using distributive
absorption, we can robustly build an absorber of this nature for E, a set of edges with colour c say, if,
roughly speaking (i.e., ignoring the role of E′ in Section 2.3.2), for any set Ê ⊂ E of 100 edges, we can
robustly find a small ‘absorber’ capable of absorbing the vertex set of any 1 edge from Ê. However, if we
can do this not for an arbitrary set Ê but for some specific set Ê′ of 100 edges with colour c which are
not in E, then, using that we can robustly construct e, f -switchers for any e ∈ Ê and f ∈ Ê′, we can use
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an absorber for Ê′ to construct one for Ê. Therefore, we seek to find sets Ê′ of 100 edges with colour c
and matching absorbers, so that these sets of edges and absorbers are all vertex disjoint.

For this, we use essentially the same construction as sketched out in Section 2.3.2 (and depicted in
Figure 4). We look for vertex-disjoint 4-cycles uiviwixiui, i ∈ [100], in H0 with edge colours c, d, c′i, d

′ in
that order, for some d, d′ and c′i, i ∈ [100], and an edge wx such that the colour of wx is C-equivalent to

each colour c′i, i ∈ [100]. This allows us to find, for each i ∈ [100], a wixi, wx-switcher (V̂i, Ĉi) using new
vertices and colours, using the property of H0 that pairs of edges with C-equivalent colours are switchable.
Then, as discussed in Section 2.3.2, ({w, x} ∪ (∪i∈[100]V̂i), {d, d′} ∪ (∪i∈[100]Ĉi)) can ‘absorb’ {ui, vi} for
any one edge uivi, i ∈ [100]. The existence of these cycles uiviwixiui, i ∈ [100], and the associated edge
wx are closely linked to colour switchers in H0 of order 4, so we use the property of H0 that most of
the colour switchers of order 4 switch between C-equivalent colours to show that most colours have many
vertex-disjoint sets of these cycles. More specifically, we do this via the notion of a ‘good’ colour (see
Definition 8.2).

We will prove Theorem 8.1 from Section 8.1 to Section 8.5, before deducing Theorem 3.4 (our main
absorption structure theorem) in Section 8.6. In Section 8.1, we will set up the proof of Theorem 8.1 and
apply Theorem 7.1 to get the subgraph H0 ⊂ G. In Section 8.2 we will define which colours are good,
show that most colours are good, and choose H ⊂ H0 as the subgraph of edges with a good colour. In
Section 8.3, we show that if a colour is good then we can robustly find absorbers for sets of 100 edges of
that colour, by finding 4-cycles as sketched above. In Section 8.4, we use this to show that if a colour is
good then we can robustly find absorbers for specific sets of 100 edges of that colour. In Section 8.5, we
use distributive absorption to build this into a global absorption property for sets of edges with the same,
good, colour, completing the proof of Theorem 8.1. Finally, we then deduce Theorem 3.4 in Section 8.6.

8.1 Proof of Theorem 8.1: set up and application of Theorem 7.1

Let 1/n � p ≤ 1, and, taking additional variables ε, η, ξ in addition to those in the statement of Theo-
rem 8.1, let

1/n
poly

� γ
poly

� β
poly

� ε
poly

� η
poly

� ξ
poly

� α, log−1 n.

Let G be a properly coloured n-vertex graph satisfying Q1 and Q2. Thus, we wish to find a subgraph
H ⊂ G for which Q3–Q5 hold. For this, let ` = 32 log8 n, and, using Theorem 7.1, take a subgraph
H0 ⊂ G and a collection C of subsets of C(H0) such that the following hold.

R1 At most ξn colours appear on G but not H0.

R2 Each colour appearing in H0 has at most ξn edges in G−H0.

R3 Any distinct edges e, f ∈ E(H0) whose colours are C-equivalent are (2ε, `)-switchable.

R4 If I ⊂ C(H0)(2) is the set of non-C-equivalent pairs of colours in C(H0), and, for each {c, d} ∈
C(G)(2), wcd is the number of c, d-switchers of order 4 in H0 then∑

cd∈I

wcd ≤ ξn5.

8.2 Proof of Theorem 8.1: good colours and choosing H

We will define certain colours of H0 to be p-good, as follows.

Definition 8.2. A colour c ∈ C(H0) is p-good if there are at most p3n4/100 distinct triples (d, d′, (M,M ′))
such that d, d′ ∈ C(G) \ {c}, (M,M ′) is a d, d′-switcher of order 4 in G with c ∈ C(S) and, either

i) M ∪M ′ contains an edge in G−H0, or
ii) d and d′ are not C-equivalent.

We now show that few colours are not p-good.

Lemma 8.3. There are at most αn/2 colours c ∈ C(H0) which are not p-good.

49



Proof. Note that, by Q1, R1 and R2, we have e(G − H0) ≤ (n/p) · ξn + ξn2 ≤ 2ξn2/p. Thus, by
Proposition 5.5v), there are at most e(G − H0) · 100n3 ≤ 200ξn5/p triples (d, d′, (M,M ′)) such that
(M,M ′) is a d, d′-switcher of order 4 in G with (M ∪M ′) ∩ E(G −H0) 6= ∅. By R4, there are at most
2ξn5 triples (d, d′, (M,M ′)) such that (M,M ′) is a d, d′-switcher of order 4 in H0 and d and d′ are not
C-equivalent.

Thus, there are at most 300ξn5/p triples (d, d′, (M,M ′)) such that (M,M ′) is a d, d′-switcher of order
4 in G and either i) M ∪M ′ contains an edge in G − H0 or ii) d and d′ are not C-equivalent. For each
such triple (d, d′, (M,M ′)), there are 3 colours in C(M) \ {d}. Therefore, the number of colours which are
not p-good is at most

3 · 300ξn5/p

p3n4/100
≤ αn

2
,

as 1/n� p and ξ � α, log−1 n.

8.3 Proof of Theorem 8.1: choosing H and finding local 1-in-100 absorbers

We can now define the graph H ⊂ G required in Theorem 8.1. To do this, simply let H be the graph with
V (H) = V (G) whose edges are the edges of H0 with a p-good colour. Note that Q4 holds directly from
R2, and Q3 holds from R1 and Lemma 8.3. Thus, it is left only to show that Q5 holds.

We start by showing that p-good colours robustly have sets of 100 edges and matching absorbers that
can absorb any one of the vertex sets of these edges. Such an absorber is defined formally as follows,
after which we show the robust existence of such a set of edges along with an absorber. The absorber
constructed is illustrated, with different notation, in Figure 4.

Definition 8.4. Given a set of edges E ⊂ E(H0), and sets C ⊂ C(G) and V ⊂ V (G) \ V (E), we say
(V,C) is an E-absorber of order k in G if |V | = 2k − 2, |C| = k, and, for each e ∈ E, there is an
exactly-C-rainbow matching in G[V ∪ V (e)].

Lemma 8.5. For each p-good colour c ∈ C(H0) and each set C̄ ⊂ C(G) and V̄ ⊂ V (G) with |C̄|, |V̄ | ≤ εn,
there is a set E ⊂ Ec(H0) of 100 edges such that V (E) ∩ V̄ = ∅ and sets V ⊂ V (G) \ (V̄ ∪ V (E)) and
C ⊂ C(G) \ C̄ such that (V,C) is a E-absorber of order at most 200`.

Proof. Fix a p-good colour c ∈ C(G) and sets C̄ ⊂ C(G) and V̄ ⊂ V (G) with |C̄|, |V̄ | ≤ εn. Let S0 be
the set of triples (d, d′, (M,M ′)) where d, d′ ∈ C(M ∪M ′) \ {c}, (M,M ′) is a d, d′-switcher of order 4,
and M and M ′ both contain colour-c edges whose neighbouring edges in M ∪M ′ do not have colour in
{d, d′}. By Q2, for each e ∈ Ec(H0), for all but at most n2/3 f ∈ Ec(H0) \ {e}, there are at least pn2

triples (d, d′, (M,M ′)) ∈ S0 with e ∈ M and f ∈ M ′, such that e, f , and the edges of M ∪M ′ with
colour in {d, d′} form a matching. By Proposition 5.5iii) and iv), for each e, f , the number of such triples
(d, d′, (M,M ′)) ∈ S with V (M)∩V̄ 6= ∅ or C(M∪M ′)∩(C̄\{c}) 6= ∅ is at most 600n·|V̄ |+103n·|C̄| ≤ pn2/2,

where we have used that 1/n � p and ε
poly

� log−1 n. Finally, note that, by R2 and Q1, and as 1/n � p

and ξ
poly

� log−1 n, there are at least pn/2 edges with colour c in H0 as c ∈ C(H0).
Therefore, as c is p-good, if we let S1 ⊂ S0 be the set of triples (d, d′, (M,M ′)) ∈ S0 such that

• V (M) ∩ V̄ 6= ∅ and C(M ∪M ′) ∩ (C̄ ∪ {c}) 6= ∅,

• d and d′ are C-equivalent, and

• M ∪M ′ ⊂ E(H0),

then we have that, as |Ec(H0)| ≥ pn/2,

|S1| ≥
|Ec(H0)| · (|Ec(H0)| − n2/3)

2
·
(
pn2 − pn2

2

)
− p3n4

100
≥ p2n2

16
· pn

2

2
− p3n4

100
≥ p3n4

50
.

Now, for each (d, d′, (M,M ′)) ∈ S1, we have that c, d ∈ C(M), and |C(M) \ {c, d}| = 2. Therefore,
as |C(G)| ≤ n/p by Q1, there is some c1, c2 ∈ C(G) \ {c} and e ∈ Ec(G) for which there are at least
p5n/50 triples (d, d′, (M,M ′)) ∈ S1 with C(M) = {c, d, c1, c2} and e ∈ M . Fix such c1, c2 ∈ C(G) \ {c}
and e ∈ Ec(G), and say S2 is the set of such triples, so that |S2| ≥ p5n/50.
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Figure 8: On the left, the matchings Mi = {ei,1, ei,2, ei,3, ei,4} and M ′i = {fi,1, fi,2, fi,3, fi,4}. On the
right, the absorber construction for the absorption of any V (fi,1), i ∈ [100].

Now, let r = |S2| and enumerate the triples in S2 as (di, d
′
i, (Mi,M

′
i)), i ∈ [r]. For each i ∈ [r], as in

Figure 8, label edges so that Mi = {ei,1, ei,2, ei,3, ei,4} and M ′i = {fi,1, fi,2, fi,3, fi,4}, and

• ei,1 and fi,1 have colour c,

• ei,2 and fi,2 have colour di and d′i respectively,

• ei,3 and fi,3 have colour c1, and

• ei,4 and fi,4 have colour c2.

For each i ∈ [r], we have ei,1 = e as e ∈ M has colour c. Furthermore, ei,1fi,3ei,2fi,4 is a 4-cycle with
colours c, c1, di, c2 in that order, so there are at most 2 possibilities for the edges fi,3 and fi,4, and hence
for ei,2 and the colour di. Thus, we can take some colour d and edges f3, f4, e2 and a set S3 ⊂ S2 with
|S3| ≥ p5n/100 such that, for each i ∈ [r] with (di, d

′
i, (Mi,M

′
i)) ∈ S3, we have ei,2 = e2, fi,3 = f3,

fi,4 = f4 and di = d.
Now, note that, for each i ∈ [r], fi,1ei,3fi,2ei,4 is a 4-cycle with colours c, c1, d

′
i, c2 in order. As each

vertex is the endvertex of at most 6 paths of length 3 in G which are {c, c1, c2}-rainbow, and a middle
vertex of at most 6 such paths, each vertex is in at most 12 rainbow 4-cycles in G with colour set including
c, c1 and c2. As each 4-cycle can appear as at most 2 cycles fi,1ei,3fi,2ei,4, i ∈ [r], we therefore have that
each cycle fi,1ei,3fi,2ei,4, i ∈ [r], shares a vertex with at most 12 · 2 · 4 < 100 of the cycles fj,1ej,3fj,2ej,4,
j ∈ [r]. Thus, as |S3|/100 ≥ p5n/104 ≥ 100, we can assume, by relabelling, that (di, d

′
i, (Mi,M

′
i)) ∈ S3 for

each i ∈ [100] and that the cycles fi,1ei,3fi,2ei,4, i ∈ [100], are pairwise vertex disjoint. For each i ∈ [100],
we have, as (di, d

′
i, (Mi,M

′
i)) ∈ S3, that e2 = ei,2 shares no vertices with fi,1ei,3fi,2ei,4, and has colour

d = di, which is C-equivalent to d′i, the colour of fi,2, as (di, d
′
i, (Mi,M

′
i)) ∈ S1.

Let E = {fi,1 : i ∈ [100]}, so that E ⊂ Ec(H0) and V (E) ∩ V̄ = ∅. We now construct an E-absorber,
as depicted in Figure 8 (see also Figure 4). Greedily, for each i = 1, . . . , 100 in turn, using that e2 and fi,2
are edges in H0 whose colours are C-equivalent, and R3, let (Vi, Ci) be an e2, fi,2-switcher of order at most
` with no vertices in V (E)∪V (e2)∪ (∪j∈[100]V (fj,2))∪ V̄ ∪ (∪j<iVj) or colours in {c1, c2}∪ C̄ ∪ (∪j<iCj).
Note that this is possible as

|V (E) ∪ V (e2) ∪ (∪j∈[100]V (fj,2)) ∪ V̄ ∪ (∪j<iVj)| ≤ 200 + 2 + 200 + εn+ 100 · 2` ≤ 2εn,

and, similarly, |{c1, c2} ∪ C̄ ∪ (∪j<iCj)| ≤ 2εn.

Finally, letting Ṽ = (∪j∈[100]V (fj,2)) ∪ V (e2) ∪ (∪i∈[100]Vi) and C̃ = {c1, c2} ∪ (∪i∈[100]Ci), note

that (Ṽ , C̃) is an E-absorber with order at most 200` and no vertices in V̄ or colours in C̄. Indeed,
|{c1, c2} ∪ (∪i∈[100]Ci)| ≤ 2 + 100` ≤ 200`, and, for each i ∈ [100], taking a Ci-rainbow matching with
vertex set Vi ∪ V (e2), a Cj-rainbow matching with vertex set Vj ∪ V (fj,2) for each j ∈ [100] \ {i}, and

the {c1, c2}-rainbow matching {ei,3, ei,4} which has vertex set V ({fi,1, fi,2}), we get an exactly-C̃-rainbow

matching with vertex set Ṽ ∪ V (fi,1), as required.

8.4 Proof of Theorem 8.1: finding specific 1-in-100 local absorbers

Given any p-good colour, we now use Lemma 8.5 and R3 to find absorbers for any set of 100 edges in H0

of that colour, as follows.
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Lemma 8.6. Given any p-good colour c ∈ C(H0), and a set E ⊂ Ec(H0) with |E| ≤ 100, and any sets
V̄ ⊂ V (G) and C̄ ⊂ C(G) with |V̄ |, |C̄| ≤ εn/2, there are sets V ⊂ V (G) \ (V̄ ∪V (E)) and C ⊂ C(G) \ C̄,
such that (V,C) is an E-absorber of order at most 300`.

Proof. Let c ∈ C(H0) be p-good, let E ⊂ Ec(H0) with |E| ≤ 100, and let sets V̄ ⊂ V (G) and C̄ ⊂ C(G)

satisfy |V̄ |, |C̄| ≤ εn/2. By R2 and Q1, as 1/n� p and ξ
poly

� log−1 n, H0 has at least pn/2 many colour-c
edges, and so, adding edges to E from Ec(H0) if necessary, we can assume that |E| = 100.

Note that |V̄ ∪ V (E)| ≤ εn, so therefore, by Lemma 8.5, there is a set Ē ⊂ Ec(H0) of 100 edges such
that V (Ē)∩ (V̄ ∩ V (E)) = ∅ and sets V̂ ⊂ V (G) \ (V̄ ∪ V (E ∪ Ē)) and Ĉ ⊂ C(G) \ C̄ with |V̂ | = 2|Ĉ| − 2
and |Ĉ| ≤ 200` and such that the following holds.

S For each e ∈ Ē, there is a Ĉ-rainbow perfect matching in G[V̂ ∪ V (e)].

Next, take an arbitrary bijection φ : E → Ē. Let E′ ⊂ E be a maximal set for which there are vertex-
and colour-disjoint e, φ(e)-switchers, Se, e ∈ E′, in G, with vertices in V (G) \ (V̂ ∪ V̄ ∪ V (E ∪ Ē)) and
colours in C(G) \ (Ĉ ∪ C̄), each with order at most `, and fix such switchers Se, e ∈ E′.

Suppose, for contradiction, that E′ 6= E, and pick e ∈ E \ E′. Note that

|(∪e∈E′V (Se)) ∪ V̂ ∪ V̄ ∪ V (E ∪ Ē)| ≤ 100 · 2 · `+ 2 · 200`+
εn

2
+ 400 ≤ εn,

and, similarly, |(∪e∈E′C(Se)) ∪ Ĉ ∪ C̄| ≤ εn. Therefore, by R3, there is an e, φ(e)-switcher with order
at most ` and no vertex in (∪e∈E′V (Se)) ∪ V̂ ∪ V̄ ∪ V (E ∪ Ē) or colour in (∪e∈E′C(Se)) ∪ Ĉ ∪ C̄, a
contradiction. Thus, we have E′ = E.

Let Ṽ = V̂ ∪ (∪e∈EV (Se)) ∪ V (Ē) and C̃ = Ĉ ∪ (∪e∈EC(Se)), so that Ṽ ∩ V̄ = ∅ and C̃ ∩ C̄ = ∅.
To complete the proof, we show that (Ṽ , C̃) is an E-absorber of order at most 300`. Note first that
|C̃| ≤ 100 · ` + 200` = 300`. Fix then an arbitrary e ∈ E. Using that Se is an e, φ(e)-switcher, take
a C(Se)-rainbow matching M with vertex set V (Se) ∪ V (e). For each f ∈ E \ {e}, using that Sf is an
e, φ(f)-switcher, take a C(Sf )-rainbow matching Mf with vertex set V (Sf ) ∪ V (φ(f)). Using S, take a

C̄-rainbow matching M ′ with vertex set V̄ ∪ V (φ(e)). Note that M ∪M ′ ∪ (∪f∈E\{e}Me) is a C̃-rainbow

matching with vertex set Ṽ ∪ V (e). Thus, as e ∈ E was arbitrary, (Ṽ , C̃) is an E-absorber with order
|C̃| ≤ 300`, as required.

8.5 Proof of Theorem 8.1: global absorption

We can now finish the proof of Theorem 8.1 by showing that Q5 holds. That is, we prove the following
lemma.

Lemma 8.7. Given any m0,m1 ∈ N with m0 ≤ m1 ≤ γn, and any monochromatic set E ⊂ E(H) with
|E| = m1, and any sets V̄ ⊂ V (G) and C̄ ⊂ C(G) with |V̄ |, |C̄| ≤ βn, there are sets Ṽ ⊂ V (G)\(V̄ ∪V (E))
and C̃ ⊂ C(G) \ C̄, such that |Ṽ | = 2|C̃| − 2m0 ≤ βn and, given any E′ ⊂ E with |E′| = m0, there is an
exactly-C̃-rainbow matching in G[Ṽ ∪ V (E′)].

Proof. Let m0 ≤ m1 ≤ γn and c ∈ C(H). Let E ⊂ E(H) satisfy |E| = m1, and V̄ ⊂ V (G) and C̄ ⊂ C(G)
satisfy |V̄ |, |C̄| ≤ βn. Note that, by the definition of H, c is p-good. Furthermore, as we have shown
that Q4 holds, and as 1/n � p and α � log−1 n, by Q1 there are at least pn/2 edges in H with the

same colour as the edges in E. As 1/n
poly

� γ, we can assume that the conclusion of Lemma 2.1 holds for
h = 3γn. Let Ê ⊂ E(H) be a set of h+m1 −m0 ≥ 2γn+m1 edges with colour c, such that E ⊂ Ê. Let
EY ∪ EZ be a partition of Ê so that |EY | = 2γn and E ⊂ EZ , and thus, as well, |EZ | = γn+m1 −m0.
Let X be a set of 3γn new vertices. Using the property of h from Lemma 2.1 (and discarding |Z| − |EZ |
vertices from Z in the graph mentioned there), take an auxiliary bipartite graph K with maximum degree
at most 100 and vertex classes X and EY ∪ EZ , so that the following is true.

T If E′Z ⊆ EZ and |E′Z | = h/3, then there is a matching between X and EY ∪ E′Z in K.

Now, for each x ∈ X, let Ex = NK(x), so that |Ex| ≤ 100. From T, we will have that, for each x ∈ X,
|Ex| ≥ 1. Let X ′ ⊂ X be a maximal set for which there is an Ex-absorber (Vx, Cx) for each x ∈ X ′,
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with |Cx| ≤ 300`, so that these absorbers are all pairwise vertex- and colour-disjoint with no vertices in
V̄ ∪V (Ê) or colours in C̄. As |(∪x∈X′Vx)∪ V̄ ∪V (Ê)| ≤ (h+m1−m0) ·600`+βn+2(h+m1−m0) < εn/2
and |(∪x∈X′Cx) ∪ C̄| ≤ (h + m1 − m0)` + βn < εn/2, by Lemma 8.6, we must have that there is no
z ∈ X \X ′, for otherwise we could find an Ez-absorber to contradict the choice of X ′.

Thus, we have an Ex-absorber (Vx, Cx) for each x ∈ X. Let Ṽ = V (Ê\E)∪(∪x∈XVx) and C̃ = ∪x∈XCx,
so that Ṽ ⊂ V (G) \ (V̄ ∪ V (E)) and C̃ ⊂ C(G) \ C̄. We will show that Ṽ and C̃ have the property we
require. For this, first note that, using Definition 8.4,

|Ṽ | = 2|Ê \ E|+
∑
x∈X
|Vx|=2(h−m0) +

∑
x∈X

(2|Cx| − 2) = 2(h−m0) + 2|C̃| − 2|X| = 2|C̃| − 2m0,

and |C̃| ≤ h · 300` = 3γn · ` ≤ βn/2, so that |Ṽ | < 2|C̃| ≤ βn.
Finally, given any E′ ⊂ E with |E′| = m0, we have |(EZ \ E) ∪ E′| = h/3. Thus, by T, there is a

matching, M say, between EY ∪(EZ\E)∪E′ = (Ê\E)∪E′ andX inK. Labelling the edges in (Ê\E)∪E′ as
ex, x ∈ X, such that xex ∈M for each x ∈ X, as (Vx, Cx) is an Ex-absorber for each x ∈ X, and ex ∈ Ex as
xex ∈M ⊂ E(K), there is a Cx-rainbow matching, Mx say, inG with vertex set Vx∪V (ex). Then, ∪x∈XMx

is a C̃-rainbow matching in G with vertex set ∪x∈X(Vx∪V (ex)) = (∪x∈XVx)∪V (Ê\E)∪E′) = Ṽ ∪V (E′).
Thus, (Ṽ , C̃) has the property we want, completing the proof of the lemma, and therefore, as we have
shown that Q5 holds, the proof of Theorem 8.1.

8.6 Proof of Theorem 3.4 from Theorem 8.1

Having proved Theorem 8.1, we are finally in a position to prove Theorem 3.4.

Proof of Theorem 3.4. We start by recalling the initial starting situation of Theorem 3.4, as follows. Let

1/n� p, qV , qC ≤ 1. Let 1/n
poly

� ε
poly

� γ
poly

� β
poly

� α
poly

� log−1 n. Let G be a (n, p, ε)-properly-pseudorandom
bipartite graph with vertex classes A and B. Independently, let V be a qV -random subset of V (G) and
let C be a qC-random subset of C(G). Our aim is to show that, with high probability, for all but at most
αn colours c ∈ C, there is a set Ec ⊂ Ec(G) with |Ec(G) \ Ec| ≤ αn with the absorption property given
in B.

Let G′ be the subgraph of G[V ] with colours in C. We will show that Q1 and Q2 hold for an application
of Theorem 8.1 to G′, which we note has at most 2n vertices. Take q with 1/n � q � p, qV , qC . For
each c ∈ C(G), we have |Ec(G)| ≥ pn/2 by F2 as G is (n, p, ε)-properly-pseudorandom. Thus, for each
c ∈ C(G), by Lemma 3.23, with probability 1− o(n−1), we have that |Ec(G′)| = |Ec(G[V ])| ≥ 2qn. Thus,
with high probability, we have the following property, where we also use that |C(G)| ≥ n/2 by F2 and
pply Lemma 3.23 again.

U1 We have |C| ≥ qCn/2 and, for each c ∈ C, we have |Ec(G′)| ≥ 2qn.

We will now show that, with high probability, for each c ∈ C(G) and e ∈ Ec(G), for all but
√
n edges

f ∈ Ec(G) \ {e} we have the following property.

U2 If c ∈ C and e, f ∈ Ec(G′), then there are at least 4qn2 triples (d, d′, (M,M ′)) in G′ where d, d′ ∈
C(M ∪M ′) \ {c}, (M,M ′) is a d, d′-switcher of order 4 with e ∈M and f ∈M ′, such that e, f , and
the edges of M ∪M ′ with colour in {d, d′} form a matching.

As G is (n, p, ε)-properly-pseudorandom, we have by F3, that for each c ∈ C(G) and e ∈ Ec(G) there
is some set Fc,e ⊂ Ec(G) with |Fc,e| ≤

√
n such that, for all f ∈ Ec(G) \ ({e} ∪ Fc,e), the following hold

with α′ = p12/10100.

U3 There are at least α′n2 pairs (S1, S2) such that S1 and S2 are vertex-disjoint rainbow 4-cycles with
e ∈ E(S1) and f ∈ E(S2), the colour sets of the neighbouring edges of e in S1 and the neighbouring
edges of f in S2 are the same.

We will show that, with high probability, for each c ∈ C(G), e ∈ Ec(G) and f ∈ Ec(G) \ ({c} ∪ Fc,e),
U2 holds for c, e and f . This follows simply from the following claim and a union bound over all c ∈ C(G),
e ∈ Ec(G) and f ∈ Ec(G) \ ({c} ∪ Fc,e).
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Claim 5. For each c ∈ C(G), e ∈ Ec(G) and f ∈ Ec(G)\({c}∪Fc,e), U2 holds with probability 1−o(n−3).

Proof. Let c ∈ C(G) e ∈ Ec(G) and f ∈ Ec(G)\({c}∪Fc,e). Let Sc,e,f be the set of triples (d, d′, (M,M ′))
where d, d′ ∈ C(M ∪M ′) \ {c}, (M,M ′) is a d, d′-switcher of order 4 in G with e ∈ M and f ∈ M ′, and
the edges e and f form a matching with the edges in M ∪M ′ with colour in {d, d′}. Let Xc,e,f be the
number of (d, d′, (M,M ′)) ∈ Sc,e,f with (E(M) ∪ E(M ′)) ⊂ E(G′). Note that if Xc,e,f ≥ 4qn2, then U2
holds. Therefore, it is sufficient to show that Xc,e,f ≥ 4qn2 with probability 1− o(n−3).

Now, as f ∈ Ec(G)\ ({c}∪Fc,e), we have |Sc,e,f | ≥ α′n2 by U3. Indeed, suppose we have (S1, S2) such
that S1 and S2 are vertex-disjoint rainbow 4-cycles with e ∈ E(S1) and f ∈ E(S2) and the colour sets of the
neighbouring edges of e in S1 and the neighbouring edges of f in S2 are the same. Let M and, respectively,
M ′, be the rainbow matchingswith vertex set V (S1 ∪ S2) contained in E(S1 ∪ S2) which contains e but
not f , and, respectively, f but not e. Then, if d is the colour of the edge in (E(S1)∩E(M))\{e} and d′ is
the colour of the edge in (E(S2)∩E(M ′))\{f}, we can see that (M,M ′) is a d, d′-switcher of order 4 in G
with e ∈M and f ∈M ′ in which e and f form a matching with the edges in M ∪M ′ with colour in {d, d′}.
Thus, as there are at least α′n2 such pairs (S1, S2) by the definition of Fc,e, we have that |Sc,e,f | ≥ α′n2.

Note that, given (d, d′, (M,M ′)) ∈ Sc,e,f , we have that (C(M∪M ′))\{c} ⊂ C and (V (M∪M ′\{e, f}) ⊂
V with probability at least q4

Cq
4
V . Thus, E(Xc,e,f ) ≥ q4

Cq
4
V α
′n2 ≥ 8qn2.

Now, by Proposition 5.5iii) and iv), for each c′ ∈ C(G), there are at most 103n triples (d, d′, (M,M ′)) ∈
Sc,e,f with c′ ∈ C(M ∪M ′)\{c}, and, for each v′ ∈ V (G), there are at most 600n triples (d, d′, (M,M ′)) ∈
Sc,e,f with v′ ∈ V ((M ∪M ′) \ {e, f}). Therefore, Xc,e,f is 103n-Lipschitz. Thus, by Lemma 3.24 with
t = qn2 (and applied with n′ = |C(G)|+ |V (G)| ≤ 2n/p+ 2n ≤ 4n/p, using F2), we have that P(Xc,e,f ≤
4qn2) = o(n−3), and thus the claim holds. �

Thus, with high probability, we can assume that U1 holds and, for each c ∈ C(G), e ∈ Ec(G) and
f ∈ Ec(G) \ ({e} ∪ Fc,e) (and hence for all but

√
n edges f ∈ Ec(G) \ {e}), U2 holds. Under this

assumption, we now show that the property in Theorem 3.4 holds. Applying Theorem 8.1 (formally to
G′ with 2n − |G′| new vertices added and no additional edges, and using α′ = α/2, β′ = β/2, γ′ = γ/2,
p′ = q and n′ = 2n), we have that there is a subgraph H ⊂ G′ such that the following hold.

U4 At most αn colours in C(G′) do not appear in H.

U5 Each colour appearing in H has at most αn edges in G′ −H.

U6 Given any m0,m1 ∈ N with m0 ≤ m1 ≤ γn, and any monochromatic set E ⊂ E(H) with |E| = m1,
and any sets V̄ ⊂ V (G) and C̄ ⊂ C(G) with |V̄ |, |C̄| ≤ βn, there are sets Ṽ ⊂ V \ (V̄ ∪ V (E)) and
C̃ ⊂ C̄ \ C ′, such that |Ṽ | = 2|C̃| − 2m0 ≤ βn and, given any E′ ⊂ E with |E′| = m0, there is an
exactly-C̃-rainbow matching in G[Ṽ ∪ V (E′)].

Thus, for all but at most αn colours c ∈ C (i.e., all but those in C \ C(H), so that U4 implies the
bound), setting Ec = Ec(H), we have that |Ec(G[V ]) \Ec| ≤ αn by U5, and that B holds by U6 and U1
(where the last condition is used to add the vertex set and edge set of rainbow much to any sets Ṽ and C̃
from U6 to get V abs and Cabs respectively with from with |V abs| = 2βn− `0 and |Cabs| = βn). Thus, we
have the property in Theorem 3.4. �

9 Addition structure

In this section, we construct our main addition structure and supplementary addition structure and thus
prove Theorems 3.5 and 3.6. We restate the main conditions we use for this from the definition of proper-
pseudorandomness (see Definition 3.11), in a slightly modified form for convenience. We will define what
it means for sets V ⊂ V (G) and C ⊂ C(G) to α-support an addition structure in a graph G, where in
Definition 3.11 the corresponding conditions are for (V (G), C(G)) to α-support an addition structure.

Definition 9.1. Given α ∈ (0, 1) and a properly coloured bipartite graph G with vertex classes A and B
with |A| = |B| = n, and sets V ⊂ V (G) and C ⊂ C(G), we say (V,C) α-supports an addition structure in
G if the following hold.
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F4 For each u ∈ A, v ∈ B and c0 ∈ C(G), there are disjoint sets V1, . . . , Vαn ⊂ V \ {u, v} and disjoint
sets C1, . . . , Cαn in C \{c0} such that, for each i ∈ [αn], |Vi| = 4, |Ci| = 3, G[Vi] contains 2 colour-c0
edges and G[{u, v} ∪ Vi] contains an exactly-Ci-rainbow matching in E(G) \ {uv}.

F5 For each distinct c0, d ∈ C(G), there are disjoint sets V1, . . . , Vαn/12 in V and disjoint sets C1, . . . , Cαn/12

in C \ {c0, d}, so that, for each i ∈ [αn/12], |Vi| = 8 and |Ci| = 3, and G[Vi] contains a matching of
4 colour-c0 edges and an exactly-(Ci ∪ {d})-rainbow matching.

F6 For any c0 ∈ C(G), 0 ≤ k ≤ 20, and any C̄ ⊂ C(G) \ {c0} with |C̄| ≥ 5k, there are vertex-disjoint
sets V̄1, . . . , V̄αn ⊂ V such that, for each i ∈ [αn], |V̄i| = 2k + 2 and G[V̄i] contains both a matching
of k + 1 colour-c0 edges and a C̄-rainbow matching with k edges.

F7 Setting k = 100, for each c0 ∈ C(G), there is some r ∈ N and disjoint sets V1, . . . , Vr in V and disjoint
sets C1, . . . , Cr in C \ {c0} with |Vi| = 2k and |Ci| = k for each i ∈ [r] such that G[Vi] contains
an exactly-Ci-rainbow matching and a perfect matching of colour-c0 edges, and the following holds.
For every C̄ ⊂ C(G) \ {c0} with |C̄| ≤ k, for at least α2n values of i ∈ [r], there are vertex-disjoint
sets V̄1, . . . , V̄αn ⊂ V such that, for each j ∈ [αn], |V̄j | = 2k + 2|C̄| + 2 and G[V̄j ] contains both a
matching of k + |C̄|+ 1 colour-c0 edges and a (C̄ ∪ Ci)-rainbow matching with k + |C̄| edges.

In the rest of this section, we will first show that if (V,C) supports an addition structure in G then
taking random subsets of V and C and removing a few edges from G will likely still give us support
for an addition structure in G (Lemma 9.2 and Lemma 9.3 in Sections 9.1 and 9.2, respectively). Using
the addition support property, we then construct our main addition structure in Section 9.3 which can
incorporate all the missing vertices and all but 100 missing colours (giving Lemma 9.4), before constructing
our supplementary addition structure in Section 9.4 which can incorporate all but 1 of 100 missing colours
(giving Lemma 9.5). Finally, we then prove Theorem 3.5 in Section 9.5 before giving the slight alterations
needed to prove Theorem 3.6 in Section 9.6.

9.1 Random subsets likely still support addition

Using Chernoff’s bound and a union bound, it is simple to show that if (V,C) supports an addition
structure in G, then random subsets V ′ ⊂ V and C ′ ⊂ C are likely to together also support an addition
structure in G, as follows.

Lemma 9.2. Let 1/n
poly

� β
poly

� α, qV , qC and let G be a properly coloured bipartite graph with vertex classes
A and B, where |A| = |B| = n. Let V ⊂ V (G) and C ⊂ C(G) be such that (V,C) α-supports an addition
structure in G. Let V ′ ⊂ V and C ′ ⊂ C be independent qV -random and qC-random subsets, respectively.
Then, with high probability, (V ′, C ′) β-supports an addition structure in G.

Proof. We will show in turn that each of F4–F7 holds with high probability for (V ′, C ′) to β-support an
addition structure in G.

F4: Let u ∈ A, v ∈ B and c0 ∈ C(G). By F4 for (V,C) to α-support an addition structure in G
there are disjoint sets V1, . . . , Vαn ⊂ V \ {u, v} and disjoint sets C1, . . . , Cαn in C \ {c0} such that, for
each i ∈ [αn], |Vi| = 4, |Ci| = 3, G[Vi] contains 2 colour-c0 edges and G[{u, v} ∪ Vi] contains an exactly-
Ci-rainbow matching in E(G) \ {uv}. Let Xu,v,c0 be the number of i ∈ [αn] with Vi ⊂ V ′ and Ci ⊂ C ′.
Then, Xu,v,c0 is binomially distributed with mean αn · q4

V · q3
C ≥ 2βn. Therefore, the probability that

Xu,v,c0 ≥ βn is, by Lemma 3.23, at least 1−exp(−βn/12). Thus, by a union bound, with high probability
the corresponding version of F4 holds for (V ′, C ′) to β-support an addition structure in G.

F5: Let c0, d ∈ C(G) be distinct. By F5 for (V,C) to α-support an addition structure in G, there are
disjoint sets V1, . . . , Vαn/10 in V and disjoint sets C1, . . . , Cαn/10 in C\{c0, d}, so that, for each i ∈ [αn/12],
|Vi| = 8 and |Ci| = 3, and G[Vi] contains a matching of 4 colour-c0 edges and an exactly-(Ci∪{d})-rainbow
matching. Let Xc0,d be the number of i ∈ [αn] with Vi ⊂ V ′ and Ci ⊂ C ′. Then, Xc0,d is binomially
distributed with mean αn·q8

V ·q3
C ≥ 2βn. Therefore, the probability that Xc0,d ≥ βn/12 is, by Lemma 3.23,

at least 1 − exp(−βn/12). Thus, by a union bound, with high probability the corresponding version of
F5 holds for (V ′, C ′) to β-support an addition structure in G.
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F6: Let c0 ∈ C(G) and 0 ≤ k ≤ 20, and let C̄ ⊂ C(G) \ {c0} satisfy |C̄| ≥ 5k. By F6 for (V,C) to
α-support an addition structure in G, there are vertex-disjoint sets V̄1, . . . , V̄αn ⊂ V such that, for each
i ∈ [αn], |V̄i| = 2k + 2 and G[Vi] contains both a matching of k + 1 colour-c0 edges and a C̄-rainbow
matching with k edges. Let Xc0,k,C̄ be the number of i ∈ [αn] with Vi ⊂ V ′. Then, Xc0,k,C̄ is binomially

distributed with mean αn · q2k+2
V ≥ αn · q42

V ≥ 2βn. Therefore, the probability that Xc0,k,C̄ ≥ βn is, by
Lemma 3.23, at least 1 − exp(−βn/12). Thus, as it is sufficient to show it for sets C̄ with |C̄| = 5k, by
a union bound, with high probability the corresponding version of F6 holds for (V ′, C ′) to β-support an
addition structure in G.

F7: Set k = 100 and let c0 ∈ C(G). By F7 for (V,C) to α-support an addition structure in G, there
is some r ∈ N and disjoint sets V1, . . . , Vr in V and disjoint sets C1, . . . , Cr in C \ {c0} with |Vi| = 2k and
|Ci| = k for each i ∈ [r] such that G[Vi] contains an exactly-Ci-rainbow matching and a perfect matching
of colour-c0 edges, and for every C̄ ⊂ C(G) \ {c0} with |C̄| ≤ k, for at least α2n values of i ∈ [r]

(‡) there are vertex-disjoint sets V̄1, . . . , V̄αn ⊂ V such that, for each j ∈ [αn], |V̄j | = 2k + 2|C̄|+ 2 and

G[Vj ] contains both a matching of k+ |C̄|+ 1 colour-c0 edges and a (Ĉ ∪Ci)-rainbow matching with
k + |C̄| edges.

Let I ⊂ [r] be the set of i ∈ [r] for which Vi ⊂ V ′ and Ci ⊂ C ′. For each C̄ ⊂ C(G)\{c0} with |C̄| ≤ k,
let IC̄ be the set of i ∈ [αn] for which (‡) holds. Similarly to the above arguments for F6 (but with sets

of size 2k + 2|C̄| + 2), as q
2k+2|C̄|+2
V α ≥ q4k+2

V α
poly

� β, with high probability, for every C̄ ⊂ C(G) \ {c0}
with |C̄| ≤ k

• there are vertex-disjoint sets V̄1, . . . , V̄βn ⊂ V such that, for each j ∈ [βn], |V̄j | = 2k + 2|C̄|+ 2 and

G[Vj ] contains both a matching of k+ |C̄|+ 1 colour-c0 edges and a (Ĉ ∪Ci)-rainbow matching with
k + |C̄| edges.

Thus, to complete the proof, we need to show that, with high probability, for each C̄ ⊂ C(G) \ {c0}
with |C̄| ≤ k, |IC̄ ∩I| ≥ β2n. Fix, then, C̄ ⊂ C(G)\{c0} with |C̄| ≤ k. We have that |IC̄ ∩I| is a binomial
variable with parameters |IC̄ | ≥ α2n and q2k

V q
k
C , so that, by Lemma 3.23, with probability 1 − o(n−k),

|IC̄ ∩ J | ≥ β2n. Taking a union bound over all C̄ ⊂ C(G) \ {c0} with |C̄| ≤ k, we have, then with high
probability, that F7 holds.

9.2 Removing edges maintains support for addition

We now show that removing a few edges of one colour from a graph has little impact on any support for
an addition structure, as follows.

Lemma 9.3. Let 1/n
poly

� α ≤ 1/12 and let G be a properly coloured bipartite graph with vertex classes A
and B, where |A| = |B| = n. Let V ⊂ V (G) and C ⊂ C(G) be such that (V,C) α-supports an addition
structure in G. Let E ⊂ E(G) satisfy |E| ≤ α2n/2. Then, (V,C) (α/2)-supports an addition structure in
G− E.

Proof. Observe that each of the properties F4–F6 require in each case, for some r ∈ {αn/12, αn}, the
existence of disjoint sets Vi, i ∈ [r], such that G[Vi] has some property. As at most α2/2 ≤ αn/24 of the
graphs G[Vi], i ∈ [r], can then contain some edge in E, the properties F4–F6 can easily be seen to hold
for (V,C) to (α/2)-support an addition structure in G− E.

Consider, then, F7, and set k = 100. As (V,C) α-supports an addition structure in G (and in particular
F7), we can take r ∈ N and disjoint sets V1, . . . , Vr in V and disjoint sets C1, . . . , Cr in C \ {c0} with
|Vi| = 2k and |Ci| = k for each i ∈ [r] such that G[Vi] contains an exactly-Ci-rainbow matching and a
perfect matching of colour-c0 edges, which demonstrates that F7 holds. Let I ⊂ [r] be the set of i ∈ [r] for
which G[Vi] has no edge in E, so that |I| ≥ α2n/2. For each C̄ ⊂ C(G)\{c0} with |C̄| ≤ k, for each i ∈ I,
there are vertex-disjoint sets V̄1, . . . , V̄αn ⊂ V such that, for each j ∈ [αn], |V̄j | = 2k + 2|C̄|+ 2 and G[V̄j ]

contains both a matching of k+ |C̄|+1 colour-c0 edges and a (Ĉ∪Ci)-rainbow matching with k+ |C̄| edges
– and, at most α2n/4 values of j are such that G[V̄j ] has no edges in E. As α2n− (r− |I|)− |E| ≥ α2n/4,
we thus have that F7 holds for (V,C) to (α/2)-support an addition structure in G− E.
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9.3 Main addition structure construction

We now prove the main part of this section, showing that addition support in the sense of Definition 9.1
allows us to construct the main part of our addition structure in the following lemma, which will allow us
to incorporate all the missing vertices and at most 100 missing colours in our rainbow matching.

Lemma 9.4. Let 1/n
poly

� η
poly

� γ
poly

� α, and let G be a properly coloured bipartite graph with vertex classes
A and B, where |A| = |B| = n. Let V ⊂ V (G) and C ⊂ C(G) be such that (V,C) α-supports an addition
structure in G, and let c0 ∈ C(G).

Then, there are sets V̄ ⊂ V and C̄ ⊂ C \ {c0} such that the following hold for some `0, `1 ≤ γn.

V1 |A ∩ V̄ | = |B ∩ V̄ | = `0 + `1 and |C̄| = `1 + 100.

V2 For any A′ ⊂ V (G) \ V̄ , B′ ⊂ V (G) \ V̄ and C ′ ⊂ C(G) \ (C̄ \ {c0}) with |A′| = |B′| ≤ ηn
and |C ′| ≤ ηn, G[V̄ ∪ A′ ∪ B′] contains vertex-disjoint matchings M ′1 and M ′2 such that M ′1 has
`0 + |A′| − |C ′| edges in Ec0(G) with both vertices in V̄ and M ′2 is a (C̄ ∪C ′)-rainbow matching with
`1 + |C ′| edges.

Before proving Lemma 9.4, we comment on the proof. The construction of the main additional structure
follows the sketch in Section 2.3.3 and Figure 6, using the matchings M id and M rb. The only significant
difference is that C̄ is a slightly larger set than C(M2) (containing 100 more colours). How we use the
structure is slightly different to the simplified form in the sketch in Section 2.3.3. Instead of maintaining
remainder vertices, we effectively first expand the matchings M1 = M id and M2 = M rb to cover the
vertices in A′∪B′, without worrying how many colours we drop out, doing only stage i) and ii) as outlined
in Section 2.3.3. Then, we effectively incorporate all but 100 of the colours in C̄ ∪ C ′ by first performing
stage iii), but in which F3 is a rainbow matching of 9 edges whose colours can be any of the colours not
yet incorporated (of which there are at least 100, so that we can use F6), before using stage i) and ii) to
reincorporate the two remainder vertices which are dropped out in this stage. We say ‘effectively’ here,
as, instead of iterating, the proof choses two matchings M ′1 and M ′2 to maximise certain properties before
showing they have the required properties. Indeed, these matchings will together cover all the vertices
in A′ ∪ B′ (for otherwise, we could use stage i) and stage ii) to gain a contradiction, as in the proof of
Claim 6) and use all but 100 of the colours (for otherwise, we could use stage iii), stage i) and stage ii) to
gain a contradiction, as in the proof of Claim 7).

Proof of Lemma 9.4. Let ᾱ, α̂ be such that η
poly

� ᾱ
poly

� γ
poly

� α̂
poly

� α, and note that we may assume
α ≤ 1/12. Let V = V0 ∪ V1 be a partition of V with the location of each v ∈ V chosen independently at
random, and such that V0 is a (γ/8)-random subset of V . Let C = C0 ∪ C1 be a partition of C with the
location of each c ∈ C chosen independently at random so that C0 is a (γ/8)-random subset of C.

By Lemma 9.2 (as (V,C) α-supports an addition structure in G), and by Lemma 3.23, with high
probability we have that the following properties hold.

V3 (V0, C0) ᾱ-supports an addition structure in G.

V4 (V1, C1) α̂-supports an addition structure in G.

V5 |V0|, |C0| ≤ γn/4.

Additionally, we have that, with positive probability (in particular, with probability at least 1 − γ/8),
c0 /∈ C0. Thus, we can assume we have partitions V = V0 ∪ V1 and C = C0 ∪ C1 for which V3–V5 hold
and such that c0 /∈ C0.

Let M1 = Ec0(G[V0]) and `0 = |M1|, so that, by V5, `0 ≤ γn. We later will use V3 to show that the
necessary properties hold for us to robustly carry out stages i) and iii) as sketched out in Section 2.3.2,
but first pick the matching M2.

Let C ′0 ⊂ C0 be a maximal set for which we can find pairs of matchings E2,c, F2,c, c ∈ C ′0, such that

• E2,c and F2,c are matchings of size 4 with the same vertex set,

• for each c ∈ C ′0, E2,c is a colour-c0 matching and F2,c is a rainbow matching with c ∈ C(F2,c), and
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• the sets C(F2,c) \ {c}, c ∈ C ′0, are disjoint sets in C1, and the sets V (E2,c), c ∈ C ′0, are disjoint sets
in V1.

Suppose, for contradiction, that there is some c ∈ C0 \ C ′0. Then, any pair of matchings E2,c and F2,c

of order 4 with the same vertex set which are a colour-c0 matching and a ({c} ∪ C1)-rainbow matching
respectively in G[V1], have a vertex in ∪c∈C′

0
V (E2,c) or a colour in ∪c∈C′

0
C(F2,c) \ {c}, where | ∪c∈C′

0

V (E2,c)| = 8|C ′0| ≤ 2γn and | ∪c∈C′
0
C(F2,c) \ {c}| ≤ 3|C ′0| ≤ γn by V5. However, by V4 (and in

particular F5 in Definition 9.1), there are at least α̂n/12 ways to choose E2,c, F2,c so that the choices have
disjoint vertex sets and use disjoint sets of colours for C(F2,c) \ {c}. As γ � α̂, this is a contradiction,
and thus C ′0 = C0, so we can assume we have matchings E2,c, F2,c with the properties stated above.

Let M2 = ∪c∈C0
F2,c and `1 = |M2| = 4|C0| ≤ γn. Let C̄ ⊂ C have size `1 + 100 with C(M2) ⊂ C̄

(using, for example, that |C| ≥ 3αn by F5 in Definition 9.1). Setting V̄ = V (M1 ∪M2), and using that
the matchings M1 and M2 are between A and B, we have |V̄ ∩A| = |V̄ ∩B| = `0 + `1. Thus, V1 holds.

We now show that V2 holds. Let then A′ ⊂ V (G) \ V̄ , B′ ⊂ V (G) \ V̄ and C ′ ⊂ C(G) \ C̄ with |A′| =
|B′| ≤ ηn and |C ′| ≤ ηn. Let A′′ ⊂ A′, B′′ ⊂ A′ and r maximise 10|A′′|+ r subject to −10|A′′| ≤ r ≤ |C ′|
and that

• G[V̄ ∪A′′∪B′′] contains matchings M ′1 and M ′2 whose vertex sets partition V̄ ∪A′′∪B′′, M ′1 consists
of `0 + |A′′| − r edges in Ec0(G) with both vertices in V̄ and M ′2 is a (C ′ ∪ C̄)-rainbow matching
with `1 + r edges, and |M1 \M ′1|, |M2 \M ′2| ≤ 100|A′′|+ 10r.

Note that this is possible as A′′ = B′′ = C ′′ = ∅ satisfies these conditions with M ′1 = M1 and M ′2 = M2,
and note that we have |A′′| = |B′′|. Note further that we are done if A′′ = A′ and r = |C ′|, so that V2
follows from the following two claims.

Claim 6. A′′ = A.

Claim 7. r = |C ′|.

Proof of Claim 6. Assume, for contradiction, that |A′′| < |A′|, and hence |B′′| < |B′|, and that M ′1 and
M ′2 have the properties described for A′ and B′. Let x ∈ A′ \ A′′ and y ∈ B′ \ B′′. Let Ĉ ⊂ C0 be
the set of c ∈ C0 with F2,c ⊂ M ′2. As M2 = ∪c∈C0

F2,c is the union of the vertex-disjoint matchings

F2,c, c ∈ C0, and |M2 \M ′2| ≤ 100|A′′| + 10r ≤ 103ηn, we have |C0 \ Ĉ| ≤ 103ηn. Let V̂0 ⊂ V0 be the
set of the v ∈ V0 which occur in no edge in M1 \M ′1, so that, as |M1 \M ′1| ≤ 100|A′′| + 10r ≤ 103ηn,

|V0 \ V̂0| ≤ 2 · 103ηn. As η
poly

� ᾱ, and as, by V3, (V0, C0) ᾱ-supports an addition structure in G, and in
particular the corresponding version of F4 in Definition 9.1, there is a set W ⊂ V̂1 with size 4 and a set
D ⊂ Ĉ with size 3 such that G[W ] contains a matching, E1 say, of 2 colour-c0 edges and G[W ∪ {x, y}]
contains an exactly-D-rainbow matching, F1 say. Note that the edges of E1 have both vertices in W ⊂ V̂1,
so that E1 ⊂ Ec0(G[V1]) = M1. By the choice of V̂1, then, we have E1 ⊂ M1 ∩M ′1 and, by the choice of
Ĉ, we have Fc,2 ⊂M2 ∩M ′2 for each c ∈ D.

Let F2 = ∪c∈DF2,c, so that |F2| = 12, and, as D ⊂ Ĉ, F2 ⊂M2. Let D′ = ∪c∈D(C(F2,c) \ {c}) so that
|D′| = 9, and note that F2 is an exactly-(D ∪D′)-rainbow matching. Recall that, for each c ∈ C0, E2,c is
a matching of 4 colour-c0 edges in G[V1] with the same vertex set as F2,c. Let, then, E2 = ∪c∈DE2,c, so
that this is a matching of 4|D| = 12 colour-c0-edges with V (E2) = V (F2) ⊂ V1 and E2 ⊂ Ec0(G[V ]).

To recap, we have the following.

i) A set of 3 colours D ⊂ C0, an exactly-D-rainbow matching F1 in G and a matching E1 ⊂M1 ∩M ′1
of 2 edges such that V (F1) = V (E1) ∪ {x, y}.

ii) A set D′ ⊂ C \ {c0} of 9 colours, an exactly-(D ∪ D′)-rainbow matching F2 ⊂ M2 ∩ M ′2 and a
matching E2 of 12 edges in Ec0(G[V ]) such that V (E2) = V (F2).

Setting M ′′1 = M ′1 − E1 + E2 and M ′′2 = M ′2 + F1 − F2 thus gives two matchings whose vertex sets
partition V̄ ∪ A′′ ∪ B′′ ∪ {x, y}. Observe that M ′′1 has |M ′1| − 2 + 12 = `0 + (|A′′| + 1) − (r − 9) edges.
Observe that M ′′2 has |M ′2|+ 3− 12 = `1 + (r − 9) edges. As, then,

|M ′′1 \M1| ≤ |M ′1 \M1|+ |E1| ≤ 100|A′′|+ 10r + |E1| ≤ 100(|A′′|+ 1) + 10(r − 9),
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and
|M ′′2 \M2| ≤ |M ′2 \M2|+ |F2| ≤ 100|A′′|+ 10r + |F2| ≤ 100(|A′′|+ 1) + 10(r − 9),

the matchings M ′′1 and M ′′2 demonstrate that A′′ ∪ {x} and B′′ ∪ {y} contradict the maximality of A′′,
B′′ and r above, completing the proof of Claim 6. �

Proof of Claim 7. Assume, for contradiction, that r < |C ′|, and that M ′1 and M ′2 have the properties
described for A′, B′ and r. Let C̃ be the set of colours in C̄ ∪C ′ which do not appear on M ′2, so that, as
|C̄| = `1 + 100, we have |C̃| = 100 + |C ′| − r > 100. Let V̂0 ⊂ V0 be the set of v ∈ V0 which occur in no
edge in M1 \M ′1, so that, as |M1 \M ′1| ≤ 100|A′′|+ 10r ≤ 103ηn, |V0 \ V̂0| ≤ 2 · 103ηn. Using V3, and in
particular the corresponding version of F6 in Definition 9.1 applied with colour set C̄ and k = 10, find a
set W ⊂ V (M ′1) with |W | = 22 such that G[W ] contains both a matching of 11 colour-c0 edges, E3 say,
and a C̃-rainbow matching, F3 say, with 10 edges. Let w and z be the two vertices in W which are not in
F3.

Let Ĉ ⊂ C0 be the set of c ∈ C0 with F2,c ⊂M ′2. As M2 = ∪c∈C0F2,c is the union of the vertex-disjoint

matchings F2,c, c ∈ C0, and |M2 \M ′2| ≤ 100|A′′|+ r ≤ 103ηn, we have |C0 \ Ĉ| ≤ 103ηn. As η � ᾱ, and
as, by V3, (V1, C0) ᾱ-supports an addition structure in G, and in particular the corresponding version of
F4, there is a set W ′ ⊂ V̂1 \ V (E3) with size 4 and a set D ⊂ Ĉ with size 3 such that G[W ′] contains a
matching of 2 colour-c0 edges, E1 say, and G[W ′ ∪ {w, z}] contains an exactly-D-rainbow matching, F1

say. Note that the edges of E1 have both vertices in W ′ ⊂ V̂1, so that E1 ⊂ Ec0(G[V1]) = M1. By the
choice of V̂1, then, as W ′ ⊂ V̂1 \ V (E3), we have E1 ⊂ M1 \ (M ′1 ∪ E3) and by the choice of Ĉ, we have
Fc,2 ⊂M2 for each c ∈ D1 ∪D2.

Let F2 = ∪c∈DF2,c, so that |D| = 3, |F2| = 12, and, as D ⊂ Ĉ, F2 ⊂M2. Let D′ = ∪c∈D(C(F2,c)\{c})
so that |D′| = 9, and note that F2 is an exactly-(D ∪D′)-rainbow matching. Recall that, for each c ∈ C0,
E2,c is a matching of 4 colour-c0 edges in G[V1] with the same vertex set as F2,c. Let, then, E2 = ∪c∈DE2,c,
so that this is a matching of 4|D| = 12 colour-c0-edges with V (E2) = V (F2) ⊂ V1 and E2 ⊂ Ec0(G[V ]).

To recap, we have the following.

i) A C̃-rainbow matching F3 with 10 edges and vertices in V (M) \ (V (M ′) ∪ V (F1)), and a matching
E3 ⊂ (M1 ∩M ′1) \ E1 of 11 edges, such that V (F3) ∪ {w, x} = V (E3).

ii) A set of 3 colours D ⊂ C0, an exactly-D-rainbow matching F1 in G and a matching E1 ⊂M1 ∩M ′1
of 2 edges such that V (F1) = V (E1) ∪ {w, x}.

iii) A set D′ ⊂ C \ {c0} of 9 colours, an exactly-(D ∪ D′)-rainbow matching F2 ⊂ M2 ∩ M ′2 and a
matching E2 of 12 edges of E such that V (E2) = V (F2).

Setting M ′′1 = M ′1−E3−E1 +E2 and M ′′2 = M ′2 +F3 +F1−F2 thus gives two matchings whose vertex
sets partition V̄ ∪A′′ ∪B′′. Observe that M ′′1 has |M ′1| − 11− 2 + 12 = `0 + |A′′| − (r+ 1) edges. Observe
that M ′′2 has |M ′2|+ 10 + 3− 12 = `1 + r + 1 edges. Finally,

|M ′′1 \M1| ≤ |M ′1 \M1|+ |E1| ≤ 100|A′′|+ 10r + |E1| ≤ 100|A′′|+ 10(r + 1),

and
|M ′′2 \M2| ≤ |M ′2 \M2|+ |F2| ≤ 100|A′′|+ 10r + |F2| ≤ 100|A′′|+ 10(r + 1).

Therefore, the matchings M ′′1 and M ′′2 demonstrate that A′′, B′′ and r + 1 contradict the maximality of
A′′, B′′, r above, completing the proof of Claim 7. �

This completes the proof of the two claims, and hence the lemma. �

9.4 Supplementary addition structure construction

We now construct the supplementary addition structure, showing that addition support in the sense of
Definition 9.1 allows us to construct an addition structure which can incorporate all but 1 of 100 missing
colours, at the expense of dropping out two remainder vertices.
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Lemma 9.5. Let 1/n
poly

� α, and let G be a properly coloured bipartite graph with vertex classes A and B,
where |A| = |B| = n. Let V ⊂ V (G) and C ⊂ C(G) be such that (V,C) α-supports an addition structure
in G, and let c0 ∈ C(G).

Then, there are sets V̄ ⊂ V and C̄ ⊂ C \ {c0} such that the following hold for some `0, `1 ∈ N.

W1 |A ∩ V̄ | = |B ∩ V̄ | = `0 + `1 + 100 and |C̄| = `1.

W2 For any Ĉ ⊂ C(G) \ C̄ with |Ĉ| = 100, G[V̄ ] contains vertex-disjoint matchings M ′1 and M ′2 such
that M ′1 has `0 edges in Ec0(G) with both vertices in V̄ and M ′2 is a (Ĉ ∪ C̄)-rainbow matching with
`1 + 99 edges.

Proof. Let k = 100. By F7, there are disjoint sets V1, . . . , Vαn in V and disjoint sets C1, . . . , Cαn in
C \ {c0} with |Vi| = 2k and |Ci| = k for each i ∈ [αn] such that G[Vi] contains an exactly-Ci-rainbow
matching (M2,i, say) and a perfect matching of colour-c0 edges (M1,i, say), and the following holds.

W3 For every C̄ ⊂ C(G) \ {c0} with |C̄| = k, for at least α2n values of i ∈ [αn], there are vertex-disjoint
sets V̄1, . . . , V̄αn ⊂ V such that, for each j ∈ [αn], |V̄j | = 2k+ 2 and G[V̄j ] contains both a matching
of 2k + 1 colour-c0 edges and a (C̄ ∪ Ci)-rainbow matching with 2k edges.

Let I ⊂ [αn] be a random set formed by choosing each element independently at random with probability
2/α2

√
n. Using Lemma 3.23 and a union bound, we can assume that |I| ≤ 4

√
n/α and that W3 holds

with ‘at least α2n values of i ∈ [αn]’ replaced by ‘at least
√
n values of i ∈ I’. Let M2 = ∪i∈IM2,i. Let M1

be the set of colour-c0 edges of G with both vertices in V \V (M2). Let V̄ = V (M1∪M2) and C̄ = C(M2).
Let `0 = |M1| − k and `1 = C(M2). Note that W1 holds.

We now show that W2 holds. For this, let Ĉ ⊂ C(G) \ C̄ satisfy |Ĉ| = k. As |V (M2)| ≤ 2k|I| ≤
8k
√
n/α < αn, by the altered form of W3, there is some V̄ ′ ⊂ V (G) \ V (M2) such that, |V̄ ′| = 2k + 2

and G[V̄ ′] contains both a matching of 2k colour-c0 edges, M̄1 say, and a (Ĉ ∪Cj)-rainbow matching with
2k − 1 edges. As V (M̄1) ∩ V (M2) = ∅, we have that M̄1 ⊂ M1. Let M ′1 = (M1 \ M̄1) ∪M1,j so that
|M ′1| = |M1| − 2k+ k = `0. Let M ′2 = (M2 \M2,j)∪ M̄2, so that |M ′2| = `1 + 2k− 1− k = `1 + k− 1. Note
that M ′1 and M ′2 have the properties required.

9.5 Proof of Theorem 3.5

In this section, we can finally prove Theorem 3.5. To do this, we will apply Lemma 9.4 and 9.5, and take
additional colour-c0 edges (to get a matching T0) and an additional rainbow matching (called T1) so that,
combining the vertices and colours used, the size of V add and Cadd is exactly what we want.

Proof of Theorem 3.5. As in the statement of Theorem 3.5, let 1/n� p, q ≤ 1, let 1/n
poly

� ε
poly

� η
poly

� γ
poly

�
α

poly

� log−1 n and let G be a coloured (n, p, ε)-properly-pseudorandom bipartite graph with vertex classes
A and B. Furthermore, let V be a qV -random subset of V (G) and let C be a qC-random subset of C(G).

Take an additional variable α̂ satisfying γ
poly

� α̂
poly

� α. Note that, as 1/n� p and α
poly

� log−1 n, by F4–F7
in Definition 3.11, (V (G), C(G)) (p12/10100)-supports an addition structure in G. By Lemma 9.2, and by
F2 and Lemma 3.23, then, with high probability, we have the following properties.

X1 (V,C) (2α)-supports an addition structure in G.

X2 For each c ∈ C(G), |Ec(G[V ])| ≥ pq2
V n/4.

We now show that G has the property required in the lemma. To show this, let c0 ∈ C(G) and
Ec0 ⊂ E(G) with |Ec0(G) \ Ec0 | ≤ αn. We will find sets V add ⊂ V and Cadd ⊂ C such that C1 and C2
hold, which we restate for convenience here.

C1 |A ∩ V add| = |B ∩ V add| = 2γn+ 1 and |Cadd| = γn+ 1.

C2 For any Â ⊂ V (G) \ V add and B̂ ⊂ V (G) \ V add with |Â| = |B̂| ≤ ηn, and any Ĉ ⊂ C(G) \ Cadd

with |C ′| ≤ ηn, G[V add ∪ V ′] contains vertex-disjoint matchings M1 and M2 such that M1 has
γn + |Â| − |Ĉ| edges in Ec with both vertices in V add and M2 is a (Cadd ∪ Ĉ)-rainbow matching
with size |Cadd ∪ Ĉ| − 1.
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Let G′ = G− (Ec(G) \ Ec0), so that, by Lemma 9.3 and X1, (V,C) α-supports an addition structure
in G′. Let V = V0 ∪ V1 be a random partition so that V1 is a γ/4-random subset of V . Let C = C0 ∪ C1

be a random partition into (1/2)-random subsets of C. Then, by Lemma 9.2 and Lemma 3.23, with high
probability we have the following properties.

X3 (V0, C0) α̂-supports an addition structure in G′.

X4 (V1, C1) (100η)-supports an addition structure in G′.

X5 |A ∩ V1| ≤ γn/2.

As η
poly

� γ
poly

� ᾱ, by Lemma 9.4 and X3, we can find sets V̄0 ⊂ V0 and C̄0 ⊂ C0 \ {c0} such that the
following hold for some `0, `1 ≤ γn/4.

X6 |A ∩ V̄0| = |B ∩ V̄0| = `0 + `1 and |C̄0| = `1 + 100.

X7 For any A′ ⊂ V (G) \ V̄1, B′ ⊂ V (G) \ V̄1 and C ′ ⊂ C(G) \ C̄1 with |A′| = |B′| ≤ ηn and |C ′| ≤ ηn,
G[V̄1 ∪ A′ ∪ B′] contains vertex-disjoint matchings M ′1 and M ′2 such that M ′1 has `0 + |A′| − |C ′|
edges in Ec0(G′) with both vertices in V̄0 and M ′2 is a (C̄0 ∪ C ′)-rainbow matching with `1 + |C ′|
edges.

Furthermore, by Lemma 9.5 and X3, we can find sets V̄1 ⊂ V1 and C̄1 ⊂ C1 \ {c0} such that the
following hold for some `′0, `

′
1 ≤ n.

X8 |A ∩ V̄1| = |B ∩ V̄1| = `′0 + `′1 + 100 and |C̄| = `′1.

X9 For any Ĉ ⊂ C(G) \ C̄1 with |Ĉ| = 100, G[V̄1] contains vertex-disjoint matchings M ′′1 and M ′′2 such
that M ′′1 has `′0 edges in Ec0(G′) with both vertices in V̄ and M ′′2 is a (Ĉ ∪ C̄1)-rainbow matching
with `′1 + 99 edges.

In fact, then, from X8 and X5, we have `′0 + `′1 + 100 ≤ γn/2.
Finally, as G′[V ] contains at least αn edges of each colour by X1, and as |V̄1| + |V̄2| = 2(`0 + `1 +

`′0 + `′1 + 100) ≤ 10γn, we can find in V \ (V̄1 ∪ V̄2) a matching T1 of γn − `0 − `′0 colour-c0 edges as
`0 + `′0 ≤ γn/2 + γn/4 ≤ γn/4. Similarly, we can find, disjointly from V \ (V̄1 ∪ V̄2 ∪ V (T1)), in G′, a
C-rainbow matching T2 with size γn+1−|C̄1∪C̄2| = γn−`1−`′1−99 ≥ 0 and no colours in C̄1∪C̄2 (as G′

certainly has at least αn colours by X2). Let V add = V̄1∪ V̄2∪V (T1)∪V (T2) and Cadd = C̄1∪ C̄2∪C(T2).
We will show that C1 and C2 hold.

First, note that |Cadd| = γn+ 1 by the choice of T2 and, furthermore,

|V add| = 2(`0 + `1) + 2(`′0 + `′1 + 100) + 2|T1|+ 2|T2| = 4γn+ 2.

Therefore, as V add is the vertex set of the union of two disjoint matchings T0 and T1 along with, disjointly,
balanced sets V̄1 and V̄2 (using X6 and X8), we have |A ∩ V add| = |B ∩ V add| = 2γn + 1, and thus C1
holds.

For C2, let Â ⊂ V (G) \ V add and B̂ ⊂ V (G) \ V add with |Â| = |B̂| ≤ ηn, and Ĉ ⊂ C(G) \ Cadd with
|Ĉ| ≤ ηn. By X7, there are vertex-disjoint matchings M ′1 and M ′2 in G[V̄1 ∪ Â ∪ B̂] such that M ′1 has
`0 + |Â| − |Ĉ| edges in Ec(G) \Ec0 with both vertices in V̄1 ⊂ V and M ′2 is a (Ĉ ∪ C̄0)-rainbow matching
with `1 + |Ĉ| edges. Let Ĉ ′ = (Ĉ ∪ C̄0) \ C(M ′2), so that |Ĉ ′| = 100. Then, by X9, G[V̄1] contains
vertex-disjoint matchings M ′′1 and M ′′2 such that M ′′1 has `′0 edges in Ec0(G′) with both vertices in V̄ and
M ′′2 is a (Ĉ ∪ C̄1)-rainbow matching with `′1 + 99 edges

Letting M1 = M ′1∪M ′′1 ∪T1 and M2 = M ′2∪M ′′2 ∪T2, we will show these matchings have the property
in C2. Indeed, firstly, we have by construction that M ′1, M ′′1 and T1 are vertex-disjoint matchings of
colour-c0 edges in G′[V ], so that M1 is a matching of edges in E = Ec0(G) with both vertices in V , and
is such that

|M1| = |M ′1|+ |M ′′1 |+ |T1| = `0 + |Â| − |Ĉ|+ `′0 + (γn− `0 − `′0) = γn+ |Â| − |Ĉ|.

61



As V (M ′1) ⊂ V̄1 ∪ Â ∪ B̂ and V (M ′′1 ) ⊂ V̄2, we have V (M1) ⊂ V add. Furthermore, M2 is by construction
the vertex disjoint union of colour-disjoint rainbow matchings M ′2, M ′′2 and T2, all with colours in Cadd∪Ĉ|
and vertex-disjoint from M1, and such that

|M2| = |M ′2|+ |M ′′2 |+ |T2| = `1 + |Ĉ|+ `′1 + 99 + (γn− `1 − `′1 − 99) = γn+ |Ĉ| = |Cadd ∪ Ĉ| − 1.

Thus, as V (M ′1) ⊂ V̄1 ∪ Â∪ B̂ and V (M2) ⊂ V̄2, we have V (M2) ⊂ V add. Thus, C2 holds with M1 = M id

and M2 = M rb, completing the proof.

9.6 Proof of Theorem 3.6

We finish this section by proving Theorem 3.6, which is simpler than the proof of Theorem 3.5 as it only
requires the use of the main addition structure.

Proof of Theorem 3.6. Let c0 = c. As in the proof of Theorem 3.5, we have, with high probability, that

X1 and X2 hold. As η
poly

� γ
poly

� α, by Lemma 9.4 and X1, we can find sets V̄1 ⊂ V1 and C̄ ⊂ C \ {c0}
such that the following hold for some `0, `1 ≤ γn/2.

Y1 |A ∩ V̄1| = |B ∩ V̄1| = `0 + `1 and |C̄1| = `1 + 100.

Y2 For any A′ ⊂ V (G) \ V̄1, B′ ⊂ V (G) \ V̄1 and C ′ ⊂ C(G) \ C̄ with |A′| = |B′| ≤ 4ηn and |C ′| ≤ ηn,
G[V̄1 ∪ A′ ∪ B′] contains vertex-disjoint matchings M ′1 and M ′2 such that M ′1 has `0 + |A′| − |C ′|
edges in Ec0(G′) with both vertices in V̄1 and M ′2 is a (C ′ ∪ C̄0)-rainbow matching with `1 + |C ′|
edges.

Finally, as G′[V ] contains at least αn edges of each colour by X1, and as |V̄1| ≤ 2(`0 +`1) ≤ γn, we can
find in V \ V̄1 a matching T1 of γn−`0 colour-c0 edges as `0 ≤ γn/2. Similarly, we can find, disjointly from
V \ (V̄1 ∪V (T1)), in G′, a C-rainbow matching T2 with size γn− |C̄1|+ 100 ≥ 0 and no colours in C̄1 ∪ C̄2

(as G′ certainly has at least αn colours by X1). Let V add = V̄1 ∪ V (T1) ∪ V (T2) and Cadd = C̄1 ∪C(T2).
We will show that D1 and D2 hold, which we restate for convenience.

D1 |A ∩ V add| = |B ∩ V add| = 2γn and |Cadd| = γn+ 100.

D2 For any Â ⊂ V (G) \ V add and B̂ ⊂ V (G) \ V add with |Â| = |B̂| ≤ ηn, and any Ĉ ⊂ C(G) \ Cadd

with |Ĉ| ≤ ηn, G[V add ∪ Â∪ B̂] contains vertex-disjoint matchings M id and M rb such that M id has
γn + |Â| − |Ĉ| edges in Ec with both vertices in V add and M rb is a (Cadd ∪ Ĉ)-rainbow matching
with size |Cadd ∪ Ĉ| − 100.

First, note that |Cadd| = γn+ 100 by the choice of T2, and, furthermore,

|V add| = 2(`0 + `1) + 2|T1|+ 2|T2| = 2(`0 + `1) + 2(γn− `0) + 2(γn− |C̄1|+ 100) = 4γn.

Therefore, as V̄ is the vertex set of the union of two disjoint matchings T0 and T1 along with, disjointly,
a balanced set V̄1 (using Y1), we have |A ∩ V̄ | = |B ∩ V̄ | = 2γn, and thus D1 holds.

For D2, let Â ⊂ V (G) \ V̄ and B̂ ⊂ V (G) \ V̄ with |Â| = |B̂| ≤ ηn, and Ĉ ⊂ C(G) \ C̄ with |Ĉ| ≤ ηn.
By Y2, there are vertex-disjoint matchings M ′1 and M ′2 in G[V̄1 ∪ Â ∪ B̂] such that M ′1 has `0 + |Â| − |Ĉ|
edges in E with both vertices in V̄1 and M ′2 is a (Ĉ ∪ C̄1)-rainbow matching with `1 + |Ĉ| edges.

Leting M id = M ′1 ∪ T1 and M rb = M ′2 ∪ T2, we will show these matchings have the property in D2.
Indeed, by construction, M id is a matching of edges in Ec0(G) with both vertices in V and V (M id) ⊂
V add ∪ Â ∪ B̂, such that

|M id| = |M ′1|+ |T1| = `0 + |Â| − |Ĉ|+ (γn− `0) = γn+ |Â| − |Ĉ|. (22)

Furthermore, M rb is a (Cadd ∪ Ĉ)-rainbow matching in G[V add ∪ Â ∪ B̂]− V (M1) such that

|M rb| = |M ′2|+ |T2| = `1 + |Ĉ|+ γn− |C̄1|+ 100 = γn+ |Ĉ| = |Cadd ∪ Ĉ| − 100.

Thus, D2 holds, completing the proof.
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Figure 9: The structure counted in S for F3 in the proof of Theorem 1.6, where the vertices c, d1 and
d2 are repeated for clarity and we may have d3 = d4. When c, d1, d2, d3, d4 ∈ C, x1, x3, y1, y3 ∈ A
and x2, x4, y2, y4 ∈ B, this corresponds to two disjoint rainbow 4-cycles in G containing x1x2 and y1y2,
respectively.

10 Derivation of Theorem 1.6 from the technical theorems

We now prove Theorem 1.6 by applying Theorem 3.1 to an appropriate properly coloured pseudorandom
bipartite graph. To get a properly coloured pseudorandom bipartite graph from a Steiner triple system
we follow a method of Keevash, Pokrovskiy, Sudakov and Yepremyan [32].

Proof of Theorem 1.6. Let S be a Steiner triple system (STS) with vertex set [n]. As S is a STS, we know
that n ≡ 1, 3 mod 6. Furthermore, let us assume that n ≡ 3 mod 6, where the case where n ≡ 1 mod 6
follows similarly after removing an arbitrary vertex.

Let m = n/3. Let [3m] = A ∪B ∪ C be a partition created by, for each v ∈ [3m], choosing the set for
v independently at random such that P(v ∈ A) = P(v ∈ B) = P(v ∈ C) = 1/3. Let G be the bipartite
graph with vertex classes A and B where ab with a ∈ A and b ∈ B is an edge with colour c exactly when
abc ∈ S. We will show that, with positive probability, G is (m, 1/3, ε)-properly-pseudorandom for some ε

with 1/n
poly

� ε
poly

� log−1 n. Therefore, Theorem 3.1 applies to show that a rainbow matching, M say, exists
in G with m − 1 edges. Noting that {abc ∈ S : ab ∈ E(M)} is a matching in S would then show that S
contains a matching with at least n/3− 1 edges, as required.

Following Keevash, Pokrovskiy, Sudakov and Yepremyan [32, Section 6], it is straightforward to see
that, with probability at least n−3, we have |A| = |B| = |C| = m and, with probability 1− o(n−3), H(G)
(as defined in Section 3.4) is (m, 1/3, ε)-typical if ε ≥ n−1/8. Thus, with positive probability, F1 and F2
hold for G to be (m, 1/3, ε)-properly-pseudorandom. Therefore, it is sufficient to show that F3–F7 hold

for G to be (m, 1/3, ε)-properly-pseudorandom for some ε
poly

� log−1 n with probability 1− o(n−3).

F3: Let c, x1, x2 be distinct with x1x2c ∈ S. Let F be the set of pairs of vertices which form an edge
with c in S, except for x1x2. For each f = y1y2 ∈ F , we would ideally like to show there are at least
n2/8 choices for d1 and d2 in the picture in Figure 9 so that, labelling vertices as pictured, this gives
distinct vertices except we may have d3 = d4. This we can only do for all but O(1) edges f = y1y2 ∈ F ,
and for convenience use the bound

√
n as in F3. For this, first note that, for each f = y1y2 ∈ F , using

arguments similar to those in the proof of Proposition 3.12, and labelling vertices as in Figure 9 when
they are determined, there are at least n/2 choices for d1 so that x3 and y3 are not in {c, x1, x2, y1, y2}.
Furthermore, if x3 = y3, the STS property would imply x2 = y2, so we have that x3 and y3 are distinct.
Then, there are at least n/2 choices for d2 so that x4, y4, d3, d4 are not in {c, x1, x2, y1, y2, d1, x3, y3},
where, by the STS properties d2 6= d3, d2 6= d4, x4 6= y4, but we may have d3 = d4, x4 = d4 or y4 = d3.

For each f = y1y2 ∈ F , then, letting Rf be the set of sequences (x3, x4, y3, y4, d1, d2, d3, d4) such that
c, x1, x2, y1, y2, x3, x4, y3, y4, d1, d2, d3, d4 are distinct, except we may have d3 = d4, x4 = d4 or y4 = d3,
and such that

x2x3d1, x4x1d2, x3x4d3, y2y3d1, y4y1d2, y3y4d4 ∈ S,

we have |Rf | ≥ n2/2.
Note that, over all f ∈ F , the sets Rf are disjoint. Let R = ∪f∈FRf . Noting that we have fixed c, x1

and x2, observe the following. The sequence (x3, x4, y3, y4, d1, d2, d3, d4) ∈ R is determined by x4 (which
fixes d2), y4 (which fixes y1 and y2) and d4 (which fixes y3, d1 and x3), and therefore there are at most
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Figure 10: The structure counted in S for F4 in the proof of Theorem 1.6, where the vertices c, d1 and d2

are repeated for clarity and we may have d3 = d4. When c0, d1, d2, d3 ∈ C, u, x2, x4 ∈ A and x1, x3, v ∈ B,
this corresponds to a u, v-path in G with colours d1, c0, d2, c0, d3 in order.

n2 such sequences with x4 = d4. Similarly, such a sequence is determined by y4, y4 and d3, so that there
are at most n2 such sequences with y4 = d3.

Therefore, for all but at most
√
n f ∈ F , we must have that there are at least n2/8 sequences

(x3, x4, y3, y4, d1, d2, d3, d4) ∈ Rf with x3, x4, y3, y4, d1, d2, d3, d4 distinct except for, possibly, d3 = d4.
Let F ′ ⊂ F be the set of such f and, for each f ∈ F ′, let R′f ⊂ Rf be the corresponding set of these
sequences. For each f ∈ F ′, let Xe,f be the number of (x3, x4, y3, y4, d1, d2, d3, d4) ∈ R′f with x3, y3 ∈ A,
x4, y4 ∈ B and d1, d2, d3, d4 ∈ C. The sequence (x3, x4, y3, y4, d1, d2, d3, d4) ∈ Rf is determined uniquely
by the specification of one vertex from {d1, x3, y3} and one vertex from {x4, y4, d2, d3, d4}, and therefore
each vertex appears in at most 8n sequences in Rf . Thus, Xe,f is (8n)-Lipschitz. As EXe,f ≥ (1/3)8n2/8,
we have by Lemma 3.24, setting p = 1/3 and α = p12/10100, that |Xe,f | ≥ αn2 with probability 1−o(n−6).
Then, using a union bound over all c ∈ S and distinct e, f such that V (e) ∪ {c}, V (f) ∪ {c} ∈ S, we have
that F3 holds with probability 1− o(n−3).

F4: Let u, v, c0 ∈ V (S) be distinct, and let W ⊂ V (S) with |W | ≤ n/100 be arbitrary. We will count
the number of sequences (x1, x2, x3, x4, d1, d2, d3) of distinct vertices in V (S) \ {u, v, c0} which have edges
in S as depicted in Figure 10. To start with, let R be the set of such sequences where we additionally
allow d2 = d3. Using arguments similar to those in the proof of Proposition 3.12, and labelling vertices
as in Figure 10 once they are determined by the edges in S, given u, v, c0 ∈ V (S), we have at least n/2
choices for x1 so that x1, d1 and x2 are not in {u, v, c0} (and d1 6= x2 by the STS property), and then at
least n/2 choices for x4 so that x4, d2, x3 and d3 are not in {u, v, c0, x1, x2, d1}. By the STS property we
have d3 6= x3 and and d2 6= x4, and thus |R| ≥ n2/4.

Note that, (x1, x2, x3, x4, d1, d2, d3) ∈ R is determined by d2, d3, so there are at most n such sequences
with d2 = d3. Therefore, if R′ is the set of sequences (x1, x2, x3, x4, d1, d2, d3) of distinct vertices in
V (S) \ {u, v, c0} with

ux1d1, x1x2c0, x2x3d2, x3x4c0, x4vd3 ∈ S, (23)

then we have |R′| ≥ n2/8.
Note further that any sequence (x1, x2, x3, x4, d1, d2, d3) ∈ R′ is determined by any two vertices

from different sets in {x1, x2, d1}, {d2} and {x3, x4, d3}. Therefore, there are at most 7n sequences
(x1, x2, x3, x4, d1, d2, d3) ∈ R containing any one fixed vertex, and thus at most 7|W |n sequences with
a vertex in W . Therefore, as |R′| ≥ n2/8 > 7|W |n, we have that there are some distinct vertices
x1, x2, x3, x4, d1, d2, d3 ∈ V (S) \ (W ∪ {u, v, c0}) for which (23) holds.

As W ⊂ V (S) was arbitrary with |W | ≤ n/100, we can find distinct xi,1, xi,2, xi,3, xi,4, di,1, di,2, di,3 ∈
V (S) \ {u, v, c0}, i ∈ [n/800], such that, for each i ∈ [n/800],

uxi,1di,1, xi,1xi,2c0, xi,2xi,3di,2, xi,3xi,4c0, xi,4vdi,3 ∈ S. (24)

Now, let Xu,v,c0 be the number of i ∈ [n/800] with xi,2, xi,4 ∈ A, xi,1, xi,3 ∈ B and di,1, di,2, di,3 ∈ C,
and note that if Xu,v,c0 ≥ αn, u ∈ A and v ∈ B, then F4 holds with c0, u and v. As Xu,v,c0 is a binomial
random variable with parameters n/800 and (1/3)7, we thus have, by Lemma 3.23 and a union bound,
that, with probability 1− o(n−3), F4 holds.

F5: Let c0, d ∈ V (S) be distinct, and let W ⊂ V (S) with |W | ≤ n/103 be arbitrary. We will count
the number of sequences (x1, . . . , x8, d1, d2, d3) of distinct vertices in V (S) \ {c0, d} which have edges in S
as depicted in Figure 11. To start with, let R be the set of such sequences where we additionally allow
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Figure 11: The structure used in S for F5 in the proof of Theorem 1.6, where the vertex c0 and the edge
x8x1d are repeated for clarity. When c0, d, d1, d2, d3 ∈ C, x1, x3, x5, x7 ∈ A and x2, x4, x6, x8 ∈ B, this
corresponds to an 8-cycle in G with colours d, c0, d1, c0, d2, c0, d3, c0 in order.

d2 = d3. Using arguments similar to those in the proof of Proposition 3.12, and labelling vertices as in
Figure 11 once they are determined by the edges in S, given c0, d ∈ V (S), we have at least n/2 choices
for x1 (determining x8, x7 and x2), then at least n/2 choices for x3 (determining d1 and x4) and then at
least n/2 choices for x5 (determining d2, x6 and d3), such that x1, . . . , x8, d1, d2, d3 are all distinct except
for, possibly, d2 = d3. Thus, we have |R| ≥ n3/8.

Note that (x1, . . . , x8, d1, d2, d3) ∈ R is determined by d2, d3 and x5, so that there are at most n2 such
sequences with d2 = d3. Therefore, if R′ is the set of sequences (x1, . . . , x8, d1, d2, d3) of distinct vertices
in V (S) \ {c0, d} such that, setting d0 = d,

x2i+1x2i+2di ∈ S for each 0 ≤ i ≤ 3, and x2ix2i+1c0 ∈ S for each 0 ≤ i ≤ 2, and x8x1c0 ∈ S, (25)

then we have |R′| ≥ n3/16.
Note that (x1, . . . , x8, d1, d2, d3) ∈ R is uniquely determined by any 1 vertex in {x7, x8, x1, x2} in

conjunction with any 2 vertices from different sets {d1, x3, x4}, {d3, x6, x5} and {d2}. Therefore, there
are at most 11|W |n2 sequences (x1, . . . , x8, d1, d2, d3) ∈ R′ with a vertex in W . Thus, as |R| ≥ n3/16 >
11|W |n2, we have that there are some distinct x1, x2, x3, x4, d1, d2, d3 ∈ V (S) \ (W ∪ {u, v, c0}) for which
(23) holds.

As W ⊂ V (S) was arbitrary with |W | ≤ n/103, we can find distinct vertices xi,j , di,j′ , i ∈ [n/105],
j ∈ [8], j′ ∈ [3], in V (S) \ {c0, d} such that, for each i ∈ [n/105],

xi,2j+1xi,2j+2di,j ∈ S for each 0 ≤ j ≤ 3, and xi,2jxi,2j+1c0 ∈ S for each 0 ≤ j ≤ 2, and xi,8xi,1c0 ∈ S.
(26)

Now, let Xc0,d be the number of i ∈ [n/105] with xi,j ∈ A for each odd j ∈ [8], xi,j ∈ B for each even
j ∈ [8] and dj ∈ C for each j ∈ [3]. Note that if c0, d ∈ C and Xc0,d ≥ αn, then F5 holds with c0 and d.
As Xc0,d is a binomial random variable with parameters n/105 and (1/3)11, we thus have, by Lemma 3.23
and a union bound, that, with probability 1− o(n−3), F5 holds.

F6: Let c0 ∈ V (S), 0 ≤ k ≤ 20 and C̄ ⊂ V (S) \ {c0} with |C̄| = 5k. Let W ⊂ V (S) with
|W | ≤ n/1050 be arbitrary. Let R be the set of sequences (x0, x1, . . . , xk, y0, y1, . . . , yk, d1, . . . , dk) such
that x0, x1, . . . , xk, y1, . . . , yk are distinct vertices in V (S) and d1, . . . , dk are distinct vertices in C̄, and
(see Figure 12) such that

xiyic0 ∈ S for each 0 ≤ i ≤ k, and yi−1xidi for each i ∈ [k]. (27)

We first show that |R| ≥ n. Pick x0 ∈ V (S) \ {c0} and let y0 be such that x0y0c0 ∈ S. Then, for each
i ∈ [k] in turn, do the following.

• Pick di ∈ C̄ \ {d1, . . . , di−1}, so that, letting xi and yi be such that yi−1xidi ∈ S and xiyic0 ∈ S,
then xi, yi /∈ {x0, y0, . . . , xi−1, yi−1}.

Note that, when choosing some di, we are avoiding at most 2i ≤ 2k vertices for xi, yi and each choice of
di gives a different xi and hence a different yi (and there is at most 1 choice of di for each possible yi and
each possible xi), so that, as |C̄| = 5k it is possible to choose di for each i ∈ [k]. Thus, we have |R| ≥ n.

Note that (x0, x1, . . . , xk, y0, y1, . . . , yk, d1, . . . , dk) ∈ R is uniquely determined by d1, . . . , dk and any
other one vertex in that sequence. Therefore, there are at most |C̄|k · (2k + 2) · |W ∪ C̄| < n such
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Figure 12: The structure counted for F7 in the proof of Theorem 1.6, where the vertex c0 is repeated for
clarity, and the central line of vertices are, in order, x0, y0, x1, y1, . . . , xk, yk, so that xiyic0 ∈ S for each
i ∈ [k]0 and xi−1yidi ∈ S for each i ∈ [k].

sequences with xi or yi in W ∪ C̄ for some 0 ≤ i ≤ k. Thus, there is some sequence of distinct ver-
tices x0, x1, . . . , xk, y0, y1, . . . , yk, d1, . . . , dk ∈ V (S) \ (W ∪ {c0}) for which we have that (27) holds with
x0, x1, . . . , xk, y0, y1, . . . , yk /∈ C̄.

As W was arbitrary with |W | ≤ 1050, we can then find sequences xi,0, xi,1, . . . , xi,k, yi,0, yi,1, . . . , yi,k,
i ∈ [n/1052], of distinct vertices in V (S) \ (W ∪ {c0} ∪ C̄) such that, for each i ∈ [n/1052], there are
some distinct di,1, . . . , di,k ∈ C̄ such that (27) holds. Now, let Xc0,k,C̄ be the number of i ∈ [n/1052] with
xi,j ∈ A and yi,j ∈ B for each 0 ≤ j ≤ k. Note that if C̄ ⊂ C, c0 ∈ C and Xc0,k,C̄ ≥ αn, then F6 holds

with c0, k and C̄. As Xc0,k,C̄ is a binomial random variable with parameters n/1052 and (1/3)2k+2, we
thus have, by Lemma 3.23 and a union bound, that, with probability 1− o(n−3), F6 holds.

F7: Let k = 100 and r = n/108. Let c0 ∈ C(G). We will randomly choose disjoint sets Vi, Wi and Ci,
i ∈ [r], in V (S) \ {c0}, each with size k, such that, for most i ∈ [r], if Vi ⊂ A, Wi ⊂ B and Ci ∪ {c0} ⊂ C,
then G[Vi ∪Wi] has an exactly-Ci-rainbow matching and a matching of k colour-c0 edges (and then, for
F7, consider some of the sets Vi ∪Wi and Ci, i ∈ [r]).

For each i = 1, . . . , r in turn, choose Vi, Wi and Ci as follows.

• Let Zi = {c0} ∪ (∪i′<i(Vi ∪Wi ∪ Ci)). Pick an arbitrary vi,1 ∈ V (S) \ Zi which is not in an edge
with c0 and 1 vertex from Zi, and let wi,1 be such that vi,1wi,1c0 ∈ S. For each j = 2, . . . , k, pick
vi,j ∈ V (S) \ Zi ∪ {vi,1, wi,1, . . . , vi,j−1, wi,j−1, di,1, . . . , di,j−2} uniformly at random from such vi,j
for which, letting di,j−1 and wi,j be such that wi,j−1vi,jdi,j−1 ∈ S and vi,jwi,j−1c0 ∈ S, we have that
di,j−1, wi,j are not in Zi ∪ {vi,1, wi,1, . . . , vj−1, wj−1, di,1, . . . , di,j−2}. Finally, let di,k be such that
wi,kvi,1di,k ∈ S. Let Vi = {vi,1, . . . , vi,k}, Wi = {wi,1, . . . , wi,k} and Ci = {di,1, . . . , di,k}, noting
that these are disjoint sets with size k.

Note that, for any sequence (d̄1, . . . , d̄k−1) of vertices (possibly with repetition), at step i, the probability
that di,j = d̄j for each j ∈ [k − 1] is at most 1/(n− 10(|W |+ 3k))k−1 ≥ 1/(n− 100kr)k−1. We will show
that, with high probability, the following holds.

Z For every C̄ ⊂ V (S) \ {c0} with |C̄| ≤ k, for at least r/2 values of i ∈ [r] (those in IC̄ , say)joint
sets V̄1, . . . , V̄αn, W̄1, . . . , W̄αn ⊂ V (S) \ (C̄ ∪ {c0} ∪ Vi ∪ Wi ∪ Ci) of size k + |C̄| + 1 such that,
letting ` = |C̄|, for each i ∈ [αn], we can label the vertices of V̄i, W̄i, and C̄ ∪ Ci respectively as
{a1, . . . , ak+`+1} and {b1, . . . , bk+`+1}, and {c1, . . . , ck+`} so that, for each j ∈ [k+ `+ 1], c0ajbj ∈ S
and, for each j ∈ [k + `+ 1], bjaj+1cj ∈ S.

Thus, Vi, Wi and Ci, i ∈ [r], can be chosen in this fashion so that Z holds. Then, selecting the partition
[n] = A ∪ B ∪ C as above, consider the set I ⊂ [r] of i ∈ [r] for which Vi ⊂ A, Wi ⊂ B and Ci ⊂ C. By
Lemma 3.23 and a union bound, with probability 1− o(n−3), for each C̄ ⊂ C(G) \ {c0} with |C̄| ≤ k, we
have |I ∩ IC̄ | ≥ αn and, for each i ∈ IC̄ , taking the sets V̄1, . . . , V̄αn, W̄1, . . . , W̄αn from Z, for at least α2n
of j ∈ [αn] we will have V̄j ⊂ A and W̄j ⊂ B. Thus, with probability 1− o(n−3), F7 holds for G by using
V ′i = Vi ∪Wi and Ci, i ∈ I.

Therefore it is sufficient to show that, with high probability, Z holds. Fix then C̄ ⊂ V (S) \ {c0} with
|C̄| ≤ k. For ease of notation assume that |C̄| = k, where the other cases with |C̄| < k follow similarly
(indeed, as looking at Figure 13, we use only that there is at least 1 blue edge between red edges in the
sequence). We will show that, for each i ∈ [r], when Vi, Wi and Ci are chosen, with probability 1− o(1)
we have that Z holds for i. Then, using Lemma 3.24, we can show that, with probability 1 − o(n−k), Z
holds for C̄.
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Figure 13: The structure considered for F7 in the proof of Theorem 1.6, where the vertex c0
is repeated for clarity, and the central line of vertices, as labelled from above, are, in order,
x1,1, x1,2, x1,3, x1,4, x2,1, x2,2, x2,3, x2,4, x3,1, . . . , xk−1,1, xk−1,2, xk−1,3, xk−1,4, xk,1, xk,2, xk,3, xk,4.

Let λ = 10−3. Label the vertices in C̄ as c1, . . . , ck. Let LC̄ be the set of sequences (d1, . . . , dk−1)
of distinct vertices in V (S) \ ({c0} ∪ C̄) for which there are at least λn choices for x1,1 for which, as in
Figure 13, there are distinct vertices

x1,2, x1,3, x1,4, x2,1, x2,2, x2,3, x2,4, . . . , xk−1,1, xk−1,2, xk−1,3, xk−1,4, xk,1, xk,2, xk,3, xk,4 (28)

in V (S) \ (C̄ ∪ {d1, . . . , dk−1}) such that, for each i ∈ [k], xi,1xi,2c0, xi,2xi,3ci, xi,3xi,4c0 ∈ S, and, for each
i ∈ [k − 1], xi,4xi+1,1di ∈ S.

Claim 8. |LC̄ | ≥ 99nk−1/100.

This claim will allow us to complete the proof. Indeed, assuming Claim 8 holds, for each i ∈ [k], at
step i, the probability that (di,1, . . . , di,k−1) ∈ LC̄ is chosen is at least

1− (nk−1 − |LC̄ |) ·
1

(n− 100kr)k−1
≥ 3

4
.

Therefore, by Azuma’s inequality (Theorem 3.25), we have that, with high probability, for each C̄, that
(di,1, . . . , di,k−1) ∈ LC̄ , for at least r/2 values of i ∈ [r], say those in IC̄ . Now, for each i ∈ I, there is a set
Ui with |Ui| ≥ λn such that, setting x1,1 = u, the vertices at (28) exist in V (S) \ (C̄ ∪ {di,1, . . . , di,k−1})
such that, for each j ∈ [k], xj,1xj,2c0, xj,2xj,3cj , xj,3xj,4c0 ∈ S, and, for each i ∈ [k − 1], xj,4xj+1,1di,j ∈
S. As any such vertex in the sequence at (28) determines all the others and x1,1 (for these values of
di,1, . . . , di,k−1), we can take a subset U ′i ⊂ Ui with |U ′| ≥ αn such that the corresponding sequences are
all disjoint, and therefore taking V̄j and W̄j to be the alternating vertices along the sequence corresponding
to j ∈ U , we have that Z holds. Thus, with high probability, Z holds, as required. Therefore it is left only
to prove Claim 8.

Proof of Claim 8. Let R be the set of sequences

x1,1x1,2, x1,3, x1,4, x2,1, x2,2, x2,3, x2,4, . . . , xk−1,1, xk−1,2, xk−1,3, xk−1,4, xk,1, xk,2, xk,3, xk,4

of disjoint vertices such that, for each i ∈ [k], xi,1xi,2c0, xi,2xi,3ci, xi,3xi,4c0 ∈ S. Choosing one vertex from
each block {xi,1, xi,2, xi,3, xi,4}, i ∈ [k], determines the sequence inR, and, for each i ∈ [k], as long we avoid
the vertex in an edge with ci and c0 in S, the vertices xi,1, xi,2, xi,3, xi,4 are distinct by the STS property.
Therefore, for each i ∈ [k], there are at least n− 6 choices for xi,1 such that xi,1, xi,2, xi,3, xi,4 are distinct
if xi,1xi,2c0, xi,2xi,3ci, xi,3xi,4c0 ∈ S. Furthermore, for each i, j ∈ [k] with i 6= j, if xi,1, xi,2, xi,3, xi,4 are
chosen, then there are at most 16 choices for xj,1 such that if xj,1, xj,2, xj,3, xj,4 can be defined so that
xi,1xi,2c0, xi,2xi,3ci, xi,3xi,4c0 ∈ S, then {xj,1, xj,2, xj,3, xj,4} and {xi,1, xi,2, xi,3, xi,4} overlap. Thus,

|R| ≥
k∏
i=1

(n− 6− 16(i− 1)) ≥ (n− 16k)k.

On the other hand, by the definition of LC , and as, for each sequence in R at (10), there is exactly one
sequence of vertices (d1, . . . , dk−1) such that, for each i ∈ [k − 1], xi,4xi+1,1di ∈ S, we have

|R| ≤ |LC | · n+ (nk−1 − |LC |) · λn,
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so that

|LC | ≥
|R| − λ · nk

(1− λ)n
≥ (n− 16k)k − λ · nk

(1− λ)n
≥ 99nk−1

100
. �

This completes the proof that, with positive probability for sufficiently large n, G is properly (m, p, ε)-

properly-pseudorandom for p = 1/3 and some ε with 1/n
poly

� ε
poly

� log−1 n (and thus 1/m
poly

� ε
poly

� log−1m
as m = n/3). Therefore, by Theorem 3.1, there is a choice of A,B,C for which G has a rainbow matching
with m− 1 edges, and, therefore S has a matching with at least n/3− 1 edges, as required. �

11 Final remarks

We finish by discussing the limits of our techniques and related problems. For further context and related
problems see the recent surveys by Pokrovskiy [48] and the author [44].

Slightly strengthening Theorem 1.3. Best, Pula and Wanless [9] have conjectured that, for all n, any
proper colouring of Kn,n−1 should contain a rainbow matching with at least n− 1 edges. In other words,
they conjecture a version of Theorem 1.3 (but for all n) where one of the vertices to be omitted has already
been deleted. As observed by Georgakopoulos [25], this is equivalent to a special case of a conjecture of
Haxell, Wilfong and Winkler (see also [2]). The methods introduced here prove the conjecture of Best,
Pula and Wanless for large n, though we only sketch this very briefly. Given a graph G which is a properly
coloured copy of Kn,n−1, Theorem 3.13 would give an (n−1)-edge rainbow matching, unless the colouring
is close enough to an optimal colouring that (†) holds, so that the original proof method in Section 2.3
can be attempted. Doing so, we could then run the addition structure as far as possible, until there was 1
vertex, y say, not incorporated, but stop at the last step where we want to find the path described using
colours D ∪D′. Instead of running step iii) to get our final remainder vertices, we would then drop out
an additional set D′′ of four colours whose edges in M rb are the vertex set of a set of 4 colour-c0 edges,
and find a path like that in step iii), but starting from y and using the colours in D ∪D′ and all but one
colour in D′′′ while alternating between colour-c0 edges. Then, when we exchange the edges of this path
into M rb and out of M id, we bring y into M rb and drop out only one remainder vertex (the other end of
this path). Effectively, instead of using two remainder vertices at the very end, this uses one remainder
vertex and one remainder colour, to serve the same purpose.

Counting near-transversals. As mentioned in Section 1, Eberhard, Manners and Mrazović [19] have
determined precisely the asymptotics of the number of full transversals in a Latin Squares of order n if
it is the multiplication table of a group G with trivial or non-cyclic 2-Sylow subgroups. In particular,
the number of full transversals is (e−1/2 + o(1))|Gab|(n!)2/nn, where Gab is the abelianisation of G. Our
methods cannot get such tight asymptotics, though the semi-random method can show that many different
almost-transversals exists. Using this in combination with the methods introduced here should show that
any Latin square of order n has exp(Θ(n log n)) transversals with n− 1 elements.

Full transversals when n is odd. Having proved Theorem 1.2, it is natural to consider the obstacles
of using our methods to prove the Ryser-Brualdi-Stein conjecture for large odd n. It seems likely that
any similar methods to those used here that can prove the Ryser-Brualdi-Stein conjecture for large odd
n must determine any possible structure behind the colouring much more closely than has been achieved
here. That more can be done in this direction is clear: the addition structure greatly simplified the
initial approach used in this work (some of these unused ideas will appear in [8]). However, given the
‘approximate’ nature of any such structure, proving the Ryser-Brualdi-Stein conjecture for large odd n
with this approach appears to be extremely challenging.

Full transversals in special cases. The Hall-Paige conjecture (as discussed in Section 1) goes further
than simply the group multiplication table special case of the Ryser-Brualdi-Stein conjecture, giving a
condition which determines exactly when the corresponding Latin square will have a full transversal,
or not. All the Latin squares without a full transversal described here have some precise underlying
algebraic structure inherited from a group whose multiplication table has no full transversal. Though no
doubt extremely difficult, it seems likely that any Latin square with no full transversal has such a precise
underlying algebraic structure. In this direction, due to Kwan [39] it is known that almost all Latin
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squares of order n have a full transversal, who showed moreover that a typical Latin square of order n
contains

(
(1− o(1)) ne2

)n
full transversals using combinatorial tools. (Similarly, due to Kwan [39], we also

know that a random Steiner triple system is likely to contain many matchings missing at most 1 vertex.)
Eberhard, Manners and Mrazović [20] have improved this with an independent analytic approach, to show
that a typical random Latin square has

(
e−1/2 + o(1)

)
(n!)2/nn transversals.

Rainbow paths in properly coloured complete graphs. The natural analogous problem for complete
graphs is the following. Given a properly coloured n-vertex complete graph, how long a rainbow cycle (or
path) must it contain? In 1989, Andersen [5] conjectured that every properly coloured n-vertex complete
graph should have a rainbow path with length n−2. Using methods of Alon, Pokrovskiy and Sudakov [4],
Balogh and Molla [7] showed that there will always be such a path with length n − O(

√
n log n). The

methods introduced here do not directly apply to this problem, in particular there is no direct analogue
for the addition structure used here, but it appears significant progress can be made and this is the subject
of forthcoming work by the current author with Benford and Bowtell [8].

References

[1] S. Akbari and A. Alipour. Transversals and multicolored matchings. Journal of Combinatorial
Designs, 12(5):325–332, 2004.

[2] N. Alon and V. Asodi. Edge colouring with delays. Combinatorics, Probability and Computing,
16(2):173–191, 2007.

[3] N. Alon, J.-H. Kim, and J. Spencer. Nearly perfect matchings in regular simple hypergraphs. Israel
Journal of Mathematics, 100(1):171–187, 1997.

[4] N. Alon, A. Pokrovskiy, and B. Sudakov. Random subgraphs of properly edge-coloured complete
graphs and long rainbow cycles. Israel Journal of Mathematics, 222(1):317–331, 2017.

[5] L. D. Andersen. Hamilton circuits with many colours in properly edge-coloured complete graphs.
Mathematica Scandinavica, pages 5–14, 1989.

[6] L. D. Andersen. The history of Latin squares. In Combinatorics: Ancient & Modern (edited by R.
Wilson and J.J. Watkins), 2013.

[7] J. Balogh and T. Molla. Long rainbow cycles and Hamiltonian cycles using many colors in properly
edge-colored complete graphs. European Journal of Combinatorics, 79:140–151, 2019.

[8] A. Benford, C. Bowtell, and R. Montgomery. Long rainbow cycles in properly coloured graphs. In
preparation, 2023.

[9] D. Best, K. Pula, and I. M. Wanless. Small Latin arrays have a near transversal. Journal of Combi-
natorial Designs, 29(8):511–527, 2021.

[10] D. Best and I. M. Wanless. What did Ryser conjecture? arXiv preprint arXiv:1801.02893, 2018.

[11] C. Bowtell and P. Keevash. The n-queens problem. arXiv preprint arXiv:2109.08083, 2021.

[12] A. E. Brouwer. On the size of a maximum transversal in a Steiner triple system. Canadian Journal
of Mathematics, 33(5):1202–1204, 1981.

[13] A. E. Brouwer, A. de Vries, and R. Wieringa. A lower bound for the length of partial transversals in
a Latin square. Nieuw Archief Voor Wiskunde, 26(2):330–332, 1978.

[14] R. A. Brualdi and H. J. Ryser. Combinatorial matrix theory. Cambridge University Press, 1991.

[15] D. Bryant and D. Horsley. A second infinite family of Steiner triple systems without almost parallel
classes. Journal of Combinatorial Theory, Series A, 120(7):1851–1854, 2013.

69



[16] D. Bryant and D. Horsley. Steiner triple systems without parallel classes. SIAM Journal on Discrete
Mathematics, 29(1):693–696, 2015.

[17] C. J. Colbourn and A. Rosa. Colorings of block designs,. Contemporary design theory: A collection
of surveys, 26:401–430, 1992.

[18] D. A. Drake. Maximal sets of Latin squares and partial transversals. Journal of Statistical Planning
and Inference, 1(2):143–149, 1977.
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[49] V. Rödl. On a packing and covering problem. European Journal of Combinatorics, 6(1):69–78, 1985.
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69–91, 1967.

[52] P. W. Shor. A lower bound for the length of a partial transversal in a Latin square. Journal of
Combinatorial Theory, Series A, 33(1):1–8, 1982.

[53] S. K. Stein. Transversals of Latin squares and their generalizations. Pacific J. Math., 59:567–575,
1975.

[54] S. P. Wang. On self-orthogonal Latin squares and partial transversals of Latin squares. PhD thesis,
The Ohio State University, 1978.

[55] I. M. Wanless. Transversals in Latin squares: A survey. In Surveys in Combinatorics 2011. Cambridge
University Press, 2011.

[56] S. Wilcox. Reduction of the Hall–Paige conjecture to sporadic simple groups. Journal of Algebra,
321(5):1407–1428, 2009.

[57] D. E. Woolbright. An n × n Latin square has a transversal with at least n −
√
n distinct symbols.

Journal of Combinatorial Theory, Series A, 24(2):235–237, 1978.

71


	Introduction
	Exposition
	Notation
	Proof snapshot
	Proof sketch

	Preliminaries
	Technical theorems and component results
	Main component results
	Proof of the technical theorems from the component results
	Typical hypergraphs
	Proper-pseudorandomness
	Derivation of Theorem 1.2 from the first technical theorem
	Derivation of Theorem 1.3 from the first technical theorem
	Derivation of Theorem 1.4 from the second technical theorem
	Sublinear graph expansion
	Concentration inequalities
	Numbers of 4-cycles

	Almost-full transversals
	Results of typicality
	Proof of Theorem 4.1

	Exchangeable colour classes
	Counting colour switchers of order 4
	Exchangeable colour pairs: heavy edges
	Exchangeable colour pairs: light edges
	Exchangeable colour classes: moderately-weighted edges
	Proof of Theorem 5.4

	Switching edges of the same colour
	Proof of Theorem 6.3: set up and colour classes
	Proof of Theorem 6.3: colour classes are collectively robust
	Proof of Theorem 6.3: switchable edges
	Proof of Theorem 6.3: switchable edges are plentiful
	Proof of Theorem 6.3: choosing H

	Switching edges with colours from the same class
	Absorption structure
	Proof of Theorem 8.1: set up and application of Theorem 7.1
	Proof of Theorem 8.1: good colours and choosing H
	Proof of Theorem 8.1: choosing H and finding local 1-in-100 absorbers
	Proof of Theorem 8.1: finding specific 1-in-100 local absorbers
	Proof of Theorem 8.1: global absorption
	Proof of Theorem 3.4 from Theorem 8.1

	Addition structure
	Random subsets likely still support addition
	Removing edges maintains support for addition
	Main addition structure construction
	Supplementary addition structure construction
	Proof of Theorem 3.5
	Proof of Theorem 3.6

	Derivation of Theorem 1.6 from the technical theorems
	Final remarks

