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Abstract

In 1782, Euler conjectured that no Latin square of order n = 2 mod 4 has a decomposition into
transversals. While confirmed for n = 6 by Tarry in 1900, Bose, Parker, and Shrikhande constructed
counterexamples in 1960 for each n = 2 mod 4 with n > 10. We show that, in fact, counterexamples
are extremely common, by showing that if a Latin square of order n is chosen uniformly at random
then with high probability it has a decomposition into transversals.
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1 Introduction

A Latin square of order n is an n by n grid filled with n symbols so that each row and column contains
each symbol exactly once. A transversal in a Latin square of order n is a collection of n cells which
share no row, column, or symbol. Latin squares have a long history preceding their modern study;
for more on this, we recommend the historical survey by Andersen [4], while the broader study of
transversals in Latin squares is covered in surveys by Wanless [45] and Montgomery [30].

In 1782, Euler [11] considered: for which n is there a Latin square of order n which can be decom-
posed into n disjoint transversals? The case n = 4 was the topic of an old recreational mathematics
problem [32], while Euler was initially particularly interested in the case n = 6, considering his fa-
mous ‘36 officers problem’. In this problem, there are 36 officers of 6 different ranks from 6 different
regiments, with an officer of each rank in each regiment. Can they stand in a 6 by 6 grid so that
each row and each column contains officers of different ranks and different regiments? If there were a
solution, then, neglecting the ranks, giving each officer the symbol of their regiment will form a Latin
square of order 6. For each rank, the set of officers of that rank marks out a transversal, so that this
arrangement would give a decomposition of the Latin square of order 6 into 6 disjoint transversal{l

Euler believed there was no solution to his 36 officer’s problem, though this was not confirmed
until work by Tarry [43] in 1900. More generally, after demonstrating that there are Latin squares of
order n which can be decomposed into n disjoint transversals when n Z 2mod4, Euler conjectured
that there are no examples when n = 2mod 4. This is true for n = 2 and n = 6, but, in 1959, Bose and
Shrikhande [7] showed that Euler’s conjecture is false by constructing counterexamples for n = 22 and
n = 50, before, shortly after, showing with Parker [6] that the conjecture is false for every n = 2mod 4
with n > 10.

The development of the probabilistic method has shown the power of considering random objects
as potential counterexamples. It is interesting then, to ask how common counterexamples to Euler’s
conjecture are, and, in particular, whether a random Latin square of order n = 2mod 4 is typically a
counterexample? For each n € N, let £(n) be the set of Latin squares of order n which use symbols
in [n] = {1,...,n}, and let L, be drawn uniformly at random from £(n). In 1990, van Rees [44]
conjectured that a random Latin square L, should not have a decomposition into transversals with
high probability (whp), however, Wanless and Webb [46] observed in 2006 that numerical calculations
suggest that L, should have such a decomposition with high probability.

It has long been known that, when n is even, a Latin square of order n may not have even a
single transversal (as, for example, seen by the canonical example of the addition table for Zs,,, for
any m € Z). However, any Latin square of order n does contain a large partial transversal, that
is, a large collection of cells which share no row, column, or symbol. The natural extremal problem
on the size of the largest partial transversal that always exists is the topic of the well-known Ryser-
Brualdi-Stein conjecture [8] 40, 42], with origins from 1967, which suggests that every Latin square of
order n should have a transversal when n is odd, and a partial transversal with n — 1 cells when n is
even. Following a long-standing bound of Shor [4I] (whose proof was later corrected by Hatami and
Shor [17]), significant progress towards the Ryser-Brualdi-Stein conjecture has been made in recent
years by studying Latin squares from the perspective of edge-coloured graphs (as we do here, and as
is described in Section . In particular, after significant progress by Keevash, Pokrovskiy, Sudakov
and Yepremyan [20], Montgomery [29] showed that, for sufficiently large n, every Latin square of order
n has a partial transversal with n — 1 cells. This comes very close to a single transversal, while in this
paper we wish to determine whether, with high probability, we can find n disjoint transversals in a
random Latin square. In every Latin square of order n this is not possible. Indeed, clearly for every
even order n we have examples of Latin squares with not even a single transversal, and Wanless and
Webb [46] confirmed the existence of Latin squares which do not have a decomposition into transversals
for every order n > 3. However, some approximate version of this is true. In particular, Montgomery,
Pokrovskiy and Sudakov [31] showed that every Latin square of order n contains (1 — o(1))n disjoint
partial transversals with (1 — o(1))n cells.

This is all to say that every large Latin square has some approximation of the properties we want
to find in a random Latin square whp. However, finding these exact properties in a random Latin
square whp is surprisingly difficult. For example, it is very challenging to show even that a typical
random Latin square contains at least one transversal, and this was proved only in 2020, by Kwan [24].

INeglecting the regiments and affixing each officer with the symbol of their rank also gives a Latin square (see Figure ,
which is orthogonal to the Latin square given by the regiments. That is, all possible n? pairs of symbols appear in matching
row/column pairs of the two Latin squares. Finding two orthogonal Latin squares of order n is equivalent to the formulation
of finding a Latin square of order n which decomposes into transversals. In this paper, we will use the latter form.
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Figure 1: Two Latin squares decomposed into transversals. On the left, the addition group of integers
mod 9 is given, which is then decomposed into transversals indicated by integers in the top right, starting
with the transversal along the leading diagonal (marked by 0) which is then moved to the right by 1
mod 9 8 times to create 8 new transversals. On the right, Bose, Parker, and Shrikhande’s example of a
Latin square of order 10 with a transversal decomposition [7].

A significant part of the challenge is finding a way to study a random Latin square. Roughly, this
can reasonably be pinned to the rigidity of Latin squares; that is, that it is hard to make small
modifications to a Latin square to reach another Latin square.

In [24], Kwan’s main focus was the closely related problem of finding a perfect matching in a
uniformly random Steiner triple system of order n = 3 mod 6, using methods that could be adapted
for transversals in Latin squares (see below as well as [24] for more details on this, and its connection
to transversals in Latin squares). Ferber and Kwan [12] subsequently showed that a random Steiner
triple system of order n = 3mod 6 contains disjoint perfect matchings covering all but o(nz) of its
edges. Though they did not do so, similar adaptations to their methods appear capable of showing
that a random Latin square of order n has, with high probability, (1 — o(1))n disjoint transversals. In
this paper, we will show that, in fact, with high probability a random Latin square contains n disjoint
transversals. In particular, then, the proportion of Latin squares of order n = 2 mod 4 which provide
a counterexample to Euler’s conjecture tends to 1 as n tends to infinity.

Theorem 1.1. A random Latin square of order n has a decomposition into transversals with probability
1—o(1).

Since the result of Kwan [24], two alternative methods have been developed to show that a random
Latin square of order n has a transversal with high probability, each moreover strengthening this result
in different ways. Firstly, Eberhard, Manners, and Mrazovi¢ [9] gave a remarkably tight estimate on
the number of transversals in a typical random Latin square of order n, using tools from analytic
number theory. Then, Gould and Kelly [I5] developed techniques from their previous work with
Kiithn and Osthus [16] to show that a random Latin square is likely to contain a particular type of
transversal known as a ‘Hamilton transversal’, using more combinatorial methods than [9], but which
are distinctly different to those in the original approach of Kwan [24]. To prove Theorem we also
take a combinatorial approach. Before discussing this further, we will discuss the connection of our
work to resolvable designs.

Resolvable designs. Our main result also forms part of the area of hypergraph decompositions,
with particularly strong links to resolvable designs. An (n,q,r, A)-design is a collection S of g-element
subsets of an n-element set X such that every r-element subset of X is contained in exactly A sets in
S. The design, moreover, is called resolvable, if S can be partitioned into perfect matchings, that is,
collections of vertex-disjoint sets in S which cover every element of X. Resolvable designs have a long
history, dating back to Kirkman’s schoolgirl problem [22] from 1850 (see [47] for a detailed history).
For any given parameters, the existence of a resolvable (n, g, 7, A)-design requires some simple necessary
divisibility conditions (see [19]). Subject to these, when r = 2 and n is large, resolvable (n,q,r, A)-
designs were shown to exist by Ray-Chaudhuri and Wilson [35] 86] in the 1970’s, while for » > 2 and n
sufficiently large, resolvable (n, q,r, A)-designs were shown to exist by Keevash [19] in 2018, following
his revolutionary proof of the existence of designs in [18].



A Steiner triple system of order n is an (n, 3,2, 1)-design; they were observed to exist if and only
if n=1,3 mod 6 by Steiner in 1853 (see [47]). Equivalently, a 3-uniform hypergraph H is a Steiner
triple system if it has n vertices, each pair of which is contained in exactly one edge. A Latin square
L of order n is equivalent to a 3-partite 3-uniform hypergraph H with n vertices in each class A, B
and C, representing the rows, columns and symbols respectively, where we add an edge abc exactly
when the symbol ¢ appears in L in the cell (a,b). Then, the conditions for a Latin square imply that
every pair of vertices of H; from different classes appear in exactly one edge of Hr. Furthermore,
a transversal in L corresponds exactly to a perfect matching in Hr, so that L has a decomposition
into transversals if and only if #; is resolvable. Thus, we have shown that the hypergraph Hr,
corresponding to a random Latin square L is with high probability resolvable.

As mentioned above, in 2020 Kwan [24] showed that if a Steiner triple system of order n = 3
mod 6 is chosen uniformly at random then it has a perfect matching with high probability. Subse-
quently, Ferber and Kwan [I2] showed that almost every such Steiner triple system has (1/2 — o(1))n
disjoint perfect matchings, where these matchings must then use all but 0(n2) of the triples, so that
the triple system is thus almost resolvable. Ferber and Kwan [I2] conjectured that, if n = 3 mod 6,
then almost every Steiner triple system of order n is resolvable. That is, that the equivalent result to
Theoremshould hold for Steiner triple systems. It would seem that new ideas are needed, however,
to show this. In particular, we will use results (discussed in Section which do not have a known
analogue in the non-partite setting as they follow by counting perfect matchings in bipartite graphs.
The techniques used in [12] [24] are quite different from those we use here. In [24] a random Latin
square is studied by approximating it using a modified random triangle removal process, while [12]
additionally uses a generalisation of the sparse regularity lemma to hypergraphs in conjunction with
a generalisation to linear hypergraphs of the resolved KLR conjecture.

Our methods. To prove Theorem [} we will construct an intricate absorption structure. We first
construct a template independent of the Latin square, and then adapt the template to a randomly
chosen Latin square using the semi-random method applied in auxiliary hypergraphs, finding the
properties we require to hold whp in a random Latin square using the deletion method and (implicitly)
the switching method. Often, we will require strong recent developments of these techniques, along
with further novelties. These techniques are described in detail where appropriate throughout the
paper, beginning with an overview of the proof, and the rest of the paper, in Section 2] Let us
highlight here, though, some particularly key points about our proof.

The first is that we develop an ‘absorption schematic’ (in Part of our proof) which gives a
sparse set of possible local corrections that together can make any (reasonable) globally-balanced set
of corrections (see Section and Sectionfor full details). This is a template for building an absorber
which is independent of our work in random Latin squares, and thus may be useful elsewhere.

Secondly, the switching method can and has been used directly to find small substructures in
random Latin squares (see, for example, [I5]), but instead we will use the deletion method. This was
used by Kwan, Sah, and Sawhney [25] to bound above the likely number of certain substructures,
and, as well as developing this, we will show how to use the deletion method to bound below the
likely number of some particular substructures we will use. This, and its advantages over using the
switching method directly, is discussed in Section

Finally, let us note here that a major source of the complexity in finding our required absorption
structure in a random Latin square via the semi-random method is that it is found in three applications
of the semi-random method to an auxiliary hypergraph, the last of which depends on a previous
application. That is, we will find part of the absorption structure and require it to satisfy some
carefully chosen properties so that we can then apply the semi-random method again to find certain
paths connecting up this initial structure. While this requires us to use a forbidding list of properties,
and to apply a recent implementation of the semi-random method using weight functions to record
desirable properties (see Section , all of these properties will confirm some simple heuristic.

2 Proof overview and preliminaries

In this section, we will sketch the overall form of our proof of Theorem before briefly outlining
the rest of the paper and then covering some preliminaries. Most notably, these preliminaries include
recalling an implementation of the semi-random method (in Section [2.3|) and the results we will use
to prove many of the properties in random Latin squares (in Section



2.1 Proof sketch

As is now common (and following, for example, [20]), we will approach Theorem by studying an
equivalent formulation in properly coloured graphs. Let K, ., be the complete bipartite graph with
vertex classes A and B, where |A| = |B| = n. A proper colouring of K, , is a colouring of the edges
so that no two edges which share a vertex have the same colour. An optimal colouring is a proper
colouring which uses the minimum number of colours among all proper colourings, which, for K, ,, is
n. We will always assume K, is properly coloured using colours from C := [n] = {1,...,n}.

Given a Latin square L of order n whose rows are indexed by A and columns by B, which further-
more uses the symbol set [n], we can define an equivalent optimal colouring of K, , as follows. For
each a € A and b € B, let the colour of ab, denoted by c(ab), be the symbol in the cell of L whose
row corresponds to a and whose column corresponds to b. That a Latin square has n symbols with
no symbol appearing twice in any row or any column immediately implies that this colouring uses
n colours and is proper, and thus we have an optimal colouring of K, ,. Similarly, a Latin square
of order n can be constructed from any optimal colouring of K, ,, and thus the optimal colourings
of K, correspond exactly to the Latin squares of order n. Furthermore, it is easy to see that a
transversal in a Latin square corresponds exactly under this equivalence to a perfect matching in the
corresponding optimally coloured K, , which has a different colour on each of its edges. We refer to
such a matching as a rainbow perfect matching. Further connections and related problems on rainbow
subgraphs can be found in the recent survey by Pokrovskiy [34].

We will show the following equivalent version of Theorem

Theorem 2.1. Let G be an optimally coloured copy of Kn n chosen uniformly at random from all such
colourings. Then, with probability 1 — o(1), G has a decomposition into rainbow perfect matchings.

We write GE°! for the collection of optimally properly coloured copies of K, ,, coloured with colour
set C = [n] and write G ~ G when G is selected uniformly at random from GS°'. Our aim, then,
is to show that G ~ G with high probability has a decomposition into n-edge (perfect) rainbow
matchings, Mi,...,M,. We refer to these rainbow matchings as our target matchings. Using the
semi-random method (as, for example, implemented in Latin squares by Montgomery, Pokrovskiy
and Sudakov [3I]) it can be shown that any G € G5! contains n disjoint rainbow matchings of size
(1 —o(1))n. With care, this could be used along with a random partitioning of the remaining edges
(somewhat like we do in Section 7.6) to show that, with high probability, G ~ G2 can be decomposed
into n rainbow subgraphs M, ..., M,, one for each of our n target matchings, which each have n edges
and are close to perfect matchings, in that they have maximum degree at most 2 and (1 — o(1)) - 2n
of the vertices have degree 1. Our aim is to take such a relaxed decomposition, and correct it into n
perfect rainbow matchings. To do so, we will use methods falling under the overall general technique
of ‘absorption’, as codified by Rodl, Ruciriski, and Szemerédi [39] in 2006. The fundamental idea here
is that we should prepare for the corrections we will need to make at the end by initially choosing
parts of our random subgraphs to allow later corrections to be made. In particular, this preparation
and care at the start ensures that we are able to make a large number of different possible corrections,
which subsequently leads to more flexibility in completing to a suitable relaxed decomposition, which
we then know can be corrected into perfect rainbow matchings due to the care taken at the start.

To illustrate this, let us give a simple example (see also Figure . Suppose a vertex = has degree
2 in M; and degree 0 in My while a vertex y has degree 2 in M2 and degree 0 in M;. If there are
matchings Fy C M; and F> C M> such that F; and F> have the same colours and have the same
vertex set except that V' (F1) contains = but not y and V(F5) contains y but not z, then we can correct
the degrees of x and y in M; and M2 by switching F; and F» between these near-matchings. That
is, letting M{ = (M1 \ F1) U F> and M3 = (M2 \ F2) U F1, we have two subgraphs which still have n
edges and are still rainbow, use all the edges in M7 U M> (so are still edge-disjoint from Ms, ..., M),
and in which the degrees of all the vertices in M{ and M} are the same as in M; and M> except now
z and y both have degree 1 in these subgraphs. We call (F1, F>) an {(1,z), (2, y)}-switcher, as it can
alter the degree of x and y in M; and M> while keeping the edge colours and other vertex degrees the
same.

We could ensure that M; and M, contain together such a switcher by finding in G an z, y-path
whose odd and even edges form subgraphs which are rainbow and use the same colour set, and
assigning the even edges to M; and the odd edges to Mz (see Figure [2| for a shorter example of the
switcher we eventually use). As discussed later, some such paths will likely exist when we choose
G ~ G, though they will be rare enough that we will have to specifically construct our matchings
to contain such a switcher. Given edge-disjoint rainbow near-matchings M, ..., M,, i,j € [n] and
either z,y € A or z,y € B, we define an {(i,x), (j,y)}-switcher to be an even length z,y-path P
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Figure 2: A simple {(i, ), (j,y) }-switcher.

consisting of edges eijez...e2s for some s € N such that Mogqa := {e2—1 : k € [s]} € M; and
Meven := {eak : k € [s]} C M;, with Moaa and Meven being rainbow matchings with the same colour
set. As described above, such an z, y-path P would enable us to switch edges in M; and M such that
the updated subgraphs are still rainbow in the same colour set and now in M; vertex x has degree one
less and y has degree one more, and in M; vertex y has degree one less and vertex x has degree one
more.

These switchers are a simple mechanism to make a small correction to two near-matchings. We
wish to keep these switchers as simple as possible as it will be difficult to find many of them in a
random optimal colouring of K, ,,. We will, then, need to build and use these switchers very carefully,
due to the following two main considerations.

e We can only create few switchers. There are around n* choices for 4, j, u, v for which we
could find an {(4,u), (j, v)}-switcher, but the switchers we use need to be chosen edge-disjointly,
so we can use at most ©(n?) of them.

¢ We have to make local alterations in pairs. Each near-matching ]\}[i, i € [n], will have a
set of vertices that are not covered, R}, and a set of vertices that are covered twice, T;. Using
switchers, we cannot swap out v € T; from M; (i.e., altering its degree from 2 to 1) and swap
in u € R} without swapping u out of another near-matching Mj and swapping v into the same
near-matching, M;, so we must find some j € [n] such that u ¢ R} and v ¢ T}, and that this
swap is desirable.

To reduce the number of switchers we will need, we will divide our target matchings into ‘families’,
and ensure that the corrections we need to make at the end can be done only by switching vertices
between target matchings in the same families. Furthermore, we will ensure that the vertices uncovered
or covered twice by each near-matching M; belong to sets R; and T;, respectively (where R; will
function as a ‘vertex reservoir’ in absorption terminology). We will arrange the families into ‘tribes’,
where families in the same tribe will help each other to make their corrections by participating in
swaps that do not change the degrees or edge colours for that matching. The tribes will make their
corrections essentially independently of each other, reducing the number of potential switchers we
need to create.

Having created our absorption schematic, we then find the switching paths we need with high
probability in the randomly chosen graph G ~ G<'. This will result in rainbow near- matchings
M, .. M' that we then wish to extend to get n-edge perfect rainbow near-matchings Ml, cee M,.
For each i € [n], in extending to get M; we wish to use exactly all the colours not used on M, while
also covering a set L; of all the vertices without at least one edge in Mz’ which are not in R;. The
flexibility to do this will come from being able to find edges to cover those vertices in L; that have
their other end point in the reservoir set R;, where |R;| is much larger than |L;|. Furthermore, we
wish to do this so that we can make the final corrections only within each family, so we will need to
do these extensions so that the corrections needed for the matchings within each family are suitably
balanced.

To summarise, then, we will divide the proof into three mains parts, as follows.

A Creating an absorption schematic.
B Realising the absorption schematic by finding disjoint rainbow near-matchings.

C Extending the near-matchings to perfect rainbow near-matchings, so that furthermore the re-
quired corrections are balanced within families and any unused vertices lie in the reservoir sets.

Each of these parts is relatively complex and thus we will sketch our methods in detail before
beginning each part. However, for now, we make some brief remarks on some of the ideas we use.
For Part we will use ideas from template-based absorption approaches (whose roots lie in the
introduction of distributive absorption in [28]) to reduce the number of different switchers we need to



create. To decompose the final changes that need to be made to obtain appropriate pairs of switches,
we will use methods inspired by work of Barber, Kiithn, Lo and Osthus [5].

For Part|B] to find the switching paths we will use the semi-random method as created by Rodl [37],
using a strong recent implementation by Ehard, Glock and Joos [10]. For this, we will need to find
tight bounds on, for example, for each pair of distinct vertices z,y in the same class (i.e., in A or
B) the likely number of z,y-paths of length 62 in G whose odd and even edges use the same 31
(distinct) colours. For the upper-bound on their number that holds with high probability we will use
the deletion method of R6dl and Ruciniski [38], following and developing recent work of Kwan, Sah and
Sawhney [25]. In contrast to the direct use of the switching method used by, for example, related work
of Gould, Kelly, Kithn and Osthus [16], we show how to use the deletion method for the lower bound
as well, where more discussion on this approach, and why we take it, can be found in Section [5.1

For Part[C] we again use the semi-random method along with greedy methods to cover vertices not
in the vertex reservoir for each target matching. To balance the corrections needed within each family,
we use structures similar to those in Figure[2] but we will not need to set them aside beforehand for this
purpose. Finally, then, we carefully randomly partition the remaining edges between the matchings.

Paper outline. In the rest of this section we will describe some of our key notation before
covering some other preliminaries. In Section [3] we will give a detailed set-up and divide the proof
of Theorem [2.]] formally into three key lemmas, representing Parts [A] and [C] respectively. In
Sections [4] [6] and [7] we will carry out Parts[A] [B] and [C] of our proof respectively, whilst in Section
we obtain bounds on the numbers of switchers with certain fixed colours and vertices, which are crucial
for aspects of the proof in both Parts [B] and [C]

2.2 Notation

Much of the notation used throughout this paper is introduced when it first appears, but here we will
comment on some notation used throughout the paper. For each n € N, K, ,, is the complete bipartite
graph with n vertices in each class, where we use A and B throughout as its two vertex classes. We use
C = [n] = {1,...,n} throughout as our set of colours, and also use [n]o = {0,1,...,n}. For vertices
z,y € V(Knn), we use & ~4,p ¥y to indicate that x and y are in the same vertex class A or B, and
Z % a/B Y to indicate that x and y are in different vertex classes. For a set of colours D C [n], gt
is the collection of all properly coloured bipartite (simple) graphs with vertex classes A and B which
have exactly n edges of each colour in D. Then, g[i;’]l corresponds to the collection of all Latin squares
of order n using the symbols in [n] under the standard equivalence recalled at the start of this section.
We write G ~ GS! when G is a graph chosen uniformly at random from G¥'. When G € Q[C,f]l and
D C [n], the graph G|p is the subgraph of G of edges with colour in D.

‘We will occasionally use multisets, where the elements may occur with repetition. Here, we write
X =mult Y to require not only that the elements of X and Y are the same, but that the multiplicity of
each element is the same. For each edge e in a coloured graph G, we write cg(e) to denote the colour
of the edge e, often dropping the subscript when it is clear from context. Furthermore, unless stated
otherwise, we write H C GG, to mean that H is a subgraph of G which inherits the colouring from G.
That is, for each e € E(H) we have that cg(e) = cg(e). An z,y-path P of length ¢ is a path with ¢
edges which has = and y as its endvertices, and we set £(P) = £. We often have an implicit direction
on such a path P, and when referring to its kth edge we count from =z.

The notation Pg<\ is used throughout the paper to compare variables. Where « 22 B, this means
that there is some constant C' > 0 which can be chosen so that any required inequalities in the rest
of the proof hold if o < g€ /C. For longer hierarchies (as found primarily at ), these implicit
constants are to be chosen from right to left. A detailed overview of this notation can be found in [31].
Less commonly, we also use the more standard notation a <  where this means that there is some
non-negative decreasing function f such that what follows will hold for all @ < f(8). Thus, « < 154
means that such a function f can be taken to be polynomial in 8. We also use ‘big-O’ notation, as
standard. For any a,b,c € R, wesay a =b+cif b —c < a < b+ c. For any hypergraph H, we use
A°(H) to denote the maximum codegree of H.

2.3 Matchings in hypergraphs via the semi-random method

Almost-regular hypergraphs with small codegrees have an almost-perfect matching. This statement
summarises a chain of results using the ‘Rddl nibble’ (also known as the ‘semi-random method’), that
was initiated by Rodl [37] in 1985, and has since seen a range of qualitative improvements in the



variables implicit in ‘almost’-regular, ‘small’ codegrees and ‘almost’-perfect. The ‘polynomial’ bounds
we will use result from a sequence of improvements due to Frankl and Rodl [13], Pippenger (see [10]),
Alon, Kim, and Spencer [I], and Kostochka and Rodl [23].

Beyond good bounds, we will use that the almost-perfect matching found can in fact have a variety
of pseudorandom conditions. For example, in a hypergraph H, given a medium-sized vertex set V,
we may wish the almost-perfect matching to cover almost all of V. Alon and Yuster [3] built on work
of Pippenger and Spencer [33] to give the first result of this kind, showing that the almost-perfect
matching could be found to be pseudorandom with respect to many pre-specified vertex sets. We
will use the following result of Ehard, Glock, and Joos [10], which gives good bounds on the various
parameters involved, while producing an almost-perfect matching that is pseudorandom with respect
to many pre-specified weight functions.

Theorem 2.2. [0, Theorem 1.2] Suppose 6 € (0,1) and r € N with r > 2, and let e = §/50r>. Then,
there exists Ao such that, for all A > Ao, the following holds.

Let H be an r-uniform hypergraph with A(H) < A and A°(H) < A'™° as well as e(H) < exp(As2).
Suppose that W is a set of at most eXp(AE2) weight functions on E(H). Then, there exists a matching
M inH such that w(M) = (1£A%)w(E(H))/A for allw € W with w(E(H)) > max.c px) w(e) A,

2.4 Results on random Latin squares from switching methods

A Latin rectangle of order n with k rows is a k x n array filled with n symbols so that each symbol
appears in each row or column exactly once. Thus, a Latin rectangle of order n with n rows is a
Latin square of order n, and picking k rows of any Latin square forms a Latin rectangle. Working
in edge-coloured graphs, under the correspondence given at the start of Section to move between
Theorem and Theorem such a Latin rectangle corresponds to a complete bipartite graph
which is properly coloured with n colours before n — k vertices are deleted from one vertex class. More
naturally, we will consider instead here the following equivalence to k-regular bipartite graphs with n
vertices in each vertex class which are properly coloured with k colours.

Let D C [n] be a set of size k. Let A and B be our two vertex classes of n vertices. Let G be a
k-regular bipartite graph with vertex classes A and B which is properly coloured with the colours in
D. Let L(G) be the k x n grid with rows indexed by D and columns indexed by A, where we put the
symbol b € B in the cell indexed by (¢, a), with ¢ € D and a € A, exactly if ab is an edge in G with
colour ¢. Note that L is a bijection from G$' to the set of Latin rectangles with rows indexed by D,
columns indexed by A, and the set of symbols given by B.

We will use the following result, which is [25] Theorem 3.3] (itself a direct result of McKay and
Wanless [27, Proposition 4]) rephrased equivalently in random optimal colourings (see also [I5, Propo-
sition 4.4]).

Theorem 2.3. Let D C [n] and H, H' € G'. Let G ~ Gf:b’]l Then,

P(Glp =H) _ omies®n)
P(Glp = H') '

Given a € A, b € B, ¢ € [n] and G ~ fol’]l, the probability that ab has colour ¢ in G is 1/n by
symmetry. In other words, if H is the bipartite graph with vertex classes A and B which has only
one edge, an edge between a and b with colour ¢, then P(H C G) = 1/n. As long as H has few
edges and is properly coloured with colours in [n], we might hope to show that P(H C G) is close to
(l/n)e(H). The rigidity of optimal colourings of K, , (i.e., the corresponding rigidity of Latin squares),
however, makes it difficult to determine this probability. However, we can have a good bound on the
corresponding probability for P(H C G|p), where D C [n] contains all of the colours of the edges
of H (and not too many edges have the same colour). The following bound is a direct consequence
of Theorem 3.4 in [25] translated into random optimal colouring. The original was, in turn, a direct
consequence of a result by Godsil and McKay [I4, Theorem 4.7]) which was proved using the switching
method.

Theorem 2.4. Let 6 < 1/10 and D = [én]. Let H be a properly coloured bipartite graph with vertex
classes A and B which uses colours from D in which each colour appears at most on times.
Let G ~ G, Then,

P(H C Q) = (LO((S)) dH).

n



We will always apply Theorem and Theorem together, and therefore it will be convenient
to do this through the following corollary.
Corollary 2.5. Let § < 1/10 and G ~ G[C:Z]l Let H be a properly coloured bipartite graph with vertex
classes A and B which has at most dn colours, each of which is in [n] and is used at most én times in
the colouring. Then,
P(H C G) = Ot enios’m) et

Proof. Let D C [n] be a set of dn colours containing C'(H). Let G’ ~ G%', so that, by Theorem [2.4]

e(H
1+O(5)) ) _ OGee(H))  —e(H)
n

P(H Cc G') = < 1)

Then, by Theorem [2.3] we have

R 6O(nlog2 n) O(n 1082 n) ,
P(H C G) = Z P(Glp = G) = Z er nlog®n) pofr G
GegliHCG GegwliHCG p
eO(é-e(H)+nlog2 n) n—e(H)7
as required. O

2.5 Concentration inequalities

We will use the following standard version of Chernoff’s bound (see, for example, [2]).
Lemma 2.6. Let n be an integer and 0 < §,p < 1. If X is a binomially or hypergeometrically
distributed random variable with mean p = E[X]| = np, then

P(X > (1+0)u) < e K/ and P(X < (1-90)u) < eOn/3,

We will also use McDiarmid’s inequality (see [26], Lemma 1.2]), in the following form.
Lemma 2.7. Let Xi,...,X,n be independent random variables taking values in Xi,..., Xm respec-
tively, and let ¢; > 0 for each i € [m]. Let f : X™ — R be a function of X1,..., X such that, for all
i € [m], z; € X;, and z; € X; for each j € [m], we have
|f(£L‘17 . .,xi,l,wi,xprl, . .,{lﬁm) — f(.l‘l, . .,$i71,$;,$i+1, - 7JZW)| S Ci.
Then, for allt > 0,

2¢2

P(If(X1, ..o, Xm) = E(f(X1,..., Xm))| > 1) < 2¢ St

3 Set-up and division into key lemmas

In this section, we will choose the variables we will use in Section @ using them in part to partition
the vertex/colour/edge sets in Section in preparation for constructing the matchings. We then
state three key lemmas corresponding to the three parts of our proof in Sections [3.3] to The first
key lemma is included here to give concrete details of the absorption schematic, but we do not use it
directly in this section, applying it to prove the second key lemma later. In Section [3.6| we use the
second and third key lemmas in combination to prove Theorem

3.1 Variables

Recall that, to prove Theorem [2:I} our aim is to show that a uniformly random choice of an optimally
coloured copy of Ky, decomposes into n disjoint rainbow perfect matchings, with high probability.
For each target matching i € [n], we will have vertex sets R;, Si, T;, U;, Vi, W;, X;,Ys, Z;, as depicted
in Figure We now choose variables, where, for example, for each i € [n], R; will be chosen (in
Section |3.2) to be a random vertex set with around 2prn vertices. Take the following variables:

1 rowy POLY POLY POLY POLY POLY

- L PrryPra K € K 7 K B K Peov K Phalyl - -

POLY POLY POLY POLY POLY POLY

1
. K praz K Ppt, 0 L pr K pu K py K pw, Togn’ (2)
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where, after setting up some more variables, we will ensure pw and ppt satisfy two equations (see
(3)). Take the following variables (which are stated first for future reference, and then after briefly
explained).

pr = (1+a)pr ps = pu +pv + pw pz = 24(ps — pr) ps = 72(ps — pr),

px = (1+B)pr py = (14 B)121(ps — pr) pz = (1+pB) - 61-72(ps — pr)
pr = 20+ Bpr po = D0+ B)ps —pr) ps = 82:72:(L+ B)(ps —pr)
(1+a)(1—ppt) 1 — ppt 1 — ppt
Pabs = 1 — Ppt Bo = S PS—R = Ps — PR
1+
Furthermore, take the values of pw and pp¢ appropriately so that
ps+px +py +pz=1 and  p1+p2+p3=1, (3)

where for the first equation this is possible as pw is at the top of the hierarchy at and for the
second equation we can set pp¢ so that this holds and then, as we do now, check that pp fits into this
hierarchy. From ps + px + py + pz = 1, we have

ps+ (1+8)(1+a) 'pr+ (121 +61-72) - (L+ B)(ps — pr) = 1,
so that, from p1 + p2 + p3 = 1, we have

(1—ppt) =21+ B) 1+ ) 'pr + (1 + B)50(ps — pr) + (L + B) - 62 72(ps — pr)
=1-ps+(1+pB)(1+a) 'pr+(1+p)(ps —pr)
=1-ps+ (1 +B)pr+ (1+B)(ps —pr)
=1+ B(pr +ps —pr) +pr —Pr
=1+ B(pr +ps —pr) —pr - Q, (4)

and hence
pot = (14 /B)apr. (5)

Thus, as pr & pr and 8 < « < pr, it follows that 8 P&gppt, a < pr, as required.

To give some explanation behind these variables (which will perhaps only really make sense when
they are used), we note the following. Later, we will construct a set Z representing the switchers we
wish to create (as discussed in Section , and we will have |Z| ~ pzn?. The set J with size around
psn? will be found in Part and represent simpler switchers, where each element of Z will give
rise to 3 elements of 7, and therefore we have chosen py = 3pz. As discussed in Section [2} for each
1 € [n] the set R; will be a little larger than T;, and this is why we have chosen pr = (1 + a)pr. For
each i € [n], we will match 7; into X;, and so X; should be a little larger than T3, and thus we have
chosen px = (1+ B)pr.

For each i € [n] and u € S; \ R; (where |S;\ Ri| = 2(ps —pr)n), we will wish to create 24 switchers
involving switching u out from the ith near-matching, and thus as our instructions will give two such
pairs (i,u) to switch between, we have chosen pr = 24(ps — pr). For each i € [n] and u € S; \ R;, for
the ith matching we will initially assign 1 vertex from Y; common to all the 24 pairs in Z involving
(¢,u) and 5 other distinct vertices from Y; to each of these pairs. (For each pair, from the 6 assigned
vertices we will take 3 pairs into J, explaining why ps = 3pz). As, for each i € [n], we should use
slightly fewer than 2pyn vertices (the rough size of Y;), we have set py = (14 5)-(1+24-5)(ps — pr).
For each pair in J, we will construct a path as in Figure [2] but with length 62, using internal vertices
in Z; when the ith near-matching is involved. For each i € [n], this will be around 2psn pairs and we
will have |Z;| ~ 2pzn, and thus we have chosen pz to be a little larger than 61ps.

The variables p1, p2 and p3 will be used to partition the colours into sets D1, D2 and D3, where
we reserve edges with probability pp for Part |g, and use the remaining edges of each colour set for
Parts to respectively. For Part we find for each ¢ € [n] a matching from 7T; into X;, and
thus use around 2prn? edges in total; thus (1 — ppi)p1 is a little larger than 2pr = 2pgr - (1 + ).
For Part for similar reasons to those in our discussion with Y;, for each i € [n] and u € S; \ R;
we find one edge and then, additionally, two edges for each pair in Z involving (¢,u), for around
2(ps — pr)n® + 2pzn? edges in total. Therefore, we have chosen ps so that (1 — pp) is a little larger
than 2(ps —pr+pz) = 50(ps — pr). Finally, for Part we will find 62 edges for the switching path
for each pair in 7, for around 62psn? edges in total, and thus we have chosen ps so that (1 — ppt) is
a little larger than p3 = 62py = 62 - 72(ps — pr).
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AUB

Uil Vi Wi

Ri Si

Figure 3: For each ¢ € [n], we have a partition of AU B into S; U X; UY; U Z; (which is the same for
individuals 4 in the same tribe), a partition S; = U; U V; U W; (which is the same for individuals 7 in the
same family) and disjoint sets R;,T; C U; (which are distinct for each individual i € [n]).

3.2 Tribes, families, and partitions of the vertices, colours and edges

We now partition our target matchings into families, where the families are grouped into tribes, and
partition our vertices, colours, and edges into different sets which are used for different purposes
throughout the paper.

Tribes and families. Let 7 be a set with size [p,'], which we use to index our tribes, and,
for each 7 € T, let F; be a set with size [pf;lw, which we use to index the families of the tribe 7.
Partition [n] as equally as possible into I, 7 € T, and then, for each 7 € T, partition each I, as
equally as possible into Iy, ¢ € Fr. Let F = |J .+ F- be the set of all of the families. Note that
\F| = [pt1pe'] = (1 £ ¥)pglp,!, for each 7 € T, |I;| = (1 £ €*)pun, and, for each ¢ € F,

POLY

1o = (1 £ 52)ptrpfan. For this, we have used that 1/n }Zg Pir, Pta K E.

Vertex partitions (see Figure . Recall that A and B are disjoint vertex sets with size n, which
we always use as the vertex classes of our complete bipartite graph. Using , independently, for each
7 € T, partition AU B into S;, X, Y-, and Z; so that the location of each vertex v is independent
and such that

PveS;)=ps, PheX;)=px, PweY.)=py and PveE Z;)=pz.

For each 7 € T, using that ps = pu + pv + pw, independently, for each ¢ € F,, partition S, into
vertex sets Uy, Vy and Wy by, for each v € S7, choosing the location of v independently at random
so that

P(v e Uy) =pu/ps, PlveVy)=pv/ps, and Pv € Wy)=pw/ps.
For each 7 € T, ¢ € F; and ¢ € Iy, take disjoint sets R;,T; C Uy such that, for each v € Uy, the
location of v is chosen independently at random so that

P(v € R;) =pr/pv and P e T;) =pr/pu.

Foreach T € T and ¢ € Fr, let Sy = S+, Xo = X, Yy, =Y, and Zp = Z,. Foreach 7€ T, ¢ € F;
andi € Iy, let S; =S-, Xs =X, Y=Y, Z; =2, Uy = Uy, Vi =V, and W; = W.

For each i € [n], create X; = X; 0 U X; 1 by, for each v € X;, independently at random letting
v € X;,0 with probability £o, and, similarly, create Y; = Y; o UY; 1 and Z; = Z; 0 U Z; 1.
Colour partitions. Let C' = [n], so that C is the set of colours we will use. Partition C = D;UD>UDs3
by, for each ¢ € C, choosing the location of ¢ independently at random so that

]P)(C S Dl) = p1, ]P(C S Dg) = p2, and P(C S Dg) = p3.

For each ¢ € [n], let C; C C be formed by including each colour independently at random with
probability ppt. For each j € [3] and ¢ € [n], let D;; C D; be formed by including each colour
independently at random with probability 1 — 8o = 8/(1 + §).

Edge partition. Let G ~ G[CT(L’]I Partition E(G) = EP' U E***, by choosing the location of each
e € E(G) independently at random so that P(e € EP') = ppe and P(e € E*™) = paps (using that
Pabs = 1 — ppt). Partition E*PS = E3™ U E?** by choosing the location of e € E*** independently at
random so that if e € E*P® then P(e € E§**) = o and P(e € E™) = 1 — By. Furthermore, partition
E3s ag Eibj U Eib§ U Efbf/f by choosing the location of each edge independently and uniformly at
random.
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3.3 Part [Al Absorption schematic

To state our main result for Part [A] we use the following two definitions.
Definition 3.1. Given a collection C C {{(¢,u), (j,v)} : 4,5 € [n],i # j,u,v € AUB,u # v}, i € [n]
and u € AU B, we say that (¢,u) is (< 1)-balanced in C if either

e there is exactly one (j,v) with {(¢,u), (j,v)} € C and exactly one (v, j) with {(¢,v), (j,u)} € C, or

o there is no (j,v) such that {(¢,u), (j,v)} € C and no (v, j) such that {(¢,v), (j,u)} € C.
Definition 3.2. We say u ~4,p v if either u,v € A or u,v € B.

We now state our key lemma which encapsulates Part [A] which provides an ‘absorption schematic’

which, as mentioned in Section we will use to tell us which switchers we should find in Part
The key lemma is proved in Section EI

Lemma 3.3. With high probability, the sets R;,Si,T;, i € [n], set-up as detailed in Sections
and[3-9 satisfy the following.
For each 7 € T, there exists a collection

Z c {(iu), Gyv)} s i g € Inyi # jyu € Si \ (Ri UTj),v € S\ (T UR;),u # v,u~a v} (6)
such that the following hold.
A1l For eachi € I, and u € S; \ Ry, there are exactly 24 pairs (§,v) such that {(i,u), (j,v)} € Z,.
A2 For each distinct i,j € I, andu € S;\ Ry, there is at most one v € S;\ R; with {(,u), (j,v)} € Z-.
A3 For eachi € I, and u € S; \ Ti, there are at most n'/3 pairs (j,v) such that {(i,v), (j,u)} € Z,.
A4 For each distinct i,j € I, there are at most n'/® pairs (u,v) with {(i,u), (j,v)} € Z,.
A5 For each distinct j,j' € I, there are at most nl'/3 tuples (i,u,v,v’) for which we have that
{G,w), (4, 0)}, {6 w), (7, 0")} € I,
A6 For each j € I, and u € S; \ T there are at most n*/® pairs (i,v) with {(i,u), (j,v)} € ..
AT For any collection of sets R; C R;, i € I such that, for each i € [n], |R;| = |T;|, and, for each
¢ e Fr, Ui61¢ R} =t Ui61¢ T;, there exists C C I, satisfying the following.
AT.1 For every i € I, and u € T, there is exactly one (j,v) such that {(i,u), (j,v)} € C.
AT.2 For everyi € I. and u € R}, there is exactly one (v,j) such that {(i,v), (j,u)} € C.
AT7.3 For everyi € I. and u € R; \ R}, there is no (v,j) such that {(i,v), (j,u)} € C.
A7.4 Foreveryi € I. andu € S; \ (R UT;), (i,u) is (< 1)-balanced in C.

3.4 Part Realisation of the absorption structure

We now state our key lemma which gives the result of Part [B| (using the schematic found in Part .
It is proved in Section [f] using the work in Section [f]
Lemma 3.4. Take the set-up detailed in Sections and where, in particular, we have G ~ Gfﬁ]l
and that the edges of G appear in E*™ C E(G) independently at random with probability pavs, while,
for each i € [n], C; C C is a random set of colours where each colour is included independently at
random with probability ppr = 1 — pabs-
Then, with high probability, there are edge-disjoint subgraphs M, ..., M, in G[E*™] such that the
following hold.
Bl a) For eachv € V(G) and ¢ € F, there are at most 4Bpupn i € Iy such that v ¢ V(M;)UR;.
b) For each c € C(G) and ¢ € F, there are at most 2Bpupian @ € Iy such that ¢ ¢ C(Ml) uc;.
c) For each v € V(G), the degree of v in G[E*™]\ (Uiepn) M) is at most 2fn.
d) For each i € [n], there are at most 48n vertices in V(G) \ R; that have degree 0 in M;.
B2 For each i € [n], every verter in R; has degrAee 0 in Mi, every vertex in T; has degree 2 in Mi,
and every other vertexr has degree 0 or 1 in M;.
B3 For each i € [n], M; is a rainbow subgraph with colours in C \ C;.
B4 If there ezist edge-disjoint matchings M, ..., My in G — My — ... — M, with the following
properties, then G has a decomposition into perfect rainbow matchings.
i) For each i € [n], AJ\;L- is vertex disjoint from M; and contains every verter outside of R; that
has degree 0 in M;.
ii) For each i € [n], M; U M; is an n-edge rainbow subgraph.
iii) Letting R, = V(G)\ V(M; U M;) for each i € [n], we have, for each T € T and ¢ € F-, that
|Ri| = |T3| and Uie[¢ R =mue Uie[d, T;.
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3.5 Part [C} Covering, balancing, and the partition of the final edges

We now state the key lemma for Part @, which we will use to partition the final edges, and which is
proved in Section [7}

Lemma 3.5. Take the set-up detailed in Sections and where, in particular, we have G ~ Gfs]l
and that the edges of G appear in EP* C E(G) independently at random with probability pyt, while, for
each i € [n], C; C C is a random set of colours where each colour is included independently at random
with probability ppy. Then, with high probability, we have the following.

Suppose we have an edge set E C E(G), and sets Vi C V(G) and C; C C(Q), i € [n], which satisfy
the following properties.

Cl1 E** C E.

C2 For each i € [n], |Vi| = 2|Cy| + |T3|.

C3 For each i € [n], R; C Vi and |\7, \ Ri| < 40n.

C4 For each i € [n], C; C C; and |C; \ Cy| < 28n.

C5 Foreachv € V(G) and ¢ € F, |{i € Iy : v € Vi \ Ri}| < 4Bpupran.

C6 ForeachceC andp e F,|{i€ly:ce€ &, \ Ci}| < 2Bperpran.

C7 For eachv € V(Q), [{e € E\ EP* : v € V(e)}| < 26n.

C8 Foreachv e V(Q), {ec E:veV(e)}={icn]:veVi}| - |{icn]:veT}

C9 ForeachceC, |[{ec E:cle)=c}|=|{ic[n]:ceC}|

Then, E can be partitioned into matchings Ml, A M,, such that the following hold.

C10 For each i € [n], Mi is a rainbow matching with colour set CA'z
C11 For each i € [n], V; \ Ri C V(M;) C V;.
C12 For each ¢ € F, Uield) R\ V(Mz) =mult Ui€I¢ T;.

3.6 Proof of Theorem [2.1] subject to Lemmas and
To finish this section, we deduce Theorem [2.1] from Lemmas [3.4] and

Proof of Theorem[2.1} Take the set-up detailed in Sectionsandwith G~ Gf;;]l By Lemma
we have, with high probability, that if £ C E(G), and, for each i € [n], Vi C V(G) and C; € C(G), are
such that hold, then E can be partitioned into matchings Ml, . M., such that J@I
hold. Furthermore, by Lemma with high probability there are disjoint subgraphs M,..., M, in
G[E**] such that hold.

For each i € [n], let C; = C'\ C(M;) and V; = V(G) \ V(M;). Let E be the set of edges of E(G)
which are not in Mi, ..., My, so that, as these subgraphs are all in E*, we have that E** C E and
hence holds. For each i € [n], by [B2] we have

Vil = 2n — |V (M;)| = 2n — 2| E(M)| + |Ti| = 2n — 2IC(M:)| + |T3| = 2|Ci| + [T,

and t}}erefore holds. For each ¢ € [n], note that, by we have that C; C C’i, and, by
R; C V;. Then, combining this with m we have that both and hold.
For each v € V(G) and ¢ € F, by a)l

Hiely:veVi\R} =|Is|—|{icls:ve R} —|{icls:ve V(M) <4Bpupnn,
and therefore holds. For each c € C, by Eﬂ,
|{Z (S I¢ 1c e éz \ Cz}| = |I¢| — ‘{Z S I¢ icE C(Ml)ﬂ — ‘{Z S [¢ rcE Cl}| < Q,Bptrpfan,

and therefore holds. Note that follows from
For each v € V(G),

Hee E:veV(e)}=n—|{icn]:ve V(M) - |{icn]:veT}
=|{ien]:veVi}|—|{i € [n]:ve T},
and thus holds. Furthermore, for each ¢ € C, we have

Hee E:cle)=c}=n—|{icn]:cec C(M)} ={ien]:ceCi},
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and thus holds.

Therefore C HC9|all hold. Then b Lemma E can be partitioned into matchings My, ..., M,
such that 2/ hold. From [C11} for each i € [n], as V; = V(G) \ V(M;), we have that M; and
M, are vertex- dlSJOlnt and M; contams every vertex outside of R; with degree 0 in M;, and therefore
Iﬁllnholds For each ¢ € [n], by we have C(M;) = C; = C\C( M;), and thus, as both M
and M; are rainbow, [ii)|in [B4|holds. Now for each i € [n], let R} = G’? i V(M;UM;) = R;\ V(M

so that, by m in - 4| holds. Therefore, as M, ..., M, satlsfy of. by! G has a
O

decomposition into perfect rainbow matchings, as requ1red.

4 Part [Al: Absorption schematic

In this section, we will prove Lemma [3.3] In Section [£I] we sketch how we construct our absorption
structure, and divide its construction into three parts, which we call Parts In Section [4.2]
we give the basic properties we will need for the vertex sets involved in Lemma In Section we
carry out Part In Section 4] we construct an auxiliary graph that we will use as a template in
our construction. We then carry out Parts [A.2] and [A.3]in Sections [4.5] and [4.6] respectively, before
using this to complete the proof of Lemma [3.3] in Section [£.7]

4.1 Sketch of the absorption schematic

In this section, and only in this section, we will use colours to index the target matchings to make for
easier visualisation. Note that the lemma we wish to prove, Lemma [3.3] does not involve the colours
of the edges of G ~ G‘[‘,‘j’]l, or indeed any graph G, but only the vertex subsets we have chosen randomly
in AU B. In this section, then, we will consider the target matching M; to have colour i.

We will make the corrections within each tribe independently of the other tribes, so for this sketch
let us fix 7 € 7. The key absorption property we want to develop is [A7] The property considers
any collection of sets R, C R;, i € I, such that, for each i € [n], |R;| = |T;|, and, for each ¢ € F,
Uiel¢ R, =mun Uiel¢ T;. At the very end of our constructions, this represents that, for each i € [n],

in the ith near-matching, every vertex will have degree 1 except for the vertices in R} which will have
degree 0 and the vertices in T; which will have degree 2. As discussed in Section 21} we wish to find
a set C of pairs {(i,u), (j,v)} with 4,5 € I; and u,v € S, such that, if for each pair {(i,u), (j,v)} we
decrease the degree of u and increase the degree of v by 1 in the ith near-matching while making the
reverse change in the jth near-matching, then we will correct all the near-matchings indexed by I-
into actual matchings. These corrections need to be made in pairs so that they can be done without
affecting any of the other restrictions.

We will use auxiliary coloured multi-digraphs to represent the changes that this makes (see Fig-
ures |4H7). For example, in a digraph with vertex set S-, we use an edge from u to v with colour 7 to
represent in the ith near-matching the decrease of the degree of u by 1 and the increase of the degree
of v by 1. Thus, the change wrought by an {(i,u), (j,v)}-switcher can be represented by a pair of
directed edges: an edge ud with colour ¢ and an edge vit with colour j.

In Part our first task is to take any arbitrary collection of sets R; C R;, i € I, as described,
and find, for each ¢ € F;, a collection Cy, of pairs {(i,u), (j,v)} with 4,5 € I, and u,v € Ug which
will, overall, for each i € I, in the ith near-matching increase the degree of each vertex in R; by 1
and decrease the degree of each vertex in T; by 1 without changing any of the other vertex degrees.
This we will do as Part in Section [f-3] Though used in a very different way, to do this we are
inspired by elements of a strategy of Barber, Kiihn, Lo, and Osthus [5] in their work decomposing
complete graphs into copies of a small fixed graph. We can represent the change we wish to make
by adding to the vertex set S, an arbitrary directed perfect matching with colour i from T; into R;
for each i € I;. This will have a decomposition of its edges into directed cycles (from the condition
Ui€ L R, =l UiE L T; for each ¢ € F.). Inspired by some ideas from [5], we will make changes
to the directed matchings chosen, remove some edges, and add additional directed edges to create a
decomposition instead into directed 2-cycles, so that the collection of directed edges still makes the
same corrections overall. For example, if we have an edge u® coloured i, and replace it with edges
ulw and wv both coloured ¢ (for some other vertex w), then the change described at w by these two
directed arrows would not result in the change of the degree of w in the ith near-matching. We can also
add monochromatic directed cycles, which we do for certain 2- and 3-cycles, where the cycles will not
change the degree of any of its vertices in the ith near-matching. The operations we used are depicted
in Figures [] and After these operations, we need that at every vertex there is at most 1 in-edge
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and at most 1 out-edge of each colour, as we will only swap a vertex out of or into a near-matching
at most once. To aid with this, when replacing a directed colour-i edge from an original matching T;
to R; by a directed path with colour i, the interior vertices of the path (which will have length 3) will
be chosen in U; \ (T; U RY).

Ideally, for each pair {(i,u), (j,v)} in Cs, we would have an {(i,u), (j, v) }-switcher (see Section [2.T])
within the ith and jth matching. However, we have not imposed any condition on which pairs can
appear in Cg, so there are ©(|I4|*|U3|) = ©(pi.pr.pin*) possible such pairs. For one family alone, this
is many more than the number of switchers we could find edge-disjointly in the n* edges of G ~ Gcc’1
Therefore, in Parts [A.2] and |A.3| - we develop a much sparser set of pairs Z,, such that for any such
Cy, ¢ € F, we can ﬁnd a set C' C Z, which makes the same changes overall as User, Co-

We do this using ideas from template-based absorption, originating from distributive absorption (as
introduced in [28]). A much simplified idea (expressed slightly vaguely) here is the following. Suppose
we have a set of n vertices V and can construct some ‘switcher’ between any pair of vertices in V. We
could create (g) switchers, and this would allow us to swap any pair of vertices from V. However, if
we have any connected graph H with vertex set V' and create a ‘switcher’ for each e € E(H), then,
for any pair of vertices x and y, we could take a path from x to y in H and swap vertices along
this path in order to swap x and y. Thus, we can swap any pair of vertices using at most n — 1
switchers. In practice, we often take H to be a sparse, well-expanding graph (for example a sparse
random regular graph) so that these paths of swaps are not too long, but so that the graph H still
has O(n) edges, and thus require only O(n) switchers. Very roughly, in Parts and we will
use two rounds of auxiliary graphs to reduce the number of switchers required for each tribe from
O(pupipn®) to O(pupun®log®n). Thus, in total over all the tribes, the number of switchers we will
require is O(pan). The choice of the variable py will then allow us to fit all the required switchers
into the n” edges of G. We will find the auxiliary graphs we use (roughly speaking) in the template
role of H in Section A4l

In Sectlonwe develop the auxiliary graph found in Sectlon@so that it can be used to take the
set Cg and use instead a similar set Cy which makes the same overall changes but each {(i,u), (4,v)} € C
is only between certain pairs of vertices (u,v). The goal here is to replace each {(i,u), (j,v)} by, for
some r € N, a sequence of pairs

{(i7u)7 (.77 Ul)}r {(ivvl)v (.77 ’1)2)}, {(ivUQ)’ (.77 1)3)} B {(ivafl)’ (.77 UT)}v {(i’vT)’ (j,’l))}, (7)

so that, over all the pairs in C:j), we only use few pairs of vertices that can appear as (v, vi+1), (u,v1)
or (vr,v). This corresponds to replacing the edges vt with colour 7 and v with colour j by a directed
u, v-path with colour i and a directed v, u-path with colour j with the same vertex set (see Figure@.
For each ¢ € F;, the vertices vi,...,v, at will come from V.

In Section we then show that, essentially, we can take the sets C;,, ¢ € Fr, and use instead
similar sets Cf, ¢ € JFr, which make the same overall changes but each {(i,u), (j,v)} € U,er, Cy is
now only between certain pairs of vertices (u,v) and only uses certain pairs of colours (7, 7). Similarly
to before, the goal here is to replace each {(i,u), (j,v)} by, for some r € N, a sequence of pairs

{( ) (117 )} {(Zlv ) (i27v)}7{(i27u)7(i3,u)}"'7{(if‘—17 ) (Z“ )} {(ZN )7(j71])}7 (8)

so that, over all the pairs in Cjj, we only use few pairs of colours that can appear as (i;,4;41), (¢,%1)
or (ir,j). This corresponds to considering the edges ub with colour ¢ and ¥4 with colour j, adding a
directed edge in both directions between w and v with colour i; for each j € [r], and then pairing up
these edges as indicated by (see also Figure . Where ¢ € F- is such that 4,5 € Iy, the colours
i1, ...,0r at will each come from some I, with ¢ € F. \ {¢} such that u,v € Wy . This is the
part of the proof where the families in the same tribe assist each other in making the corrections. We
do this as we still want the property in Cg , ¢ € Fr, that, working in coloured arrows, we never want
to have more than 1 in-edge or more than 1 out-edge of any colour at any vertex.

This will allow us to find the sparse collection of pairs Z, from which we can find pairs to make
any of our required corrections. Finally, then, for Part [A] in Part we add some more pairs to
7, so that when in Part we find these switchers this can be done using the semi-random method.
For this we need that, for each 7 € I, and each u € S; \ R;, the same number of paths will be
found starting at u for the ¢th near-matching, which corresponds to the same number of pairs of
Z. containing (i,u) (i.e., that holds). While adding these pairs we ensure that the conditions
[A3HA 6| continue to hold, where they will hold for the initial sparse collection of pairs by our careful
constructions. These conditions are used to ensure low codegrees in certain auxiliary hypergraphs in
which we use the semi-random method. Part is carried out in Section @ which completes the
proof of Lemma [3.3]
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Where relevant, we include further sketches in this section, but for now we finish with the following
summary of the subparts of Part [A]

A Create the absorption schematic, which can be represented by a sparse collection Z, of edge-
coloured directed 2-cycles. Then, for any sets R; C Ry, ¢ € I, with |Rj| = |T;| for each i € [n]
and Uy, Ri =mu Uier, T,

A.1 Find a collection of edge-coloured directed 2-cycles which can make the required changes.
A.2 Find such a collection where the 2-cycles only use certain pairs of vertices.

A.3 Find such a collection where the 2-cycles only use certain pairs of colours/vertices (i.e., only
2-cycles corresponding to pairs in Z;).
A.4 Add further pairs to Z, to regularise the schematic.

4.2 Basic properties of the vertex partition

We will use the following properties of the vertex partitions.
Lemma 4.1. With high probability, the following all hold.

D1 Foreachi € [n] and X € {A,B}, |[RiNX|=1xe)prn, |SiNX|=1+xe)psn, |TiNX|=(1=+
e)prn, [UiNX| = (1+e)pun, |VinX| = (1+e)pvn, [WinX| = (1+e)pwn, | XsNX| = (1+e)pxn,
YinX| = (1+xe)pyn, and |Z; N X| = (1L e)pzn.

D2 For each T €T, ¢ € Fr and v € Uy, [{i € Iy : v € Ti}| = (1 £ &)prpy ' perpran.

D3 Foreacht €T, ¢ € Fr andv € Uy,

Hiely:ve Ui\ (RiUT)} = (1 =e)(1 = (pr + pr)/pv)Pupran = (1 — /pr)| Ly

D4 For each 7 € T and distinct u,v € Sy, |{¢p € Fr :u,v € Uy UVy} = (1 £&)(pu + pv)°ps pr -

D5 For each T € T and distinct u,v € Sy, [{i € I : u,v € Wi}| = (1 £ &)piyps pecn.

D6 For each T € T and distinct ¢, ¢’ € F-, |(Us UVy) N Wy| = 2(1 % ¢)(pv + pv)pwpg n.

D7 For each T € T and distinct ¢,¢’ € Fr, [{{u,v} C Sr:u~a/p v, u,v € (Up UVy) N Wy} =

(1+&)(pu + pv)*pivpin®/2.

D8 For eachu € Sy, |[{¢ € Fr :u€ (Us UVy)} = (1 £&)(pu +pv)psy -

D9 For each u € S, |{(¢,¢') : 6, ¢’ € Fryu € (Up UVy) N Wy} = (1 £)(pu + pv)pwpp,> /2.
Proof. Each of these properties holds with high probability by an application of Lemma [2.6] and a
union bound. To avoid undue repetition, we will only prove a sample of these explicitly.
for Ri,i€n]: Let 7 € T, ¢» € Fr and i € I,. For each v € AU B, by the partitioning in

Section [3:2]

P(v € R;)) =P(v € RiJv € U;) - Pv € Uplv € S;) - P(v € S:) = (pr/pU) - (Pu/PS) - ps = Pr.

For each X € {A, B}, as |X| =nand 1/n < e, pr, by Lemma with probability 1 —exp(—w(logn))
we have |R; N X| = (1+e)prn. Thus, by a union bound, with high probability, |R; N X| = (1£¢&)2prn
for each i € [n].

Let 7 € T and let u,v € S, be distinct. For each ¢ € Fr, P(u,v € Uy UVy) = (pu + pv)?/p%. As
|Fr| = (1i52)p1;1, and pyr < €,PU, PV < pW P 1/logn, and ps > pw, we have that, by Lemma ,
with probability 1 — exp(—w(logn)) we have |[{¢ € Fr : u,v € Uy UVy}| = (1 £e)(pv + pv)°pp, -
Thus, by a union bound, with high probability, [D4] holds. O

4.3 Part Initial 2-cycle decomposition

In Part we prove Lemma [£:2] After stating the lemma, we discuss it from the perspective of the
auxiliary coloured directed graph discussed in Section 4.1

Lemma 4.2. Let R;,T;,U;, i € [n], satisfy D9l Let 7 € T and ¢ € Fr. For each i € Iy, let
R} C R; satisfy |R;| = |Ti|, and suppose that Uield, R, =l Uield) T;.
Then, there exists a set

C¢ - {{(Zvu)a (]7”)} : Za] € I¢7i #]7“ € U¢ \ (Rl UTJ) and v € U¢ \ (Tl U Rj)vu 7é U}' (9)
such that the following hold.
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E1 For everyi € I, and u € T;, there is exactly one (v, j) such that {(i,u), (j,v)} € Cs.
E2 For every i € Iy and u € R} there is exactly one (v,5) such that {(i,v), (j,u)} € Co.
E3 For every i € Iy and u € R; \ R; there is no (v, j) such that {(i,v), (j,u)} € Cg.
E4 For everyi € Iy and u € U; \ (R; UT;), (i,u) is (< 1)-balanced in Cg.
Consider the set Cy in Lemma and, for each {(i,u),(j,v)} € Cy, add ud with colour ¢ and
vl with colour j to create the auxiliary coloured multi-digraph D”. Note that this has a natural
decomposition into directed 2-cycles. Then, for each i € Iy and u € U;, using dD,,( u) and dD,,( w)

as the out- and in-degree of u in the colour-i edges in D" respectively, the following table shows the
degrees around u according to

| (dfi (), dis ()
ueT, (1,0)
u € R, (0,1) (10)
u € R \ Rj (0,0)
u € U; \ (R»L UT»;) (0,0) or (17 1)

Thus, the directed arrows of colour i correspond to the required corrections of the degrees of u in the
ith near-matching if u € R} U T}, while not affecting the degree of u if u € U; \ (R; UT3).

To find D" in the proof of Lemma we start by finding a similar coloured multi-digraph which
has a directed cycle decomposition, for which, for each i € Iy, the vertices in U; \ (R; U T;) are in
no edges with colour ¢ (and the corresponding version of holds). Via some maximalisation in its
construction, we show that in fact this will be a rainbow cycle decomposition. We then add directed
edges to D to get D’ which satisfies the corresponding version of 7 but has a decomposition into
rainbow triangles/2-cycles. Then, we take each rainbow triangle in D’ and replace it with some 2-
cycles, creating D" while ensuring is still satisfied. These operations are depicted in Figures
and B

Proof of Lemma[f-Z For each i € Iy, using that |T;| = |R;|, let F; be an arbitrary perfect matching
between T; and R; with edges directed from T; to R} which each have colour ¢. Let D be the directed

edge-coloured multigraph with vertex set Uy and edge set | J,. I,

Initial cycle decomposition. Note that, for each v € Uy, as Ui61¢ R} =mut Uiel¢ T;, we have

dJDr(v) ={icly:veT} =|{i€ly:ve R} =dpw).

Therefore, as is well-known, D has a decomposition of its edges into edge-disjoint directed cycles. Take
such a decomposition, C1,...,C, say.

Rainbow cycle decomposition. We claim that there is a choice of the matchings F;, ¢ € I, for
which there is a cycle decomposition of D in which every cycle is rainbow, that is, no colour appears
more than once on any one cycle in the decomposition. Subject to the constraints so far, then, choose
Fi,i€ Iy, r €N, and C4,...,C,, to maximise r. Suppose, for contradiction, that there is some cycle
Cj, for some j € [r], which is not rainbow. Then, let uiisa, usiy be two edges of C; which have the
same colour, i say. We thus have that w1, us € T; and uz,us € R;. Note that replacing w12, usits in
F; by uita, ustz and replacing C; by the two cycles in Cj — uitia — ustia + uitta + ugtts will give a
choice of the directed matchings with r + 1 directed cycles (see Figure )), a contradiction.

2

/\ /\i/\ RN
\ / \ /3 \ /:“\ﬂ\ﬂ/

Figure 4: a) Each cycle C; we consider must be rainbow, for otherwise we would replace, for example, the
orange edges uiie and ugity with orange edges uity and ugis.

b) For each rainbow cycle C;, we take a set E; = {v4v1,v1v3, 0302} of edges whose addition allows an
(undirected) decomposition into triangles, and put a directed 2-cycle with colour i, on each e € Ej.
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Triangle/2-cycle decomposition. Now, let I C [r] index the cycles Cj, j € [r], which have length
at least 4. For each j € I, where ¢; is the length of the cycle Cj, take a set E; of £; — 3 (undirected)
pairs of vertices from V' (C;) such that the undirected graph underlying C; + E; is a union of triangles
in which each vertex has degree at most 4 (see Figure . For each j € I and e = 2y € Ej, as we will
show is possible, greedily pick i. € I under the following rules.

1) Foreach j € I and e =2y € Ej, z,y € Uy \ (R, UT;,).

2) For each i € Iy, and x € Uy, there is at most one pair (j,e) with j € I, e € E;, x € V(e) and
e = 1.

3) For each i € Iy, there are at most 32prn vertices © € Uy for which there is some pair (j, e) with
jel,e€ Ej,ze€V(e) and ic = 1.

Note that the number of times any x € U, appears in an edge e = zy for some e € E; and j € I is

; ) 1
<2{jefr]:xeV(CH}H <2{i€ls:x €T} < 3prpy Pupan. (11)

Thus, when we greedily choose some i. € I, we have that bythere are at least perpram/2 options
for i € I so that |1)|is satisfied. Of these, the number for which there are more than 32prn vertices
x € Uy for which there is some pair (j,e) with j € I, e € I, € V(e) and 4. = 7 is, using , at
most
|Us| - 3prpy ' perpran B 8prpupmn® _ pupran
32prn - 32 4

Hence, since pr P%\ pu, we can choose . so that 2)[and |3)| hold.

Take D and, for each j € I and zy € E;, add both the edge ¥ and y& to D with colour 4z,, and
call the resulting directed multigraph D’ (see Figure )) Note that, from this construction, D’ has
an edge decomposition into rainbow directed cycles of length 2 and 3. Take such a decomposition,
and let " be the number of cycles of length 3, labelling them as C1,...,C.,.

2-cycle decomposition. For each j € [r'], label the vertices of Cj as x;,y;,2; and its colours as
aj,bj, cj, so that xjy;, yj%;, zj&; have colour aj, b; and ¢;, respectively. For each i € Iy, let U, C Uy
be the subset of vertices « € Uy for which there is some pair (j,e) with j € I, e € I;s, x € V(e) and
i. = i, and note that, by |U;| < 32prn. For each j € [r'], choose distinct vertices z7,y}, z; and a
colour i; under the following rules.

i) For each j € [r'] and each i € {a;,b;,¢;}, o, yj, 25 € Up \ (R: UT; WU ).
ii) For each j € [r'], 4; is such that «},y},2; € Uy \ (Ri; UT;; U U;)-
iii) For each i € I, and v € Uy \ (R; UTY), there is at most one j € [r'] with i € {aj, b;,c;,4;} and
v e {z},yj, 2}
Similarly to the previous step, this can be done greedily, where this uses |U; | < 32ppn for each

i € I to select x;,y;, zj. Then, and-can be used to select ;.
As deplcted in Flgure take D and, for each ] €lr }, remove the edges in C} and add the edges

:EJ:E;, x’; y], yjyj with colour a], the edges y]y], Yi ;, 2k z] with colour b;, the edges zjz;, zjzcj, x;_ﬁv]
with colour ¢;, and the edges yx mJ %, 25y with colour i;, and call the resulting directed multigraph
D”. By construction, D" has a decomposmon into directed rainbow cycles with length 2. Take such
a decomposition, and, letting " be the number of cycles, let these cycles be CY',...,CV,. Let Cy be
the set of pairs {(i,u), (j,v)} for each cycle C}, i’ € [r"'], with vertex set {u,v} and an edge from u to
v with colour ¢ and an edge from v to w with colour j. Note that, in our construction, for each i € I
and u € T;, we never added an edge with colour ¢ directed into u, and, for each i € I and v € R;, we
never added an edge with colour ¢ directed out of v, so that @ holds. We now show that Cy4 satisfies

[ETHE4

Note that, for any pair (¢,u) such that ¢ € Iy and v € Tj;, we have that u was contained in an
edge directed out of u in colour 4 in D. In order to construct D" from D, either we did not add any
other edges directed out of u in colour i and kept the original edge from D in D", or, in building D"
we replaced the out-edge from u in colour i by a path of length three containing exactly one out-edge
from u in colour i. Since D" defines Cy and there is exactly one pair {(u,i), (v,5)} € C4 for each
out-edge in D" from u in colour i, we have that holds.

Similarly, for i € I and u € R}, we have that the number of (v, j) such that {(v, i), (u,j)} € Cy is
the number of in-edges of colour i at u in D"'. As our construction has exactly one in-edge to u with
colour i in each of the digraphs D, D', and then D", we have that, similarly [E2| holds.
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To see that holds, note that we need to ensure that D" contains no in-edge to u € R; \ R} in
colour i. Note that by construction we have that D contains no such edge. Furthermore, any edges
that were added in D’ and in D" were chosen precisely so that a new edge to a vertex v would be in a
colour 4’ such that u ¢ Ry. That is, at no point did we add an in-edge to u in colour i, since u € R;,
so D" is as required.

For this, it suffices to show that, for each i € I, and u € U; \ (R; UT;), either u appears in no edge
of colour 7, or v appears in exactly one in-edge and exactly one out-edge of colour i. We have that, in
D, u appears in no edge of colour i. When we build D’, either u remains in no edge of colour 4, or the
colour 7 is assigned to some edge uv € UjEI E; and by rule|2)|this happens no more than once. In the
first case, it then follows similarly by rule that either in building D" no edge of colour i containing
u is added, or there is exactly one j € [r'] such that u € {«},¥},2;} and @ € {a;,b;,¢;j,4;} — either
way, to build D" from D’ we add exactly one in-edge of colour i to u and exactly one out-edge of
colour ¢ to u. In the second case, we have that ¢ is assigned to exactly one edge uv € Ujel E;. By
construction, then, we have that in D’ there is both an in-edge in colour i and an out-edge in colour
i containing u, and u € U; . Thus when building D" from D', by rule u is not chosen as a vertex
x},y}, #; paired with colour . In particular, this means that when shifting from D’ to D", either the
previous in- and out-edges in colour ¢ which contain u are left as before, or if one is removed, it is
replaced by a path which contains exactly one edge in the same direction to or from u in colour i as
the one that was removed. Thus, u remains in exactly one in-edge in colour ¢ and exactly one out-edge
in colour i, completing the proof of [E4] and hence the lemma. O

4.4 An auxiliary sparse well-connected graph

The next lemma shows the existence of an auxiliary graph which is used in Part specifically, in
the proof of Lemma in Section We prove it, however, before embarking on Part as it is
a useful preliminary to a similar construction which we use in the proof of Lemma [{.4] our lemma for
carrying out Part The main idea of the following lemma is to build a sparse graph K which is
the union of trees with roots in a set U, such that we may pair the vertices of U up in any way and
always find a collection of vertex-disjoint paths in K which connect these pairs. As we will use binary
trees, here we use log = log,. The properties of the graph we construct could, as in other template-
based approaches, be found using appropriate random graphs (if not with quite such a low maximum
degree). We use this explicit construction in preparation for the similar version in Section where
we want a more delicate property of the auxiliary graph, as explained there.

Lemma 4.3. Let 1/n Lp< log™*n. Then, there is a graph K with vertex set [n] and A(K) < 4
containing an independent set U C V(K) with |U| = pn and the following property.

Given any r € N and any set of vertez-disjoint pairs z1y1, . . ., Tryr € UP), there is a set of vertez-
disjoint paths P;, i € [r], in K with internal vertices in V(K) \ U such that, for each i € [r], P; is an
5, Yi-path.

Proof. Let U C [n] have size pn. Let £ be such that 2° < n/10logn < 27! and note that, as £ < logn,
we have (£ + 1) -2 < n. Using this, take disjoint sets V@, VI . V® in [n] with size 2° such that
U C Vo. Let m = |U| = pn. For each i € [{]o, label the vertices in V@ as Vi, ...,V 0t, 50 that, in
particular, U = {vo,1,...,v0,m}-

Figure 5: Each directed triangle x;y;z; is replaced by a collection of 2-cycles, where each vertex has
balanced in- and out-degree in each colour except for z;,y;,2; which maintain the same in- and out-
degree in each colour.

20



Let K be the empty graph with vertex set [n] and, for each i € [ — 1], j € [2¢] and r € [2], add an
edge to K from v; ; to vi41,s where s is such that s = 2(j — 1) + 7 mod 2. noting that we have added
2 edges to v; ; into VU so that di (v, j, V) = 2. We will show that K has the properties we
require. For this, for each j € [2], v = vo,; and i € [€]o, let

L(v,i) = {vi j: 3" € 2] s4. 2°(j — 1) +1 < j” <2°(j — 1) + 2" and ' = j” mod 2}, (12)

noting in particular that L(v,0) = {vo;} = {v}, L(v,£) = V¥ and, for each i € [{]o, |L(v,7)| = 2".
For each j € [2‘] and v = wo,;, let F, be the graph with vertex set V(F,) = |J L(v,i) and edge
set B(K[V(Fy))).

We now show that A(K) < 4 and, for each v € VO that F, is a binary tree rooted at v, in the
following two claims.

Claim 1. A(K) < 4.

Proof of Claim[l Recall that, for each i € [¢ — 1] and j € [2°], dx(vi;, VUTY) = 2. Now, let
i € {2,...,0} and j € [2°]. Note that, for each j/ € [2] we added an edge from v;_; ;; to v;; only
when there was some 7 € [2] such that 2(j' — 1) + 7 = j mod 2°, so that there are exactly 2 such
§' € [2%], where in both cases we have r € [2] such that 7 = j mod 2. Therefore, dx (v; ;, V™) = 2.
Thus, as we only added edges to K between V) and VY for each i € [¢ — 1]y, we have that
A(K) < 4, as required. O

i€[{o

Claim 2. For each j € [2¢] and v = vy, F, is a binary tree rooted at v such that, for each i € [€]o,
the vertices in the ith level of F,, V(F,) N V® are those in L(v,i) (as defined at (12)).

Proof of Claim[3 Let j € [2°] and set v = vo ;. Recall that, for each i € [(]o, |L(v,4)| = 2°, and, for
each i € [{ —1]o and j' € [2°], dx (vi 7, VYD) = 2. Therefore, to show the claim, it is sufficient to
show that, for each i € [¢] and w € L(v, 1), there is some w’ € L(v,i — 1) with w'w € E(K).

Let, then, i € [¢] and let j' € [2‘] be such that v; j; € L(v,i). Using the definition of L(v, i), let
r € [27!] and s € [2] be such that 2°(j — 1) +2(r — 1) + s = j/ mod 2°. Then, let j” € [2¢] be such
that 2°7*(j — 1) +r = j” mod 2°, so that v; ; j» € L(v,i — 1), and note that we added an edge from
Vi1 40 to vy in K as j' = 2(5” — 1) + s mod 2° and s € [2]. Thus, for w = v; j» € L(v,4), there is
some w' = v;_y j» € L(v,i — 1) with w'w € E(K), as required. O

We now show that the trees Fy,, v € U = {vo,1,...,V0,m}, are well spread out, particularly at their
lower levels, as follows.

Claim 3. For each u € U and i € [{]o, there are at most [27/(1001ogn)]| vertices u' € U with
VO N (V(E)NV(E,)) #0.

Proof of Claim[3 Let w € U and i € [€]o. First, note that if 4 > ¢ — 10, then 2°/(100logn) >

2¢710/100(logn) > m, as p < log~'n, so that there are at most |2'/100logn| vertices u' € U.
Assume, then, that : < £ — 10.

Let u' € U with VW 0 (V(F,) NV (F,) # 0. Let r,7" € [m] be such that u = vo,, and v’ = vg .
Then, from Claim [2} and the definition of L(u,i) and L(u’,i) at (12]) we have that there is some j
such that

2(r—1)4+1<j<2(r' —1)+2°

and some j' such that j = j' mod 2¢ and
20 1) +1<4 <2 - 1)+ 2,
so that, setting = j — j/, we have = 0 mod 2¢ and
2'(r—1') =2 <@ <2'(r — 1) + 2% (13)

As 7,7’ € [m], we have —(m +1)-2" <z < (m +1)- 24

As i < ¢ — 10, for each r and z, there is at most one value of »’ for which holds. Therefore,
the number of choices of u’ € U so that V¥ N (V(F,) NV (F,)) # 0 is at most the number of choices
of x for which = 0 mod 2° and —(m +1)-2° < & < (m + 1) - 2°. There are at most [(2m + 3)2¢/2]
such values of z. As m = pn and 2°t!' > n/(10logn) and p < log~! n, there are thus at most
[27/(1001logn)] such values of x. Noting that « = 0 is always a solution, which gives that r =’ and
so u = u/, we have that the claim holds. B

21



Let then r € N and let z1y1, ...,z y- be vertex-disjoint pairs in U? . Let I C [r] be a maximal
subset for which there are vertex-disjoint paths P;, ¢ € I, with internal vertices in V(K) \ U such
that, for each ¢ € I, P; is an z;, y;-path in F; N Fy, with at most 2 vertices in each set V(il), for each
i’ e [é]o

Suppose, for contradiction that I # [r], and let ¢ € [r] \ I. Let V™™ be the set of internal vertices
in the paths P;/, i’ € I.

Claim 4. For cach i’ € [f]o and u € {zs,y:}, |V(F.) N V) A v <27 /101og n.

Proof of Clatim[{f Leti' € [¢]o. By Claim there are at most |2° /100log n| vertices v’ € U\{x;} with
V) N (V(F)NV(Fy,)) # 0. As the pairs 2, y;/, i’ € I, are disjoint, and i ¢ I, there are thus at most
L2il/(100 logn)| values of i’ € I for which V(P;) intersects with V (Fy,) NV, As each of these paths
intersect with V") in at most 2 vertices, we therefore have that \V(in)ﬂV(i/) nvirb| < 2i//(10 logn).
As, similarly, |V (Fy,) N v n ylerb| < Qil/(l()log n), the claim follows. O

Then, let F,, be the connected component of Fy, — V™ which contains z;. Note that, for
each i’ € [{]o, removing a vertex from L(z;,i’) removes at most 20~"+1 vertices from the connected
component of F,, which contains ;. Therefore, by Claim E[, the number of vertices in F,; which are

not in Fy, is at most

£ £
STV(E,) AV Ayt oot < S0 101ogn < 2°/4,

/=0 /=0

so that, in particular, |V (F, )NV > 2 —2¢/4 > V¥ /2.

Similarly, letting F,. be the connected component of F,,, — V™™, we have |V(F;,)NV*| > |V*|/2.
Therefore, F;, and Fy, intersect on V, Let P; be a shortest z;,y;-path in Fj, U F} . Note that by
this minimality P; contains at most 2 vertices from each set V<i/), i € [¢ + 1], and, by construction
P; has no vertices in V™ and therefore no vertices in V(Py) for each i’ € I. Thus, the paths P,
i € TU{i} C [r], contradict the choice of I. Therefore, we must have I = [r], and thus have the
required paths Py, i’ € [r]. O

4.5 Part 2-cycles using few vertex pairs

For each vertex v € U, we will attach an edge from v to the roots of 5 binary trees consisting of
vertices from Vi, which have been chosen so that, across all v € Uy their vertices at each level are very
well spread (see Claim , each pair of trees intersect completely in the last layer, and the union of all
these trees has low maximum degree (as follows from Claim . This construction is similar to that
given in Lemmal[£.3] but we use some more delicate properties of it. This is because, instead of finding
a collection of vertex-disjoint paths P;, i € [r], as before, we find a larger collection of paths, P say,
many more than could be vertex-disjoint, but so that many specified pairs of paths are vertex-disjoint
except for possibly on their endvertices (as in below). This requires us to take more care in the
choice of paths.

Lemma 4.4. Let U;,V;, i € [n], satisfy D9\ Let 7 € T and ¢ € Fr. Then, there is a graph K
with vertex set Uy UV, and A(Ky) < 5 and the following property.
Suppose C C {(i,u), (4,v) : 4,5 € Is,u,v € Us,i # j,u # v,u ~a,p v} satisfies the following
properties.
F1 For eachi € Iy and u € Uy, there is at most one pair (j,v) with {(z,u), (j,v)} € C.

F2 For each i € I, and v € Uy, there is at most one pair (u,j) with {(i,u), (j,v)} € C.
Then, there are paths Pe, e € C, in Ky with the following properties.

F3 For each e = {(i,u), (j,v)} € C, P. is a u,v-path with internal vertices in Vo N A if u,v € A and
internal vertices in Vo N B if u,v € B.
F4 For each e = {(i,u), (4,v)},e = {(@',u'),(§,v")} € C with e # €, if {i,j} N {5’} # 0, then
V(P.) and V(P.) intersect only on {u,v} N{u',v'}.
Proof. For each e = {(i,u), (j,v)} € C, we have u,v € A or u,v € B, and wish to find P. such that, as

in @, all of the vertices of P. are in A in the first case, and in B in the second case. Therefore, K4
will be the disjoint union of two graphs K and K7 with vertex set (Us UV,) N A and (Uy UV,) N B,
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respectively. To reduce notation, we will give the construction for K :2» where the construction for K f
follows identically but with B in place of A.

Let £ be such that 2° < pyn/logn < 27!, and note that, as £ < (logn) — 1, (£ +1) - 2° < pyn/2.
Using this, and take disjoint sets V¢(0>, Vdfl)7 e que) in Vg N A with size 2¢ and, for each i € [0,
enumerate V¢(l> as {vi,1,...,v;0¢}. Let K be the empty graph with vertex set ngo) U qul) U...J que)
and, for each i € [¢ — 1]o, j € [2] and 7 € [2], add an edge from v; ; to vit+1,s where s is such that
s=2(j — 1)+ r mod 2%, so that dK; (’Ui,j’vqu-‘rl)) = 2. For each j € [2°], v = vo,; and i € [€]o, let

L(v,i) = {vij : 3" € 2] s6. 2°(G — 1) +1 < j” <2°(j — 1) + 2" and ' = j” mod 2°}, (14)

noting in particular that L(v,0) = {vo,;} = {v}, L(v,¢) = ng@ and, for each i € [€]o, |L(v,4)| = 2"
For each j € [2°] and v = woj, let F,, be the graph with vertex set V(F,) = L(v,i) and edge
set E(K [V (Fy)])-

We will use that A(K;) < 4 and, for each v € V¢(0>, F, is a binary tree rooted at v, in the following

two claims. As these two claims are proved virtually identically to Claims [I] and [2] respectively, we
omit their proof.

Claim 5. A(K) <4. O

i€[{Lo

Claim 6. For each j € [2¢] and v = wg;, F, is a binary tree rooted at v such that, for each i € [f]o,
the vertices in the ith level of F,,, V(F,)N qu(l), are those in L(v,4) (as defined at (14)). O

Now, let mo = [UgN A, so that, by [D1] we have mo = (1£¢)pyn. Enumerate Uy as {u1, ..., Um }-
For each i € [mo] and j € [5], add an edge to K from w; to w(us,j) := vo,5(i—1)+5, and call the
resulting graph K£7 where we have used that 5mo < (1 4+ €)pyn is much smaller than |Vd§1)| > pvn/2

POLY

as py < pv. To each vertex in Uy we have attached 5 of the binary trees F,, v € V(;()). As all the
neighbours of Uy N A are distinct and within the first 5mo < p-pyn for some p < log™" n, the trees we
have attached are well spread out at each level, in a similar way to Claim [3] As the proof is virtually
identical, we omit it.

Claim 7. For each u € Uy, j € [5] and i € [¢ + 1], there are at most [2°/(100logn)]| pairs (v’ j') #
(u, §) with u' € Uy, j' € [5] and V" 1 (V(Fuuyy) NV (Fur ) # 0. o

Similarly, form the graph K f , and let Ky be the graph with the vertex set Uy U V3 and edge set
E(KJ)U E(KJ7). We will show that K4 has the desired property.

First, note that, from Claim [5] and noting that we added vertex-disjoint 5-edge stars from each
vertex in Uy to vertices in Vi, we have that dx,(v) < 5 for each v € (Uy UVy) N A. By a similarly
proved version of Claim 5] we have that this also holds for every v € (Us UV,)N B, so that A(Ky) < 5,
as required.

We now show that the main property of K, holds. Let C C {(i,u), (5,v) : 4,j € Ig,i # j,u,v €
Ug,u # v,u~4/p v} satisfying and We will show that there are paths P., e € C, in K4 such
that [F'3] and [F4] hold. First, choose r. € [5] for each e = {(i,u), (j,v)} € C such that

F5 For each e = {(i,u), (j,v)}, ¢ = {(#,v'),(§,v")} € C with e # €, if {i,5} N {,5'} # 0 and
{u,v} N{u,v'} # 0, then re # ror.

To see that this is possible, create an auxiliary graph L with vertex set C and for each e =
{(,u), (4,v)}, € = {(@, ), (§',v")} € C with e # ¢’ put an edge between e and ¢’ in L if {i, j}N{i’, 5’} #
0 and {u,v} N {u',v'} # 0. Then, for each e = {(4,u), (j,v)} € C, by andthere are at most 4
choices for e’ = {(7,u'), (j',v")} € C with e £ €', {i,5} N{7', 5} # 0 and {u,v} N{v',v'} # 0. Indeed,
for such an €', firstly by relabelling if necessary we can assume that j' # i and i’ # j. Then, if i =4’
note that we have u’ # u byas e # ¢, and therefore v’ € {u,v}, which, bygives us two options
for v’, j',4’. Similarly, if 5 = 5/, then there are two options for u’,i’,v’, for at most 4 options in total.
Thus, L has maximum degree 4, and so can be properly coloured with 5 colours, using the colour set
[5]. Take such a colouring, and, for each e € C, let 7. be the colour of e, noting that, then, holds.

Now, let C’ C C be a maximal set for which there are paths P., e € C’, in K, such that and
hold with C replaced by C" and, for each e = {(i,u), (j,v)} € C', Pe C Fu(u,re) U Fu(w,re) + uw(u, re) +
vw(v,re.) and P. contains at most 2 vertices from each set V(Zfi/), i’ € [€)o. Pick such a set of paths P,
ec(C.

Noting that we will be done if C’ = C, assume, for a contradiction, that C # C’ and pick some
e = {(i,u), (4,v)} € C\ C'. Assume that u,v € A, so that we may use the notation above, where the
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Figure 6: A u,v-path P as found in the sparse auxiliary graph Ky using the two binary trees F,, , and
Fy,.,. . In the proof of Lemma this path will additionally avoid some set of vertices Vorb,

case for u,v € B follows similarly. We will find a path P, as depicted in Figure [6] which will have
the properties so that we could add e to C’ to contradict its maximality.

We first define a similar set V™ of vertices as we avoided in the proof of Lemma but only
collect together vertices from paths that we need to avoid if we are to find a path P. which we can
add to the collection P./, ¢ € C’, with still holding for C’ in place of C. Therefore, let V™ be
the set of vertices which appear in some path P, such that ¢’ = {(i',v), (j',v")} € C' with i =i or
j' = j. We will now show a similar claim to Claim [dl Its proof is similar to the proof of Claim

Claim 8. For cach i’ € [¢)o, |V (Fu(u,r)) N (V) N VP™P)[ < 27 /(10logn) and [V (Fug,r)) N (V)N
yiorby| < 2i,/(1010gn).

Proof of Claim[8 By Claim there are at most |2° /100logn| pairs (v/,7) # (u,7e) with v/ € Uy,
r € [5] and Vd)(i/) N(V(Fu(ure)) NV (Fur,ry)) # 0. Therefore, by , there are at most |_2i’/100 logn|
triples (u',v’,j") for which ¢’ = {(3,v'), (5',v")} € C’ and Vf/) N (V(Fuu,re) NV (Fur,r,y)) # 0.
Similarly, by there are at most |2 /100logn| triples (v, v, j') for which ¢’ = {(i,v'), (j/,u/)} € C
and Vdfi/) N (V(Fuure) NV (Fu r,y)) # 0. Thus, as for each e’ = {(i',u), (j',v")} € C', Po C
Fueut vy U Fy(or v,y and Per contains at most 2 vertices from Vdfi/), [V (Fuw(u,re)) N (Vf/) N vy <
2" /(10logn). Similarly, we have that |V (Fy(,r.)) N (V) N VP)| < 27 /(101ogn). o]

Then, let F{U(u’re) be the connected component of Fy(y,r.) — VErb which contains w(u,r.). Note

that, for each i’ € [¢]o, removing a vertex from L(w(u,7e),3’) removes at most 207+ vertices from
the connected component of Fy, -,y which contains w(u,r.). Therefore, by Claim [8] the number of

vertices in Fy(u,r.,) Which are not in Fli,(u o) 1s at most

‘ ‘
STV Fugurn) N (VD AVEP) 27 < 5™ 9 1010 n < 2°/4,
i’ =0 i'=0
so that, in particular, [V (Fy,, ) N Vi > 2t =2t /4 > |Vf|/2.
Similarly, letting Fl'l)@“) be the connected component of Fi,ey,r.) — Vot which contains w(v, ),
we have |V (F! )N Vg| > |V{|/2. Therefore, F,, ., and F,, . , intersect on V. Let P. be a

w(v,re)
shortest u, v-path in F,,, , \UF,, , ) +uw(u,re)+vw(v,re). Note that by this minimality P. contains

at most 2 vertices from each set Vf/), 7' € [{]o and, by construction, for each ¢’ = {(7', '), (j',v")} € C’,
P, has no vertices in V™™ and therefore no vertices in V(P.) \ {v/,v'} if {i’,5'} N {,5} # 0. Thus,
the paths P./, ¢’ € C' U {e} C C contradicts the choice of C’. Therefore, we must have C' = C. Thus,
we can choose the required paths P.., ¢ € C. O

4.6 Part 2-cycles using few vertex pairs and few colour pairs

Our next lemma, Lemma [4.5] is the most difficult part of this section, but on proving it we will be
very close to proving the main result for Part [A] Lemma [3.3] Indeed, Lemma is very similar to
Lemma [3.3] producing for each 7 € T, a set Z. satisfying similar conditions as those in Lemma [3-3]
essentially only lacking a regularity condition (i.e., we will haveinstead of. From our previous
work in this section, we are well prepared to take sets R; C R;, ¢ € [n], with |R;| = |T;|, for which, for
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Figure 7: Replacing arrows representing a pair {(i,u), (4, v)} with a sequence of pairs which have the same
effect, but take the form {(¢’,u), (j/,v)} for only certain pairs (¢’,j'), as at .

each ¢ € F, Ui€1¢ R} =mult Uie[ T;, and decompose the corresponding corrections we will require

into a collection C of pairs of the form {(¢,u), (j,v)} such that ¢ and j here always belong to the same
family, and for such a family we only use a sparse collection of vertex pairs u,v (defined by some
auxiliary graph Ky). Here, we will now replace such a pair with a collection of pairs {(i’',u), (5',v)}
as at (§) which make the same effective change but for which (i’,j’) come from a sparse set of pairs
(using an appropriate auxiliary graph to restrict which pairs we allow). This is depicted in Figure
When replacing the pair {(i,u), (j,v)} with a collection of pairs {(i’,u), (j',v)} as at 7 for any
i',j" ¢ {i,j}, we will take ', j’ to be not in the same family as i, j but instead only in the same tribe.
This is the part of the proof where individuals in different families in the same tribe help each other
to develop the absorption properties.

and Ly . for each ¢ € 7 and uwv € E(Ky), respectively. Lemma|4.3|allows us to conclude the existence

To prove Lemma 5, we will use Lemma [£.4] and Lemma o build graphs K for each ¢ € T,
4.3}

of these useful graphs Lg .., each with its own connection property. In order to have our ‘codegree
conditions’ in Lemma [3.3| (i.e., A6]), we want these graphs Ly ., not to share any edge too often.
To get this property, we will take the graph as given by Lemma [4.3|and place it on the desired vertex
set for Lg 4o in some random manner.

Lemma 4.5. Let R;, S;,T;,U;, Vi, W, i € [n], satisfy D9l Then, for each T € T, there exists a
collection

- C {{G,u),(4,v)} 1, j € Ir i # ju€ S\ (RiUT)),v € S; \ (T: URyj),u # v,u~a,pv} (15)

such that the following hold.

G1
G2
G3
G4
G5

G6
G7

For each i € I+ and u € S; \ R;, there are at most 20 pairs (j,v) such that {(i,u), (j,v)} € Z-.
For each i,j € I. and u € S; \ R;, there is at most one v € S; \ R; with {(i,u), (j,v)} € Z,.
For each i € I, and u € S; \ T, there are at most 24 pairs (j,v) such that {(i,v), (j,u)} € Z-.
For each distinct i,j € I, there are at most n*/® /2 pairs (u,v) with {(i,u), (j,v)} € Z..

For each distinct j,5' € I,, there are at most n*/®/2 tuples (i,u,v,v") for which we have that
{(,w), (3, 0)}, {6, w), (5, 0)} € Z-.

For each j € I, and uw € S; \ T; there are at most n*/3/2 pairs (i,v) with {(i,u), (j,v)} € Z,.

For any collection of sets R; C R, i € I, such that, for each i € I, |R;| = |T;| and, for each
¢ € Fr, Uield, R, =l Ui€I¢ T;, there exists C C I, satisfying the following.

G7.1 For every i € I. and u € T;, there is exactly one (v, j) such that {(i,u), (j,v)} € C.
G7.2 For every i € I. and u € R} there is exactly one (v, j) such that {(i,v), (j,u)} € C.
G7.3 For everyi € I. and u € R; \ R}, there is no (v,j) such that {(i,v), (j,u)} € C.
G7.4 For everyi € I. andu € S; \ (R: UT;), (4,u) is (< 1)-balanced in C.

Proof. Let T € T. Using Lemma [£.4] for each ¢ € F, let Ky be a graph on Uy, U Vy with A(Ky) <5
which satisfies the property in Lemma [£.4] That is, A(Ky) <5 and if

CC {{(z’,u),(j,v)} : Zv] € I¢,U,’U € U¢7i #j,U#U,UNA,B U}

satisﬁes and then there are paths P, e € C, in K, for Which andllﬂ hold.
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We now wish, for each ¢ € F, and wv € E(Ky) to define an auxiliary graph Lg v, using Lemmal[4.3]
In this, I will function as the set Uy in that lemma, while we pick some subset Jg .0 of {i € I\ I :
u,v € W;} to use as Vy. Where ¢,¢" € Fr, ww € E(Ky) and u'v' € E(Ky ) satisfy ¢ # ¢’ and
{u,v} N {u', v} # 0 we will want Jy,uu N Jyr orr = O for proving that the property holds, which
motivates the following selection of the sets Jg uv, ¢ € Fr and uv € E(Ky).

Let ¢ = py,°pEpta/10. For each ¢ € F, and uwv € F(K,), independently at random choose a set
J;;w Cc{i €I\ 14 :u,v € W;} by including each i € I \ I with u,v € W; independently at random
with probability ¢q. For each ¢ € F; and uv € E(Ky), let Jg 4 be the set of i € J;;w which do not
appear in any JJr,yu,v/ with ¢’ € Fr, u'v' € E(Ky ), {u,v} N{u,v'} # 0 and (¢, uv) # (¢',u'v).

For each ¢ € F; and wv € E(Ks), bywe have |{i € I, \ Iy : u,v € Wi}| > phypg pun/2.
Furthermore, for each i € I \ I, with u,v € W;,

H(¢',u'v") : ¢ € Fr,u'v' € B(Ky), {u,v} 0 {u',v'} # 0}

IN

5H{¢" € Fr: {u,0} N (Uy U Vi) # 0}

Ing

10p%ps°pe’ = 1/q,

where we have used that py P%\ py. Therefore,

2 2 2
. 1 aPtrT
E|Jguv| > q- (1 — q)l/p eI \Ip:u,v € W;}H > % Pwhs Pult _ pwpé Z;t
e 2 2e?py,
4 2|1
> —PfaPtrnt > M:
pv pv

where we have used that py < pw. By Chernoff’s bound and a union bound, we can therefore assume
the following property holds with high probability.

H8 For each ¢ € Fr and wv € E(Ky), |Jguv| > |1g]/pv-

For each ¢ € F, and uwv € E(K,), using that 1/n Lpr < log™' n, and and Lemma
let Ly ,, be a graph with vertex set Iy U Jg v and the properties in the lemma with Uy = I, and
Vo = Jpuv- Let 04 40 be a uniformly random permutation of Iy U Jy ue subject to o4 uv(lg) = Iy and
Opuv(Jp,uv) = Jpuv- Let Ly o be the graph with vertex set 1,UJg v and edge set {04, uo(2)0¢,u0 () :
Ty € E(L’d)w)} Observe that the properties of L;mw carry through to L4 .., which is to say that
A(Lg,uv) < 4 and the following hold.

H9 There are no edges in Ly, with both vertices in Iy.

H10 Given any r € N and any vertex-disjoint pairs a1b1,...,a,b, € If), there are vertex-disjoint
paths P;, ¢ € [r], in Lg 4, with internal vertices in Js o such that, for each ¢ € [r], P; is an
x4, yi-path.

We can now choose our set of pairs Z,. Let

.= J U {Guw,Gv)}:ij € E(Lpuw),u€ S\ (RUTy),ve S\ (TUR;)}.  (16)
PEF - wEE(Ky)

Note that, as, for each ¢ € Fr and uwv € E(Ky), V(Lg,uv) = I U Jguv, we have that holds.

We will now show that [G8] and [GT] hold, and and hold with high probability,
and therefore we can take Z, with the claimed properties.
Let i € I; and u € S; \ R;. If u € U; UV, then, for each ¢ € F; and any v such that uwv € E(Ky),
i & Jp.uo as u ¢ W;. Therefore, the only graphs Lg .. with ¢ € V(Lg,uv) are those with ¢ € I, and
uv € E(Ky). As the sets Iy, ¢ € Fr, are disjoint, and, for each Ky there are at most 5 vertices v such
that uv € E(Kgy), there are at most 5 graphs Ly v, for some ¢ and v, with i € V(Lg uv). As any
graph Ly ., has maximum degree at most 4, we thus have that there are at most 20 pairs (7, v) with
{(u,1), (G, )} € T

Suppose, then, that v € W;. Then, for each ¢ € F, and any v such that wv € E(Ky), © ¢ Iy
as u ¢ U; UV;. Therefore, the only graphs Ly y, with i € V(L 4y) are those with i € Jg 4 and
uv € E(Ky). For each ¢ € I, there is at most one pair (¢, v) with i € Js 4. by the choice of the Jg 0.
As, here, Lg ., has maximum degree at most 4, we thus have that there are at most 4 pairs (j, v) with
{(u,), (j,v)} € Z,. Therefore, [GI] holds in both cases u ¢ W; and u € W.

Suppose for contradiction that there is some i,5 € I, u € S; \ T; and distinct v,v" € S; \ T}
with {(¢,u), (4,v)}, {(i,u), (j,v")} € Zr. Then, from (T6)), there is some ¢ € F with uv € E(K,) and
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ij € E(Lguv) as well as some ¢ € F with uv € E(Ky) and ij € E(Lg ). Now, as (¢, uv) #
(¢/,u'v") and {u,v} N {u,v'} # 0, we have that each of i and j cannot appear in both Js v C J,,
and Jyr o C I, Then, as V(Lg,uv) = Iy U Jgp uv and V(Lys yor) = Iy U Ty uer, by we have
that (swapping the labels of ¢, v’ with ¢, v if necessary), that ¢ € I, j € Jp,uv, j € Iy and @ € Jyr yor-
As i € Jyr o C JJ, ./, we have that u € W;. On the other hand, uv € E(K,) and i € I implies
that u € V(Ky) = Uy U Vs = U; UV, a contradiction. Thus, holds.

Let i € I; and u € S; \ T;. Let ¢(i) be the unique ¢(i) € Fr with i € L. If (j,v) is such that
{(%,v), (j,u)} € Zr, then there is some ¢(j,v) € Fr such that ij € Lg(;j,v),uv-

First, we count the choices for such (j,v) for which ¢(v,j) # ¢(¢). In this case we have that
i € Jy(j,v),uv- However, there is at most one pair (¢(j,v),v) with i € J4(; v),uv, and, having chosen
this, at most 4 different vertices j € V(Lg(j,v),uv) With ij € E(Lg uv). Therefore, there are at most 4
choices for (j,v) with ¢(j,v) # ¢(i) and ij € E(Lg(j,0),uv)-

Second, we count the choices for (j,v) for which ¢(j,v) = ¢(i) and ij € E(Lg(jv),uv). As
A(Kgiy) < 5, there are at most 5 choices for v for which uv € E(Ky(;)). As A(Lg,uv) < 4, there are
then at most 4 choices for j such that ij € E(Lg uv).

In total, then, there at most 24 choices for (j,v) such that ij € E(Lg,uv) for some ¢ € F,. Thus,
there are at most 24 choices for (j,v) such that {(i,v), (j,u)} € Z,, and therefore holds.

Let 4,j € I;. Note that the pair (u,v) satisfies {(¢,u), (j,v)} € Z; only if there exists ¢ € F;
with uwv € E(Ky) such that ij € E(Lg,uv). For each ¢ € Fr and uv € E(K,), by [[H9] we have that

< 4 < Spv < 6pv ’

[Jouol =1 7 sl = pupran
where we are using that P(ij € E(Lg,uv)) = 0 if either ¢ or j ¢ V(Lg,uv). The events {ij € E(Lguv)}
are independent over ¢ € F, and uv € E(K,), and there are at most |F-| - 5n < 10pg,'n such events.
Thus, the expected number of triples (¢, u,v) with uv € E(Ky) and i¢j € E(Lg,uv) is at most

/e
,Uv

P(ZJ € E(Ld>,uv))

(17)

6pV

—1 -1 -2 1/3
ptpfn'lopfangptr Pta S?’L/ /47
rPfa

where we have used that 1/n < Dtr, Pfa- Thus, by Lemma with probability 1 — exp(—w(logn)),
the number of pairs (u,v) with {(i,u), (j,v)} € Z, is at most n'/3/2. Taking a union bound then
completes the proof of [G4]

For each ¢,¢’ € F,, using that A(Ky U Ky) < 10, greedily colour the edges of Ky U Ky as
co e @ BE(Kg U Ky) — [250] so that any two edges of Ky U Ky with the same colour are a distance
at least 2 apart in K¢ U Ky (as opposed to the more normal proper colouring where this distance is
at least 1). Let R be the set of (¢,d’,c,d) with ¢, ¢’ € F, and c,d € [250].

Now, let j,7' € I, be distinct. For each (i,u,v,v’) such that {(i,u), (4,v)}, {(i,u), (j',v")} € Z:
there is some (¢, ¢', ¢, d) such that wv € E(K,), w' € E(Ky), ij € E(Lguv) and ij’ € E(Lgs y,), and
the edges uv and uv’ have colour ¢ and d respectively in the colouring c, 4. Note that if (¢, ¢, c,d)
and u are known, then v and v’ are known, let them be vy 4/ c.a,u and v} 4 . 4, respectively. Then,
for each (¢,¢',¢,d) € R, let E4,47,c,a) be the set of (i,u) for which u has a colour-c and a colour-d
neighbour in Ky U Ky under the colouring ¢y 4, 1,7 € V(Kguv) and 4,5 € V(Ky yp). Thus, we
have, easily, that |E,¢/ c.a)| < 2n°.

Now, for any fixed (¢, ¢, c,d) € R, the events {ij € E(Lg,uv, , )}
are independent across all (i,u) € £(,¢/,c,q)- Each of these events occurs with probability at most
n2-(6py /pupran)?® < n'/%. Therefore, for each (¢, ¢, c,d) € R, with probability 1—exp(—w(logn)), we

have that the number of (i,u) € 4,0/ c,ay With ij € E(Lg uv and ij’ € E(LW’““; e ) is at

most 2n'/*. As we have IR| < (2pl)2 -250%, and 1/n < pf:ll, using a union bound, with probability
1 — exp(—w(logn)), we have that holds for any distinct fixed j,j’ € I,. Thus, by another union
bound, holds with high probability.

Let j € I. and u € S; \ T;. Then, the pair (i,v) satisfies {(i,u), (j,v)} € Z- only if there exists
# € Fr with uv € E(K,) such that ij € F(Lg,uv). However, there are at most |F,| < 2p;,' choices
for ¢ € F-, and, after this, at most 5 choices for v with uv € E(K,) and then at most 4 choices for
i with ij € E(Lguw). Thus, in total, there are at most 2p;' -4 -5 < n'/®/2 choices for (i,v) with
{(G,u), (j,v)} € Z-.

Let R; C R;, i € I, be any collection of sets such that, for each i € [n], |R;| = |T;|, and, for each
¢ e Fr, Uie% R, =l Uiel¢ T;. Ashold7 by Lemma for each ¢ € F., there is a set

Co C {{(7’7’“)7 (]7”)} 14,5 € Ip,i # jyue Uy \ (Rl UTj) and v € Uy \ (Tl URJ),U i U}' (18)

dij’ € E(Ly o
,c,d‘u) and 1) S ( @' uv "

/e,d,u

d),d)’,c,d,'u,)
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such that the following hold.

I1 For every i € Iy and u € T;, there is exactly one (j,v) such that {(i,u), (j,v)} € Cy.
I2 For every i € I, and u € Rj there is exactly one (j,v) such that {(i,v), (
13 For every i € Iy and u € R; \ R} there is no (j,v) such that {(i,v), (j,u)}
14 For every i € I, and u € U; \ (R; UTy), (i,u) is (< 1)-balanced in Cg.

Let D be the coloured multi-digraph with vertex set S; where, for each {(i,u), (j,v)} € U4z, Co
we add ub with colour ¢ and v#% with colour j. Note that, for each ¢ € I, and imply
that the edges with colour i form exactly a vertex-disjoint collection of some directed cycles, with no
2-cycles, and |T;| directed paths from T; to R;, all of which are in D[U; \ (R; \ R})].

Now, for each ¢ € F;, from we have that andhold with C replaced by Cy. Therefore,
there are paths Pe, e € Cy, in Ky for which the following hold.

15 For each e = {(4,u), (j,v)} € Cy, Pe is a u,v-path with internal vertices in V, N A if u,v € A and
internal vertices in Vi N B if u,v € B.

16 For each e = {(i,u), (j,v)}, e’ = {(7,v), (5',v")} € C" with e # €, if {i,5} N {¢, 5’} # 0, then
V(P.) and V(P./) intersect only on {u,v} N {u’,v'}.

For each e = {(4,u), (j,v)} € Cy, arbitrarily direct e from (i,u) to (j,v), let £. be the length of P,
and label its vertices as te,0 = U, Ue,1, - - -, Ue,b,—1, Ue,e, = V. For each ¢ € F-, let

C:p = U U {(i’ueﬂ‘—l)v(% uﬁyT)}'

e={(i,u),(j,v)}€Cy TE€[Le]

Let D' be the coloured multi-digraph with vertex set S; where, for each {(i,u), (j,v)} € Ugec . Co
we add 1t with colour ¢ and v with colour j. Note that to create D’ from D, we would take each
ub € E(D), with colour ¢ say, and replace it with a directed u, v-path of edges with colour ¢ whose
underlying path is Py u),(j,0)} for some j, where this j is unique by For each ¢ € I, by |I_3[, the
interior vertices of the paths with colour i are all vertex-disjoint and lie in V. Therefore, from the
similar property for D, for each i € I, the edges with colour 4 in D’ form exactly a vertex-disjoint
collection of some directed cycles, with no 2-cycles, and |T;| vertex-disjoint directed paths from T; to
R in D'[(U UV:) \ (Ri \ R)).

Then, for each ¢ € F; and uwv € E(Ky), let Zy 4. be the set of pairs {i, 5} such that {(i, u), (j,v)} €
C('j,. For each i € I, as D’ has no directed 2-cycles of colour i and every vertex has out-degree in D’
at most 1 in the colour ¢ edges, for each u,v € S; there is at most one edge with vertex set {u,v}
and colour i in D’. Therefore, the pairs in Zy. 4. are disjoint for each ¢ € F, and uv € E(Ky). Thus,
by we can find paths Qe, e € Zg, v, which are vertex-disjoint, such that, for each ¢ € F, and
e=(%4,J) € Lg,uv, Qe is an i, j-path in Ly 4 with interior vertices in Jg uv». For such a path Q., let se
be the length of Q. and label its vertices as ic,0 =1, Ge,15 - - -, le,s, = J-

For each ¢ € F;, let

cy = U U {Ger—1,u), (e, )},

e:{(i,u),(j,v)}e(?;s r€(se]

Let C = U, 7, Cy, noting that it follows from that C C Z.. Let D" be the coloured multi-digraph
with vertex set S; where, for each {(i,u), (j,v)} € C we add ubd with colour ¢ and vi, with colour j. Note
that to create D" from D', we would take each pair ub, vt € E(D’) with colour i and j respectively,
such that e = {(i,u), (j,v)} € Uye . C, and add the edges b, viu with colour ie,,. for each r € [sc —1].
Here, i, is an interior vertex of the path Q., and therefore lies in Jg v, so that u,v € W;, ,.. Using
this, and the definition of the sets Js v, we have, for each ¢ € [n], that the 2-cycles with colour i
that we add to get from D’ to D" are vertex-disjoint from each other and from the edges in D’ with
colour i. Thus, from the similar property for D’ and the construction of D" from D’, for each i € I,
the edges with colour ¢ in D’ form exactly a vertex-disjoint collection of some directed cycles, with no
2-cycles, and |T;| vertex-disjoint directed paths from T; to R; in D[(U; UV; UW;) \ (R; \ R;)]. From
the direct definition of D”, we therefore have that hold for C, as required. O
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4.7 Part regularisation of the collection of pairs

For each 7 € T, we now take a collection Z, for which [GIH{G7] hold, as provided by Lemma [3.3] and
add more pairs to it so that, for all i € I, and u € S; \ R;, (¢,u) is in the same number of pairs in Z,.
L.e., we will have that holds instead of This is the key regularity property we use when later
showing the near-regularity of a certain auxiliary hypergraph in Section @

While achieving this regularity, we need that the pairs added will not worsen overmuch the other
conditions on Z,. It is useful then to compare the properties and [GIHG7] used in Lemma[3.3|
and Lemma [4.5] respectively. As noted, our aim is to add pairs to Z; so that holds instead of
The conditions [A7] and [G7] are the same, and continue to hold on the addition of new pairs
to Zr. The conditions [A3}[A®] are a relaxation of [G3{GH| respectively, where an extra factor of at
least 2 is permitted in the bounds they each claim. This allows us the room to add more pairs to I,
without breaking the relaxed conditions, and we will do this by only adding pairs from some random
collection.

On the other hand, andare the same condition. For convenience we repeat this, as follows.

For each 4,j € I and u € S; \ R;, there is at most one v € S; \ R; with {(i,u), (j,v)} € Z-.

Therefore, this condition gives triples (4, j,u) which cannot appear together in any pair {(i,u), (j,v)}
we add to Z,, and for each other such triple (i,j,u) we can add at most 1 pair {(¢,u), (j,v)}. This
condition is not too onerous: as we certainly always need |Z,| < n?, this is a small proportion of the
triples (i, 7,u) with ¢,j € I; and w € S; \ R;. Thus, within the random collection of pairs which we
consider for addition to Z,, we will only need to remove a few more pairs in order to guarantee that
[A2] holds whichever set of pairs from this random collection we add.

Proof of Lemma Using Lemma [£.5] let
I, C {{(G,u), (j,v)} 14,5 € Ir,i # jy,u € Si \ (R UTj),v € 85\ (i UR;),u# v,u~4/p0}

satisfy For each i € I and u € S; \ Ry, let A;,, be the number of pairs (j,v) such that
{(G,u), (j,v)} € Zr, so that A\; , <20 by and let A;w =24 — A, so that 4 < X;, < 24.

Let &4 = {(i,u,r) : i € Ir,u € AN(S; \ Ri) and r € [A\iu]}. Note that, as 24|{(i,u) : i €
I, AN(S; \ Ri)}| is even, and any {(i,u), (j,v)} € Z, with u € A has v € A, we have that |£%| is even.
Form the auxiliary graph L* with vertex set £4 and, for each (4,u,), (j,v,s) € £, an edge between
(4, u,7) and (j,v,s) if u & Tj, v ¢ T3, u # v, © # j, and there is no w such that {(¢,u), (j,w)} € Z; or
{@G,w), (j,v)} € Z,. We now show that L* has high minimum degree.

Claim 9. §(L%) > (1 — /pr)|L*| and |L*| > pspun?.

Proof of Claim[9 Let (i,u,r) € £, so that i € I, u € AN(S; \ R;) and r € [A\i,u]. Let (j,v,s) € E*.
We have that (j,v,s) ¢ N;a((¢,u,r)) only if at least one of the following hold: i) u € T}, ii) v € T5,
iii) u = v, iv) i = j, v) there is some w such that {(i,u), (j,w)} € Z,, or vi) there is some w such
that {(i,w), (j,v)} € Z,. We will count the number of (j,v,s) € 4\ {(i,u, )} satisfying each of i) —
vi) in turn.

Using D9} and that |I;| = (1 £ &)pun and |F;| = (1 £e)p;," for any 7 € T, we have the
following. i) By [D2| there are at most |F-| - 2(1 + s)pr(jlpfaptrn < 8pr§1pun choices for j € I,
such that v € T}, and thus at most 8pr51ptrn 2psn - 24 < \/prpen? /10 choices with (j,v,s) € 4
and u € Tj, where we have used that pr < pu. ii) By there are at most 2prn choices of
v € ANT;, so that there are thus at most 2pyn - 2prn - 24 < \/EpsptrnQ/lo choices of (j,v,s) € £4
with v € T;.

iii) There are at most 2p,n - 1-24 < \/Epspnnz/lO choices of (j,v,s) € E4 with v € T, with
v =u. iv) By there are at most 2psn - 24 < \/prpspun’/10 choices of (j,v,s) € EA with j = .
v) By [G1] there are at most 20 choices of j for which there is some w with {(i,v), (j,w)} € Z, and
therefore at most 20 - 24psn < \/Epsp“nQ/lO choices of (j,v,s) € £* for which there is some w
with {(¢,u), (j,w)} € Z,. vi) Similarly, but using there are at most 24 - 24psn < \/prpspun’/10
choices of (j,v,s) € £* for which there is some w with {(i,w), (j,v)}. Combining all of this, the
number of non-neighbours of (i,u,r) in L* is at most \/EpsptrRQ.

Now, as A;,u > 4 for each i € I and u € AN (S; \ R;), we have that

LA = €% = 41| - |AN (Si\ Ri)| = 4(1 = e)pun - (1 — e)psn > pspun’,

so that, in combination with |V (L) \ Npa(z)| < \/prpspun® for each = € V(L*), we have that the
claim holds. J
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Let p = log®n/|L*|. Form La C La with V(La) = V(La) by including each edge of L4 indepen-
dently at random with probability p. We will show the following claim.

Claim 10. With high probability, we have the following properties.

J1 For each U C V(L*) with |U| < |L*]/10%, |N; 4 (U)| > 20|U]|.

J2 For each disjoint U,V C V(L?) with |U|,|V| > |[L*|/10%, e; 4 (U, V) > 20|U].

J3 For each x € £%, there are at most 12 tuples (j,v,s,v’,s") for which (j,v, ), (j,v',s) € Nj 4 (x).

J4 For each & € £4, there are at most 4 tuples (j,v,s,u,r) with (¢,u,r) # x for which (j,v,s) €
N;a(z) and (i,u,7)(j,v,s) € B(L)A.

J5 For each i € I+ and u € S; \ T;, there are at most n/3/4 pairs (j,v) such that {(¢,v), (j,u)} €
E(La).

J6 For each distinct i, € I, there are at most n'/%/4 pairs (u,v) with {(i,u), (j,v)} € E(La).

J7 For each distinct j, 5" € I, there are at most n1/3/4 tuples (i,u,v,v") for which we have that

{(i>u), (J, U)}>{(i7u)7 (j,:vl)} € E(E‘A)
J8 For each j € I, and u € S\ T there are at most n'/3 /4 pairs (i, v) with {(i,u), (j,v)} € E(La).

Proof of Claim[I0 . Let U C V(LA) with |U| < |L#]/10°. By Claim |§| and a simple double-
counting argument there are at least |L*|/2 vertices 2 € V(L) with at least |U|/2 neighbours in U in
LA. For each such z, P(z € N; 4 (U)) > 1—(1—p)!Y! > p|U|/2 = (2/|L?|) - |U|log? n/4. Therefore, by
Lemma with probability 1 — exp(—w(|U|logn)) we have that |[N;.(U)| > 20|U|. Thus, holds
with high probability by a union bound.

Let N = |[LA]. Let U,V C V(L*) be disjoint with |U],[V| > N/10%. Then, by Claim [9]
epa(U, V) > |U||V| = max{|U|,|V|} - /prN > N?/10°. Then, by Lemma [2.6| with probability
1 — exp(—w(N)), we have that e;(U,V) > 20N. Thus, by a union bound, holds with high
probability.

- Let x = (3,u,7) € E*. For each j € I, \ {i}, there are at most 24n palrs (v, s) with (j,v,s) € £4
Thus, the probablhty that there are at least 5 pairs (v, s) with (j,v,s) € £ and z(j, v, s) € E(LA) 1s at
most (24n)°p® < n™*, and the probability there are at least 2 such pairs is at most (24n)?p? < n~
Then, the probability that there are at least 3 values of j € I, \ {i} for which there are at least 3
pairs (v, s) with (j,v, s) € € and z(j,v, s) € E(L*) is at most n® - (n~9)® = n=27. Furthermore, the
probability that there is some j € I \ {i} for which there are at least 5 pairs (v, s) with (j,v,s) € £
and z(j,v,s) € E(L*) is at most n-n~* = n~>. Combining these, we have that with probability at
least 1 — 2n~ 27 the number of tuples (j,v,s,v’,s’) for which (j,v,s), (j,v',s’) € Nza(x) is at most
2. (;l) = 12. Thus, by a union bound over x = (i,u,r) € &4, we have that holds with high
probability.

- Let © = (i,u,7) € £*. By Lemma [2.6] E with probability 1 — exp(—w(logn)) the set, Y say, of
y € £ with zy € E(L") satisfies \Y| < 2log®n. For each y € Y, the probability there is some
(u',r") # (u,r) with (i,u',7")y € E(L ) is at most 24n - p < n~ Y, and the probability there are at
least 3 such (v, 7) is at most (24n)*-p® < n~27. Thus, with probability at least 1 — (2log®n)-n=27 —
(2log®n)3 - n™3%9 < n=25 there is no y € Y for which there are at least 3 pairs (v/,r’) # (u,r)
with (i,4',7")y € E(L*) and there are at most 2 choices for y € Y for which there is some pair
(u',r") # (u,r) with (i,u’,7")y € E(L*). Note that when this holds then [J4| holds for z. Thus,
holds with high probability by a union bound.

Let i € I, and u € S;\ T;. There are at most n? pairs (j,v) such that {(i,v), (j,u)} € E(La), and
for each such (j,v), the probability that {(i,v), (j,u)} € E(La) is p < n~*°. Thus, by Lemma
with probability 1 —w(—logn), there are at most n'/®/4 pairs (j,v) such that {(i,v), (j,u)} € E(LA)
Thus, holds with high probability by a union bound.

[J6JT8 These hold with high probability virtually identically to [J5]

. Let j,j € I, be distinct. For each (i,u,r) € €4, with i ¢ {4, '}, the probability there are at
least 6 pairs (v s) with (j,v,s) € € and z(j,v,s) € E(L?) or (j/,v,s) € € and z(j',v,s) € E(L?) is
at most (24n)°(2p)® < n~°. Furthermore, the probability there are at least 2 such pairs is at most
(24n)%(2p)? < n™°. Then, for each i € I \ {j,j'}, with probability 1 —n™* — (24n)* - (n=>%)* >
1—2n35 there are at most 3 values of (u,r) with (i,u,r) € E* for which there are at least 2 such pairs,
and there is no value of u with (i,u) € £* for which there are more than 5 such pairs. When this
happens, there are at most 3 - (g) = 30 choices for (u,r, 7,5’ ,v,v’,s,s") for which (j,v,s), (j',v',s") € £
and z(j, v, s),z(j',v', ') € E(L*). Thus, with high probability this holds for all distinct 5, j’ € I and
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i € I \ {j, 7'} by a union bound. That is, for each j,j’ € I, and i € I, \ {4, 7’} there are at most 30
choices for (u,v,v") for which we have that {(i,u), (j,v)}, {(i,u), (j',v")} € E(La).

Let again j, j' € I be distinct. For each i € I-\{j, '}, the probability that there is some (i, u, v, v’)
for which we have that {(i,u), (5, v)}, {(i,u), (j/,v")} € E(La) is at most (24n)>p> < n~%%. Therefore,
by Lemma with probability 1 — exp(—w(logn)) we have that the number of i € I \ {j,j'} for
which there is (u,v,v") for which we have that {(i,u), (j,v)}, {(i,u), (j',v)} € E(La) is at most n*/*,
Thus, by a union bound, this holds with high probability for every distinct 7, j’ € I

In combination, the two properties we have shown hold with high probability imply that, for every
distinct 7,4’ € I, the number of tuples (i, u, v, v") for which we have that {(i,u), (j,v)}, {(i,u), (§',v')} €
E(ﬁA) is at most n'/* .30 < n1/3/4, as required. Thus, holds with high probability. m|

Thus, we can assume that hold. Now, let L* be the graph L* where we remove an edge
(i,u,7)(j, v, s) if there exists some (v, s') with (i,u,7)(j,v’,s’) € E(L*). Note that, byandthis
removes at most 16 edges around any one vertex. Therefore, and easily imply the following.

J1’ For each U C V(L*) with |U| < |LA|/10%, |N; 4 (U)] > 3|U|.
J2° For each disjoint U,V C V(L?) with |U|,|V| > |LA|/10%, e; 4 (U, V) > 0.

We now show that and imply LA contains a perfect matching via Tutte’s theorem. Let
U C V(I~/A). If U # 0, then as |L*| is even and and easily imply that L“ is connected,
L — U has no components with an odd number of vertices, i.e., it has no odd components. If Ul >0
and L* — U has at least |U| + 1 components then V(L* — U) can be partitioned into Vi, Vo with
[Vi|,|Va| > |U|/2 so that there are no edges between Vi and Vs in L* — U. By we_then have
|U|/2 < |L#|/10%. Taking an arbitrary set V{ C Vi with |V{| = [|U|/2], we then have bythat

Ul = INpa (VD) = 3|Vi| > |U],

a contradiction. Thus, for every U C V(L*), L* — U has at most |U| odd components. Therefore, by
Tutte’s theorem, L* has a perfect matching, M*, say.

Similarly, form the auxiliary graph LZ with vertex set £ and, for each (3,u,r),(j,v,s) € £,
an edge between (i,u,r) and (j,v,s) if u ¢ Tj, v ¢ T3, u # v, © # j, and there is no w such that
{(i,u), (j,w)} € Z, or {(i,w), (j,v)} € Z,; and no (w,r,s) such that (i,u,)(j,w,s) € M*. Similarly,
form L? and M?, where the extra condition on edges in L? is small enough that Claim [9] can easily
be seen to still hold with B in place of A.

Then, let

7 -1T,u U (), G} | - (19)
(i,u,m)(j,v,5)eEMAUM B

By the construction of M4 U M, all the pairs added to Z. in are distinct and not in Z,.

By the choice of the A; ., then, we have that holds with Z. in place of Z.. follows with
7. in place of Z. from the definition of L# and L, and the definition of L* and LZ.
hold with Z. in place of Z. by combining and |JJ5HJ 8l as well as the corresponding versions
of for L?. Furthermore, follows directly from with Z7 in place of Z,. Finally, we have
that (6) holds with Z, in place of Z.. Therefore, 7/ satisfies the conditions in Lemma in place of
Z., completing the proof of the lemma. a

5 Random Latin squares and links

In this section, we give tight bounds on the number of paths with certain patterns of colours, which
hold with very high probability in G ~ sz‘]‘ To describe this, we will use the following notation.

Definition 5.1 (Patterns and links). Say L = (H, f) is a pattern if H is a graph with a specified
start vertex uz, and a specified end vertex v # ur and f is a function from E(H) to N.

Given distinct vertices u,v in a coloured graph G, and a pattern L = (H, f), a (u,v, L)-link is a
graph H’ C G for which there is an isomorphism ¢ : H — H’ such that, for each i € im(f), ¥(f'(i))
are edges in G of the same colour, where this colour is distinct over ¢ € im(f).

The main result of this section, and the only one used elsewhere, is the following theorem which
counts certain paths with a given structure. In particular, we are interested in paths of length 62 with
fixed endvertices v and v, which, starting from wu, use 31 distinct colours and then repeat each of these
colours in the same order exactly once before ending at v. Note that the number of possible ordered
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choices for the 31 colours on such a path is (1 — O(n™!'))n3!, and for each such choice, by symmetry,
the probability that starting from u and choosing the edges in the required colours and order produces
a path that arrives at v is essentially 1/n. Thus, the expected number of links we wish to count is very
close to the parameter ®; = n°C in Theorem The first property in Theorem that holds with
high probability, is that the number of links we are counting is close to this expectation. The
remaining properties count the number of links given additional constraints (fixing certain vertices,
edges and colours, sometimes at particular points in the path) — each case there is a natural heuristic
that, for example, if the link is additionally required to have a vertex x in the kth position then the
expected number of such links is reduced by a factor of n=!. In Section@ we will consider an auxiliary
hypergraph whose regularity depends on the number of links containing any particular vertex, edge,
or colour in a particular position. We require this auxiliary hypergraph to be approximately regular
with sufficiently small codegrees. Thus the tight bounds of [K2HK4] are required for this approximate
regularity, whilst only upper bounds are needed for the properties covered by [K5HK9] as we need only
show that these are not too large in order to bound the codegrees of the auxiliary hypergraph (and
also to bound certain dependencies in Section E[)

Theorem 5.2. Let 1/n L eand G ~ sz]l Let L be the following pattern, a path of length 62 with
31 different colours in the first 31 edges which then repeat in the same order:

1 3 7 9, 27 31 2 | 6, 8 - AL 30
ur, vL

Then, with probability 1 — n~*®) | the following hold with & = n*°.
K1 For each distinct u,v € V(G) with u ~4,p v, the number of (u,v, L)-links in G is (1 £e)Po.

K2 For each k with 2 < k < 62 and each distinct u,v € V(G) with uw ~4/p v, and each x €
V(G)\ {u,v} with x £ /B u,v if k is even and x ~4,p u,v if k is odd, the number of (u,v, L)-
links in G in which x is the kth vertex is (1 £¢) - ®o-n~".

K3 For each k € [62], and each distinct u,v € V(G) with u ~a,p v and each c € C, the number of
(u,v, L)-links in G in which the kth edge has colour c is (1 £¢) - ®o-n"" .

K4 For each k with 2 < k < 61 and each distinct u,v € V(G) with u ~4,5 v, and each vy € E(G)
with {z,y} N {u,v} = 0, the number of (u,v, L)-links in G which have zy as the kth edge is
(1:|:E) . (I)Q -7'L_2.

K5 For each distinct u,v,x,y € V(G), the number of (u,v, L)-links in G containing x and y is at
most 10 - &g - n~2.

K6 For each distinct u,v,x € V(G) and each ¢ € C, the number of (u,v, L)-links in G using x and

c in which there is not a colour-c edge ux or xv is at most 10* - &g - n 2.

K7 For each distinct u,v € V(G) and each distinct ¢,d € C, the number of (u,v, L)-links in G using
¢ and d is at most 10* - &g - n 2.

K8 For each distinct u,v € V(G) and each distinct e,e’ € E(G — {u,v}) with different colours
and which share no vertices, the number of (u,v, L)-links in G containing e and €’ is at most
10* - @g -t

K9 For each distinct u,v,w € V(G) and each e € E(G — {u,v,w}), the number of (u,v, L)-links in

G containing w and e is at most 108 - &g - n 3.

We discuss our proof of Theorem in Section before outlining the rest of this section.

5.1 Discussion of methods and section outline

As we have noted in Sections [[] and [2} to prove Theorem [5.2] we will use the deletion method of Rédl
and Rucinski [38], developing its use in Latin squares by Kwan, Sah and Sawhney [25], where they
use it to prove likely upper bounds on the counts of different substructures. We will first describe how
we use it in this way, before explaining how and why we use it for our key lower bound.

Suppose we have a collection F of small properly-coloured graphs that might appear in G ~ G[cﬁ]l,
and we wish to give an upper bound on the number of graphs in F that appear as subgraphs of G. As
each F' C F is small and properly coloured, and the probability the corresponding edge in G has the
same colour as that edge in F is, by symmetry, 1/n, we expect that P(F C G) =~ n~ ") However,
the challenges of working in the uniformly random Latin square model mean that this probability is
severely dominated by the error terms we need to use for the known bounds on P(F C G) if e(F)
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is small (i.e., using Corollary is far off even the trivial bound P(F C G) < 1). However, if H is
a properly coloured subgraph which is the union of many edge-disjoint subgraphs in F, then we can
give an effective bound on P(H C G) (via Corollary . Moreover, if G contained plenty of graphs
in F that did not overly overlap, then it would contain some such subgraph H.

The deletion method uses this reasoning to give an upper bound on the number of graphs in F
that appear in G that holds with high probability. The form of this argument (using similar notation
to later in this section) will go as follows, for a set D C [n] of pn colours and for G ~ G[Cfl’]l

Suppose F is a collection of N properly-coloured subgraphs which might appear in G|p, each
with r edges, and let x € N.

Consider the collection S of sequences S = (F1,..., Fy) of subgraphs drawn from F which are
edge-disjoint and whose union Hg := U;c[) F; is properly coloured.

Then, as |S| < N7, the expected number of such sequences S € § with Hs C G will be, by
, at most O Prrtnlos® W(Nn~")".

Thus, by Markov’s inequality, with probability 1 — n~“® the number of S € S with Hs C G
2
will be at most n@) . CPretnloe™ ) (Np=TVE < ((1 4 £/2)Nn~")", where the inequality will

POLY POLY

hold if, for example, 1/n < p < € and & = n'0L.

Corollary

If G contains more than (14+¢&)N"n~" of the graphs in F which are well enough distributed that
selecting these graphs greedily shows there are at least ((14&/2)N"n~")" sequences S € S with
Hs C G, then from the previous step it must be the case that, with probability 1 — n~*®, G
contains at most (14 €)N"n~" of the graphs in F.

The method is applied in Sections and These applications build in complexity, and rely
on the previous applications, and so we repeat each application largely in full rather than attempting
to amalgamate them into a general result. Before discussing our application of the deletion method
for a lower bound, we make the following further remarks.

In order to give a likely upper-bound on the number of graphs in F appearing in G, we need to
show that, with high probability, there are not many heavily overlapping graphs in F appearing
in G. For some of our applications of the deletion method, this will only hold with very high
probability in G ~ G[Cs]l, something we show using a simpler application of the deletion method.
Where we do this, B will be the event that there are not many heavily overlapping graphs in F
appearing in G (see, for example, Claim [11| and the argument just after this).

The sketch above uses p < €, while, for example, for Theorem we want to count the number
of (u,v, L)-links in G ~ G[Cfl’]l using any colour. To make the deletion method approaches work,
then, we have to count the number of substructures we are interested in that use colours in some
set (D, D1, or D) that is not too large, and sometimes using only edges in some random set
of edges. Thus, we often prove results with extra restrictions like these (e.g. Lemma before
using simple probabilistic arguments with a Chernoff bound or McDiarmid’s inequality to give
a result without these restrictions (e.g. Corollary .

In order to apply Corollary to bound P(Hgs C G), we need to have that each colour appears
at most pn times in Hg, so this is an added condition we will take on sequences S € S.

This sketch so far follows the use of the deletion method in [25], though we additionally use
the deletion method to control the likely spread of graphs in F. A larger difference is that the
subgraphs we are using will have some vertices contained in all of them — for example, for some
u, v, F could be a collection of coloured u,v-paths. Then, if we can take x edge-disjoint graphs
from F which can appear in G, we must have k < n, so that the error term Orrtnlog® n) g
Corollary is too large to give the tight bounds we need as nlog?n will be larger than x,
preventing the above sketch from working.

However, it is not difficult to see how to fix this. In the example above for u, v-paths, we would
let H be the graph of edges of G with colour in D which contains u or v. Then, considering
instead the collection F' = {Gr := F —u — v : F € F}, we can consider x = n>%! edge disjoint
graphs G € F' for which F C G. We can then work by conditioning on the different possible
outcomes of H, where, as we will see (for example, in Claim and its proof) that this will
introduce an additional error term of e into the application of Corollary This is small

O(nlog?n)

compared to the error term e we already have, as e(H) < 2n.
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We will now describe how we use the deletion method to give a likely lower bound, as we do in
the proof of Lemma in Section In this, we have G ~ fol’]l and distinct z1, z2,y1,y2 € V(G)
with 21 %04/ y1 and @2 #4,/5 y2. We wish to give a lower bound which holds with high probability
on the number of pairs (Pi, P2) of vertex-disjoint paths in G|p such that, for each ¢ € [2], P; is an
x;, y;-path of length 15 and these paths have the same colours in the same order. To make this easier,
we split D into D; U D2 and count the pairs of such paths whose edges are all in G|p, except the
middle edges of each path, which has colour in Ds. In Section we show that G|p, will very likely
be such that for all but o(n*) distinct (uncoloured) edges e, f ¢ FE(G|p,), if e and f have the same
colour in G then there will at most only a little fewer than can be expected paths (Pi, P2) of the sort
we are counting which have e and f as their respective middle edges. In other words, we will have
& which is a relatively small set of pairs of uncoloured edges e, f ¢ E(G|p,) which would not fewer
than average of the structures we want if they appear in G together with the same colour. Bounding
above the number of these which appear in G with the same colour (using the deletion method) we
then have a lower bound for the structures in G we wish to count.

We leave further details to the proof of Lemma but as this implementation is relatively
complex, we think it worth noting here why using switching methods instead would be even more
complicated. In this setting, using the deletion method and using the switching method for a likely
lower bound on the number of certain small coloured subgraphs here is actually closely related. In
particular they would both use the counting of small coloured subgraphs which can be found robustly
(for example, in the work of Gould, Kelly, Kiihn, and Osthus [16], the subgraphs called ‘spin systems’
and ‘twist systems’ in its Definition 7.4). With apologies to any readers not familiar with the switching
method, we will not overburden this explanation with the details of a method we are not using, but
this comparison roughly goes as follows. For the switching method, the aim would be to argue that
(where @ is the expected number of subgraphs we are counting), when X < (1 — £)® the number of
G e Q[C,‘;]l with X such subgraphs is outnumbered by a (1 + Q. (1)) factor by those G € Q[C;f]l with X +1
such subgraphs. This would then be iterated to show that a proportion of at most (1 — Qc(1))*® of
the graphs in G € gf;;]l can have X such subgraphs if X < (1 — 2¢)®, which translates into the very
small probabilities we would need. The point here is that this would involve counting small coloured
subgraphs not only in a typical G € Q[ﬁf]l but doing so in a way that remains possible as G is iteratively
altered by switching operations. For our new approach to such lower bounds via the deletion method
(using the notation above) we consider a sequence of k small coloured subgraphs as well, but these
are drawn from the same coloured graph, and this makes for a less technical approach as our parent
graph is not changing.

Section outline. In Section [5.2] we give a loose bound on pairs of paths of length 3 with fixed
endvertices and the same colours which holds with very high probability in G ~ G[Cfl’]l The first such
result is Lemma (proved with our first application of the deletion method), which bounds the
number of such paths with colours in some set D C [n], before we use this to deduce for Corollary
a bound which holds with high probability for paths of any colours. Then, in Section [5.3] we use
this to ensure certain longer paths are likely to be well enough distributed that we can bound above
their number using the deletion method. This will give us a strong bound on the pairs of paths of
length 7 with the same colours and fixed endvertices. In Section [5.4] we prepare for the lower bound
we show in Section [5.5] using relatively straight-forward combinatorial and probabilistic arguments to
give good a good upper bound on the size of the collection £ described above. This allows us to use
the deletion method to give our main likely lower bound in Section [5.5 before we put all of the work
in this section together to prove Theorem in Section [5.6]

5.2 Loose upper bounds for length 3 paths with the same colours

As described in Section [5.1] we will first prove a loose bound on the number of paths of length 3 with
fixed endvertices and the same colours, using only colours in some set D C [n], which holds with very
high probability in G ~ Gf?], as follows.

Lemma 5.3. Letn =0.01 and 1/n Lp<n LetDC [n] have size pn. Let G ~ G[Cf;]l Letxi,22 € A
be distinct and let y1,y> € B be distinct. Then, with probability 1 — n~“®) | there are at most n**"
pairs (P1, P2) of vertex-disjoint paths in G|p of length three such that Py is an x1,y1-path, P> is an

T2, y2-path and they have the same colours in the same order.
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g1 Y2

1 T2

Proof. Note that we can assume that x1 %4/ y1 and z2 #4,p Y2, for otherwise there are trivially no
such paths. Let H be the graph of edges in G next to {x1,z2,y1,y2} with colour in D, and let H be
the set of possibilities for H. Let A be the property that there are more than n'™ pairs (P, P2) of
vertex-disjoint paths in G|p of length three such that P; is an x1,yi1-path, P> is an x2, y2-path and
they have the same colours in the same order. We will show the following claim.

Claim 11. For each H € H, P(A|H = H) = n~*W.

Given this claim, we will have

P(A) = Y PAANH=H))= > PAH=H) -P(H=H) < maxP(A|H = H) =n"*".
N N HeH
HeH HeH
Therefore, it is sufficient to prove Claim

Proof of Claim . Let H € H. Let k = n't"/2. Let Fz be the set of properly coloured graphs F' with
vertices in (AU B) \ {z1, z2, 41, y2} which each comprise two coloured edges, e and f say, with colour
in D, such that H +e+ f is a properly coloured graph which contains a pair (P1, P») of vertex-disjoint
paths in G|p of length three such that P; is an 1, yi-path, P, is an x2,ys-path and they have the
same colours in the same order. Such a subgraph F' is determined by the middle edge in P; (including
the edge’s colour), and therefore | Fp| < n®.

Let Sy be the set of sequences (F1,...,Fx) of length x of edge-disjoint subgraphs from F for
which each colour appears on Uig[ﬁ] F; at most pn/2 times, and note that, then,

Syl < | Fpl™ <0 (20)

For each S = (Fi,...,Fx) € Sy, let Hs = U,c() Fi, so that e(Hs) = 2k, each colour appears on Hg
at most pn/2 times and every edge of Hs has colour in D. Let Z; be the number of S € Sy with
Hs C G.

Now, we have that each subgraph F' € Fj is determined by either of its edges along with which
of the paths Pi and P, it is in. Thus, any edge can appear in at most two graphs in F appearing as
subgraphs of G, and (as any colour in D appears on n edges of G) any colour can appear on at most
2n graphs in Fp appearing as subgraphs of G. Assuming A holds, then we have Z5 > (ntT"/2)% as
follows. Indeed, if A holds, then we can pick a sequence (Fi,..., F.) of edge-disjoint subgraphs from
Fg by picking each F;, 1 <4 < k, in turn, where at the selection of each Fj, i € [k], there will be
(i—1) -2 edges we wish to avoid and at most 2(z — 1) - 2/pn colours, so the number of possibilities for
Fj; is at least

n't" - 2.2k —2n- 2K > nttn/2,
pn/2
as 1/n < p and n = 0.01, and therefore Z; > (n1+”/2)”.

For each S € Sy, note that Hs U H has at most pn/2 + 4 < pn edges of each colour, and every
edge of Hs U H has colour in D. Therefore, for each S € Sy for which Hs U His properly coloured,
using Corollary (applied to both Hg and Hg U H) and that e(Hgs) = 2k > nlog?n > 4n > e(H),
we have

]P)((Hs U I:I) C G) O(p-e(Hg)+nlog?n) X nie<HSUH) O(P”),’,L*Q“

P(Hs C GIH = H) = —~—5 -2 =) =

P(H C G) n—e(f) )

where we have used that pk = pn't7/2 = Q(nlog?n) as 1/n < p. Therefore, as this holds for each
S € Sy such that Hs U H is properly coloured,

~ (20)
]E(ZIfI|H — H) < |Sﬁ‘ . 6O(pn)n72n < n3n . eO(pn)n72n < (n1+O(p))li — (n(1+”7/2))l~i . nfw(l)’

so that, by Markov’s inequality, we have

A o E(Z4H=H Y
PAIH = H) <P(Zg > (n"*")") < % =n=0.

This completes the proof of the claim, and hence the lemma. O O
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Using Lemma we now deduce a similar bound which is very likely to hold in G ~ G[C,CL’]I but
where the paths can use any colours in G.

Corollary 5.4. Let n =0.02 and n € N. Let G ~ G[Cﬁ]l Let 1,22 € A be distinct and let y1,y2 € B

be distinct. Then, with probability 1 — n_“’(l), there are at most n*™" pairs (Py, Py) of vertes-disjoint

paths in G of length three such that Pi1 is an x1,y1-path, P2 is an x2,y2-path and they have the same
colours in the same order.

Proof. Let p < n, let x1,z2 € A be distinct, let y1,y2 € B be distinct and let G ~ Gfﬁ]l For each

i € [n], let D; be a uniformly random subset of C' with size pn. By Chernoff’s bound, with high
probability we have that, for each set CcCof3 colours, there are at least p®n/2 values of i € [n] for
which ¢ C D;. Furthermore, by Lemma with probability 1—n"*W foreachie [n], we have that
there are at most n'°! pairs (P1, P2) of vertex-disjoint paths in G\m of length three such that P; is
an x1,yi-path, P> is an 2, y2-path and they have the same colours in the same order. Therefore, the
number of pairs of vertex-disjoint paths (Pi, P2) in G of length three such that P; is an z1,yi-path,
P> is an x2, y2-path and they have the same colours in the same order is at most

1.01
n-n
< p'tm

oz =

as required, where the last inequality holds for sufficiently large n, which holds with probability
1—n—v®, O

5.3 Tight upper bounds for length 7 paths with the same colours

We now prove a tighter upper bound for pairs of paths of length 7 instead of pairs of paths of length
3. We will use Corollary to show that the subgraphs we now seek in G ~ Gfr‘f]l are likely to be well
distributed in G, through the following result.

Proposition 5.5. Let G ~ Gf,?]l Let x1,22 € A and y1,y2 € B all be distinct. Then, with probability

1—n"“WM for each e € E(G—{z1,z2,y1,y2}), there are at most n®>° pairs (P1, P2) of vertez-disjoint

paths in G of length seven such that Pi is an x1,yi-path, Ps is an x2,y2-path, they have the same
colours in the same order, and e € E(P, U Ps).

Proof. Let n = 0.02. From Corollary with probability 1 — n_“’(l), for any distinct x7, x5, 1, ys €
V(G) there are at most n' 7 pairs (P{, P) of vertex-disjoint paths in G of length three such that Pf
is an x},yi-path, P, is an x5, y5-path and they have the same colours in the same order. Assuming
this property, we will now show the required property holds.

For this, let 1,22 € A be distinct and let y1,y2 € B be distinct and let e € E(G — {1, 22, y1,y2}).
Let (P1, P2) be a pair of vertex-disjoint paths in G of length seven such that P; is an z1, yi-path, P>
is an z2, y2-path, they have the same colours in the same order, and e € E(P1 U P»). Suppose that
e is one of the first 4 edges of Pi, say the ith edge and note that, as x1 ¢ V(e), 2 < i < 4. Note
further that the first 4 edges of P; are determined by choosing which of them is e and additionally
choosing the colour of the other edges among the 2nd, 3rd and 4th edge. As the colours on P; and
P, are the same and in the same order, this then determines the first 4 edges of P». By the property
from Corollary the pair (P1, P) is then determined up to at most n'™" possibilities. Thus, there
are overall at most 3n>t" possibilities for (Pi, P2) for which e is one of the first 4 edges of P;.

By the same argument, there are at most 3n>*" possibilities for (P1, P2) when e is one of the last
4 edges of Py, or one of the first 4 edges of P», or one of the last 4 edges of P>. Therefore, in total,
there are at most 12n>T7 < n*% pairs (P, Ps) of vertex-disjoint paths in G of length seven such
that P is an x1,yi-path, P> is an x2, y2-path, they have the same colours in the same order, and
e € E(PLUP). O

Using Proposition [5.5] we now prove our tight upper bound likely to hold for pairs of length 7
paths with the same colour pattern and colours within some subset D C [n], as follows.
Lemma 5.6. Let 1/n Lp<e LetDC [n] have size pn. Let G ~ G[C,‘Z]l Let x1,2x0 € A be

distinct and let y1,y2 € B be distinct. Then, with probability 1 —n~“®) | there are at most (1+¢&)p™n
pairs (P, P2) of vertez-disjoint paths in G|p of length seven such that Py is an x1,y1-path, P> is an
T2, y2-path and they have the same colours in the same order.
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Proof. Let H be the graph of edges in G next to {z1, x2,y1, y2} with colour in D, and let H be the set
of possibilities for H. Let A be the event that there are more than (14-&)p’n® pairs (P1, P2) of vertex-
disjoint paths in G|p of length seven such that P; is an z1,yi-path, P> is an x2,y2-path and they
have the same colours in the same order. Let B be the event that, for each e € E(G — {z1, z2,y1,y2}),
there are at most n*?3 pairs (P1, P2) of vertex-disjoint paths in G of length seven such that P; is an
Z1,y1-path, Ps is an x2, y2-path, they have the same colours in the same order, and e € E(P1 U Py).
We will show the following claim.

Claim 12. For each H € H, P(AAB|H = H) = n~<W,
Given this claim, as, by Proposition P(B)=1-— n~*M we will have

P(A) < P(B) + P(AAB) =n"*" + >" P((AAB) A (H = H))
HeM
=n“O 4+ N PAABIH =H) -P(H = H) <n *" + maxP(AAB|H = H)
N HeH
HeH
— e (22)

Therefore, it is left only to prove Claim [T2}

Proof of Claim . Let H € H, n =0.01 and k = n**". Let Fp be the set of subgraphs F' which
consist of two vertex-disjoint paths of length 5 with vertices in (AU B) \ {z1,%2,y1,y2}, where F' is
additionally labellecﬂ with a colour ¢, such that there is a pair (Pi, P») of vertex-disjoint paths in
HUF of length seven such that P; is an x1,yi1-path, P> is an 2, ys2-path and they have the same
colours in the same order, all of which are in D, and such that c is the first colour on P;. Such a pair
(Pi, P2) is determined by choice of the first and last colour of P; (with at most (pn)? choices, and
which determines x1,z2,y1 and y2), the 4 internal vertices of P; which are not neighbours of x1 or y;
in Pj, the 4 internal vertices of P> which are not neighbours of 2 or y2 in P», and the 5 colours in
order appearing on the edges of P; which are not in H. Note (in part for the implication of A holding
later) that each such pair (P, P2) gives rise to exactly one subgraph in Fz (labelled with the first
colour of Pr) and each such subgraph in Fj has exactly one such pair (P, P2). In particular, then,
|Fg] < (pn)? -n*-n*- (pn)® = p"n'®. Note that each subgraph in F4 has 10 edges.

Let Sz be the set of sequences (F1,..., Fy) of length x of edge-disjoint subgraphs from Fg for
which each colour appears on J iels] F; at most pn/2 times, and note that, then,

IS5 < p™n't. (23)

For each S = (F1,...,F.) € Sy, let Hs = U;c[ Fi, so that e(Hs) = 10k and each colour appears
on Hs at most pn/2 times. Let Z; be the number of S € Sy with Hs C G. As follows, if A and B
hold, then Zz > ((1+¢/2)p"n®)*. Indeed, if A and B hold, then we can pick a sequence (F1,..., F)
of edge-disjoint subgraphs from Fp by picking each F;, 1 < i < &, in turn, where at the selection
of each Fj, ¢ € [k], as A and B hold and there will be 10(¢ — 1) edges we wish to avoid and at most
10(¢ — 1) - 2/pn colours, the number of possibilities for the choice of F; will be at least

(1+¢e)p'n® — 10k - n>% — 10r n

3.03 7.5 30-ntt7.n%08 7.5
-n >14+e)p'n” ——— > (1+¢€/2)p'n°,
o (1+e) . (1+¢/2)
where we have used that 1/n < P, E. R

For each S € H, Hg U H has at most pn/2+4 < pn edges of each colour and every edge on Hg U H
has colour in D. Therefore, for each S € S such that Hs U H is properly coloured, similarly to 7
and using Corollary twice and that px > nlog? n, we have

P(HS c G|H _ ﬁ) _ eO(pm«l»n log? n)nflOm _ eO(pN)nflOm'

2This is done as otherwise each F' can have 2 matching paths (Py, P2). This did not matter analogously in the proof of
Claim as we were proving a looser bound.
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Thus, as this holds for every S € Sp such that Hs U His properly coloured, and p < &,

~ (23)
E(Z~\H=H < S’H X eO(pn)n—lOfi < p?nn5fi 'eO(pn) =(1+¢/2 n/2p7l<n5n
H

= (1 +e/2p"n%) -0,
Then, by Markov’s inequality, we have

B(ZalH =) _ oy

P(AABIH = H) <P(Zy > (1+¢/2)p"n®)") < At e/ —

This completes the proof of the claim, and hence the lemma. O O

In the same way as Corollary [5.4] follows from Lemma [5-3] the following corollary follows from
Lemma [5.6] where again the paths counted can now have any colours, not just those in D.

Corollary 5.7. Let 1/n L e Let G~ Gfs]l Let x1,22,91,y2 € V(G) be distinct with x1 o 4/5 11
and x2 #a/p y2. Then, with probability 1 — n~*W | there are at most (14 e)n® pairs (P, P) of
vertez-disjoint paths in G of length seven such that Py is an x1,y1-path, P> is an x2,y2-path and they
have the same colours in the same order. O

5.4 Preparation for the lower bound for length 15 paths

We now prepare to prove, for distinct @1, x2,y1,y2 € V(G) with 1 4,5 y1 and z2 £ a,/p Y2, a likely
lower bound on the number of pairs of vertex-disjoint paths with length 15 between (z1,y1) and (z2, y2)
respectively which use the same colours in the same order. To do this, we consider the number of such
pairs where the respective middle edges may instead have any colours (as pictured in Lemma ,
and show firstly that many such pairs of paths will exist (see Lemma . Not imposing a colour
condition on the middle two edges means that this can be done using relatively simple combinatorial
and probabilistic arguments. Then, using our previously shown likely upper bounds, we show that it
is very likely that no pair of edges e, f appear as these middle edges more than we should expect (see
Corollary , before turning this into a result on the number of pairs e, f that can appear as these
middle edges distinctly less than we should expect (see Corollary . We start with the following
lemma, which gives a lower bound on these paths with colours in D and edges in E. The set E is used
because eventually we will use this to control the number of edges of each colour and at each vertex
in a subgraph to which we apply Corollary (see H in the proof of Lemma [5.12).

Lemma 5.8. Let 1/n L pe<l LetDC [n] have size pn and let G ~ G[Cﬁ]l Let E C E(G) be
formed by including each edge independently at random with probability p. Let x1,x2,y1,y2 € V(G) be
distinct with x1 % a/p y1 and x2 #4/B Y2.

Then, with probability 1 —n~*W | there are at least (1 — €)p*?(1 — p)?n'* pairs (P, P2) of vertex-
disjoint rainbow paths of length 15 in G, each of whose middle edges have colour not in D and all other
edges in E with colour in D, and such that Py is an x1,y1-path, P> is an x2,y2-path, and, apart from
possibly their middle edges, the paths Pi and P2 have the same colours in the same order, as pictured
below.

_y1 T2 ‘ )
S VRYEVETONOCONIR VA VAV NS VA VAN
Y2

Tl

Proof. Note that we can assume that e = o(1). Let G’ € G’[C,‘fll We start by proving three claims
about G, before using this to derive likely properties of G ~ G‘fﬁ]l Let P be the set of pairs (P1, P2)
of vertex-disjoint rainbow paths of length 15 in G’, each of whose middle edge has colour not in D
and all its other edges have colour in D, and such that P; is an x1, yi1-path, P» is an x2, y2-path, and,
apart from possibly their middle edges, the paths P, and P> have the same colours in the same order.

Claim 13. |P| > (1 —¢/2)n'".
Proof of Claim[I3 Let D, be the set of sequences ¢ = (c1,ca,...,cr) of distinct colours such that
there are vertex-disjoint paths P 1 and P2 of length 7 in G’ which, respectively, are from z; and z2,

and have colours in the order in c. Similarly, define Dy, and paths Qc,1 and Qc,2, for each ¢ € D,,
starting from y.
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Note that, if ¢ = (c1,¢2,...,c¢7) is chosen in order, so that, at each stage ¢ € [7], the two paths of
length ¢ leading from x; and x2 with colours ci, ..., ¢; in order are vertex-disjoint, then when choosing
¢; with j € [7], there are O(1) colours that need to be avoided because adding an edge of that colour
to one of the paths will lead to a vertex on either path or have a colour already on the paths. Thus,
|Ds| > (n—O(1))" >n" — O(n®), and, similarly, |D,| > n" — O(n°).

For each ¢ € D, there are 16 vertices and 7 colours together in the paths P ;1 and P2, and thus
O(n(’) paths of length 7 from y; or y» which contain a vertex in P.; and P2 or have an edge to
V(Pe,1 U Pe2) with a colour in c. As this holds similarly for each d € D,, there are n'* — O(n'?)
choices of (¢,d) with ¢ € D,, d € Dy such that V(Pe;1 U Pe2) and V(Qa,1 U Qa,2) are disjoint and
have no edge between them with colour in c or d. Thus, |P| = n'* — O(n'®) > (1 —¢/2)n*. O

Claim 14. For each e € E(G’ — {z1,72,y1,y2}) there are O(n'?) pairs of paths in P where one of
the paths contains e.

Proof. Let e € E(G' —{z1,72,y1,y2}). Any z1,y1-path of length 15 in G containing e then contains 12
vertices not in V(e) U {1, 22}, so there are O(n'?) different 1, y1-paths of length 15 in G containing
e. Similarly, there are there are O(n'?) different z2, y2-paths of length 15 in G containing e. Noting
that each path P; appears in at most one pair (Pi, P2) € P or (P2, P1) € P, the claim follows. B

Claim 15. For each edge e € E(G’) containing 1, T2, y1 or y2, there are O(n'3) pairs of paths in P
where one of the paths contains e.

Proof. Let e € E(G') contain z1, T2, y1 or y2, and suppose without loss of generality that it contains
one of x1,x2. Any z1,y1-path of length 15 in G containing e then contains 13 vertices not in V(e) U
{z1,x2}, so there are O(n13) different x1,y1-paths of length 15 in G containing e. Noting that each
path P; appears in at most one pair (Pi1, P2) € P, the claim follows. B

We will now create a set of random colours D and deduce likely properties about the pairs of paths
in P which use colours only in D except for their middle edges which do not have colour in D. Now,
let D[), Dy C C be disjoint random sets of colours such that each colour ¢ € C' is independently added
to Do with probability (1 —&?)p and to D; with probability (1-e 2)(1 —p). Let D C C be a random
set of colours such that if |Do| < pn and |D1| < (1 —p)n, D is chosen uniformly at random from
all subsets of C' with size pn such that Do chDccC \ Dl, and, otherwise, D is chosen uniformly at
random from all subsets of C' with size pn. Note that, by Lemmau 2.6 with probability 1 — n=M we
have Do € D c C'\ D;.

Let X be the number of pairs of paths (Pi, P») € P whose edges all have colour in ﬁo and which
are in F, except for their middle edges which have colour in D; and which may be in E or not. For
each (P1, P2) € P, the probability (Pi, P2) satisfies these conditions is (as the middle edges may or
may not have the same colour) at least (1 — 2)'®p?*p**(1 — p)2, and thus, from Claim [13] we have

EX > (1-¢%)"p"(1—p)*- (1 —/2n"" > (1 - 2¢/3)p"(1 - p)*n'".

Now, by Claim there is some A1 = O(1) such that, if e € E(G’ — {x1,%2,y1,y2}), then changing
whether or not e is in £ changes X by at most /\1n12. Furthermore, by Claim [L5] there is some
A2 = O(1) such that, if e € E(G’) does contain 1, o2, Y1 or y2, then changing whether or not e is in
E changes X by at most A\on'3. Finally, again by Claim and Claim and as each colour appears
in G’ n times, and has at most 4 edges touching {x1,x2,y1,y=2}, there is some A3 = O(1) such that,
for each ¢ € [n], changing whether c¢ is in ﬁm or Dl, or neither Dy nor Dl, changes X by at most

Asn'3. Thus, by Lemmawith t =ep*(1 —p)2ntt/3,

42 2 14 2t?
P(X<(1—e)p™(1-p)n") <2exp ( n2- (Mni2)2 + dn - (\ani®)2 +n - ()\3”13)2)

< 2exp (fQ(tZ/nw) = 2exp (fQ(s2p84(l p)4n)) =nM (29

where we have used that 1/n < e,p. Thus,as D1 c D c C \ Dy with probability 1 — n~*® | with
probability 1 —n~“®) there are at least (1 —&)p*?(1 —p)2n14 pairs (P1, P2) of vertex-disjoint rainbow
paths in G’, each of whose middle edge has colour not in D and all its other edges are in E and have
colour in ﬁ, and such that P is an x1,yi-path, P» is an xzs, y2-path, and, apart from possibly their
middle edges, the paths P; and P» have the same colours in the same order, as pictured below. As
the distribution D is that of a set of pn colours chosen uniformly at random from C' for each fixed

G e g[cf:]l, and G ~ G¢°, the result of the lemma follows easily. O

[n]>
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We now deduce from our previous likely upper bounds (specifically Lemma and Lemma ,
that no pair e, f is likely to appear much more often than expected as the middle two edges in the
pairs of paths counted in Lemma [5-8

Corollary 5.9. Let 1/n L p<e LetDC [n] have size pn and let G ~ G[Cf:]l Let E C E(G) be
formed by including each edge independently at random with probability p. Let x1,z2,y1,y2 € V(G) be
distinct with ©1 76A/B y1 and T2 76A/B Ya.

Then, with probability 1 —n~*Y | for any pair of edges e, f € E(G), there are at most (1+¢)p**n'°
pairs (P1, P2) of vertez-disjoint rainbow paths in G of length 15, and all the edges of the paths apart
from the two middle edges are in E and have colour in D, and such that Py is an x1,y1-path with
middle edge e, P> is an x2,y2-path with middle edge f, and, apart from possibly their middle edges,
the paths P1 and P> have the same colours in the same order.

Proof. By Lemma with probability 1 — n~“M | we have that, for every distinct x}, x5 € A and
distinct v}, 95 € B, there are at most (1 4+ ¢/3)p"n® pairs (P{, P}) of vertex-disjoint paths in G|p of
length 7 such that Pj is an x7,yi-path, P; is an x5, y5-path and they have the same colours in the
same order. By Lemma with probability 1 — n~“M . we have that, for every distinct 7,25 € A
and distinct ¥}, y5 € B, there are at most n'-%! pairs (P{, P}) of vertex-disjoint paths in G|p of length
3 such that Pj is an z1,yi-path, Pj is an x5, y5-path and they have the same colours in the same order.
Assuming these properties for G|p, and revealing F, we will show that, with probability 1 — n~w@,
for every distinct a1,a2 € A and distinct by, be € B, there are at most (1 +¢/3)p*'n® pairs (P{, P3) of
vertex-disjoint paths in G|p of length seven such that all of their edges are in E, P is an a1, az-path,
P} is an b1, be-path and they have the same colours in the same order.

For this, suppose that ai,as € A and b1,b2 € B are all distinct, and let P be the set of pairs
(P{, P3) of vertex-disjoint paths in G|p of length seven such that P{ is an a1, as-path, Pj is an by, ba-
path and they have the same colours in the same order. Then, by the property from Lemma |5.6] we
have |P| < (1+¢/3)p"n®. Furthermore, given any edge e € E(G — {a1, az,b1,b2}), we can count the
number of pairs of paths (P{, P3) € P which use e by choosing which of P{ or P; contains e and which
edge of the path this is (with at most 14 choices). Then, assuming e is among the first 4 edges of
P| (where the other cases follow almost identically), we can choose the other vertices for the first 4
interior vertices of P| (with at most n? options) which also determines the first 4 interior vertices of
P}, whereupon we have at most n'*%! options to choose the remaining subpaths of P and Pj using
the property from Lemma Thus, each edge in G — {a1,az2,b1,b2} is contained in at most 10n3-01
pairs of paths in P. Similarly, each edge in G which contains a vertex in {a1,az,b1,b2} is contained
in at most 4n*°! pairs of paths.

Then, as the expected number of pairs of paths in P whose edges are all in E is p14|77| <1+
e/3)p*'n®, as 1/n < p, €, using McDiarmid’s inequality (Lemma similarly to how we did at
we have that, with probability 1 — n=“®)| there are at most (14 2¢/3)p**n® pairs (P{, P3) € P such
that all of their edges are in E. Taking a union bound, with probability 1 — n~*® we will have
that for any a1,as € A and distinct by, by € B, there are at most (1 + 2¢/3)p*'n® pairs (P{, P3) of
vertex-disjoint paths in G|p with edges in F such that P| is an a1, as-path, P; is a by, be-path and
they have the same colours in the same order.

Assuming this, the property we want for any pair of edges e, f € E(G) follows. Indeed, first
note that the property we want is trivial unless these edges share no vertices and have no vertices in
{z1,y1,%2,92}. Assuming otherwise, then, we can let a1, b1, az, b2 be such that e = a1b1, b1 #a/p5 1,
f = asby and a2 #4,p 2. There are at most ((1+ e:/?))pzlns)2 choices for paths P1, P2, Ps, Py such
that (as depicted in Figure they all have length 7, P; is an x1,bi-path, P> is an a1, yi-path, Ps
is an x2,az-path, Py is an bg, y2-path, P; and Ps; have the same colours in the same order and are
vertex-disjoint, and P» and P4 have the same colours in the same order and are vertex-disjoint. Thus,
there are at most (1 + &)p*>n'® pairs (P{, P3) of vertex-disjoint rainbow paths in G of length 15, and
all the edges of the paths apart from the two middle edges are in E and have colour in D, and such
that P{ is an x1,y1-path with middle edge e, Pj is an x2,y2-path with middle edge f, and, apart
from possibly their middle edges, the paths P; and Ps; have the same colours in the same order, as
required. O

We now show that, roughly speaking, as, by Corollary no pair e, f can contribute as the
middle two edges of the pairs of paths counted in Lemma[5.8] almost all of the possible pairs e, f must
contribute not much below what can be expected of them, as follows.

Corollary 5.10. Let 1/n L pe<l LetDC [n] have size pn and let G ~ G[C,‘i]l Let E C E(G) be
formed by including each edge independently at random with probability p. Let x1,x2,y1,y2 € V(G) be
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Figure 8: The more general structure counted in the proof of Corollary where P, and Pj are paths
with length seven with colours in the same order, as are P, and P, (using potentially some of the same
colours as in P, and P3).

distinct with x1 76A/B y1 and T2 76A/B Ya.

Then, with probability 1 — n=“Y) | for any pair of edges e, f € E(G), there are at most en® pairs
of distinct edges e, f € E(G|in\p) for which there are at most (1 — )p**n'® pairs (P1, P2) of vertez-
disjoint rainbow paths in G with length 15, and all the edges of the paths apart from the two middle
edges are in E and have colour in D, and such that Pi is an x1,y1-path with middle edge e, P> is an
T2, Y2-path with middle edge f, and, apart from possibly their middle edges, the paths P and P> have
the same colours in the same order.

Proof. This follows directly from Lemma and Corollary as follows. For each e, f € E(G) let
Xe,s be the number of pairs (P1, P2) of vertex-disjoint rainbow paths in G of length 15 for which all
the edges of the paths apart from the two middle edges are in E and have colour in D, and such that
Pi is an x1,y1-path with middle edge e, P> is an 2, y2-path with middle edge f, and, apart from
possibly their middle edges, the paths P; and P» have the same colours in the same order. Let £ be
the set of pairs of distinct edges e, f € E(G|jy\p) such that X, ; < (1 —£)p**n'?. By Corollary [5.9]
with probability n=“®") we have X, ; < (1 +¢2/2)p*?n'® for each e, f € E(G). If |€] > en?, then

Z Xe,s <en?. (1-¢) ~p42n10 + ((6(G|[n]\D)2 - 5n4) -1+ 62/2) -p42n10
e,f€EE(G|p)

<en'-(1—¢)-p¥n'+ ((1 —p)°n’ — €n4) (1 +£%/2) - p*n'?
<(1-€/2)-p™(1-p)n'.

However, by Lemma this does not hold with probability 1 — n~%®) . Therefore, with probability
1—n"“®, we must have |E] < en*, as required. O

5.5 Tight bounds for length 15 paths with the same colours

We are now ready to prove our required likely lower bound for pairs of paths of length 15. For
convenience, we will record this along with our upper bound in the following result.

Lemma 5.11. Let 1/n ‘2'<‘ e. Let G ~ G[C,‘Z]l and let x1,x2,y1,y2 € V(G) be distinct with ©1 %4/ 11

and T2 % a/B Y2. Then, with probability 1 — n~“D | the following holds. There are (1 £ &)n'® pairs
(P1, P2) of vertex-disjoint paths in G of length 15 such that Py is an x1,y1-path, P> is an x2,y2-path,
and they have the same colours in the same order.

For the lower bound in Lemma [5.11] we first prove a similar lower bound where the edges of the
paths have colour within some specified subset D1 or D2, as follows, and some edges are in a random
set E of edges.

POLY

Lemma 5.12. Let 1/n < p1 K p2 < e, Let Dy, D C [n] be disjoint sets with size pin and pan
respectively. Let E C E(G) be formed by including each edge at random with probability p1. Let
G ~ ano]l and let x1,22,y1,y2 € V(G) be distinct with 1 4a/p Y1 and x2 #4/5 y2. Then, with
probability 1 —n~*M | there are at least (1 — €)p12pan'® pairs (P1, P2) of vertea-disjoint paths in G of
length 15 such that Py is an x1,y1-path, P> is an x2,y2-path, they have the same colours in the same
order, all but their middle edges have colour in D1 and are in E, and their middle edges have colour

n DQ.

Proof. Let p satisfy 1/n < L < p1. Let H be the graph of edges in E with colour in D1, and let H
be the set of possibilities for H. Let £ be the set of pairs (e, f) of edges of the (uncoloured) complete
bipartite graph which do not appear (coloured) in H such that there are at most (1 — p)pi>n'C pairs
(P1, P2) of vertex-disjoint paths in H + e + f of length 15 such that P; is an z1, yi1-path with middle
edge e, P> is an w2, yo-path with middle edge f, and P; and P» have, apart from the middle edges (e

and f), the same colours in the same order. Let A be the event that there are at least epan®/2 pairs
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(e, f) € € for which e and f have the same colour and this colour is in Dy. Let B be the event that
there are at most 2pn edges of each colour in E and |£] < un?.

We will show the following claim.

Claim 16. For each H € H, P(AAB|H = H) =n~*®.

Given this claim, as P(B) = 1 — n~“® by Corollary and Lemma following the same
reasoning as for , we have P(A) = n~@®, Furthermore, if A does not occur, then the number
of pairs (P1, P;) of vertex-disjoint paths in G of length 15 such that Pi is an z1,yi-path, P> is an
T2, y2-path, they have the same colours in the same order, all but their middle edges have colour in
D1 and are in F, and their middle edges have colour in D2, is at least

8p2n3 42 10 42 13
|D2|-n(n—1) = === |- (L—pprn" 2 (L =e)pipan™,

as required. Therefore, it is left only to prove Claim [I6]

Proof of Claim 16, Let M’ be the set of H € H for which B holds whenever H = H. Note that if
H e H\H, then P(AAB|H = H) < P(B|H = H) = 0, so Claim [1 . holds trivially in this case.
Therefore, let H € H'.

Let p = p1 + p2, D = D1 UD; and k = pin®. Let Fp be the set of subgraphs F' such that F' has
exactly two edges, e and f say, which both have the same colour, which is in D3, and are such that
(e,f) € E or (f,e) € E. As B holds when H = H, and there are n colours, we have |Fy| < 2un®.

Let Sz be the set of (Fi,..., Fx) of sequences of length x of edge-disjoint subgraphs from Fp for
which each colour appears on J ielx) F; at most pn times, so that, if B holds, then

Sal < (20)"n°". (25)

For each S = (F4,...,Fx) € Sy, let Hs = Ui Fi, so that e(Hs) = 2k, each colour appears on Hg
at most pn times, and all of the colours of Hg are in Dz. Let Z; be the number of S € Sy with
Hs C G. Now, observe that if A and B hold and H = H, then Zg > (en®/4)". Indeed, first note
simply that any edge e € E(G|jn)\p,) is in at most n graphs in Fj which are a subgraph of G as
such subgraphs are pairs of edges with the same colour, and thus, moreover, every colour appears on
at most n? subgraphs in F. Therefore, if A and B hold, then we can pick a sequence (Fi,..., F)
of edge-disjoint subgraphs from Fp by picking each F;, 1 < i < &, in turn, where at the selection
of each Fj, i € [k], as A and B hold and there will be 2(: — 1) edges we wish to avoid and at most
2(i — 1) - (pn/2)~" colours, the number of possibilities for the choice of F; will be at least

3 3
En 2K en 8kn en
2> >

R S A en. _ ofn En.
2 Knpn/Zn_Q p — 4’
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as k =pin? and p1 < p,e

For each S € Sy, we have, as B holds if H = ﬁ, that Hs U H has at most pn + pn < 2pn edges
of each colour. Furthermore, the edges of Hg U H only have colour in D = D; U D2, a set of size pn.
Thus, for every S € Sy such that Hs U His properly coloured, similarly to , using Corollary
twice and that px > nlog? n, we have that

BH I:I . (1+O(p))e(1:1)+2.‘<
P(Hs c Gl = [y = JUHsUH) CG) L = (14 O(p))e 2
P(H' = H) (1+O<p))"i(H>

ORI =2 (26)

where we have used that e(ﬁ) = pin? = k. Thus, as this holds for every S € Sy such that Hs U His
properly coloured,

( ‘H H) < |$’H‘ PN) -2k < eO(Pn) (2M)n 3k __ (6?7,3/4)’{ ) n,w(l)’

where we have used that 1/n < n Le Then, by Markov’s inequality, we have

P(AAB|H = H) < P(Z; > (en®/4)") < W e

This completes the proof of the claim, and hence the lemma. O O
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Using Corollary and Lemma [5.12] it is now short work to deduce Lemma [5.11

Proof of Lemmal[5.11] Let P be the set of pairs (P, P2) of vertex-disjoint rainbow paths in G of length
15 with the same colours in the same order, such that P; is an x1,y1-path and P» is an z2, y2-path.
By Corollary [5.7, with probability 1 — n~“W for any distinct z, x5, yi,ys € V(G) with z} da/B Y1
and x5 %a/p Yo, there are at most (1 + e)n® pairs (P1, P2) of vertex-disjoint paths in G of length
seven such that P; is an 2}, yi-path, P, is an x5, y5-path and they have the same colours in the same
order. Note that, for any distinct z1,z2,y1,y2 € V(G) with 1 76,4/3 y1 and x2 76,4/3 Y2, there are
at most n® pairs (P1, P2) paths of length 8 which start at 1 and x2 respectively and have the same
colours in the same order. Therefore, applying the property of paths of length 7 to the other ends of
these paths with y1 or y2 as appropriate, we get that there are at most (1 + 5)n13 pairs in P.

Furthermore, given any edge e € E(G) — {z1,%2,91,%2}, and any 2 < k < 8, there are at most
n® pairs (P, P2) paths of length 8 which start at z; and x2 respectively and have the same colours
in the same order and where e is the k edge of the path from z;1. Thus, arguing as above, there are
O(n'') pairs (P1, P2) € P in which e is the kth edge of P; from z;. Working similarly, we have that
there are altogether O(n'') pairs (Pi, P2) € P in which e € E(P1 U P2). If e € E(G) contains a
vertex in {z1, 2,91, y2}, then arguing similarly to before, we have that there are at most O(n'?) pairs
(P17P2) € P with e € E(Pl U Pg).

Let p1 and po satisfy 1/n ‘22{ p1 "22 D2 P%Y e. Let Dl,Dg C C be disjoint random sets of colours
such that each colour ¢ € C' is independently added to Do with probability (1 — e )p1 and to D
with probability (1 —&?)ps. Let D1, D> be disjoint random sets of colours such that if \D1| < pn and
\D1| < pon, Dy and Ds are chosen uniformly at random subject to Dic D C C, Ds Cc Dy C C,
\D1| = pin, |D2| = pan, and D; and D3 are disjoint, and, otherwise D1 and D2 are chosen uniformly
at random subject to D1, D2 C C, |D1| = pin, |Dz2| = p2n, and D and D> are disjoint. Note that, by
Lemma | with probability 1 — w(1) , we have D1 C Dy and Dy C Ds. Let E C E(G) be a formed
by including each edge independently at random with probability p;.

Let P’ C P be the set of (P, P;) € P for which the colours of P; not on the middle edge are all in
D, and in E, and whose middle edge has colour in Ds. By Lemma with probability 1 — nf“’(l),
we have [P’| > (1 — ¢/3)pf?pen'®. On the other hand, if |P| < (1 — &)n'3, then, by an application of
Lemmasimilar to 24), |P'| < (1— 2¢/3)pt2pant® with probability 1 —n =), Therefore, we must
have that, with probability 1 — n=*®), [P| > (1 —€)n'?, as claimed. O

5.6 L-links: proof of Theorem

Finally in this section, we put our work together to prove Theorem

Proof of Theorem|[5.2 Note that we can assume that ¢ < 1. By Corollary and Lemma [5.11] with
probability 1 —n~“") | we can assume that the following hold.

L1 For every distinct x1,z2,y1,y2 € V(G) with z1 ba/p y1 and @2 b4, Y2, there are at most
(1+¢/8)n’ pairs (Py, P2) of vertex-disjoint paths in G of length 7 such that Py is an z1, y1-path,
P, is an x2, y2-path, and they have the same colours in the same order.

L2 For every distinct z1,z2,y1,y2 € V(G) with 1 44,5 y1 and 2 %4, Y2, there are (1 +¢e/8)n'?
pairs (P1, P2) of vertex-disjoint paths in G of length 15 such that P; is an x1, y1-path, P> is an
T2, y2-path, and they have the same colours in the same order.

Note that and @ easily give the following.

L3 For every distinct x1,z2,y1,y2 € V(G) with 21 #4/p y1 and 2 % 4,5 y2, and any set U C
V(G) \ {®1, 22, 91,92} with |U| < 100, there are (1 & ¢/4)n'® pairs (P, P;) of vertex-disjoint
paths in G — U of length 15 such that P; is a z1,y1-path, P> is a z2, y2-path, and they have the
same colours in the same order.

We can now show that hold. We will first show that holds with ¢ replaced by /2. Let
then k satisfy 2 < k < 61 and let u,v,z,y € V(G) be distinct with u ~4,5 v and zy € E(G). Note
that, by swapping v and v if necessary, we can assume that k < 31. Let H be a (u,v, L)-link in G
with zy as its kth edge. Note that which of A and B z (and thus y) is in, determines which vertex in
the link is  and which is y, which are the kth and (k + 1)th vertex in some order. Suppose first that
16 < k < 31. Note that we have (1 4 ¢/6)n'® choices for picking the other edges which are the k’th
link for 16 < k" < 31 with k' # k, which determines the 16th to 31st colour (in order) of the link, and
thus, working backwards from v, the 47th to 62th edge of the link. Then, by there are (1+£¢/4)n'?
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ways to complete the link, giving (1 +¢/4)n'® - (1 £¢/6)n'® = (1 +¢/2)®0 - n2 (u,v, L)-links with
zy as the kth edge.

Suppose then that 2 < k < 15. Note that we have (1 +¢/6)n'* choices for picking the other edges
which are the k’th link for 2 < £’ < 16 with k' # k, which also then determines the first edge of the
link and its 1st to 16th colour (in order) of the link. There are then n — O(1) choices for a path of
length 16 with these colours in the same order and which does not use any of the known vertices so far
and so that the start vertex is in the opposite vertex class A or B to u and v, and thus we can use this
path to give us the 32nd to 47th edge of the link. Finally, by there are at most (1£¢/4)n'® ways
to complete the link, giving (1 +e/4)n'® - (1+¢/6)n'* - (n —O(1)) = (1 £¢/2)®o - n~2 (u,v, L)-links
with zy as the kth edge.

This completes the proof of with e replaced by £/2. Now, note that are easily implied
by with ¢ replaced by £/2. Indeed, for suppose u,v € V(G) are distinct with u ~4,5 v.
There are (n — 1)? choices for an edge e in G which does not contain u or v, and then (1 +¢/2)®on "2
choices for an (u, v, L)-link in G where e is the 2nd edge (by with e replaced by ¢/2). Thus, in
total there are (n — 1)% - (1 £&/2)®on "2 = (1 4+ ¢)®o (u, v, L)-links in G.

Similarly, for [K2| let k satisfy 2 < k < 62 and let u,v € V(G) with u ~4,p v be distinct. Note
that, by swapping u and v if necessary, we can assume that k& < 32. Let z € V(G) \ {u,v} with
x a/p uw,v if k is even and x ~4,p u,v if k is odd. Choose an edge e € E(G) containing = but
not u or v, noting there are either n or (n — 2) choices for e. Then, applying with € replaced
by /2 with e and k, we have that the number of (u, v, L)-links in G in which z is the kth vertex is
(n+2) - (1+e/2) - don 2= (14¢) $g-n""', as required.

For let u,v € V(G) be distinct with u ~4,5 v, and let c € C and k € [62]. If k =1 or k = 62,
then note that (u,v, L)-links in G in which the kth edge has colour c¢ are exactly those that contain
the c-neighbour in G of u or of v as the 2nd or 62nd vertex of the link, respectively, and thus the
result follows from If 2 < k < 61, then there are (n — 2) choices for an edge e in G of colour ¢ not
containing u or v, so that, again by with ¢ replaced by /2 with e and k, we have that the number
of (u,v, L)-links in G in which the kth edge has colour cis (n—2)-(1£e/2)-®on 2 = (1+e)-$y-n"*,
as required.

For let w,v,z,y € V(G) be distinct. Let H be a (u,v, L)-link in G containing z and y.
Firstly, there are at most 61 - 60 choices for distinct 2 < kg, ky, < 62 which determine, respectively,
the position of z and y in the link. Then, partition H into paths Py, Ps, P3, Q1, Q2, Q3 (some possibly
with length 0) such that H = Py PoP3Q1Q2Q3, P> and Q2 have length 7, for each ¢ € {1,3} P; and
Q; have the same length, and neither x or y is an internal vertex of P> or Q2.

If both z and y are in PsUQ1, then note that (P1, Ps, Q1, @3) is determined by V(PsUQ1) \ {z, y},
so there are at most n(F)HUQNHI=2 — ,31-UP)—1 — 123 (hoices for (P1,P3,Q1,Q3). If z is in
P; U@ and y is in Py, then (Pi, P3,Q1,Q3) is determined by the choices of the vertices V(P1) \
{u,y} and V(Q3) \ {v}, so there are at most n(P3)+4Q3)+2=3 — 523 chojices for (Pi, Ps, Q1,Q3).
If both = and y are in P1 U Qs, then (Pi, Ps,Q1,Qs3) is determined by the choices of the vertices
in V(P1) UV(Q3) \ {u,v,z,y} and the 31th vertex of H, for at most n*FF1HHQ)F1I-4+1 _ 23
choices for (Pi, P3,Q1,Q3). Therefore, after k;,k, are chosen, there are at most n?® choices for
(P1, P3,Q1,Q3). Thus, using the total number of (u,v, L)-links containing x and y is at most
61-62- (1 +¢/8)n®-n?® <10'®y - n~2, completing the proof of
Let u,v,x € V(G) be distinct and let ¢ € C. Let H be a (u, v, L)-link in G containing = and using
the colour ¢, which does not contain ux or vz if this is a colour-c edge in GG. First, there are at most
61 - 31 choices for 2 < k; < 62 and k € [31]. Having chosen such k, and k, we count the choices for H
with z as the kzth vertex and c as the kth colour. Partition H into paths Pi, P2, P3, Q1, Q2, Q3 (some
possibly with length 0) such that H = P P,P3Q1Q2Q3, P> and Q2 have length 7, for each i € {1,3}
P; and @; have the same length, and « is not an internal vertex of P> or 2, and the colour ¢ is not
used on P> (and hence either Q2).

If z is in V(Py), then (P1,Qs) can be determined by choosing all the other colours in (C'(P1) U
C(Q3)) \ {c} except for the colour just before z in H, or the colour before that if that edge has
colour ¢ (which exists as if uz € E(H) then this is not a colour-c edge). Therefore, there are at most
ntPIFTH@)=2 choices for (P1,Q3). As (Ps, Q1) is then determined by the choice of the 32nd vertex
(for example) of H there are at most n choices for (Ps,Q1), so there are at most n*(P)+4@s)=1 —
31771 = n?3 choices for (P1, Ps,Q1,Q3) in this case. Similarly, if « is in V(Q3), then there are at
most n** choices for (P, P3,Q1,Q3). If  is in V/(P3) UV (Q1), then (P, Ps,Q1,Q3) is determined by
choosing the colours in (C(P1) U C(Q3)) \ {¢}, so there are at most n*FV+T4Q3)=1 — 123 chojces for
(P1, P3,Q1,Q3) in this case as well.
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Therefore, counting the possibilities for (kz, k) and putting this together with for the number
of choices for (P2, @2), the total number of (u,v, L)-links in G using = and c¢ in which there is not a
colour-c edge ux or zv is at most 61 - 31 - (1 +¢/8)n’ - n?* < 10*®, - n~2, as required.

Let u,v € V(G) be distinct and let ¢,d € C be distinct. Let H be a (u, v, L)-link in G using
¢ and d. Choose k¢, kq € [31] so that ¢ is the kcth colour of H and d is the kqth colour (with
31 - 30 choices). Partition H into paths Pi, P2, P3, Q1, Q2, @3 (some possibly with length 0) such that
H = PP, P3Q1Q2Q3, P> and Q2 have length 7, for each ¢ € {1,3} P, and Q; have the same length,
and neither colour ¢ nor d is used on P> (and hence neither is used on @Q2). Then, (P, Ps,Q1,Q3) is
determined by choosing the colours in (C(Py) U C(Ps)) \ {c,d} and (for example) the 31th vertex of
H, so, in total, the number of choices for (Pi, Ps,Q1,Q3) is at most 3130 - 3=l =2 < 103023,
Therefore, using for the number of choices for (P2, @2), the number of (u,v, L)-links in G using ¢
and d is at most 10° - n?3 - (1 + £/8)n° < 10*®q - n™2, as required.

Let u,v € V(G) be distinct and let e,e’ € F(G — {u,v}) have different colours and share no
vertices. Let H be a (u,v,L)-link in G which contains e and €. Choose 2 < ke, ks < 61 such
that e is the k.th edge and ¢’ is the k..th edge of H, noting there are at most 60 - 59 choices for
(ke,ker). Partition H into paths Pi, Pa, P3,Q1,Q2,Qs (some possibly with length 0) for which we
have H = PiP2P3Q1Q2Q3, P> and Q2 have length 7, for each ¢ € {1,3} P; and Q; have the same
length, and neither e or e’ are used on P> (and hence either Q2). Assume, without loss of generality,
that e € E(Py U P3). By looking at different cases, we will show that (having chosen (ke,ke/)) there
are always at most n?" choices for (P, P3, Q1,Q3).

If e and ¢’ appear together on P; U Q1, then there are at most pf(PsUQu)+1—-4 _ p31-£(P2)=3 _ 21
choices for the rest of P3UQ1, which then determines (P, P3,Q1,Q3). If e € E(Py) and €’ € E(Ps), or
vice versa, then there are at most nf@P+1-3 choices for the rest of P and at most ntFP3)+1-2 choices for
the rest of Ps, for at most n/("+H4(F3)=3 — p21 chojces in total, which then determines (P1, P3,Q1,Q3)
If e € E(Py) and ¢’ € E(Q3), then there are at most n*(F1) 173 . @)+1=3 — p21 choices for (P, Q3),
after which there are at most n choices for (P, P, Q1,Q3), for at most nfP+H(P3)=3 chaices in total.
Ife,e’ € E(P1), then, as e and e’ share no vertices, there are at most n*PUF1=5 choices for the rest of
P, after which there are at most n choices for ()1, and at most nt®3) choices for the colours of Ps in
order, which then determines (P1, Ps, @1, Q3), for at most ntPHP)=3 choices in total. If e € E(Py)
and €' € E(Q1), then, as e and ¢’ are different colours, there are at most n*F=3 choices for the rest
of Py (using the colour c(€’) in the appropriate place), which then determines @1, after which there
are at most n*("®) choices for the colours of Ps in order, which then determines (Pr1, Ps,Q1,Q3), for at
most nfPITP) =3 — 21 choices in total. If e, e’ € E(Ps), then, there are at most n*F*)~3 choices for
the rest of P53, which determines Q3, and after which there are at most n"3) choices for the colours of
Py in order, which then determines (P1, Ps, Q1,Qs3), for at most pfPHFP) =3 — p21 chojces in total.
Thus, there are always at most n*' choices for (P1, Ps, Q1,Q3).

Therefore, using for the number of choices for (P2, Q2), the number of (u,v,L)-links in G

containing e and ¢’ is at most 60 - 59 - n*' - (14 ¢£/8)n° < 10*®q - n™*, as required.
Let u,v,w € V(G) be distinct and let e € E(G — {u,v,w}). Let H be a (u,v,L)-link in G
which contains w and e. Choose 2 < k,, < 62 and 2 < k. < 61 such that w is the k,th vertex of
H and e is the kcth edge of H, noting there are at most 61 - 60 choices for (kw,ke). Assume that
kw < 32, where the case where k,, > 32 follows similarly. Note that for all except (kw,ke) = (2,3)
and (kw, ke) = (2,33), w is contained in an edge of H — ({u,v} UV (e)) with colour not the same as
the colour of e. As there are at most n choices for such an edge, by there are at most 10*®y - n =3
choices of H if (kw, ke) # (2,3), (2,33).

Now, partition H into paths Pi, P2, Q1, @2 for which we have H = P1P2Q1Q2, P; and @1 have
length 24 and P> and Q2 have length 7. If (kw,ke) = (2,3), then, as the first 3 interior vertices
of P; are known, there are at most n?! choices for the rest of P, after which there are at most
n choices for 1, and then, using for the number of choices for (P, @Q2), in total there are at
most (1 +¢&/8)n° - n*' - n < 2n*" = 28 - n™® choices for H. If (kw,ke) = (2,33), then, as the
first 2 interior vertices of P, are known, there are at most n?? choices for the rest of Py, after which
Q@1 is known, and then, using for the number of choices for (P2, Q2), in total there are at most
(1 +€/8)n5 -n?? < 2n%" = 2®¢ - n~2 choices for H. Over all the different choices of k., and k., we have
that the number of (u, v, L)-links in G' containing w and e is at most 108®, - n~%, as required. O
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6 Part B Realisation of the absorption structure

In this section, we prove Lemma We begin by giving a sketch of the proof in Section after
which we outline the rest of this section.

6.1 Overview of Part [Bl
To recap, for each tribe 7 € T, from Part [A] (in particular, from Lemma [3.3]), we will get a collection

- C {0, u), (j,v)} 24,5 € Iryi # ju € Si \ (R UTy),v € S5\ (Ti URj),u# v,u~a,5v}

which represents a set of instructions. We wish to find, with high probability, near-matchings Mi,
i € Ir,in G ~ G[CT(L’]I so that, for each ¢ € I, the vertices in T; and R; have degree 2 and 0 in M,

respectively, while the vertices in V(G) \ (R: UT;) each have degree 0 or 1 in M;. Furthermore, we
wish to have the property that, for each {(i,u), (j,v)} € Z-, we can reduce the degree of u by 1 and
increase the degree of v by 1 in M; and increase the degree of v by 1 and decrease the degree of u by
1in Mj, doing so by switching a small number of edges between M; and Mj so that a small number
of edges are changed and the colours and vertices other than u and v appearing on M; and Mj do
not change. Crucially, we wish to be able to do this largely independently, so that for any collection
C C I, satisfying[A7.1A7.4] these alterations can be made simultaneously for each {(i,u), (j,v)} € C
without interfering with each other.

We split Part [B]into three sub-parts. Roughly speaking, in Part we find matchings covering
T; for each i € [n]. In Part [B.2]we find, for each i € [n] and vertex u € S;\ Ri, a small monochromatic
matching consisting of an edge containing u and a small set of other edges M; ,. Finally, in Part
we find certain even-length paths connecting edges which were found in Part [B:2] Of course, each of
these substructures is found subject to certain constraints which we describe in more detail below.

The first part, Part [B.1] is the simplest and is largely independent of the others. For each near-
matching M;, we find a rainbow matching that covers T;, by matching each vertex in T; to a distinct
vertex in X;, with each edge of the matching using a distinct colour from D;, so that when we later
find another edge to add to M, for each vertex in T; they will all have degree 2 in Ml This we will
do using an application of Theorem [2:2) to an auxiliary hypergraph as described later in this sketch.

For now, we move on to describe Parts and For each {(,u), (j,v)} € Z-, our key
mechanism to set up the switching property described above are the L-links we defined in Section [5]
Ideally, for each {(i,u), (j,v)} € Zr, we could find a (u, v, L)-link, R say, and put the odd edges of R
into M; and the even edges of R into M], so that switching these edges between M; and M would
exactly decrease the degree of u in M; by 1 and increase the degree of v in M; by 1 (and vice versa
in M, ;) while making no other meaningful changes (i.e., the colours of the matchings and all the other
vertex degrees would stay the same, and between them M; and Mj would have the same edges).
Unfortunately, this is not possible. The reason is that there will be multiple pairs from Z, containing
(7,u) so that if we do this for each such pair we will be adding multiple edges in M; next to u, where
(not counting those added in Part , we want only 1.

Instead, for ¢ € [n] and u € S; \ Ry, if J; . is the set of (j,v) for which {(i,u),(j,v)} € Z-, in
Part we first find an edge ey, from u to Y; along with a monochromatic matching M; ., of the
same colour as e,,; which also uses vertices in Y;, with one edge ey ;,; for each j € J; . (as depicted
on the left in Figure @) The first edge (uz1 say) we add to Mi, while for each j € J; ., we add ey j
to M;. Now, fix j € Ji,, and let v be such that {(i,u), (j,v)} € Z, (which will be unique due to
and suppose e, ;; = r2x3 is the edge assigned to Mj from M;.. We will have i € J;,, so we will
also have found an edge, e, ; = vyi, next to v for Mj as well as an edge, ey, = y2y3, of the same
colour in Mj, which is assigned to M;. Furthermore, we will do this so that (e ;) # c(ey;) and
{u, z1,x2,x3,v,y1, Y2, ys} are all distinct.

Now, if we find an (z1, 22, L)-link P, an (z3,ys, L)-link @ and a (y2,y1, L)-link R so that
ux1 Prax3Qysy2 Ry1v

is a path in G (see the right of Figure @) then having added the odd edges of this path to M; and
the even edges to MJ, by switching between these edges we have the change we want in M; and M

Importantly, for each j € J; ., this uses the same edge, uz;, at u, allowing us to only add one edge
at w in M;, while the conditions on C (namely and i will imply that we only do a switch
involving the uxz1 edge at most once, as there will be at most one j € J; , with {(i,u), (j,v)} € C for
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Figure 9: In Part as on the left, for each i € [n] and u € S;\ R; we find an edge from u to Y; along with
a monochromatic matching with the same colour, with one edge for each j such that {(i,u), (j,v)} € T
(depicted for {(i,u), (j1,v1)}, {(%, w), (j2,v2) }, {(4,w), (j3s,v3)} € Z). Then, in Part for each pair
{(i,u), (4,v)} € T we find L-links which connect together some of the edges found for (i,u) and (j,v), as
depicted on the right for (i,u) and (ja,v2). Each path Py, Py, P3, Q1,Q2, Qs, R1, R2, Rs has length 62 and
forms a link with the pattern L, where, for each j € [3], P;, Q; and R; use a disjoint set of colours and
new vertices coming from Z;.

some v. Considering pairs {(i,u)(j,v)} € Z-, we find the paths P, @ and R using internal vertices
coming from Z; (= Z; = Z;) and colours from Ds.

Of course, in finding all of these edges, matchings and paths, we need to ensure that all of the edges
assigned to near-matching M; form a rainbow matching for each ¢ € [n], and that the matchings are
all edge-disjoint. This requires some delicacy, but overall the above sketch gives the key mechanism
that we use to find the near-matchings we need. We will find the small matchings M; ., ¢ € [n] and
u € S; \ R;, in Part before finding the switching paths in Part To recap, then, we will do
the following.

B Realise the absorption structure in the random colouring by doing the following:
B.1 Edge-disjointly matching T; into X; for each ¢ € [n] using colours in D;.
B.2 Edge-disjointly finding small matchings for each ¢ € [n] and u € S; \ R;, using colours in Ds
and vertices in Y;.
B.3 Edge-disjointly finding the switching paths using colours in D3 and vertices in Z;.

Finding matchings/paths using Theorem Each of the structures mentioned above will be
found using the Rédl nibble, as discussed in Section 223] via Theorem [2:2] applied to an auxiliary
hypergraph. Using an auxiliary hypergraph in this manner was first done by Kim, Kiihn, Kupavskii,
and Osthus [2I]. A rough overview goes as follows. Suppose we have in G collections of edge-coloured
subgraphs F; j, i € [n] and j € [m] (for some m), and we wish to choose subgraphs F; ; € F; ; which
are all edge-disjoint and, for each i € [n], F;; and F} ;s are colour- and vertex-disjoint if j # j'. We
form a hypergraph H with 4 vertex classes

i) [n] x m] i) Usep ({1} % V(@)
i) Uep({i} x C(Q)  iv) B(G),

where, for each i € [n], j € [m] and F € F; ; we add the edge

{(@,0)} U (V(F) x {i}) U (C(F) x {i}) U E(G)

to H. Observe that if the edges corresponding to F;; € F;,;, @ € [n] and j € [m], form a matching in
‘H, then we have exactly the conditions we want of edge-disjointness and (for each i € [n]) colour- and
vertex-disjointness. By setting up H to be a uniform, almost regular hypergraph with small codegrees,
we will be able to use Theorem [2.2] to find a large matching in #, which would then allow us to find
many of the graphs F; j, ¢ € [n] and j € [m]. The remaining graphs F; ;, ¢ € [n] and j € [m], will then
be found using vertices, colours and edges set aside for this purpose.

We will need further properties from the subgraphs we find. In particular, we will need some delicate
conditions from the subgraphs found in Part so that we can then apply Theorem again for
Part as the pairs of vertices we wish to find paths between will depend on the structures found in
Part To do this, we use a careful choice of weight functions for the application of Theorem [2:2}

(27)
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and it is here that we need the full power of Theorem over previous implementations of the
semi-random method.

The simplest of our weight functions will, for example, ensure that, when finding subgraphs, we
will use most of the edges we have allocated for this purpose in the subgraphs found. To record such
properties efficiently, we will use the following definition.

Definition 6.1. An edge-coloured graph G is m-bounded if every v € V(G) has dg(v) < m and every
colour appears on at most m edges in G.

Variables and applications of Theorem ‘We now discuss further our applications of the semi-
random method via Theorem [222] to auxiliary hypergraphs. We will apply this 3 times, to auxiliary
hypergraphs Hi, H2 and Hs. The application to Hi is the most straightforward, and so we sketch
this briefly. The application to Hs uses the outcome of the application to Ha, and therefore the order
of variables in critical here, and so we also discuss this. The relevant variables from are

1 rowy POLY POLY

E<<€<<’Y<<,B.

For the initial properties we need, in Section [6.2] we use the error term . That is, for example, we
will have properties like | X;| = (1 & ¢)2pxn for each i € [n].

In Part for the variables in Theoremwe will use ro = 4, o = 1/10 and thus set g9 = 53/501“0
and have some Ag as in that theorem. We will construct #1 which is a 4-uniform hypergraph with
dw, (v) = (1 £¢€)é1 for each v € V(H1) (see Claim [I8)), where we will have 6 = gin < n for some ¢

depending on the variables in , so that 1/n P%\ ¢1. In particular, then, we will have n®° < §; < n.
Set A = (1+¢)d1, so that A(H1) < Aand A > Ag as 1/n < 1. We will have that A°(H1) <1 (see
Claim , so that A°(Hi) < Al~%,
Furthermore, there will be a collection W; of at most 4n < exp(AEg) weight functions such that,
for each w € Wi, w(e) < 1 for each e € E(H1) and w(E(H1)) > n®/? for each w € Wi, so that
E(H1)) > At :
w(BEH1)) 2 (Sax w(e)
Then, using the property from Theorem 2.2} we can find a matching M; in H; such that, for each
w € Wi,
w(Mi) = (1 £ AT)  w(B(H1))/A = (1£2) 67" - w(E(H1)),

where we have used that 1/n ‘& e and A > n°.

In Part letting r = 24, we will construct H2 which is a (7r + 4)-uniform hypergraph. When
bounding the vertex degrees of Ha we will use r+1 different properties, so from our initial error term of
e, we will increase this, showing that da, (v) = (14 100¢)d2 for each v € V(Hz) (see Claim [22)), where

we will have 62 = gan" "1 < n"*! for some g2 depending on the variables in , so that 1/n < q2. In
particular, then, we will have n" %% < §, < n"*

We will have that A°(Hz) = O(n"%%) (see Claim , so that A°(H2) < (A(H2))'™¢, for some
small fixed ¢ > 0. We will consider O(n?) weight functions w, such that, for each such w, we have
w(E(Hz2)) > n" 5. Then, from Theorem [2.2} we will find a matching M3 in H3 such that, for each
of these weight functions w,

w(Ms) = (1£ (A(Hs)) ™) - w(E(H2))/A(Hs) = (1£101e) - 65 w(E(Hs)) = (1£7) - 85 ‘w(E(Hs)),

POLY

for some small fixed ¢’ > 0, where we have used that 1/n Le<k 5.

The properties produced by this application of Theorem in Part Ile will then give bounds for
our last auxiliary hypergraph Hs, allowing us to show that ds, (v) = (1 £ 10v)ds for each v € V(H3)
(see Claim , where we will have d3 = gzn®® for some g3 depending on the variables in , so that
1/n < g3. We will have that Hjz is 247-uniform and A¢(Hz) = O(n?°®) (see Claim and consider
O(n) weight functions w, each with w(E(Hs)) > n**?®. Similarly to the application of Theorem
in Part we will then be able to find a matching M3 in Hs such that, for each of these weight

functions w,
w(Ms) = (14 207) - 05 "w(E(H3)).

As vy < [, this will then allow us to record our final properties using the variable 8 for

Section outline. After some further set-up, in Section [6.2] we will record a long list of properties
that hold together with high probability in G ~ G[CTCL’]I Then, we will carry out Parts in
Sections respectively. Finally, in Section we will show that the near-matchings we have
found satisfy our desired conditions, completing the proof of Lemma [3.4]
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6.2 Further set-up and properties for Part

Take the set-up from Lemma Recall that 8o = 1/(1 4 8) and, for each i € [n], we have partitions
Xi =X 0UX;i1,Yi=Y,0UY;1 and Z; = Z; 0 U Z;,;1 and random subsets C; C C and D;; C Dj for
each j € [3]. Furthermore, the edges of G are randomly partitioned as E*"* = E3P* U E#*S, and then
E# is randomly partitioned as Ei‘}’j U Eibé U Ef}”]\s/[.

Using Lemma[3.3] for each 7 € T, let

I, C{{G,uw),(J,v)} 14, € Ir,i # j,u € Si \ (RiUTy),v € S5\ (Ti URj),u # v,u~a,pv}

such thathold. Let Z = Ure7l;. Foreach 7 € T, i € I and u € S; \ Ry, let J; ., be the
set of j for which there is some v with {(i,u), (j,v)} € Z,. For each i € [n] and u € S; \ R;, let
Yiuo= njeJi,uu{i} Yjo.

For each 4, j € [n] with ¢ ~7 j, let £;; be the set of links R such that, for some distinct u,v € S,
Ris a (u,v, L)-link with colours in D3\ (C; UC; U D3,; U D3 ;), edges in E3** and internal vertices in
Z—L',() N Zj’().

For any vertex v in G, if i and j are in the same tribe then the probability that v € Z; 0N Z;,0 is B2pz.
For any colour ¢ € C, and any distinct ¢, j € [n], the probability that ¢ € D3\ (C; UC; U D3 ;UDs3 ;) is
B2p2,.ps. For any edge e € E(G), the probability that e € E3®® is Sopabs. Thus, it will be convenient
to set

2 2 2
Dvx = BoDPZ, DPeol = BoPabsP3, and Pedge = SoPabs-

For each path P in G with length 62 which has 30 colours, and each distinct ¢ and j in the same

tribe, the probability that E(P) C E§*, and C(P) C D3\ (C; UC; U D3, U D3 ;), and all the interior

vertices of P are in Zi o N Z;0 is pSx - p29) ~p2§ge. We will let @ be (very close to) the expected number

of (u,v, L)-links in G ~ sz]l for any fixed pair of vertices u ~4,p v, setting

61 3

® = Dvx - pcgl ) pgige : n30. (28)

Let Jo = {{(4,u), (4,v)} : 4,5 € [n],i # j,u,v € V(G),u ~a,p v}. For the links that we want that
we do not find using an application of Theorem [2.2] we will find such an L-link for {(i,u), (4,v)} € Jo
using colours in (D3,;N D3 ;)\ (C;UC;), edges in ET*® and vertices in Z; 1N Z; 1, so it will be convenient
to set

Bi=1=PBo, G =05iPz, Geot = BiPapeps, and  gedge = BiPabs,
and let
®1 1= Gl - Gool - Gedge s (29)
so that the expected number of such links is (very close to) ®;.
Claim 17. With high probability, we have the following properties.
Properties for hypergraph degrees
M1 For each i € [n] and v € V(G), [{v € Xio : c(uv) € D1\ (C; UD1,),uv € E*} = (1+
&) BopxP1piyan.
M2 For each i € [n] and v € V(G), {u € Ti : c(w) € D1\ (Ci U D1;),uwv € E3*} = (1 +
€)BopTP1Pansn-
M3 For each i € [n] and ¢ € C, [{uv € EZ™ : c(uwv) = ¢,u € Ty,v € Xio}| = (1 & £)28EpabspTDx N
M4 For each distinct u,v € V(G) and ¢ € Dy, |{i € [n] : v € T;,v € Xio0,¢c ¢ C; UD1;}| =
(14 €)B3prpX Pabsn.
Properties for boundedness and missing edges
M5 For each v € V(G), {i € [n]:veT;orve X;o}| = (1xe)2prn.
M6 For each i € [n], |T3| = (1 £ &)prn, | X;| = (1 £ e)pxn and | X 0| = (1 £¢)Bopxn.
M7 For each v € V(G), [{uv € E3* : c(uwv) € D1}| = (1 % €)BopiPabsn.
M8 For each i € [n], X € {A,B} and u € X, |[{v € X;1 : c(w) € D1\ Ci,uwv € E{R} =
(1 £2¢)(1 — Bo)’pxpipen.

M9 For each ¢ € Dy and ¢ € F, |{i € I, : ¢ € D1\ (C; UD1,)} = (1 £ €)Bopabsperpran and
Huv € E3™ : c(uv) = c}| = (1 £ &) Bopabsn.

M10 Setting G3™ to be the graph with vertex set V(G) and edge set E$P, Gi**|p, is (yn)-bounded.
Properties for hypergraph degrees
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M11

Mi12

M13

M14

M15

M16

M17

M18

M19

M20

M21

M22
M23

M24

M25
M26

M27

M28

M29

M30

M31

M32

For each i € [n] and u € S; \ R;, there are (1 £ ¢)85 > papypl;Zn choices of v € Yi w0 with
uv € E§™, and c(uv) € D2\ (C;j U D2 ;) for each j € Ji . U {i}.

For each ¢ € F, distinct i,j € ¢, and ¢ € C, there are (1 % €)B85p% pabsh choices of a colour-c
edge in E™ with vertices in Y; 0 N Yj0.

For each i € [n] and = € Y; o, there are (14¢)83" " ps_rp2ply2n choices of u € S; \ R; such that

c(uz) € D2\ (Ci U Do), ux € E3P, and, for each j € J;., x € Yo and c(uz) € D2\ (C; U D;).

For each i € [n] and z € Y o, there are (1+¢)28ops—rrn choices of u € S;\ R; and j € J; ., such
that z € Y 0.

For each i € [n], u € S;\ R, j € Ji,w and x € Y; 0NYj 0, there are (1+¢) gr+6p2p%p;g’s3n choices
of ¢ for which ¢ € D2 \ (Cy U Dy ;+) for each i’ € J; U {i} and such that there is a colour-c edge
in E3* from u to Y; 0 and from z to Yio N Yjo.

For each j € [n] and @ € Y}, there are (1 £ &)r32" "*ps_rpaplyin choices of i € [n] and

u € Si \ R; such that j € J;u, z € Y}/ o for each j € Jiw U{i}, uz is in ESbS and has colour, ¢
say, which is in D2 \ (Cjs U Dy ;) for each j' € Y; ., U {i}.

For each j € [n] and = € Yj o, there are (1 & £)2rfBops—rn choices of ¢ € [n] and u € S; \ R; such
that j € Jiw and z € Y .

For each i € [n] and ¢ € D2\ (C;UDs,;), there are (1+¢)285  *ps_ rpy pl; n choices of u € S;\ R;
so that ¢ € Dz \ (Cjs U Dy ;) for each j' € J; ., and u has a colour-c edge in E3%s to Yi,u0-

For each j € [n] and ¢ € D2\ (C;U D3 ;), there are (1+¢)2r35  *ps_rpypl;, n choices of i € [n]
and u € S; \ R; such that j € J; ., and ¢ € D2\ (Cjs U Dy ;) for each j' € J; ., U{i} and u has a
colour-c edge in ESbS t0 Yi u,0.

For each zy € E(G|p,), there are (1) 85" " ps— rpy ply. n choices of i € [n] such that z € S;\ Ry,
c(xy) € D2\ (C; U D2 ;) for each j € J;, U{i} and y € Yi u,0.

For each zy € E(G|p,), there are (1 4 ¢)2r33" "ps_rpy plyn® choices for i € [n], u € S; \ R;
and j € J;, such that c(zy) € D2 \ (Cjs U Dy ;) for each j' € J;, U {i}, z,y € Y;0NYjo and u
has a colour-c(zy) neighbour in E3™ in Y; 0.

Properties for weight functions

For each i € [n] and « € Zi o, |[{(u,j) v € Si \ Ri,j € Jiw,x € Zjo}| = (1 £¢) 2rfops—rn.
For each j € [n] and = € Zjo, [{(4,u) : u € Si\ Ri,j € Jiu, T € Zip,u ~ayp v} = (1 £e)-
rBops—grn.

For each ¢ € [n] and x € Zio, [{(j,u) : v € Si \ Ri,j € Jiu,x € Zjo,u ~a/p x}| = (1 E¢)-
rBops—Rrn.

For each j € [n] and z € Zj 0, |{(¢,u) : w € S; \ Ri,j € Jiu,x € Zio}| = (1L e) - 2rfops—rn.
For each i € [n], u € S; \ Ri, j € Jiu, x € V(G) and ¢ € C, there are (1 % ¢)B§p3 pspansn edges

in B3P with colour ¢ and vertices in Y; 0 N Yj,0 which have an edge to = in E§™ with colour in

D3\ (C; UC;UDs;UDsj).

For each ¢ € [n], uw € S;\ Ri, j € Jiw, and ¢ € V(G) with © ~4,p u, there are (1 &+
5)6§T+6pyp2p3p;§55n vertices v € Y; 4,0 with uv,zv € Egbs, c(uv) € D2\ (Cir U Dy ;) for each
i’ e J]’,u @] {]}, and c(xv) € D3 \ (CZ @] Oj @] D37i @] Dgy]').

For each i € [n] and ¢ € D3\ (C; U Cs,;), there are (1 £ &)Bopabst - ps—rn choices of u € S; \ R;
andj S Ji,u with ¢ ¢ Cj @] Dg’j.

For each j € [n] and ¢ € D3\ (C; UC35), there are (1 £¢€) - Bopabsps—rn choices for i € [n] and
u€ S;\ R; with j € J;,, and ¢ ¢ C; U D3 ;.

For each i € [n], u € S;\ Ri, j € J;,,, and distinct ¢, ¢’ € C, there are (14¢)B5p3 pzp2psn choices
for w € Y;,0 NYj,0 which has a colour-c edge in E§™ to Zj0 N Z;s o and a colour-¢’ edge in Eg®
to Y;oN Y}I,O.

For each i € [n] u € S; \ Ri, j € Jiu, and ¢’ € C there are (1 + E)5§T+6pypzp2p;i;3n choices of
v € Yiu0 with wv € E§™ and c(uv) € D2 \ (Cir U Dy ir) for each i’ € Ji,, U {i} and there is a

colour-¢’ edge from v to Zio N Z; o in E§.

For each zy € E(G) with c(zy) € Ds, there are ﬂ§r+6pzpyp2p;:;31"p5_3n2 choices for i € [n],
uw € S;\R; and j € J; o with @ € Y; w0, c(uz) € D2\ (CjyUDs ;1) for each j' € Jiu, y € ZioNZj0
and c(a:y) ¢ C;u Cj U Ds,; UDs3 ;.
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M33 For each zy € E(G) with c(zy) € D3, there are (1 £¢) - r85p2yspyPzps—rn® choices for i € [n],
u € S; \ R; and VRS Ji,u with c(:ry) ¢ (C»L @] Cj @] D3,¢ U Dg,j), T E }/i,O N }/j,o and BS Z@o N Zj,o.

M34 For each zy € E(G) with c¢(xy) € D3, and each ¢ € [n], u € S; \ R; and j € J;, there are
1+ 5) o™ 0 py papTt2n choices of v € Yi 0 with uv € E§™ and c(uv) € D2 \ (Cir U Dy i) for
each i’ € J; ., U {i} such that = has a colour-c(uv) edge in E3** to Yi,0NYjo .

M35 For each 2y € E(G) with c¢(xy) € D3, there are B§p%p2psmps—rn> choices for i € [n], u € S; \ R;
and j € J;,, with z,y € Z; 0N Z;0 and c(zy) ¢ C; UC; U D3 ; U D3 ;.

M36 For each i € [n], |S; \ Ri| = (1 £¢) - 2ps—gn and |Yio| = (1 £ ¢) - 2Bopyn.

M37 Foreachu € V(G)and p € F, |[{i € I :u € S; \ Ri}| = (1 L¢)  ps—rpupran and |[{i € I : u €
Yio} = (L£¢) - Bopy npupsa-

M38 For each c € C(G) and ¢ € F, [{i € Iy : ¢ € D2\ (Cs U D2i)}| = (1 £ €)BopabsPrrPian.

Properties for missing small matchings
M39 Foreach i € [n], u € S;\R; and X € {A, B}, there are at least 10,/yn vertices v € Nje s, ,u{i} Yi,1
with colour in Njc s, ,ugi}(Da2,; \ Cj) and such that uv € E%.

M40 For each i € [n], u € S; \ R; and ¢ € O, there are at least v'/*n edges in Ef5; with colour ¢ and
vertices in Njey, ,ufi} Yi,1-
Properties for relevant properties of 7

MA41 For each i € [n] and = € Z; o, there are (1+¢)f8o-pz-n labelledﬂ choices for {(i,u), (j,v)} € Z
with € Z;0 and u %4 4/p .

Ma42 For each ¢ € [n] and = € Z; 0, there are (1 & ¢€)f8o - pz - n labelled choices for {(i,u), (j,v)} € Z
with € Z;0 and u ~4/B .

M43 For each ¢ € [n] and ¢ € D3\ (C; U D3 ;), there are (1 & €)280pabs - pz - n labelled choices for
{(l u) ( U)} € 7 with ¢ ¢ Cj UD37j.

M44 For each zy € E3P with c(zy) € D3, there are (1 % €)2p2, - Peol - pz - n? labelled choices for
{( i,u), (7, )} € T for which c(zy) € D3 \ (C; U C;UDs3; U Dg’j) and z,y € Z;,0 N Zj0.

Properties for link counts for hypergraph degrees

M45 hold with ®; = n3°

M46 For each {(i,u), (j,v)} € Jo, the number of (u,v, L)-links in £;; is (1 +¢&)®.

MA47 For each {(3,u),(j,v)} € Jo and = € V(G) \ {u,v} with c(ux) € D3\ (C; UC; U D3; U D3 ;),
T € ZioN Zjo and uz € ESbS, the number of (u,v, L)-links in £;; in which z is the 2nd vertex
s(LEe) @ -pud Pt Padge "1

M48 For each k with 3 < k < 59 and each {(i,u), (j,v)} € Jo and z € V(G)\{u,v} w1tha: € ZZ 0NZj.0,
the number of (u, v, L)-links in £;; in which z is the kth vertex is (1t ¢) - ® - py;

M49 For each {(i,u), (j,v)} € Jo and xy € E3™ with x = u, c(zy) € D3\ (C; UC; U D3 ; UD3]) and
) 6 Zi0 ﬁ Zj0, the number of (u,v, L)-links in £;; which have zy as the 1st edge is (1+¢)-® -
pVX pcol pedlge'n

M50 For each k with 2 < k < 59, and each {(i,u), (j,v)} € Jo and ¢’ € D3 \ (C; UC; U D3 ; U D3 ;),
the number of (u, v, L)-links in £;; whose kth edge has colour ¢’ is (1 £¢)-®-p_ | -n "

M51 For each {(i,u), (4,v)} € Jo and Y € E&™ for which c(uz), c(xy) € D3\ (C; UC; U D3 ;U D3 ),
z,Y € Zio N Zjo, and ux,zy € E§ s the number of (u,v, L)-links in £;; which have zy as the
2nd edge is (14 ¢) - @ - p2 vp;j pedge -n~2.

M52 For each k with 3 < k < 59, and each {(i,u), (j,v)} € Jo and zy € E3*® with c(zy) € D3\ (C; U
CjUD3;UDs ;) and z,y E ZioNZj, 0 the number of (u,v, L)-links in £;; which have zy as the
kth edge is (1 £¢)-® - pi2 - pcol1 pedge -n”

M53 For each ¢ € C, |[{e € E(G3™) : c(e) = ¢}| = (1%¢)-Bopapsn and |{i € [n] : ¢ € D3\ (C;UD3 )} =
(I1+e¢) - Bopabsn.
M54 For each v € V(G), [{i € [n] : v € Zio}| = (1 L&) pzPon.

Property for missing links

3T.e., we consider the number of choices of (i, u, j,v) for which {(i,u), (j,v)} € Z.
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M55 For each {(i,u), (j,v)} € Jo, the number of (u, v, L)-links with colours in (Ds;UDs3 ;)\ (C; UC;),
edges in E2Ps and internal vertices in ZiiNZjqis (1£¢e)®s.
Properties for bounded remainder

MS56 For eachv € V(G)and ¢ € F, {i € Iy : v € X;,1 UY51 U Z; 1} < Yperpran.

MS57 For each k € [3],c€ Dy and ¢ € F, [{i € Iy : ¢ € Dii }| < Yperprant.

M58 For each v € V(Q), [{u: uv € E¥™}| = (1 £ a)papsn.

MS59 For each i € [n], |Zio| = (1 £¢)Bopzn.

Proof of Claim By Theoremm with high probability, hold with ®¢ = n3°. That is, with
high probability [M45] holds. Supposing, then, that holds, we choose our various random vertex,
colour and edge partitions, and show that each other property from [M1HM59| will hold with high
probability. There is a large overlap in proving that each of the properties hold with high probability.
For brevity, we will select only some key properties to prove this for explicitly, as follows, where we
have selected a range of properties that cover the different approaches required.

Let i € [n] and uw € V(G), and let Z = {v € X0 : c(uwv) € D1\ (C; U D1,;),uv € E3**}. Let
Vi = [{v € V(G) : c¢(uv) € D1}, so that |V,| = |Di1|, and thus, with probability 1 — o(n™*(")) by
Lemma [2.6] |D1| = (1 +¢/2)n. Then, having chosen D1, for each v € By, P(v € Xi0) = Bopx,
P(c(uv) ¢ (Ci U D;1)) = BoPabs, and P(uv € EZP®) = Bopabs, so that P(v € Z) = Bipxpiss, and,
hence E|Z| = (1 &+ £/2)B3pxp2psn. The events {v € Z}, v € Vi, are independent, so, as 1/n <
Bo, PX s Pabs, P1, by Lemma with probability 1 — o(n™2) we have that |Z| = (1 £ €)Bpxp1p2psn.
Taking a union bound then completes the proof that holds with high probability.

Let u,v € V(G) be distinct and ¢ € Dy. Let Z ={i € [n] 1w € T;,v € Xs0,c ¢ C;UD1;}. A
feature here is that the events {i € Z} and {j € Z} are not independent if 7 and j are from the same
tribe. Let 7' C T be the set of tribes for which u € S, and v € X, noting that, by Lemma with
probability 1 — o(n™*M) we have |T’| = (1 +¢/4)pspxp;,’, where we have used that p, < PX,PS,E-
For each 7 € T, let F. be the set of ¢ € F, for which v € U;. By Lemma and a union bound,
with probability 1 — o(n~“®")) we have |F.| = (1 +£/4)(pv /ps)p;," for each T € T. For each ¢ € F,
let I(; be the set of ¢ € I, such that u € S;, v € X;0 and ¢ ¢ C; U D1;. By Lemma and a union
bound, with probability 1 — 0(7f°“(1))7 we have that |I},| = (1+e/4) - (pr/pv) - Bo - Bopabs - PerPran for
each ¢ € T. Putting this altogether, and taking a union bound, we then have, with high probability,

|Z] = Z Z I, = (1 4+ €)B3prpx Pabsn,

TET' pEF]

for every u,v € V(G) and ¢ € D, as required.
Let p € F,i € Iy, J C Ip\{i} with |J| =r,and u € V(G). Let V,, = [{v € V(G) : c(uv) € D3}|,
so that |Vi| = | D2|, and thus, with probability 1 — o(n~“®")) by Lemma[2.6] |Vi,| = (1 4 &/2)p2n. Let
Zi,g ={v € Vy:v € Njesuin Yy, uv € B>, c(uw) € D2\ (C; U Da ;) for each j € JU{i}}. Note that,
for each v € V,,,

P(v € Zi,s) = By py - Bopabs - (Bopans)™ ™,

Thus, by Lemma and a union bound, with high probability |Z; ;| = (14 ¢€)83" " papy pli2n for all
such i and J, whence we have that holds.

This holds with high probability similarly to Let us note that, for each ¢ € C and each
¢ € F and distinct i, € Iy, for each edge zy in G with colour ¢, P(x € Y;NY;) = P(z € Yy) = pv,
and hence P(z € Y; 0 NYj0) = B&py, so that P(z,y € YioNYjo0,2y € Eng) = B5p% Pabs.

Let i € [n] and = € V(G). With probability 1 — n~*Mwe have |Ds| = (1 + £/6)pan. Let Zy .
be the set of u € S; \ R; such that c(uz) € Do, noting that we have with probability 1 — n~“Mthat
|Zs,z| = (1 £e/4)ps—r - |D2| = (1 £ /2)ps—rpen. Then, after choosing the remaining initial vertex
sets, choose Z, and then choose the sets Dz ;, j € [n], the set of edges E5>, and the sets Yj 0, j € [n].
Suppose x € Y; (for otherwise no corresponding bound in [M13]is claimed). Let Zj , be the set of
u € Zg . for which c(uz) ¢ C; U Do, ux € E§™, and, for each j € J;., « € Y0 and c(uz) ¢ C; U D;.
For each u € Zy ., we have P(u € Zém) = BopPabs * BoPabs * B0 - (Bopabs)” = ,Bg’"”p;;rf, The events
{u € Z},}, u € Zy. are not independent, but, by the dependence is low enough that an
application of Lemma shows that |Z}, .| = (1£€)B5" " pLi” - ps—rp2n with probability 1 — nw@,
Thus, using a union bound, we have that with high probability holds, where we record this only
for z € Y; 0 to match its application.
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This follows similarly, though more simply, to and we include its proof to emphasise
where the term 2r in the expression arises. Let ¢ € [n] and z € V(G). With probability 1 — n~*Wwe
have that |S; \ Ri| = (1 +¢/3)2ps—rn (as V(G) has 2n vertices). We can suppose, again, that = € Y;.
Then, for each of the |S; \ R;| - r possibilities for (u,j) with v € S;\ R; and j € J;u, P(z € Y;,0) = fo.
For each_j’ € [n], the choice of Y; o C_Y; influences whether z € Yjo for at most 10° of the pairs
(u, j) by and therefore, by Lemma we have that with probability 1 —n~*“(there are, in total,
(1+¢€)2Bops—rn choices for uw € S; \ R; and j € J;,., with z € Yj .

This follows similarly to previous properties, using Lemma [277] but let us comment that that
the edge ux may have colour in Dz, and this colour may then never be counting among those colours
¢ counted in Of course, one colour is comfortably lost in the error terms used.

We discuss this property because, having fixed j € [n], we count certain choices for 7 € [n] with
j € Jiu for some u (rather than, correspondingly, counting certain choices for i € [n] with ¢ € Jj.
for some u, as for - Let j € [n] and = € V(G), and choose the initial vertex partitions. Let
¢ € F be such that i € I;. By Lemma - with probability 1 — “’<1), we have that, for each i € Iy,
there are (1 4 &/4)2ps—gn choices of u € S; \ R;. Choose Z, and note that then, by there are
r|S; \ R;| choices for (v, i, u) such that {(j,v), (i,u)} € Z, and thus (1+&/4)2rps_grn choices for (i, u)
such that j € J; .. Then, choose the colour partition D; U D2 U D3. Using |A3|and Lemma [2.7] n with
probability 1 — _“(Uthere are (1 +¢/2)2rps—grpan choices for (¢,u) such that j € J; ., and uz has
colour in D3. As before, we can assume that « € Y;. Then, choosing the further random vertex sets,
the edges in E3*® and the sets Cj and Dy jr, j' € [n], for each such choice for (i, u) such that j € J; o
and c(ux) € Da, the probability that x € Y} o for each j' € JZ v Ui , uz is in E5* and
c(uz) ¢ Cjr U Dy jr for each j €Y U{i}is 50 ﬁopabg . (,30pabq Usmgi | and Lemma
with probability 1 —n~“Mthere are (14¢)rf2"  2ps_ Rpgpabg n ch01ces of i € [n] and u€ Si\ R; such
that j € Jiu, © € Yy o for each j' € Jiu U {i}, uz is in E§™ and c(ux) € D2\ (Cjs U Dy ;1) for each
j" € Yiu U{i}.

These properties follows similarly to our others, but note that due to their use we only
record a loose lower bound on the vertices/edge counted, using that ~y ‘22 B, Dy, D2, Pabs, Bo-

IM41HM44; These properties follows similarly to our others, but we comment on them as they are
the first to use pr = 24ps_r = TPS_R, Geol = PP peps and qvx = Bipz, where fo = 1 — Bo. We set pr
so that we will have |Z| ~ prn®. As each Z is a set of pairs, for each i € [n], |[{(u, j,v) : {(i,w), (j,v)} €
T}| = 2pzn, and, for each X € {A, B} we will have, for each i € [n], |{(u,4,v) : {(4,u), (j,v)} € Z,u €
X} = 2pzn. In M43| we require some extra condition, where the expected number of triples
(u, j,v) satisfying this as well can be calculated as with our other properties, and shown to be likely
concentrated around this expectation using Lemma [27]

As an example, we will do the more complicated propertymore carefully. Let then zy € E(G)
with c(xy) € Ds. Let T’ be the set of 7 € T with z,y € Z,, so that, by Lemma we have with
probability 1 — n~*Mthat |T7| = (1 £ /4)p%p,,’. Furthermore, with probability 1 — n~“"we have
that |S; \ Ri| = (1 £¢/4)2ps—rn for each i € [n]. For each 7 € T', ¢ € F; and {(3,u), (j, €L,
P(c(zy) ¢ C;UC; UD3; UDsj Ax,y € Zio N Zjo) = p2usBs - B5. Therefore, using |A1l i E and
Lemma we have that, with probability 1 — n=«®

|{(i,u,j,v) : {(Z,’LL), (.77’0)} S I7 C(Qﬁy) € D3 \ (Cl ) Cj U D37i @ D3,]')71:7y S ZLO N ZI,O}'
=(1+e)  (LE£e/dpype’ - 2ps—rn - Pinebs - Bo
= (1 :tE) : 2p\2/x * Pcol " PT * nQa

as required.

[M46{{M52] [M55F As we have assumed that hold with ® = n3°, these will follow relatively
straightforwardly using Lemma As they follow similarly from each other (and more examples are
done in detail for , we will pick only one example, m M51| to do here in detail.

- Let {(i,u), (], )} € Jo and zy € E(G) with y ~4,5 u. Let £ be the set of (u,v, L)-links

in G which have xy as their second edge, so that, by ! |£] = (1 £/4)n?®. Let L' be the set of

S € L with V(S)\ {u,v,z,y} C Z;NZ;, C(S )\{c(um) c(zy)} C D3\ (C; UC; U Ds; UDsj) and
E(S)\ {uz,zy} € E3". Then, using [28]

IE|£l| =1+ 5/4)”28(53192)59(ﬁgpibsps)%(ﬂopabs)ﬁo =(1+ 5/4)p\513pg§1p§3ge
=(1+e/0)D pi?  pot * Podge "1
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Now, there are 2n — 4 vertices in V(G) \ {u, v, z,y}, and whether of not each of them is in Z; N Z;
affects |£'| by at most O(n*") by There are n — 2 colours not in {c(uz), c(zy)}, and whether each
of these is in Z, or not affects |£'| by at most O(n>") by (summed over the edges of that colour in
G — {u,v,z,y}) and [K9| (summed over the neighbours of {u,v,z,y} of that colour in G). There are
at most n? edges in G — {u, v, z,y}, and whether each of these is in E3®® or not affects |£| by at most
0O(n?*%) by There are at most 4n edges in G with exactly one vertex in {u, v, z,y}, and whether
or not each of these is in E3°® or not affects |£'| by at most O(n?") by
Therefore, by Lemma with t = (g/4) - ® - p;2 -pc_j -p2 .n~2, we have

edge

]P(l‘c/| 5& (1 + E)(p'p\;? : p;ozl 'p;nge : n72)

2t>
<2 —
S 2exp ( O(n- (22 +n- (n2)2 +n2- (n2)2 +n - (n27)2)
< 2exp (fQ(<I>2 . n—ss)) =n W,

where we have used that 1/n ‘22 Dvx; Peol, Pedge- Therefore, taking a union bound, we have that [M51
holds with high probability. O

6.3 Part Matching into X;
In Part we will find matchings J\;[i,l, i € [n], satisfying the following properties.

N1 For each i € [n], M;1 is a rainbow matching from T; into X; which covers T; and has colours in

D1 \ CZ
N2 The matchings MM, i € [n], are edge-disjoint and their edges are all in £,
N3 G*|p, — My — May — ... — M, 1 is (4yn)-bounded.

For this, define a 4-partite 4-uniform hypergraph #H; with vertex classes
i) Vr:= Uie[n]({i} x T;) i) Vx = Uie[n]({i} x Xio0)
iii) C1 = UZE[TL]({Z} X (D1 \ (Cz U Dl,i)) iV) 51 = E(G|D1) N E(E)Lbs

where, for each i € [n], and each edge uv € E§™ with colour ¢ € D1 \ (C; U D1 ;), with « € T; and
v € X;,0, we add the edge

(30)

{(i,u), (i,v), (4, ¢), uv} (31)
to Hi. Let
81 = BopxP1Dapsn.
We will now show that H; is almost d;-regular, as follows.

Claim 18. For each v € V(#1), we have dy, (v) = (1 £€)d1.

Proof of Claim[I8 We check this for the vertices in each of the 4 classes in the order at .
i) Let (¢,u) € Vr, so that ¢ € [n] and u € T;. Then,

dy, ((3,u) = {v € Xi0: c(uv) € D1\ (C; UD1;),uv € Egbs}|@(1 +e)dr.
ii) Let (i,v) € Vx, so that ¢ € [n] and v € X;,0. Then, as pr = Bopx,
da, ((i,0)) = |{u € Ty : c(ww) € Dy \ (Ci U Dyi),uv € B2 (1 £ )5,
iii) Let (i,¢) € C1, so that ¢ € [n] and ¢ € D1\ (C; U D1;). Then, as pr = fopx and 2px = PabsP1,
dae, ((i,¢)) = [{uv € B3 : c(uv) = c,u € Ti,v € Xio}| T2 (1 £ )5,
iv) Let uv € &1, so that c¢(uv) € Dy and uv € E§™. Then, as pr = Bopx and 2px = pabsp1,

dy, (uwv) = [{i € [n] : u € T;,v € Xi0,c(uv) € D1\ (C; UD1;)}

T {i€n]:u€ Xio,v e The(w) € Dy \ (Ci U Dy )Y

1:|:E)61, -

Moreover, H1 has codegrees at most 1, as follows.

Claim 19. A°(H;) < 1.
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Proof of Claim[I9 This follows as any edge e = {(i,u), (4,v), (4,¢),uv} € E(H1) is uniquely deter-
mined by any two of its vertices. Indeed, any two vertices from e determines ¢ and at least 2 of u, v
and ¢. Knowing v and v determines ¢ = ¢(uv) while knowing ¢ and u determines v (the neighbour of
u along a colour-c edge), and, similarly, knowing ¢ and v determines u. Thus, any two vertices from
e determines all of 4, u, v, and ¢, and hence e. ]

We now set up the weight functions we will use in the application of Theorem [2:2]to H1. For each
i€[n],veV(G),and ¢ € Dy, let w;, wr, wy and w. be the indicator function for whether an edge
in E(H1) uses i, v in the vertex from Vr, v in the vertex from Vx, and ¢, respectively, i.e., for each
e={@" u),(#,v),#,),u'} € E(H1) with u € T; and v' € X, 0, we set

wi(e) = L=, w (e) = 1=}, wi (e) = 1(,=y and we(e) = 1io=cy-

Furthermore, for each v € V(G), ¢ € D1, and ¢ € F, for each e = {(i',u), (i',v), (', &), uwv’'} € E(H1),
let
WXa€) = Loruweryy and wople) = Lo—ewer,).

Let Wi = {w; :i € [n]}U{w! :v € V(G)}U{wy :v € V(G)}U{we:c€ Di}U{w), :veV(G),¢€
FrUA{we,p : c€ C(G), ¢ € F}.

For each i € [n], as each e € E(H1) with w;(e) = 1 contains exactly one vertex (i,u) with u € T3,
we have, using Claim that

wi(B(H1)) = D duwy ((3,u)) = (1 )81 - |Ti]. (32)

u€eT;

Similarly, for each ¢ € D1, we have

we(E(Hy)) = Z dw, (wv) = (1 £ )6y - |[{uv € E§™ : c(uv) = ¢}|. (33)

uwv€€y:c(uv)=c

Furthermore, for each ¢ € D1 and ¢ € F, we have

we, o (B(H1)) = > da, ((i,¢)) = (1 £ e)d1 - |{i € Iy : ¢ ¢ CiUDi1}. (34)

i€I¢:(i,c)€V(H1)

For each v € V(G), we have

wy (B(H) = Y duy((iyu)) = (1 £)01 - [{i € [n] : v € T}, (35)
i€[n]:weT;
wy (BE(H1) = > duy((i,u)) = (1£e)d1- [{i € [0] : v € Xy}, (36)

i€[n]weX; o

and, for each ¢ € F,

wo(BE(H1)) = > dw,((i,u) =1 £e)d-[{i € Iy : v € Xio}l. (37)

i€lyveX; o

In particular, f imply that, for each w € Wy, w(E(H1)) > n®/2. Therefore, by Claims
and Theorem [2.2] we can find a matching M; in H; such that, for each w € Wi,

w(Mi) = (1+7) 07 'w(E(H1)). (38)

For each i € [n], setting M; 10 = {uv : {(i,u), (i,v), (i, c(uv)),uv} € My}, we have the following
properties.

Claim 20. a) The matchings Mi71,07 i € [n], are edge-disjoint.
b) For each i € [n], Mm,o is a rainbow matching from 7; to X; o with colours in D1 \ (C; U D1 ;).
c) For each i € [n], |T; \ V(Min,0)| < 29|T;| and |Xi0 \ V(Mi1,0)| < yn.
d) For each v € V(Q), [{i € [n] : v € T; \ V(M;1,0)}| < 2vyn.
e) Foreach v € V(G) and ¢ € F, |{i € I : v € Xi0\ V(Mi,1.0})| < 2ypupran-

f) Foreachce Diand ¢p € F, |{i € Iy : ¢ ¢ C(M;1,0) UC; UD1 i} < 29perpran.
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g) Setting G&>* to be the graph with vertex set V(G) and edge set E3"®, we have G&>*|p, — M 10—
Ms1,0—...— Mn,1,0 is (3yn)-bounded.

Proof. Eﬂ This follows as each edge uv € £ appears at most once in the edges of M;.

@ For each i € [n], that M;0 is rainbow follows from the fact that the vertices {i} x {c}, ¢ €
D1\ (C; U D; 1), appear at most once in the edges of the matching M1, while the other properties
follow from the choice of the edges of Hi at .

For each i € [n],
T 0V (Wi1,0)] = wiMy) B (1) - 67 wa(BH1) B (1 £ 2973,

so that |15 \ Mi,1,0| < 29|T;| < yn. Then,

[Xio \ V(Wi1.0)| = T\ Mol + Xl = T3] < W+(1+8)ﬁopxn—(1—E)an<27n’

where we have usedand that px = (1 + B)pr = pr/Bo-
[ [e)} For each v € V(G),

|{’L S [’I’L] v EeT; \ Mi71,0}| = |{’L € [n] VU E T1}| — ’ll)f(./\/ll)
|
< i€l :ve T} — (1 =) 61wy (B(H1))
|
< 29{i € [n]:ve T} <2vn,

and therefore holds. Similarly, using instead wif¢, and , we have that |e)| holds.
For each ¢ € Dy and ¢ € F,

|{’L€I¢ C¢C( 1,170)UC UD11}| |{i€[¢:CGDl\(CiUDl,i)}‘—wa,¢(M1)

sl :
(1 + 5)/30pabsptrpfan - (1 - ) . 51 lwc,¢(E(7-l1))

(34)
< 2purPrayM,

and therefore holds.
[g)} For each ¢ € Dy,

|{€ S E(Ml’l,() U...uU Mn,l,()) i C ( ) = 6}| = wc(./\/h) (1 + ’7) 51_1we(E(”H1))

(EE) (1+27) - [{uww € E§™ : c(uw) = ¢}).
Thus, the number of edges of colour ¢ in G&**|p, — M1,1,0 — Ma1,0—...— My1,0 is at most 2 - [{uv €
E3b : c(uv) = ¢}| < 2yn.
Furthermore, for each v € V(G), we have that
He€ E(Mi10U...UM,10):veV(e)} =wl (M) +w,) (M) (39)

(1 ) 07 T (B(H ) + 0l (B(H:))
D (1t 2y){icn]:veTorve X}l (40)
Thus, the degree of v in Gabs|p1 — Ml,l,o — Mg,l,o T An,l,o is at most
{uv € EZ™ :c(uwv) € D1} — [{e € E(Mi1,0U...UMny10):v € V(e)}
(14 ¢)Bopipabsn — (1 =2y)|{i € [n] : v € T; or v € X, 0}

(14 ¢€)Bopipabsn — (1 — 2y)(1 — €)2prn

<
< 37Bop1pabsn < 2yn,

where we have used that 2pr = Bopipabs. Therefore, holds. B

56



We will now find matchings M; 11, i € [n], to cover the uncovered vertices in T; \ M; 1,0, using
from Claim that these are small sets.

For this, take matchings M; 1,1, ¢ € [n], which maximise )
properties.

icin] |M; 11| subject to the following

1) For each i € [n], M;1,1 is a rainbow matching between Tj \ V/(M;1,0) and X; 1 of edges in E;P®
with colour in Ds ; \ C

2) For each i € [n], and zy € M1 with x € T, if X € {A, B} is such that z € X, then zy € E%.
3) The matchings M; 1,1, i € [n], are edge-disjoint from each other.
We will show that the matchings Mi,1,1, i € [n], have the properties we need, as follows.
Claim 21. For each ¢ € [n], |]\A4Z 11 =T — |J\A4Z 1,0
Proof of Claim[21} Suppose to the contrary, there is some i € [n] with |M; 11| # |Ti| — | Mi 10| so that,

from 1)} |M;1,1] < |Ti| — | Mi,0], and there is some u € T3\ V( Mi,1,0). Suppose that u € A, where the
case where u € B follows similarly. By the maximality of Z |M1 1 1| every neighbouring edge from

u to X; 1 with colour in D1 ; \ C; must have its non-u vertex in V(Mj;1,1) or its colour in C M; 11),
or be in a matching M 1 1 for some j € [n] with u € T; \ V/(M;1,0). Therefore, using Claim and

D}

{v € Xij @ c(w) € D1 \ Cs,uv € EfRY < 2| M, ]:ue T\ Migo}| < 4yn,

which, as v ‘23 Pz, Pabs, contradicts J
For each i € [n], let M;11 = {uviy : u € Ty iV( M; 1)} and set M; 1 = M; 10U M.

show that M; 1, i € [n], satisfy [N1H{N3| Indeed, [N1| follows from Claim [20] . Clalrn and '1
Furthermore, [N 2| follows from Claim [20|ja)| and [3)| Finally, N3] follows from Claim 2 and [M10|

6.4 Part Small matchings with Y]

We now embark on Part where we will find edge-disjoint rainbow matchings Mi,z, i € [n], and a
set
J C {{@G,u),(j,v)} 14,5 € [n],i # j,u,v € V(G),u #v,u,v € Y;NY;},

satisfying a range of properties later stated as [R1IHR15] To do this, as discussed in Section [6.1] we
will find, for each i € [n] and u € S; \ R; a tuple (vi,u, Ci,u, Ms,u,wiw), so that these tuples will have
various desirable properties, including that M; ,, is a small monochromatic matching in G with vertices
in Y; and the colour of its edges will be in D, and uw; , is a disjoint edge of the same colour with v;
also in Y;. Recalling that r = 24, this matching will have r edges. We will then divide, for each i € [n]
and u € S; \ Ri, the edges {uvi,,, U M; .} among the matchings M; 2, j € {z} U Ji,u, while taking, for
each {(i,u), (j,v)} three particular pairs {(i,u), (§,v")} with w',v" € V(M; ) UV (M;.5) U {0 u,vj0}
into J (see Section .

For each ¢ € [n] and u € S; \ Ry, recall that J;. is the set of j for which there is some v with
{(@,u), (j,v)} € Z, that |J;,u| = r, and that Yj w0 =) Yj 0. For each i € [n] and u € S; \ R,
let R;,. be the set of tuples (v, M, c,w), where

jE€ T, U{i}

e M U {uv} is a matching of r + 1 edges in EgP with colour ¢ and w : J;, — M is a bijection,
e vEYiyuo=\) Yjo,

e V(M) CYip,

e for each j € Jiu, V(w(j)) C Yj,0, and

o for each j € {i} U J;u, c € D2\ (C; U D2 ;).

Define an auxiliary hypergraph Hs with 4 vertex classes

i) Vs—r = Uicm({i} x (5i\ R:)) i) Vy :=Uicm ({i} x Yio)
111) Co = Uze ({’L} X (D2 \ (C U Dgyi))) iV) Eo 1= (G|D2) N Eabb

where, for each i € [n], u € S; \ R;, and (v, M, c,w) € R;., we add the edge
B, Mew) = {(6u)} U ((Jiw U{i}) x {e,0}) U (Ujes,, {0, 4} x V(w() UM U{uww}  (42)

to Hz2. Each edge, then, has 1+ (r+1)-2+r-4+4+r+ 1 = 7r + 4 vertices, and, hence, H2 is a
(7r 4+ 4)-uniform hypergraph. We will now show, in Sections and respectively, that Hs is
almost regular with low codegrees.

jE€ T wU{i}

(41)
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6.4.1 Vertex degrees of H,

Setting
TS ATl p2ri2
02 = " p2 pY:r pahs " ’

we will show that Ho is almost de-regular, as follows.

Claim 22. For each v € V(H2), we have dz, (v) = (1 £ 100¢) - J2.

Proof of Claim[24 We check this for the vertices in each of the 4 classes in the order at .
i) Let (i,u) € Vs_r, so that i € [n] and u € S; \ Ri. Then, by [M11]and [M12] we have

drsy ((,u) = (L) - B P papypliin - (1 £ 2¢) - (Bop3pabsn)” =(1 £ 100g) - do.

ii) Let (j,2) € Vy, so that j € [n] and « € Yjo. There are four different ways (j,x) can arise in an
edge E(; u,v,M,cw) for some i € [n], v € S; \ Ri, and (v, M,c,w) € Riy: a) j=iand x =v,b) j =1
and x # v, ¢) j #4and z = v, and d) j # ¢ and = # v. We count these in turn.

a) j=iand x = v: Let i = j. Pick u € S; \ R; such that c(uz) € D2\ (C; U D2;), uxr € EZ™,
and, for each j € Jiu, © € Yjo and c(ux) € D2\ (C; U D;) (with (1 £¢)85  ®paplii!in choices by
M13). Then, iteratively pick r edges of colour ¢ in Eg™ disjointly from within, respectively, Y; o NYjr 0
for each j' € Ji. (each time having (1 & 2¢) - B3p3 Pabsnt choices by . Thus, recalling certain
relationships between variables from Section as Bopy = 121ps—_r, the total number of choices is

(L£e)- B Pps—rpepliin - ((1 £ 2¢) - Bopypabsn) =(1 £ 100¢) - 62/121.

b) j =iand z # v: Let i = j. Pick u € S; \ R; and j' € J;. such that z € Y}/ o (with
(1 £ €)2Bops—rrn choices by - Pick ¢ for which ¢ € Dz \ (Cyr U Dy /) for each i’ € J;, U {i}
and such that there is a colour-c edge in E§> from u to Y; .o and from z to Yip N Yo (with
(1 £ 2¢) 2T+6pgpypabb n choices by - Then iteratively pick r — 1 edges of colour ¢ d1s301ntly
from within, respectively, Y; o N Yy o for each i’ € J; . \ {4’} (each time having (1 & 2¢)B5p3 pabsn
choices by . Thus, as Bopy = 121ps—_r, the total number of choices is

(1+¢)-280ps_rrn- (14 2¢) - Ba Cpaptpiiin. (1+2e)- ﬂé’p%fpabsn)T_l =(14100¢) - §2 - 2rr/121.

c) j #iand z = v: Pick i € [n] and u € S; \ R; such that j € Jiu, © € le,o for each
j € Jiw U{i}, uzx is in Eabs and has colour c say, in Dy \ (Cjr U Dy ;) for each j' € Y., U {i}
(with (1 +&)rBe Pps_ Rpgpabs n choices by (M Then iteratively pick r edges of colour ¢ in E3P®
disjointly from within, respectively, Y; o NYj: o for each §' € Jiu (each time having (1 =& 2¢)B3p3 pabsn
choices by [M12| - Thus, as Bopy = 121ps—r, the total number of choices is

(1£e)rBy ?ps—rpapipen - ((1 £ 2€)B5pY pavsn)” =(1 £ 100¢) - &2 - r/121.

d) j # iand o # v: Pick i € [n] and v € S; \ R; such that j € J;, and = € Yio (with
(1 £ €)2Bops—rrn choices by [M17| - Pick ¢ for which ¢ € D3 \ (Cyr U Dy /) for each i’ € J;, U {i}
and such that there is a colour-c edge in E§ abs from u to Yi u,0 and from z to Yio NYjo (with (1 £
2¢) 62T+6p2pyp;g;3n choices by [M15f - Then iteratively pick » — 1 edges of colour ¢ disjointly from
within, respectively, Y; 0 N Y for each i’ € J; . \ {§'} (each time having (1 + 2¢)85p% pabsn choices
by . Thus, as Bopy = 121ps—_r, the total number of choices is

(L£e) 2rBops—rn - (L£2¢) - B3 Cpapipliin - ((1£2¢) - ﬂgpipabsn)r‘l =(1 £ 100¢) - 83 - 2r/121.

Therefore, recalling that » = 24, in total for ii), for each (j,z) € Vy we have

or +1

drax (G 2)) = (1 1002) - 22

. (522(1 + 1008) . (52.

iii) Let (j,¢) € Co, so that j € [n] and ¢ € D3 \ (C; U D2 ;). There are two different ways (j,c) can
arise in an edge E(; u,v,M,c,w) for some i € [n], u € S; \ Ri, and (v, M,c,w) € Riy: a) j =i and b)
j #i. We count these in turn.

a) j = 4. Pick uw € S; \ R; so that ¢ ¢ C;s U Dy ;s for each j' € J; . and u has a colour-c edge in
EZ™ to Yiuo (with (1 £ 5)262’”+2p573pyp;§31n choices by [M18]). Then, iteratively pick r edges of

o8



colour ¢ in E3P® disjointly from within, respectively, Y;o N Yj o for each j' € J; . (each time having
(1 & 2¢) B5p% pabsn choices by [M12). Thus, as SBopaPabs = 50ps—r, the total number of choices is

(L£e) 285 ps—rpypipsn - ((1£2¢) - BopYpavsn) =(1 £ 100¢) - &2 - 2/50.

b) j # i. Pick i € [n] and uw € S; \ R; such that j € Ji» and ¢ € D2\ (Cjr U Dy ;) for each
j' € Ji,uw U{i} and u has a colour-c edge in E3%s to Yi w0 (with (1 £ 8)27"63”2]03,3]0}/17;;171 choices
by [M19)). Then, iteratively pick r edges of colour ¢ disjointly from within, respectively, Y; 0 NY;/ o for

each i € J;., (cach time having (1 % 2¢)B5p3 pabsn choices by [M12)). Thus, as Bopepabs = 50ps—r,
the total number of choices is

(L+e) 2B P ps_rpypapsn - ((1£2¢) - B3py pavsn)” =(1 % 100¢) - &2 - 2r/50.

Therefore, in total for iii), for each (j,c) € C2 we have

2r + 2
50

du, ((4,¢)) = (1 £100¢) - - 92=(1 £ 100¢) - d2.
iv) Let xy € &2, so that c(zy) € D2 and xzy € E3PS. There are two different ways zy can arise in an
edge E(; u,v,M,cw) for some i € [n], u € S; \ Ri, and (v, M,c,w) € Riu: a) vy = uv and b) zy € M.
We count these in turn.

a) zy = wv. Pick ¢ € [n] such that € S; \ Ri, c(zy) € D2\ (C; U D2 ;) for each j € J; ., U {i}

: 2r+42 41 : : : :

and y € Y; w0 (with (1 £ ¢)8;" T*ps—rpypLi.n choices by [M20). Then, iteratively pick r edges of
colour ¢ in E§P disjointly from within, respectively, Yio N Yjo for each j € J;. (each time having
1+ 25)ﬁg’p§/pabsn choices by . Thus, as Bop2pabs = 50ps—r, the total number of choices is

(1+¢)- B0 *ps—rpypass - (1 £€) - BopY Pavsn)” =(1 % 100¢) - 62/50.

Counting similarly with = and y interchanged, we get another (1 £ 100¢) - §2/50 choices.

b) zy € M. Pick i € [n], u € S; \ Ri and j € Jsu such that c(zy) € D2\ (Cjr U Do jr)
for each j° € J; U{i}, 2,y € Yio NYjo and u has a colour-c(xy) neighbour in EZ™ in Y;.o
(with (1 + 8)2rﬂgT+7ps,Rp§’/p2;2n2 choices by [M21)). Then, iteratively pick r — 1 edges of colour
c in E3™ disjointly from within, respectively, Y; o N Yj/ o for each j' € J; . \ {j} (each time having
(1 & 2¢) B85 p¥ pabsh choices by . Thus, as Sop2pabs = 50ps—r, the total number of choices is

1+e) - 2rB ps_rpipliin® - (14 2¢) - Bop2pansn)  =(1 % 100¢) - 85 - 2r/50.
abs
Therefore, in total for iv), for each zy € & we have

14+142r

da, (zy) = (1 £ 100¢) - 20

'62:(1:|:1008) -(52. B

6.4.2 Codegrees of H,

7'+O.5)

We will now show that the codegrees of Hs are all O(n , where r = 24. As the vertex degrees of

Hs are (by Claim all around &2, where d2 = 87" pap3 T p2 20"t and 1/n < Bo, P2, PY , Pabs,
these codegrees are all much smaller than the vertex degrees in Ha.
Claim 23. A°(H2) = O(n"T0%).

Proof of Claim[23 Let i € [n], w € S; \ Rs, and (v,M,c,w) € Riu, and consider the edge e =
E(i,u,v,M,c,w) (uSing )7 so that

e={(i,u)} U((Jiw U{i}) x {c,v}) U (Ujeu, . {65} x V(w(5))) UM U {uv}.

Let v1 and w2 be two vertices in e. We will check the codegree in cases i)—xvii) as follows.

If from v, and v; we do not know ¢ or any j € J; ., then (as vi,vs € M U{uv}) from v; and v we
can write down a triple

i) (w,w,c) or ii) (w,w',c)
where w,w’ € V(M) are not in the same edge in M. If from v; and v2 we know i but no j € J; 4,
then (as knowing any 2 of u,v and ¢ determines all of them) from v; and v2 we can write down one
of the triples
iii) (i,u,¢) iv) (4, u,w) v) (i,v,w) vi) (4,c,w) vii) (4, w,w’),
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where w,w’ € V(M) are not in the same edge in M. If from v; and v2 we know ¢ and one j € J; u,
then from v; and v2 we can write down one of the triples

viii) (¢,5,v) 1x) (4,5,¢) %) (i, 4, w),

where w € V(M). If from v; and v2 we do not know i and know exactly one j € J; ., then from vy
and v we can write down one of the triples

xi) (j,v,¢) xii) (j,v,w) xiii) (j,c,w) xiv) (j,w,w’),

where w,w’ € V(M) are not in the same edge in M. Finally, if from v; and v2 we know distinct
3,7 € Jiu, then from v; and va we can write down one of the triples

xv) (4,5'sv) xvi) (4,5',¢) xvii) (4.5, w),

where w € V(M).

We now show that, in each case i)-xvii), we have du,(vi,v2) = O(n" %), For i) and ii), we
know the colour of the edges in M U {uv} and vertices from 2 different edges, so there are at most
n" ! choices for the other edges in M U {uv}, and then at most n choices for i, O(1) choices for u and
O(1) choices for w, so that ds, (vi,v2) = O(n") = O(n"T0?).

For iii) and vi), we know ¢, ¢ and one vertex in one of the edges in M U {uv}, and therefore there
are at most n” ways to choose the remaining edges of M U {uv}, after which there are O(1) choices
for u and then w, so that dg,(v1,v2) = O(n") = O(n"T%?). For iv), v) and vii), we know i and two
vertices in different edges of M U {uv}, and therefore, after choosing ¢ with at most n choices, there
are then at most n" ! ways to choose the remaining edges of M U {uv}, after which there are O(1)
choices for u and then w, so that du, (v1,v2) = O(n") = O(n"T°?%).

For xi), we know u from v and ¢, and therefore from have at most \/n choices for i, after
which there are at most n” possibilities for M, so that dy,(v1,v2) = O(n"T0%). For xii)-xiv), as j
is known, there are at most n'-® choices for (i,u) by after which we know either the colour of
the edges in M U {uv} and two vertices from different edges in M U {uv}, or and three vertices from
different edges in M U {uv}. In either case, we have at most n" ' choices for the edges in M U {uv},
and therefore dy, (v1,v2) = O(n"T0?).

For xv)—xvii), by there are at most \/n choices for (i,u) with j,j" € Ji., after which, as
either the colour of the edges in M U{uv} is known (from the triple directly or from uv) or a vertex in
an edge of M, there are at most n” choices for edges M U {uv}, and therefore ds, (v1,v2) = O(n"10).

O

6.4.3 Weight functions for properties for Part

Before considering some of the simpler weight functions needed to complete Part we address some
important weight functions that are needed to prove certain properties required to complete Part
In particular, these relate to properties which are only stated later, in Section [6.4.7] and are
important for proving the properties required of 7 for Hs.

For For each j € [n] and © € Zj o, define u}i’?sami ué—i’?”ther : E(M2) — N by, for each i € [n],
u € S;i\ Ri, and (v, M,c,w) € Riu

e if j = ¢, then letting ﬁsame(E(i,u,vyM’cw)) be the number of j' € J; ., with € Z;/ o such that
there is an edge from z to V(w(j")) in E§™ with colour in D3 \ (C; U Cjs U D3; U D3 ), and 0
otherwise.

® j € Jiu, then let u)ji.?omer(E(i,u,v,M’cw)) be 1 if there is an edge from z to v in E3™ with colour
in D3 \ (Cz U Cj U D3,7; U D37j), and 0 otherwise.

For wj=***™¢(E(Hz2)): There are (1 =+ ¢) - 2rfBops—rn choices for v € S; \ R; and j' € Jj,, with
x € Zjioby After this, there are (14¢) 83" 3py gp;]jfn choices of v € Yj 40 with uv € E3P and
c(uv) € D2\ (CyUDs ) for each i’ € J;,U{j} byl@L After this, there are (1£¢)85p3 papiysn choices
for w(j') such that there is an edge from z to V(w(j")) in E§" with colour in D3\ (C;UC;/UD3;UD3 ;)
by After this, there are (1 4 £)35p% pabsn choices for each edge in M \ {w(5")} by
Therefore, in total, we have

same T u -t
uBIsame (B(35)) = (14 10¢) - 2rfops—rn - By py papliln - B9y papiven - (B5pY pavsn)”
= (14 106)2(ps — pr)n -7 - 82 - By - BoPips * 3

2
= (1 + 105) . gpjn . 52 . 50 * Pedge * Pcol-

60



For qui-j“her(E(’Hg)): There are (1+¢)-rBops—rn choices for ¢ € [n] and u € S; \ R; with j € J; .,
x € Zipand u ~4/p T by After this, there are (1 + 5)5§T+6pyp2p3p;g'ssn choices of v € Y 4.0
with uv € E3™ and c(uv) € D \ (Cyr U Dy ;1) for each i’ € J;,, U {j} and zv is an edge of E3P® with
colour in D3\ (C; UC; U D3 ; UDs ;) by After this, there are (14 &)85p3 pabsn choices for each
edge in M by
Therefore, in total, we have
WS (B(Ma)) = (14 106) - 20fops—rn - 557 prypopapaiin - (B33 panen)’

= (1+10e)(ps — pr)n -7 - 82 - Bo - Bopips - P3

1
= (]. + 105) . gpjn . 62 . 50 * Pedge * Pcol-

Letting u)f.? = u&?same + vjjinzt(’ther, we therefore have that
Wi,z (E(HQ)) = (1 + IOS)pgn <02 - BO * Pedge * Pcol- (43)

For For each j € [n] and © € Z; o, define qui‘;tsame, qui‘?Other : E(M3) — N by, for each i € [n],
u € S; \ Ri, and (v, M,c,w) € Riu
e if j = ¢, then let ui-}same(E(iyum,M,c,w)) be the number of j' € J; , for which there is an edge
from z to v in EP with colour in Ds \ (C; UC; U Ds; UDs ), and 0 otherwise.
o if j € Jiu, let u&‘?"ther be 1 if there is an edge from z to V(w(j)) in E§> with colour in
Ds \ (Cz U Cj U D37i U Dgyj), and 0 otherwise.
For u;i-?same(E(’Hg)): There are (1 & €) - rBops—gn choices for u € S; \ R; and j' € J;. with
x~a/puand x € Zy o by which is a fraction around 1/r of the possibilities in the first choice
for examining wHLiother Lilother

3 . Then, continuing as did for qunz‘ , using MZE and , we have, as

ui-?same takes values in {0, 7}, that,

Iiilsame 1
J,x (E(HQ)) = (1 + 105) : gpjn -0z 50 * Pedge * Pcol-

For uJ]-i-?Other(E(Hz)): There are (1 %+ ¢) - 2rfops—rn choices for ¢ € [n] and v € S; \ R; with
j € Jiwand x € Z; o by which is around twice as many as the possibilities in the first choice
for examining qui-?same. Continuing as did for u&‘?same, using |M1 1|, |M26| and |M12[, we get

Ri}o er 2
7T o (E(HQ)) = (1 + 105) : gpjn : 62 : /80 * Pedge * Pcol-
Letting zdfq = uJﬁ‘?same + uJ]-i-?Otheﬂ we therefore have that
Wy (E(HQ)) = (1 + 105) pgmn - da - 50 * Pedge * Pcol- (44)
For For each j € [n] and ¢ € D3\ (C; U D3 ;), define uﬁsamc,uﬁmh“ : E(M2) — N by,
for each ¢ € [n], u € S; \ Ry, and (v, M, c,w) € Riu
e if j = 4, then letting u}:ﬁjsame(E(i,u,v,M@,w)) be the number of pairs (', w) with j' € J;, and
w € V(w(j")) for which ¢’ ¢ Cj U D3 j} and w has a colour-c’ edge to Z; 0 N Zj o in E3™, and
0 otherwise, and

o if j € J; ., then let u;ji-i;"th“ be 1 if ¢ ¢ C; U Ds; and there is a colour-¢’ edge from v to
ZioN Zjo in EZ™, and 0 otherwise.

For u/%same(E(Hg)): There are 20opabst - ps—rn choices of u € S; \ R; and j' € J;, with
¢ ¢ CjUD;; by After this, there are (1 + €)83"py papli2n choices of v € Yj .0 with
wv € B3P and c(uv) € Do \ (Cyr U Dy /) for each i’ € J;, U{j} by Then, by [M30] there are
(1 +€)2B5p3 pzp2Lsn choices for w € Y;0 N Y o which has a colour-c¢” edge in EgP to ZjoN Zjr o and

a colour-c(uv) edge in E§™ to Yj0 N Yj 0. As this determines the edge with colour ¢ = ¢(uv) in the
matching M, we then have (1 % €)B35p% pabsn choices for each of the r — 1 other edges in M \ {w(j')}

by [M12]

Therefore, in total, we have

same 743 T -t
ufBBme (B(3,)) = (1 10¢) - 2B0pabsr - ps—rn - B3 *py papliin - 285py pzp2uen - (B3pY pavsn)”
= (1£10¢)2(ps — pr)n 7 - 62 - BoPabs - P2

4 R
= (1 + 108) . gpvx * Pcol * Pedge * PTMN - 52-
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For u%"ther(E(Hg)): There are (1 & €) - 2rBopabsps—rn choices for ¢ € [n] and v € S; \ R; with
j€Jiwandc ¢ C;UDs3; by After this, there are (1:ta)ﬂ§r+6pypzp2p£;3n choices of v € Yj 40
with uv € E§™ and c¢(uv) € D2\ (Cir U Dy i) for each i’ € J; . U{i} and there is a colour-¢’ edge from
vto ZioNZjo in B3P by After this, there are (14 )85p% pabsn choices for each edge in M by

Therefore, in total, we have

ufEFRe (B (Hy)) = (14 106) - 2rfopabsps—rn - B3 pypzpapiiin - (6593 pabsn)”
= (1 £ 10e)(ps — pr)n - 7 - 82 - BoPans - Pz

2 "
= (l + 106) . gpvx * Pcol * Pedge * PITM * 02.
Letting leKg'l = %quE,?same + %u&%@“her, we therefore have that
U“j,C'(E(HQ)) = (1 + 106) “pgmn - 2 - /80 * Pedge * Pcol- (45)

For [R4} For each j € [n] and ¢’ € D\ (C; U D3 ;), define ufig=eme yfBflother. piog,) — N by,
for each i € [n], u € S; \ R;, and (v, M,c,w) € Riu

o if j = ¢, then letting uJﬁ-}same(E(i’u,v,M’c,w)) be the number of j' € J; ., for which ¢ ¢ C;yUDj3

and there is a colour-¢’ edge from v to Zj0 N Z;/ o in E2bs and 0 otherwise, and

o if j € Ji ., then letting u%other(E(i,u,vyM,c’w)) be the number of vertices in w(i) with a colour-¢’

edge in E3™ to Zio N Z;0 if ¢ ¢ C; U D3, and 0 otherwise.

For u%same(E(Hz)): There are 2rBopabsps—rn choices of u € S; \ R; and j' € Jj for which
¢ ¢ C; UDs i by After this, there are (1 + )85 pypzpapli?n choices of v € Yi 0 with
wv € B3P and c¢(uv) € D2 \ (Cir U Dy i) for each i’ € J;,, U {i} and there is a colour-¢’ edge from v
to Z;0NZjr o in E3bs by After this, there are (1 & €)B5p3 pabsn choices for each edge in M by

M 12|
Therefore, in total, we have

uBBNT(B(75)) = (14 108) - 2rBopabsps—rn - B2 Cpypzpapliin - (B5p%panen)”
= (1£10e)2(ps — pr)n -7 - 02 - Bopaps - Pz

2 «
= (1 + 106) . gpvx * Pcol * Pedge * PITMN * 52-

For u,l%‘Other(E(’H,g)): There are (1 £ ¢) - 2rBopabsps—rn choices for ¢ € [n] with j € J;, and
¢ ¢ C; UDs,; by After this, there are (1 £ E)ﬁgT+3pyp2p2n choices of v € Yj 0 with
wv € E3™ and c(uv) € D2 \ (Cyr U Dy /) for each i’ € J;, U{j} by Then, by there are
(1£¢)285p3 pzpysn choices for w € YjoN Y 0 which has a colour-¢’ edge in E&™ to ZjoN Zj 0 and
a colour-c(uv) edge in E§™ to Yjo N Yj . As this determines the edge with colour ¢ = c¢(uv) in the
matching M, we then have (1 + ¢)B5p3 pabsn choices for each of the r — 1 other edges in M \ {w(j')}

by [M12]

Therefore, in total, we have
T r -1
BB (B(My)) = (1 10¢) - 4Bopabst - ps—rn - By o pypapliln - Bipy pzpluen - (B30 pavsn)”
= (14 10e)4(ps — pr)n -7 - 82 - BoPaps - Pz
4 R

= (1 + 106) . gpvx * Pcol * Pedge * PTN - 02.

Letting /B4 = L1 Efsame 1, Rfother "o therefore have that
Uﬁ(E(Hz)) = (1 + 10€)pvx . ﬁcol * Pedge " PTN * 62' (46)

For For each zy € E3P® with ¢(zy) € Ds, define u@ﬁm, u@ma“h : E(M3) — N by, for each
1 € [n], u € S;\ Ry, and (v, M, c,w) € Rin
o ifve{z,y}, y € Zio and c(zy) ¢ C; U D3 ;, then letting u@ﬁm(E(i’u,v,Myc,w)) be the number
of j € J;y for which y € Z; 0 and ¢(zy) ¢ C; U Ds_;, and 0 otherwise, and

o if v ¢ {x,y}, z,y € Zio and c(xy) ¢ C; U D3, then letting uﬁmatCh(E(@u’v’M,c,w)) be the
number of j € J;, with z,y € Z;0 and c¢(xy) ¢ C; U D3 ;, and 0 otherwise.
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For u@ﬁrSt(E(Hz)): There are (1 + €)B " pzpy paplitrps—rn? choices for i € [n], u € S; \ R;
and j € J; ., with @ € Y w0, ur € E§™, c(uz) € D2\ (Cjr U Dy ;1) for each j' € Jiu, y € Zio N Zjo
and c(zy) ¢ C; UC; U D3; U D3 by After this, there are (1 + £)B3p3 pabsn choices for each

edge in M by

Therefore, in total, counting similarly with z and y switched, we have

BBt = (14 10e) - 285" "pzpypeplis rps—rn® - (BopY pavsn)
= (1+10e)2(ps —pr)n -1 - 92 - B5 - PavsDz

2
= (1 + 108) : gp?/x . p3/381p;1bs * Pedge * PT - ’I’L2.

For uﬁmamh (E(Hz2)): There are (14 ¢) - rB§p2,spy pzps—rn® choices for i € [n], u € S; \ R; and
j € Jiw with c(zy) ¢ (C;UC; UDs i UDs;), x € YioNYj0,y € ZioN Zjo by [M33] After this, there
are (1 :I:s)ﬂzr%pypgpabs n choices of v € Y 4,0 with uv € E3® and c(uv) € D\ (Cy U Dy ;1) for each
i’ € Ji . U {i} such that z has a colour-c(uv) edge in E3® to Y;,0NYj, by After this, there are
1+ E)Bg’p%pabsn choices for each of the remaining r — 1 edges in M by Therefore, in total, we
have

m. r r r—1
WBBmath ([3(715)) = (14 10€) - 2rBSp2ospy pzps—rn® - Be  Cpy papliin - (B3P pavsn)

= (1£10¢)(ps — pr)n -7 02 - B5 - Pavs
= (1410¢) - %pgn -89 - o - Pedge - B3 - Pas-
Letting UJEE u@ﬁrs‘“ + ugmatdﬁ we therefore have that
W E(H2)) = (14 100)pes - 6 - P - P71 (47)

For For each zy € E3P® with ¢(zy) € Ds, define u@ﬁrs‘“, u@ma“h : E(M3) — N by, for each
1€ [n], u € S;\ Ry, and (v, M, c,w) € Rin
o if vx € EF™, c(uv) € D3\ (C; U Dsy), x,y € Z;, then letting uEF‘YSt(E(m%M@W)) be the
number of j € J;, for which z,y € Z; ¢ and c(zy) ¢ C; U D3 ;, and 0 otherwise, and
o if x,y € Zio and c(zy) ¢ C; U D3, then letting umm“h (E(i,u,v,M,cw)) be the number of
J € Jiu with z,y € Z; 0 and c(zy) ¢ C; U D3 ; for Wthh there is an edge in E§™ from x to w(j)
with colour in D3 \ (C; UC; U Ds; U Ds ;), and 0 otherwise.

For u@ﬁm( (H2)): There are (1 + €)B5p%p2psrps—rn® choices for i € [n], u € S; \ R; and
j € Jiu with z,y € Zzo N Zjo and c(zy) ¢ C; UC; U D3 ; U D3 ; by- After this, there are
(1 +e)5; 2rt6 pypngpdbb n choices of v € Y; 0 with uv € E3™ and c(uv) € D2 \ (Cy U Dy ;) for each
i € Jju U {4} and zv is an edge of E™ with colour in D3\ (C; UC; U D3, U D3 ;) by After
this, there are (1 # €)B5p3 pabsn choices for each edge in M by

Therefore, in total, counting similarly with = and y switched, we have

UJ st = (1£10¢) - BopZpinerps—rn® - B3 T pypapspiion - (Bops pabsn)”
= (1+£10)2(ps — pr)n -7 - 82 - B3 - papsPz D3

:(lzi:10e5)-g

2 2
3P B0 * Pabs * DT - M.

For u@matCh(E(Hﬁ): There are (1 £ ¢) - rB35p2psp%ps—rn? choices for i € [n], u € S; \ R; and
Jj € Jiw with z,y € Z; 0N Z; and c(zy) ¢ (C; UC; U Ds; U Ds ), by After this, there are
(1 +e) 2T+3pyp2pr+2n choices of v € Yj 4,0 with uv € E‘"ibs and c(uv) € D2 \ (Cyr U Dy ;) for each

i' € JjuU{j} by M11] Then by- there are (14 ¢)B3p3 pspapsn choices for the edge w(j). After
this, there are (1£¢)83p3 pabsn choices for each of the remaining r — 1 edges in M by 2| Therefore,
in total, counting similarly with x and y switched, we have

u@match(E(HQ)) _ (1 + 106) 2TﬁopabsprS Rn ﬁ27+3pyp2p;;r52n . ﬂgpg,p:;p:bs’n . (ng%/pabsn)r
= (1£106)2(ps — pr)n -7+ 82 - B3 - PasP - P3

2
= (1 + 105) . gpvx . Bg 'pibs pPg - mn.
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Letting um u@ﬁm + u@mamh, we therefore have that
WENE(Hz)) = (1 106)pex - B - Povs -7 1. (48)
Let

Wy = (B8 B2 5 e n) 2z € Z;0} U {8 B2 5 ¢ [n),c € D3\ (C; U Ds )}
u@,um zy € B3 s.t. c(zy) € D3}, (49)

and note that from (£3)-(8), we have that w(E(Hz2)) > /né, for each w € Wh.

6.4.4 Simpler weight functions for Part

We now define the weight functions that will allow us to control the edges in E&P® with colour in Do
that we do no end up using in the matchings found in Part - For each i € [n], ¢ € F, v € V(G),
and ¢ € Dy, and each ¢’ € [n], u € S; \ R;, and (v, M,c’,w) € Ry, recalling the edge E(y/ a,c w) Of
Hs from , we define

Same(

E(z w,v’ ,M,c’ w)) - 1{v v’} wgiH(E(i’,u,v’,I\l,c’,w)) = 1{v€V(M)}

same

Wy, ¢ (E(i/,u,v/,M,c/,w)) = 1{v:v’,i’61¢}7 We d)(E(i’ u’ v, M,c’ w)) = 1{0’:0 7."6[¢}

bdme(

E(z w,v’,M,c’ w)) - 1{1 i} and wz (E(z u,v’ ]\/Icw)) - 1{2€Jbu}7
and, if v € Y; o, we define

WSS (B ot Moo ) =T Liimiry - Lpmory + lics; oy Lwev(any-
Let W5 = {wi*™ wd . i € [n]} U {wi™e, wd® : v € V(G)} U{weo : ¢ € D2, € F}, and let
WY = {w§S! 1 i € [n],v € Yio}
For each i € [n], we have, using Claim that

wi(B(H2)) = Y duy((i,u) = (1£6)[S; \ Ri|6: ™ (1 1+ 9¢) . ps_pn - 6. (50)
u€S;\R;
Furthermore,
W (B(Ha)) = [{(i 1) i € Jiru}|-dagy (¢, 0)) = (1£€)-7+]8i\ Ri|62 "2 (14£2¢) -1 ps_gn-82. (51)

For each v € V(G), using the proof of Claim and in particular counting part ii)a) over each
possible i € [n] and i € I, ¢ € F, respectively, we have

wy " (E(H2)) = (1+¢)-n-d2/121, (52)
and, for each ¢ € F,
wh g (B (Hg)) = (1%e¢) - pupaan - d2/121. (53)

Furthermore, using the proof of Claim [22] and in particular counting part ii)b) over each possible
1 € [n], we have ‘

wi™(BE(Ha)) = (1+¢) -n-d2 - 2r/121. (54)
Finally, for each ¢ € Dy and ¢ € F, from Claim and as each edge in E(H2) which uses ¢ contains
r + 1 different pairs (4, c) for some 4, we have

1 : !
weo B = s Y () (k) fopapupn b (55)
i€l4:c€Da\(C3UD3 5)

In particular, (50)—(55) imply that, for each w € W5, w(E(Hz)) > n'/?.8,. Furthermore, for each
i1 € [n] and v € Y; 0, we have, using Claim that

wff;d(E(HQ)) < Z Z e € E(H2) : (i,u), (j,v) € V(e)} = O(n-r-n"T%%) < dy-n"®. (56)

u€S\R; jE€Ji u
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6.4.5 Choice of M, and its properties

Recalling Wa, Wy, W4 from Sections m 6.4.3|and |6.4.4) we have shown that w(E(H2)) > n'/? - §; holds
for each w € W> U Wj. Therefore, by Claims . and Theorem 2.2} we can find a matching Mz in

Hs such that, for each w € Wy U WS,
w(Mz) = (14 200¢) - 85 'w(E(Hz)), (57)

and, for each w € WY, we hawﬂ (Mz) < 2n°5,

Let J = {(i,u) € V(Ma2):i € [n] u € S;\ Ri}. For each (i,u) € J, let (vs,u, Miu, Ciu, Wiu) € Riyu
be the such that Ei u,v; M, y.es 0wi,) 15 the edge in Ho containing (i,u). For each (i,u) € J and
J € Jiu, let ;4 5 be the vertex of wi w(j) with @i 4,5 ~a/p Vi and let y; .. ; be the vertex of w; . (j)
with % 4,5 ~a/B Vi,u-

For each i € [n], let

Fi = (UuES7‘,\R7‘,5(i7u)EJ UjeJi,u {(]7 Ui,u)v (.77 yi,u,j)}) u (U(j,u)eJ:z‘eJJ,“, (], xj,u,i)) ) (58)

which is a set of tuples which we will eventually add to J in a pair with (¢,v) for some v € V(G). For
each i € [n], let

Gi = (Uuesi\r:(iuyes Ujeds o {0 @iu.3)}) U (UG werics; {0 viu), (G, Yj,u,i)}) (59)

which is a set of pairs (j,v) for which we will add some pair {(i,v), (4,v")} to J for some v’. For each
v € V(G), let K, be the multi-set

(U(ivu)e‘kvi,u:v UJ'EJi,u (.77 Z)}) U (U(i,u)EJ UjGJi,ufﬂci,u,j:U (17])) U (U(i,u)EJ UjeJi,u:yi,u,j:'U (.77 Z)) .
(60)
Claim 24. The following hold.

O1 For each i € [n] and z € Z; o, there are (1= 2v)80 - Peol * Pedge - P - 1 choices for (j,u) € G; such
that = € Z;0, c(uz) € D3\ (C; UC; U D3 ;U D3 ;) and uzx € E§>.

02 For each i € [n] and z € Z; 0, there are (1 £ 27)50 - Pool * Pedge - D7 - 1 choices for (j,v) € F; for
which z € ijo, C(JZ’U) € D3 \ (CZ U Cj U D3,-; U Dgyj) and zv € Egbs.

03 For each i € [n] and ¢ € D3\ (C; U D3 ;), there are (1 £ 27v)pyx - BoDabs * Pedge - P7 + 1 choices for
(j,u) € G; for which ¢ € D3 \ (C; U D3 ;) and there is a colour-c edge from u to Z; 0 N Z;,0 in
Eabs.

04 For each i € [n] and ¢ € D3 \ (C; U D3 ;), there are (1 £ 279)pux - BoPabs * Pedge * P 1 choices for
(j,v) € F; for which ¢ € D3\ (C; U D3 ;) and there is a colour-c edge from v to Z; 0 N Zj,0 in
Edbs.

05 For each xy € E5™ with c(xy) € Ds, there are (14 2y)pyx - 82 - p2s - D7 - 1 choices of (i,5) € Ky
for which c(asy) € Ds \ (CZ U Cj U Dg’i U Dg,j) and y € Zz‘yo N ijo.

06 For each zy € E§™ with c(zy) € D3, there are (14 27)p2y - peol - BED2bs - Pedge - P7 - 1> choices for
u € V(G) and (4, j) € Ky for which c(uz), c(zy) € D3\ (C;UC; UD3;UDs ;), x,y € ZioNZjo
and ux € E3.

O7 For each v € V(G), there are (1 £ v)pgyn choices of (i,7) with (j,v) € G;.
O8 For each i € [n], there are at most yn vertices u € S; \ R; with (i,u) ¢ V(Ma).
09 For each u € V(G), there are at most yn values of ¢ € [n] for which u € S;\R; but (¢,u) ¢ V(Maz).

010 For each u € V(G) and ¢ € F, there are at most pi,prayn values of ¢ € I, for which u € Y; o but
(i,u) ¢ V(My).

011 For each i € [n], there are at most yn pairs (j,u) with u € S; \ Rj, i € J;,, with (j,u) ¢ V(Mo).

012 For each i € [n] and v € V(G), there are at most 2rn°-® choices for j with (4, v) e Fi.

4More formally, for each such w € WY we add an arbitrary function w’ with total Welght n01.8,, say, to ensure that
(w+ w')((E(Hz2))) > n%! before the apphcatlon of Theorem n 2.2 using the function w + w’, from which we only take the
upper bound for w.
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Proof of Claim[2]} For [01] note that, for each i € [n] and @ € Z; 0, we have
[{(G,u) € Gi @ € Zy0,¢(uz) € D3\ (C; U C; U Dys U Dy ), uzw € B} = W Mo)
G7) _
D 12955 SHEM)

(43)
! (1 + 2’}/) . ﬂ() * Pcol * Pedge " PT * N,

as claimed. Similarly, but using ujji-il, , and , we have that holds.
03][04} For [03] note that, for each i € [n] and ¢ € D3\ (Ci U Ds,;), we have
{(j,u) € Gi: ¢ € D3\ (C; U D3 ;),u has a colour-¢ neighbour in Zi o N Z; 0 in Eg>}|
= u’i,c (MQ)
-1 JE3
= (1£7)-0;" Wit (E(H))

(45)
! (1 + 2’7) * Pvx /Bopabs * Pedge " PT " M,

as claimed. Similarly, but using uji-f, , and , we have that holds.
Note that, for each zy € EZ™ with c(zy) € D3, we have

{(i,7) € Kz : c(zy) € D3\ (C; UC; UDs; UDs ;) and y € Z; 0N Zj0}

= @(Mz)
(1+7)-65" UJ?(E(HQ))
@

= (1i2’y) 'va’,Bg 'pgbs Py N,
as claimed.

For each zy € E§*® with c(xy) € Ds, there are (14 27)p2y - Peol - BEP s - Pedge - D7 - choices for
u € V(G) and (4,5) € Ky for which c(ux), c(xy) € D3\ (C; UC; U D3 ;U Ds ), x,y € Zio N Zjo and
ux € E3bs.

[O7F Let v € V(G). Then,
@, 5) : (G,v)} € Fi}l

r-{@G,u) € J:viw=vH+|{GEu) €J:veV (M)}
=7 wi™(Ms) +w2iH(M2)

0aee,. (1+75) ps—rn-d2+(1+7) v ps—rn-d2 = (1+7)pgn,

as required.
Let i € [n]. Then,
Hu € Si \ Ri : (i,u) ¢ V(M2)} = [Si \ Ri| — {u € Si \ Ri : (i,u) € V(Mz2)}|

M 36|
same

< (I4¢€)-ps—rn—w; " (Mz)

ED. GO

.S. 2yps—rn < N,
so that holds. Similarly, follows for each u € V(G) using w;*™, using [IM36| (57, and ,
Furthermore, follows for each u € V(G) and ¢ € F using wy'3°, (57), and (53).
Let ¢ € [n]. Then,

H{w) s u € Sj\ Rj,i € Jiu,(j,u) & V(M2)}]
=r-[Si\ Ril = {(j,u) :u € S; \ Rj,i € Ji, (j,u) € V(M2)}|

.
< re(14e) ps—rn—wi (M)
.60
< 7r-2vps—rn < yn,

as required.

For each i € [n] and v € V(G), we have,
{7 : (,v) € Fi}| = it (B(Ms)) < 2rn™°,

as required. B
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6.4.6 Missing matchings
Let J = {(i,u) : i € [n],u € Si \ Ri} \ J, where for each (i,u) € J we have (i,u) ¢ V(Maz). We will

now find, for each (i,u) € J, a tuple (v u, Mju, Ci,u,wi,) similar to the one found for each (i',u") € J
in Section [6.4.5] except using, for example, vertices in Y;,1 instead of Yjo. We start by choosing the
vertices v, and colours ¢;u, fgr each (i,u) € J. B
Take a maximal set J' C J for which there are v; . and c¢; ., (i,u) € J' such that the following
hold.
P1 For each (i,u) € J', viu € Nje; Ul Y515 G € Njeu; ,uiey Njed; wugiy (D2, \ Cj), and uv;,y is
a colour-c; ., edge which is in E% where X € {4, B} is such that u € X.
P2 For each i € [n], the vertices v;, (3,u) € J', and v; ., (j,u’') € J with i € J; . are all distinct.
P3 For each i € [n], the colours ¢; ., (i,u) € J', and ¢; ., (j,u') € J with i € J;, are all distinct.
P4 The edges uv; ., (i,u) € J', are all distinct.
P5 For each v € V(G), there are at most \/yn pairs (i,u) € J' for which v = v; ..
P6 For cach i € [n] and v € V(G), there are at most 7 -n%°/4 choices for (u, j) for which (i,u) € J',
1 € Jju and vj, = v.
P7 For each ¢ € C, there are at most \/An (i,u) € J' with ¢;.. =c.
We now infer that we can find a suitable v; ,, and ¢; ., for every (i,u) € J.
Claim 25. J' = J.

Proof of Claim[25 Suppose otherwise, so that, in particular, we can choose some (i,u) € J \ J'. Let
Vi and ciu, (4,u) € J’ be such that -—- 7| hold. Suppose u € A, where the case where u € B
follows similarly. Let Vforb = {viw @ (') € T}, VI = {v: {(i,u) € T : vipw = v}| > fn/2}7
Vforb—{UEV \{uy :(z u) €J, ZEJ],u,vJ,ufv}\>r n%°/8}, C'forb—{v“/ :(i,u') € '},

C’forb i = c}| > An/2}| and B = {u'vir u') e J'}

m and 01 we have that |V, |CT™| < 2yn. Then, as, by m |7| < yn?, we have
\ngorb| |C3r®| < 2 Furthermore the number of edges in Efor containing w is, by at most
vn. Therefore, by , there is some choice for v; ., € (OJEJWU{Z}Y'J) \ vierb guch that UV €
E% \ E*™ and c(zwi,u) € (Njes utiy)D3j) \ (C{j’“’ U C5™). Letting ¢in = c(uviy), the pair
Ci,u, Vi,u show that J' contradicts the maximality of J. O

Let, then, v;,,, and ¢;,u, (i,u) € J, be such that hold. For each (i,u) € J, we will now find
M; ., and w; . For this, let J” C J;. be a maximal set for which there are M, ,, and w; ., (i,u) € J"
such that the following hold.

Q1 For each (i,u) € J", M; ., is a colour-¢; ., matching in Eabs and w;,y : Ji,w — M; is a bijection.

Q2 For each (i,u) € J”, and each j € J; u, V(wi,u(4)) C Yi1 NYj1 and wiw(j) € Edbb

Q3 For each i € [n], the sets V(M; ), (i,u) € J”, and V(M;./), (j,u') € J” and i € J;, are all
disjoint from each other and from {vi : (3,u) € J} and {v;. : (j,u') € J,i € J;u }-

Q4 The matchings M; ., (i,u) € J”, are all edge-disjoint.

Q5 For each v € V(G), there are at most 4,/yn pairs (i,u) € J” for which v € V/(M;.) U {viu}.

Q6 For each i € [n] and v € V(G), there are at most - n”® choices for (u,j) for which (i,u) € J",
j € Jiw and v € V(M, ) or for which (j,u) € J”, i € J; ., and v, = v.

We now infer that we can find a suitable matching M; ., and function w; ., for each (i,u) € J.
Claim 26. J’' = J.

Proof of Claim[26] Suppose otherwise, so that, in particular, we can choose some (i, u) € J\J'. Let

M o and wyr s, (i',u') € J”, be such that -—- hold.
For each j € J; ., U {i}, let

forb . 7
‘/]- = {vj,u’ : (],ul) S J} @] (U(j,v)ej"V(Mj»’U))) U (U(j/,'u)ej”:jGJj/,vV(Mj',v)) s
so that, from . and , we have |V™| < (2r +2) - 2yn). Let VP = Uje,, Lutir Vi, so that
[VEre| < (21 + 2)2yn.

Let W™ = {v € V(G) : {(i",u) € J" : v € V(Mis) U{vsw}}| > 240} and W™ =
{v e V(G) : {(W,j) : (i,u") € J",j € Jiw,v € V(M) or (4,u') € J'i € Jju,vjuw = v} >
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r-n%%/2}. From and as |J| < yn? by we have that [W(°™"| < 4,/4n. From we have
|[WerP| .. 096 /8 >2n - 2r + 2r - n, so that |[Wio™| < /n.

Let E°™ = {e € Uy uyen (M U{wv;u},: cle) = ciwl}, so that, by we have |E™™| <
(r+1)/n. Now, using for each j € J;u, let w; . (j) be an edge of colour ¢ in E?}’AS/I \ B with
vertices in (Y;,1 NYj1) \ (VP U W™ U W™) so that w; . (§) are distinct. Let M., = {wi.(j) :
j € Jiu}. Noting that J” U {(i,u)} satisfies [Q6] with J” replaced by J” U {(i,u)} contradicts the
maximality of J". O

For each (i,u) € J and j € Jiu, let z;u,; be the vertex of wiy(j) with @;u,; ~a/5 vi,u and
let yi . ; be the vertex of wi.(j) with ®iwj ~a/p viw. Note that we now have for each i € [n],
Vi, M uy Civuy Wiyu, where My o = {4 u,jYiu,j 0§ € Jiu}

6.4.7 Choice of the matchings Mi’g, J, and their properties

For each i € [n], let

Miz2 = (Uuesi\r {wvi}) U (Ujepn)ues;\ry e, {wiu(D)}) -
Let
J = U{(i,u),(j,v)}ez{{(j, viy”)’ (27 ‘ri7u7j)}7 {(.77 yi,u,j), (Zv yjﬂhi)}v {(7‘7 ij”)a (.]7 xj,v,i)}}- (61)
We now record the properties of Mi,z and J that we need.
Claim 27. The following hold.

R1 For each i € [n] and © € Z; 0, there are (1£47)B0 - Peol - Pedge - Py - 1 choices for {(i,u), (j,v)} € T
for which z € Zj,(), C(UCIZ') € D3 \ (Cl U Cj U Dgyi U Dg,j) and ux € Egbs.

R2 For each i € [n] and = € Z; 0, there are (1+47)B0 - Peol - Pedge - 7 - 1 choices for {(i,u), (j,v)} € T
for which = € Zj,o, C(.’EU) € Ds \ (CZ U Cj U D3,i U D3,j) and zv € Egbs.

R3 For each i € [n] and ¢’ € D3\ (C; U Ds;), there are (1 £ 47)pvx * BoPabs * Pedge - P7 - 1 choices
for {(i,u), (j,v)} € J for which ¢’ € D3\ (C; U D3 ;) and there is a colour-¢’ edge from u to
ZioNZjo in E(}*bs.

R4 For each i € [n] and ¢’ € D3\ (C; U Ds;), there are (1 & 47)pyx - BoPabs * Pedge - .7 - 1 choices
for {(i,u), (j,v)} € J for which ¢’ € D3\ (C; U D3, ;) and there is a colour-c¢’ edge from v to

: abs

Zi,O n ijo in E§7°.

R5 For each zy € E§™ with c(zy) € D3, there are (1447)pyx-53 -p2ps -0 -1 choices of {(i,u), (j,v)} €
J with u = z for which ¢(zy) € D3\ (C; UC; UD3;UDs3 ;) and y € Z; 0N Zj 0.

R6 For each xy € E3®® with c¢(xy) € Ds, there are (1 & 47)p2y - peot - B5D21s * Pedge - D7 - N2 choices
for {(¢,u), (4,v)} € J for which c(uz), c(zy) € D3\ (C; UC; UDs;UDs ;), x,y € Zi 0N Zj0 and
ux € B,

R7 For each u € V(G), there are (1 £ B8)pgyn triples (i, j,v) with {(¢,u), (j,v)} € J.

R8 For each i € [n], there are (1 £+ 8)2psn triples (u, j,v) with {(i,u), (j,v)} € J.

R9 For each distinct ¢, j € [n] there are at most 3y/n pairs (u,v) with {(¢,u), (j,v)} € J.
R10 For each i € [n] and v € V(G), there are at most 3r - n%-® pairs (j,u) with {(,u), (j,v)} € J.
R11 For each i € [n] and u € V(G), there is at most 1 pair (j,v) with {(i,u), (j,v)} € J.
R12 For each v € V(G) and ¢ € F,

‘{Z €lp:veEYio\ (Uu,j,u/;{(i,u),(j,u')}eI{’Ui,mxi,u,ja Yiu,gyr Vjuls Tl i yj,u’,i})}‘ < YPtrPrat.
R13 For each ¢ € Dy and ¢ € F,
[{i € Iy : ¢ ¢ (C(Mi2) UCs UDsy)}| < ypuptan.
R14 For each i € [n],
|Y;J,0 \ (Uu,j,u’:{(i,u),(j,u’)}EI{Ui,u7 LTiu,jy Yi,u,js Uj,u/y xj,u’,i: yj,u’,i})}‘ S yn.

R15 For each i € [n], M; 2 is a rainbow matching with colours in D5 \ C;.
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Proof of Claim[27 Let i € [n] and z € Z; 0. Note that if {(i,u'), (4,v")} € J, then, from
there is some {(¢,u), (j,v)} € T with («',v") € {(Zs,u,5, Viu)s (Y0, Yiru,j)> (Vjos Tjw,i) b I (3, u)
and (j,v) are both in J, then (J,vi.v), (4, Yi,u.j), (4 Tjw,i) € Gi, and thus (j,v') € G;, while there are
at most yn vertices u € S; \ R; for which (i,u) € J by Therefore, by

{{(,w), (j,v)} €T : @ € Zj 0, ¢(uw) € D3\ (C; UC; U D33 U D), uzx € B}
= (1 + 4'7)/80 * Peol * Pedge * PT N+ 27” = (1 + 47)50 * Pcol * Pedge " PT " M,
so that holds, while, by

{{(i,u), (j,v)} €T : ¢ € D3\ (C; UDs;),3 a colour-¢’ edge from u to Zio N Z;o in E§™}|
=(1+ 4’y)pvx - BoPabs - Pedge - PT - N,

so that [R3] holds.

Similarly, it follows that if {(i,u’), (j,v")} € J, then, if this is J due to {(3,u), (j,v)} € Z,
we have that if (i,u) and (j,v) are both in J, then (j,u') € F;. Thus, by and, respectively,
and we can conclude that and [R4] hold.

Let zy € FE3™ with c(xy) € Ds. If (i,5) € Ku, then for some v we have {(i,z), (j,v')} € J from
(60). Thus, from 7 and we have that holds.

Let zy € E5P® with c(zy) € Ds. Similarly to but using , and (summed over all
v € V(G)), we have that [R6] holds.

@ This follows from , @ and

Let i € [n]. For each (u,j,v) with {(i,u), (j,v)} € Z, by (6, there are 3 triples (u’,j’,v’) with
{(,v),(5',v")} € J. Therefore, by and we have that the number of triple (u,j,v) with
{(i,u), (j,v)} € T is 3r-|Si \ Ri| =3r- (1 +£¢) - 2ps_pn = (1 £ &) - 2pyn, and thus [R8|holds.

Let 4, j € [n] be distinct. Then, as for each (u, v) with {(i,u), (j,v)} € Z there are 2 triples (u’,v’)
with {(i,u'), (j,v')} € J, we have that [R9] follows from [A4]

Let i € [n] and v € V(G). Then, by [012] and [Q6] we have that holds.

Let ¢ € [n] and u € V(G), and note that if there is some (j,v) with {(i,u), (j,v)} € J, then
u €Y;. If u € Y; o, then there is a unique such (j,v), coming from the unique edge of M2, while if
u € Y; 1, then there is a unique such (j,v) by

For each u € V(G) and ¢ € F,

Hi € Iy v € Yio\(Uu,ju{(,0),(u/) } €T WVirus Tiurgs Yirunds Vgyul > Tioul o> Ygoul i }) 3
=Hi€ls:veYiot—[{i €ls:v€VYip,(i,v) § V(M2)}

< 2pupran,

and therefore [R12] holds.

Let ¢ € Dy and ¢ € F. For each i € [n], if (i,¢) € V(M2z), then M; > has an edge of colour ¢,
and when this occurs there are r + 1 pairs (j,c) € V(M2) with different values of j. Thus,

Hi€n]:c¢ (C(Mi2)UC;UD2 ) =|{i €[n]:c€ D2\ (C; UD2;)}H — (r+1) - we(Maz)

2y,

(1£&)fopavsn — (1 +7) - 83 ' - we(E(Hz))

as required.

For each i € [n],

|Y;,',O\(Uu,j,u/:{(i,u),(j,u’)}EI{Ui,u7xi,u,jyyi,u,j7vj,u’7xj,u’,i7yj,u’,i})H
= [Yiol = {u: 30, ') st. {(i,w), (j,u)} € T}H = 5|{(w, 5, ) : {4, ), (j, ')} € T}

1Si\ Ri| <

= |Y;',0| — (57“ + 1) (1 + E)ﬂopy’n — (1 — 8)121])5,}371 < 2f8n,

as required.

Finally, note that follows from [P2] and and the construction of Hs and choices of
M. a
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6.5 Part Switching paths with Z;

Recalling the set J from Part for each f = {(3,u), (j,v)} € J, let Rs be the set of (u,v, L)-links
with internal vertices in Z; 0 N Zj,0, colours in D3 \ (C; UC; U D; o U Dj ) and edges in Eabb.
Define an auxiliary hypergraph H3 with 4 vertex classes

1) J 11) Vg = Uze[n]({i} X Z; 0)
111) C3 = Uie[n]({i} X (D3 \ (Cz U D3,i))) IV) E3 = E(G|D3) N Eab5

where, for each f = {(i,u), (j,v)} € J and S € Ry, we add the edge

(UG} < (V(S) \H{u, v}) UC(S)) U E(S).

As for each f = {(i,u),(j,v)} € J and S € Ry, S is a path with 31 colours, 62 edges and 61 internal
vertices, each edge of Hs has 1 + 2(61 + 31) + 62 = 247 vertices, and thus Hsz is a 247-uniform
hypergraph. We will now show that H3 is almost regular (in Section [6.5.1) with low codegrees (in

Section [6.5.2]).

6.5.1 Vertex degrees in H3

Recalling ¢ from , let 63 = ® = pSL - p3Y - pedge -n%°. We now show that 3 is almost d3-regular.
Claim 28. For each v € V(H3), we have dy, (v) = (1 £ 107)d3.

Proof of Claim[28 We check this for vertices in each of the 4 classes in the order at .
i) Let f ={(i,u), (j,v)} € J. Then, using [M46] we have d, (f) = (1 +&)® = (1 + 107)ds.

ii) Let (¢,2) € Vz so that ¢ € [n] and z € Z; 9. We count the number of f = {(i,u), (j,v)} € J and
S € Ry for which z is an internal vertex of V(S) in cases depending on the position of z in S.

e z is the 2nd vertex of S: From [R1] - we can bound the number of choices for { j
for which = € Zi 0N Z;0, c(uz) € D3\ (C;UC; U D3 ;UDs ;) and uz € E3™, and thus by
the number of choices for S in this case is

(1+57) - Bo Peol * Pedge * P71+ (1E€) - - pil P} * Padge 1 - = (1£107) - Bo - p7 - @ - pos.

e z is the 62nd vertex of S: By[R2| we can bound the number of choices for f = {(i,u), (j,v)} € T
for which © € Z; 0N Zj,0, c(zv) € D3\ (C; UC; U D3 ;U D3 ;) and zv € FE3™, and thus, by [M47]
the number of choices for S in this case is

(L+57) - Bo - Peol * Pedge * P71+ (LEE) - @ Pl oy * Pedge 1~ = (LE£107) - Bo - pg7 - @ - pox-

e 7 is the kth vertex of S, with 3 < k < 62: By [M4T]or we can bound the number of choices
for f ={(i,u), (j,v)} € J for which x € Z; 0N Z;0 and © ~4/p u if k is odd and = # 4,5 u if k
is even, and thus, by the number of choices for S in this case is

(1+457)-3-Bo-pr-n-(1xe) ®-pyl-n ' =(1£10y) Bo-ps- P pu.

Thus, as 6180ps = B3Pz = Pvx, in total we have dy, ((3,v)) = (1£107)-61-Bo-ps-®-prd = (1£107)d5.

iii) Let (4,¢) € Cs, so that i € [n] and ¢ € D3\ (C;UDs;). We count the number of f = {(¢,u), (j,v)} €
J and S € Ry for which c is used as a colour by considering the following cases:

e c is the colour of the first edge of S: By we can bound the number of choices for f =
{(%,u), (j,v)} € J for which ¢ € D3\ (C; UC; U D3 ; U Ds ;) and there is a colour-c edge from u
h

to ZioN Zj,0 in Eobs, and thus, by [M. the number of choices for S in this case is

(1+5’Y) -2 *Pvx '50pabs ‘Pedge"Pg 1" (1:|:5) - P p;xl pc_oll 'pe_dlge 'n_l = (11107) -2 'Bopabs ‘PT - P p;)ll
e c is the colour of the last edge of S: By we can bound the number of choices for f =

{(#,u), (j,v)} € J for which ¢ € D3\ (C; UC; U D3 ; U Ds ;) and there is a colour-c edge from v

to Zio N Zjo in E§™, and thus, by [M49] the number of choices for S in this case is

(1457) 2 Pux - BoPabs ‘Pedge P 1 (1£) - ol Doot *Pedge = (1107) 2+ Bopabs D7 - PPy
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e ¢ is not the colour of the first or last edge of S: By we can bound the number of choices
for f = {(¢,u), (j,v)} € J for which ¢ € D3\ (C; UC; U D3; U D3 ;), and thus, by [M50] the
number of choices for S in this case is

(1+57) 32 Bopavs - pr- (1+e) - ®-poy-n~ " =(1£107) -2 Bopabs - p7 - P poor-

Thus, as peol = B3p2psPs = 62p7 in total, we have da,((i,¢)) = (1 £ 107) - 62 - Bopabs - p7 - - py =
(14 107)s.
iv) Let zy € &, so that zy € E(G|p,) N E3P. We count the number of f = {(¢,u), (j,v)} € J and
S € Ry for which zy is an edge of f by considering the following cases:
e xy is the first or last edge of S: By we can bound the number of choices for f = {(¢,u), (j,v)} €
J with v = z for which ¢(zy) € D3 \ (C; UC; U D3 ; UDs ;) and y € Zs 0 N Zj,0, and thus, by
the number of choices for S where xy is the first edge and u = z is

(14 57)  pox - B3Pabs P71+ (1£€) B Pl Pogl * Poage * 1+ = (1£107) - pg - © - poie - P5 -
As a similar bound holds with x and y switched, there are (1£10v)-2-pys - ® -pe_dlge ~p3_1 choices

for S in total in this case.

e zy is the 2nd or 61st edge of S: By [R6] we can bound the number of choices for f =
{(%,u), (j,v)} € J for which c(ux),c(zy) € D3\ (C; UC; U Ds; UDsj), z,y € Zio N Zjo,

and uz € E5%%, and thus, by [M51] the total number of choices for S in which zy is the second
vertex and xy is the second edge is at most

(14 57) - Pox-Peol * BoPabs * Pedge " D7 -1’ (L) - - pi2 pot poine 1>

= (1£107) - p7 - @ pogge P35 -
As a similar bound holds with z and y switched, in total there are (1£10v)-2-ps - ® ~p;d1ge ~p§1

choices for S in this case (as when zy is the 2nd edge of a (u,v, L)-link, it is the 61st edge of
that subgraph considered as a (v, u, L)-link).

e zy is the kth edge of S, for 3 < k < 60: By we can bound the number of choices
f=A{(,u),(j,v)} € J for which c(uv) € D3\ (C; UC; U D3;UDs3 ;) and u,v € Z; 0N Zj0, and
thus, by the number of choices for S in which zy is the kth edge is

(1457) -3 2p%peot - pr -1 - (L) B Pyl oot Dadge " 1

= (1£107) - 2p7 - @ poiye 13 '
choices for S.

As when zy is the kth edge of a (u,v, L)-link, it is the (62 — k)th edge of that subgraph considered
as a (v, u, L)-link, we have, in total, that dy,(zy) = (1 £ 10v)-62-ps - O - p;dlge -p3t = (1 +£107)63,
where we have used that pspedge = p3Bopabs = 62p7. Gl

6.5.2 Codegrees in H;

We will now show that the codegrees of Hs are all O(n*?%). As the vertex degrees of Hsz are (by

Claim all around d3, where 65 = ® = pSL - p39 - p&3,. - n°, and 1/n < Puxs Dool, Pedge, these
codegrees are all much smaller than the vertex degrees in Hs.

Claim 29. A°(H3) = O(n29'5),
Proof of Claim[29 Let f = {(i,u), (j,v)} € J and S € Ry, and consider the edge

e={fFU{ij} x (V(S)\ {u,v}) UC(S)) U E(S).

Let v1 and v2 be two vertices in e.
If one of v1 or vs is f, then note that from the other vertex we will know an internal vertex of S

(possibly by knowing an edge) or a colour of S, so therefore, by (in particular or 7 we
have that ds, (vi,ve) = O(n*®) = O(n?>?). Assume, then, that neither v1 or vs is f.
Note that we have one of the following cases (up to relabelling i and j).

a) We know ¢ and either

i) two internal vertices of S, or
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ii) two colours of S, or
iii) an internal vertex and a colour of S.
b) We know ¢ and j and either
i) an internal vertex of S, or
ii) a colour of S.

c) We know two edges of S.

EII Knowmg i, we have at most 3pyn < n choices for ,u) (j, v)} € J by - R8| after which there

are O(n®) choices for a (u,v, L)-link in G i and (1n particular H or -7 and

thus dy, ( 1)1, Vo 29 in these cases. In 1f colour c and mternal vertex = are known, then,
similarly by and H (in partlcular there are at most O(n??) choices for {(i,u), (4, )} eJ
and a (u, v, L)-link S in G using ¢ and z so that neither uz or vz is a colour-c edge in S. To count the
remaining ch01ces uz or vx is a colour-c edge in S, note that we have 2 choices for whether u or v is
the colour-c neighbour of x, after Wthh by [R10| R10 orm there are O(1) choices for {(i,u), (j,v)} € J

and then, by - (in particular [K2]), O ) choices of a (u,v, L)-link S in G using x as an interior
vertex. Thus, we also have dy, (v1,v2) = 29 in

@Knowing i and j, we have at most 3n1/2 choices for {(i,u), (4,v)} € J by|R9} after which there
are O(n*) choices for a (u, v, L)-link in G in [b)i)| and @ by (in particular or . Thus,
dus (v1,v2) = O(n?*®) in this case.

Suppose the known edges are zy and x’y’. We count separately the possibilities for the link where
i) there are at least three internal vertices of S among these edges, or ii) where the edges lie at each
end of the link. For i), after choosing ¢ € [n] (with n choices), there are at most 3pyn < n choices
for {(¢,u),(4,v)} € J by for which u ¢ {x,y,2’,y’}, after which there are O(n?®") possibilities
for a link containing zy and z'y’ by m (in particular , for O(n?°) choices in total, so that
dus(v1,v2) = O(n?®). For ii), we have at most 2 choices to pick u € {z,y} and v € {2/,y'} with
u ~a,p v. After choosing i € [n] (with at most n choices), we have at most O(1) choices for

{(i, ), (j,v)} € J by [R10} and then at most O(n>®) choices for a link with zy as the first edge and
z'y’ as the last edge by Therefore, dy, (v1,v2) = O(n??) in this case as well. O

6.5.3 Weight functions for Part and the choice of M;j

We now define the weight functions we use with our application of Theorem to Hs. For each
i €[n],veV(Q), c € D3, ¢ € F, and each

e={{(",u), (7", U {i", 5"} x (V(S)\ {/,'}) UC(S)) UE(S) € E(HMs), (63)

set wi(e) = Liie(ir j13}s

link:mid link:mid

link:end
w," N (e) = Lpvequ oy Wo () = Lwevis)\(ww'}}, Wop  (€) = Livev(S)\{w v/} i€y}

We,p(€) = Licec(s),ier,} and we(e) = Licec(s)}-

Let Ws = {w; : i € [n]} U {wy™ e wi™™i4 :y € V(G)} U {we : ¢ € Ds} U {wi ™ 10 € V(G), ¢ €
FrU{wep:c€ D3, ¢ € F}.
For each i € [n], we have, using Claim that

wi(E(Ms3)) = > das ({ (i u), (5, 0)}) = H(w, 4, v) : {(G ), (G, v)} € TH - (1 £107) - 5.
(w,3,0):{(4,u),(Gv) }eT
(64)
For each v € V(G), using Claim we have

wy ™ (B(Hs)) = [{(0,5,u) : {(i,u), (,0)} € TH - (1 £107) - 6. (65)

Furthermore, for each v € V(G), as each e € E(H3) corresponding to a link containing a vertex v
contains two vertices containing v (i.e., (i’,v) and (j/,v) in the notation at (63)), we have by Claim 2]
that

ink:mi 1 .
wy ™ (B(H)) = 5 Hi€ln]:ve Zio}l- (1£107)- 8, (66)
while, for each ¢ € F,

Wl (B(Ha)) = 2|0 € Totv € Zio}|- (1% 107) - 6 (67)
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Finally, for each ¢ € D3, as each e € E(H3) corresponding to a link using the colour ¢ contains two
vertices containing ¢ (i.e., (¢, c) and (j/,c) in the notation at (63)) we have by from Claim [28] that
we(B(H3)) = 3 -1{i €[] ¢ € Ds \ (Cs U Ds,0)}| - (14 109) - b, (68)
while, for each ¢ € F,
Weo (B(H3)) = - |{i € Iy s ¢ € D3\ (C: U Ds,)} - (14 10) -ds. (69)

In particular, (64)-(68) along with [R8] [R7] [M54] and imply that, for each w € Wi,
w(E(Hs)) > y/n - d3. Therefore, by Claims [28 and [29] and Theorem we can find a matching M3

in Hs3 such that, for each w € W,
w(Msz) = (1£207) 65" - w(E(Hs)). (70)

Now, for each f = {(i,u), (j,v)} € J NV (Ms3), let Sy be the (u, v, L)-link corresponding to the
edge containing f in Mas, let My ; be the path of the odd edges of this link and let M ; be the path of
the even edges of the link, noting that these are both rainbow matchings and that C(Mjy;) = C(My ;).
For each i € [n], let

Miso= U My,
f={G,u),(G,v)}€TNV(M3z)
Let 7~ = J\V(M3), the set of instrl}ctions we have not found a link for. We now show the following
properties of J~ and the matchings M; 3,0, i € [n].
Claim 30. a) The matchings M; 30, i € [n], are edge-disjoint.

b) For each i € [n], M; 3,0 is a rainbow matching with colours in D3 \ (C; U D3;) and vertices in

S; U Zi,o-
c) Setting G3™ to be the graph with vertex set V(G) and edge set E3b, we have that G§>*|p, —
M1’3,0 — M2,370 — .. — n,3,0 is (37n)—bounded.

d) For each i € [n], [{(u,7,v) : {(i,u), (j,v)} € T }<yn.
e) For each u € V(QG), [{(i,7,v) : {(i,u), (j,v)} € T~ }<yn.

f) Foreachv e V(G)and p € F, [{i € Iy : v € Zs 0\ V(Mi3,0)} < 2VDerpran.

g) Foreachce Dz and ¢p € F, |[{i € Iy : c ¢ (C(M;,3,0) UC; UDs;)}H < ypirpran.
h) For each i € [n], [Zio \ V(Mi,a,o)\ < n.
Proof of Claim[30 Eﬂ This follows as each edge in €3 appears in at most one of the edges of Ms.

[b)} For each i € [n], as each pair {(i,x)} or {(i,c)}, with € V(G) and ¢ € C, appears at most
once in the edges of M3, we have that the rainbow matchings My ; corresponding to the edges of
M3 involving i are vertex- and colour-disjoint. That their vertices are in S; U Z; o and colours are in
D3\ (C; U D3 ;) follows directly from the definition of the edges of M.

For each c € Ds,
l{e € E(ngs)\(uie[n]Mi,S,O) sc(e) =)}
= [{e € B(G5™) i c(e) =c}| — {i €[] : (i,¢) € V(M3)}]

u@(l + 5) . Bopabsn -2 wC(E(H3))

é (1+¢): Bopabsn — (1 —207) - (1 —10y) - [{i € [n] : c € D3\ (C; U D3 )}

2 3
< (14¢) - Bopabsn — (1 —2007) - (1 — &) - Bopabsn < 3yBopabsn < 10°yn.  (71)

Furthermore, for each v € V(G),
{e € B(GE™|pa) \ (Viemn Mizo0) : v € V(e)}|
= |{e € B(G5™|ps) v e V(e)} = l{i € [n] : (i,v) € V(Ma)}|

ink:en ink:mi
< (L+e) - Bopavspsn — w,™ (B (Hz)) — 2w, "™

77 (1+e

(E(Hs))

) Bopabspsn — (1 —207) - (1 =107) - ({(é,4,u) : {(i,u), (,v)} € T}
+Hicnl:veZio})

E:@ (14+¢€) - Bopabspsn — (1 —2007) - (1 —¢) - ((1 = B)pgn + (1 — &)pzBon)
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=(14¢)- Bopabspsn — (1 —27)- (1 —¢)- (1 = B)-62pgn
< 2B Bopabspsn < 2fn. (72)

In combination, and show that |c)| holds.
[d)} For each i € [n],

H(u,j,v) : {(4,w), (J,v)} € T H < H(w, 4, v) : {(4,w), (J,v)} € T}H — wi(E(Ms))
B 1y 1w d0) (G, G} € 7).
[e)} For each u € V(G),

(G d0) = (), Go0)} € T3 = {(Ed,0) : (G, Go)} € T = wl™ (B (M)
R T G d0) = (G ), (G0} € TH D . =

For each v € V(G) and ¢ € F,

{i€nl:ve Zio\V(Miso)} = {i € Is 1 v € Zio, (i,v) & V(M3)}]
. ink:mi "
=ic€ls:ve Zipl -2 wiy ™ EWM;)) < 29pupran.

Foreachc€ Dsand o € F, |{i €I :c ¢ (C(Mz‘ygyo) UC; UDs )} < ypupran.

Hi€ls:cd (C(M;z0)UC;,UD3 )} ={i€lp:ceDs\(CiUD3)} —{i€ly: (i,c) € V(Ms)}
= ‘{7, c I¢ :c€ D3 \ (Cl U D37¢')}‘ -2 ’LUCV(p(E(Ms))

@6
< 29n.

For each i € [n],
1 Zio \ V(M;z0)| = {v € Zio: (i,v) ¢ V(Ma)} = |Zio| — 2 wi(E(M3))

é [Ziol — (1 —27) - [{(w, 5,v) : {(i,u), (4,v)} € T}
=|Ziol = (1 =27) - (1 +5r) - [Si \ Ry

< (1+¢)2B80pzn — (1 —2v)-121 - 2ps_grn < 47n,

as required.

6.5.4 Missing links and the choice of Mi73

For each f = {(i,u), (j,v)} € T, let "R;{ be the set of (u, v, L)-links with colours in (D3;UDs ;)\ (C;U
C;), edges in EP* and internal vertices in Z; 1 N Z;1, so that |R;X| =(1xe)®1 = g0 - 20 - qS3ge - 1
by

For each f € J7, form R(} by selecting elements of R} independently at random with probability
go = 201log® n/®;. By a simple application of Lemma and a union bound, then, we get that with
high probability, for each f € J~, |R(}| > 10log® n. We now show the following claim.

Claim 31. With high probability, for each f = {(i,u), (j,v)} € J~ and S € Rj{, the following hold.
1) There are at most log®n links f' € 7~ \ {f} and S’ € ’R(}/ with E(S) N E(S") # 0.

2) There are at most log? n tuples (v, 5,v, f/,8") with ' = {(i,u'), (/,v")} € T\ {f}, ' € R%
and either (V(S)NV(S)\ ({u,v}n{v/,v'}) # 0 or C(S)NC(S") £ 0.

Proof of Claim[31} Let f = {(i,u), (j,v)} € I~ and S € "R?. By Claim and there are at
most yn? choices for {(i',u'), (/,v")} € J~ \ {f} and at most 100yn choices for {(i',u’), (5',v")} €
T\ {f} such that {u',v'} N V(S) # 0, after which there are at most 100n>® and 100n>° choices
respectively for S’ € Rj[/ with E(S)NE(S") # 0 by (and in particularand respectively).

Thus, there are at most 10°yn>? different (f', ") with f* € J~\{f}, 8" € R},, and E(S)NE(S") #

0. As 10°yn®° < ®1/(201og®n) = 1/qo (using that ~ L G, Gool, Gedge, log ™! n), the expected number
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of such (f',S’) with S’ € R(}/ is less than 1. Thus, by a simple application of Lemma , we have
that holds with probability 1 — n—w®, Taking a union bound shows that, with high probability,
holds for all f ={(i,u),(j,v)} € I~ and S € R}.

Now, let f = {(4,u),(j,v)} € J~ and S € R}L again. By Claim there are at most yn
choices for a tuple (u',j’,v") such that, setting f' = {(i,u'), (5',v")}, f/ € T~ \ {f}. After this, if
{u',v"} N {u,v} =0, then, by (and in particular and there are at most 200n>° choices
for ' € R}L, with V(S)NV(S") # 0 or C(S)NC(S") # 0, for at most 2009n3® choices in total. On the
other hand, by and there are at most 107 triples (v, j’,v’) with {u,v} N {u’,v'} # 0 and,
setting f' = {(4,u"), (j',v)}, f € T~ \{f}. Then, as u,v, v ,v" & Z;, by(and in particular
and there are at most 200n2° choices for S’ € R}', with (V(S)NV(S)\ ({u,v} n{u,0'}) #0
or C(S)NC(S") # 0.

Thus, there are at most 200yn®® different (f/,5") with f' € J~\ {f}, S’ € R]f,, and (V(S)nN
V(SN {u, v}y n{u/,v'}) # 0 or C(S)NC(S") # 0. As 10°yn3® < ®; the expected number of such
(f',S") with S’ € R(}, is less than 1. Therefore, similarly to as we did for , we can show that, with

high probability, [2)| holds for all f = {(i,u), (j,v)} € J~ and S € R;{ O

Therefore, as they hold together with high probability, we can take a choice of R%, f € J' for
which [R}| > 10log® n for each f € J~ and, for each f € J" and S € RY, [1)[and |2)| holds. Then,
for each f € J’, form R; by selecting elements of R(} independently at random with probability
q1 = 1/log?n, and let R; be the set of S € ’R(} such that the following both hold.

i) Thereisno f' € 7~ \ {f} and &’ € R}, with E(S) N E(S") # 0.
ii) There is no (v, ', v, f/) with f' = {(i,u'), (',v')} € I~ \ {f} for which there is an S’ € R},
with (V(S)NV(S)\ ({u,v} n{u',v'}) #0 or C(S)NC(S") #0.
Claim 32. With high probability, for each f € 7, R # 0.

Proof of Claim[33 Let f € J~ and X; = |R;|. For each S € RY, by the properties and [2)| from
Claim we have P(S € R™) > ql(l—ql)mog2 ™ >1/(10log” n), and, hence, E|Xf| > |R%|/(101og” n).

Now, for each f' = {(i',u'),(j',v")} € J~ and S’ € ’R?,, there are at most 2log®n choices for
S € R$ which E(S) N E(S") # 0, (V(S)NV(S)\ ({u,v} n{u',v'}) # 0 or C(S)NC(S") # 0. Thus,
there are at most 2log®n - [R}| tuples (f’,S") € R}, for which the event {S’ € R}, } influences Xy,

and each such event on its own can change X; by at most 2log>n. Therefore, by Lemma with
t =E|Xy| > [R}|/(10log® n), we have, as |R}| > 101log® n,

P(X; = 0) < 2exp < 2(IR%|/(101og® n))? )2> _ gexp ( |7251|> — e

_2~210g2n-|72(}\~(2logn ~ 8001og® n

and thus, by a union bound, with high probability we have R} # 0 for each f € J'. B

For each f = {(4,u), (j,v)} € J~, using Claim , arbitrarily pick Sy € R}, and, considering Sy as
a (u, v, L)-link, let My ; be the matching of the odd edges of this link and let My ; be the matching of
the even edges of the link, noting that these are both rainbow matchings and that C(Mjy,;) = C'(My, ;).
For each i € [n], let
Misq1 = U My,;.
F={Gw),[Gv)}eT—

and let Mi,g = Mi,g,o U Mi,g,l, noting that this is a rainbow matching with colours in D3 \ C;.

For each f = {(i,u), (j,v)} € J, then, we have found a (u, v, L)-link Sy, which has edges in E*"*,
colours in D3 \ (C; U Cj) and interior vertices in Z; N Z;, and matchings My ; and My ; such that
Sy =My UMy ;.

6.6 Proof of Lemma [3.4; properties of the absorption structure

For each i € [n], let M; = Mm U Mi,z U ]\7[13 As, for each j € [3], the matchings ]\Zl'l,j7 covy My j

use colours in D; and edges in E}*bs, and are edge-disjoint, we have that M, ..., M,, are edge-disjoint
subgraphs of G[E*™]. We now confirm that B4 hold, completing the proof of Lemma
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@ Let v € V(G) and ¢ € F. As M, is a matching from S; \ R; into X; covering S; \ R;, we
have

‘{7, €ly:v §é V(MZ) @] Rz}| < |{’L cly:veX;1UY;1 U Zi,1}| + |{’L S [TL} cv € Xio\ V(Mi,l,o}‘
+{i €Iy v €Yio\ (Uuyju (i), Gy eT{Vius Tisu,g Yiyu,js Vgl s Tj ol is Yjoul i ) )}

+H{i€ly:veE Zio\V(Mis0)}
S 46ptrpfan7

where we have used [M56} Claim [20][e)] [R12]and Claim Thus, Eﬂ holds.
BI|b)} Let c € C(G), and let k € [3] be such that ¢ € Dg. Then, by [M57] Claim 20][F)] (if & = 1),
(if k = 2) and Claim (if k = 3),

Hi€ly:cg C(M;)UCH <|{i€lsg:c€ Dy} +{i€ls:cé¢ (C(M;0)UC;UDr;)} < 28pupan,

and thus EI' holds.
Bic)} Let v € V(G). Then, using Claim 20][d)] and [e)] and Claim

‘{u tuv €( U Ml)}‘ >|ien]:ve M} +|{icn]:ve My} +|{icn]:ve Ms}

i€[n]
>Hienl:veTiUX; o} —4yn+|{i € [n]:v € S; \ Ri}

(i €[] v € Yol — v+ [{i € [n] - v € Zuo}| — m
=n—{i€n:veXi1UYi1UZia} —{i€[n]:veR}+I|{i €[n]:veT} —10°yn
>n—(1+e)(1—o)px +py +py)n — (1 +2e)aprn — 10°yn

L — (14 2)(1 = Bo)(px +py +py)n — (14 2¢) (o — B(pr + ps — pr))aprn — 10°yn

>n—(14¢)B(px +py +pv)n — (14 22)(ppt — B(pr + ps — pr))aprn — 10°yn
>n—(1+2¢)B(ps + px +pv +py)n — (14 2¢)(ppe — Blpr — pr))aprn — 10°yn
>n —1.58n — (14 2¢)ppe — 10°n.

Thus, by , the degree of v in G[E*™]\ (Uiepn M:) is at most 26n.

@ Let i € [n]. Every vertex in S; \ R; is in an edge in M; ; C M;, so that

[V(G)\ (R UV (M;)| < |Xi0\ V(M)
+1Yi0 \ (Uu,ju 16,00, G0 eZ{Visus Tivug, Yioungs Vgl s Tjoul o> Yioul i ) 3

+1Zio\ V(Miz0)| < 4Bn,
where we have used Claim A and Claim Thus, there are at most 48n vertices in
V(G) \ R; that have degree 0 in M;, so that holds.
Let i € [n]. We have T; C V(Min), T; C Si\ R; C V(M) and, as V(M;2) and V (M, 1) can
be seen to be disjoint, we have that holds.

Let i € [n]. As MM is a rainbow matching with colours in D1 \ C; by Mi,g is a rainbow
matching with colours in Dy \ C; by , and M, 3 is a rainbow matching with colours in D3 \ Cj,
we have that [B3] holds.

Suppose there are edge-disjoint matchings Ml, .., M, in G- My — ... — M, such that
i) iii)| all hold. For each i € [n], let R, = R; \ V(M;) = V(G) \ (V(M;) UV (M;)). Then, for each
i € [n], by and as Ml U ]\;[Z has n edges, and every vertex outside of T; has degree 0 or 1
in M; UM, and every vertex in T; has degree 2 in M; U ]\;Ii, we have that |R;| = |T;|, while, for each

T7€T and ¢ € F, by we have Uiel¢ R, =mun UieI¢ T;.
Then, by the property ot Z = U,e7Z; from E in Lemma we have that there exists C C 7
satisfying the following.

a) For every i € [n] and u € T;, there is exactly one (j,v) such that {(i,u), (j,v)} € C.
b) For every i € [n] and u € R} there is exactly one (v, j) such that {(i,v), (j,u)} € C.
c) For every i € [n] and u € R; \ Rj there is no (v, j) such that {(,v), (j,u)} € C.

d) For every i € [n] and u € S; \ (R; UT;), (¢,u) is (< 1)-balanced in C.
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Now, for each i € [n], take M; and, for each Uy u),(j,0)}ec, remove the edges in

{wviu, @050, U MG 050,600 b Y M{Gyge0,G00i00 i Y M{G050),G0w5,0,0 i
and add the edges

{0v)0, Tisw, i Yisus } YU M{G,zi 0 ),Grosn) 1 O MiGys.0.0,G0i0.00 13 Y MEG050),00w5,0,0) 0

calhng the final result M' Note that, for each U{(Z u),(j,v)}ec, this operation decreases the degree of
win M; by 1 and increases the degree of u by M by 1, while increasing the degree of u in M; by 1
and decreasing the degree of u by M by 1, while making no other changes in the colours or vertex
degrees of M; or Mj, and only moving edges between M; and Mj. By careful construction, we have
that these alterations do not interfere with each other, and, therefore, it can be seen that M; U M{ ,
i € [n], is a decomposition of G into perfect rainbow matchings. This completes the proof of and

hence 3.4

7 Part [C: Covering, balancing, and the partition of the
final edges

Throughout this section, and as our last task in this paper, we will prove Lemma We start by
giving an overview of its proof in Section which, after recalling the key parts of the set-up, divides
the proof into 4 subparts, Parts [C-4] which are then carried out in Sections [T.3H7.6] respectively
after some additional set-up in Section

7.1 Overview of Part

Take the set-up detailed in Sections and where, in particular, we have G ~ G[Cfl’]l and that
the edges of G appear in EP* C E(G) independently at random with probability ppt, while, for each
i € [n], C; C C is a random set of colours where each colour is included independently at random
with probability ppt and R; is a random subset of V(@) such that, for each v € R;, P(v € R;) = prg.
We wish to show that, with high probability, we can do the following. Suppose we have any edge set
E C E(G), and any sets V; C V(G) and C; C C(G), i € [n], which satisfy Then, E can be
partitioned into matchings Mi, ..., M, such that _ hold, where in particular these properties
require that, for each i € [n], M; is a rainbow matching with colour set C; which covers all the vertices
in V; which are not in R;, and so that vertices unused in R; are balanced among each family (that is,
holds).

The conditions variously make sure that such a partition is feasible based on edge and
colour degrees and [CY) or make sure the colours, vertices, and edges involved are sufficiently
random-looking to make this task achievable. To find M, ..., M,, we will further split Part |Cinto 4
subparts, as follows.

C Covering, balancing, and splitting the final edges.

C.1 Making sure the matching ]\;Ii, i € [n], will cover the vertices in Vi \ R; and use the colours
We find matchings Mi,l, i € [n], which cover 1 \ R; and use the colours in ¢, \ C; and
whose inclusion in M; will thus ensure this property for M;.

C.2 Balancing colours between families.

From an initial partition of the remaining edges (i.e., those not in Miq, i€ [n]), into EA';,
¢ € F, we adjust this to give a partition E¢, @ € F, where each family ¢ € F has the right
number of edges of each colour in Eq to complete the matchings M, i € [n], while following
the C;-rainbow conditions.

C.3 Balancing vertex degrees between families.

Similarly to Part we adjust the edge partition E'¢, ¢ € F, (without changing the number
of edges of each colour in each set in this partition) to give a partition Ej, ¢ € F, so that,
for each vertex v, each family ¢ € F has the right number of edges at v in E; to complete
the matchings M, i € [n], in order that holds.
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C.4 Partitioning the remaining edges allocated to each family ¢ € F to complete M;, i € Iy.
For each family ¢ € F, we partition the edges ofEd, into Mz 2,1 € Iy, so that each MZ 1UMZ 2

is a rainbow matching using exactly the colours in C; (and thus E 0| holds) and whose
vertices are in R;, which then ensures that 1] holds.

Parts and will be straightforward to carry out. Essentially, having set aside some random
vertices, colours and edges for the task in the set-up in Section the matchings ]\7[1-,1 in Part
can be found greedily, while the initial partition of edges in Part @l will be random and thus only
require a small adjustment, which can be made by switching some small number of edges between the
parts of the partition (relying on [C9).

For Part we are fortunate in that we have already done much of the required work, in
Section [5] where we showed the likely existence of many (u, v, L)-links for each distinct u,v € V(G)
with u ~4/p v (where L is the link defined in Theorem . In the partition E¢, ¢ € F, each vertex
v will be in too many edges in some of these sets, and too few in some others, but in total it will be
in the right number (due to . Not too disimilarly to some of our easier work in Section |4} we will
be able to decompose the changes we need to make so that the problem is reduced to, for each pair of
vertices u, v with u ~4,p v and each distinct ¢, ¢’ € F with u,v € S NSy, being able to swap edges
between E¢ and qu to reduce the degree of w by 1 in E‘¢ and increase it by 1 in E‘¢/, and reduce
the degree of v by 1 in E¢/ and increase it by 1 in E¢, without making any changes to the number of
edges of each colour in E¢ and E¢f or to any of the other vertex degrees in these sets.

Suppose we could find a (u,v, L)-link S in G such that the odd edges are in E¢ and the even edges
of S are in E¢/. Then, switching out the odd edges of S from E‘¢ for the even edges of S, and vice
versa for E‘d,/, we get exactly the change we want (cf. Figure . Showing the existence of many such
links is straight-forward using Theorem We will not need to set aside any set of links to do these
alterations, and instead can show that there are sufficiently many of them, which will moreover be
sufficiently well spread out, that enough can be found edge-disjointly to make all the corrections we
require.

In Part [C.4] following all of our work so far, we will finally arrive at an edge partitioning problem
where we perfectly partition a set of edges into rainbow matchings with specific colours (as for the
original problem solved by Theorem , except here the matchings in the partition will be less
restricted in their vertex sets — each M; o will have a relatively small number of edges compared to
the size of R;. This is the key relaxation that will allow us to partition the remaining edges. For
each colour ¢, we will have exactly the right number of edges of colour ¢ remaining to assign one to
each ]\/[z 2 for which we want an edge with colour c. The challenge is to do this so that each MZ 9 18
a matching. We first sparsify an accompanying auxiliary graph (see L. in Section n 7.6) by forbidding
most of the possible assignments randomly. Then, we do a similar sparsification, but keep only the
assignment of an edge e to Ml 2 if we do not forbid this, but do forbid the assignment to MZ 2 of any
edge intersecting with e. Then, we show that it is very likely we can use the remaining non-forbidden
assignment possibilities to assign the remaining edges of colour ¢ to the required Mi,z, where we now
have that this will give a matching.

7.2 Set-up for Part [C]

For each i € [n], partition R; = R;1 U R;2 by taking each v € R, and independently at random
allocating it so that P(v € R; ;) = 1/4 for each j € [2]. For each i € [n], similarly partition C; =
Ci,1 U Cj,2 so that the location of each ¢ € C; is independent and such that P(v € Ci,1) = Deov/Ppt-
Similarly, partition EP* = E; U E; U E3 U Ey so that, for each e € EP, P(e IS El) = Peov/Ppt)
P(e € F2) = poai,1/ppt and P(e € E3) = poai2/ppt. Then, partition By = Ef* U Ef U EC by, for each
e € F1, choosing the set for e independently and uniformly at random. Partition Fo = U¢€f Es 4
by, for each edge e € E», independently and uniformly at random assigning e to some E3 4 for which
V(e) C Sy. Similarly, partition Es = J,c» Es,¢ and Ex = Uy r B

For [SI8HS20 later, let
no = 1L01pppupran, Do = prppipupan/8ps, and qo = ph/8ps. (73)
Claim 33. With high probability, we have the following properties.

2
S1 For each i € [n], v € V(G) and X € {A, B}, there are at least Z=E" edges in Ef° between v
and R;1 with colour in Cj ;.
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S2 For each 7 € [n] and ¢ € C, there are at least % edges in Elc with vertices in R; 1 and
colour c.

S3 For each u € V(G), {p € F:u € Sy} = (1 +¢)pspi, ' piy-

S4 For each distinct u,v € V(G), |[{¢ € F : u,v € Sp}| = (1 £ &)pipy, v

S5 For each distinct u,v,w € V(G), [{¢ € F : u,v,w € Sp}| = (1 + &)pipy' i

S6 For each c€ C and ¢ € F, [{e € B2,y UE34UE44 : cle) = c}| = (1 & \/Deov)PptPtaPirn.

S7 For each c € C, |{e € E1 : ¢(e) = c}| = (1 £ €)peovn.

S8 Foreachv € V(G) and p € F, [{e € E1 :v e V(e),V(e)\{v} C Sy} = (1 £¢€)peovpsn.

S9 For each ¢ € F and v € Sy, [{e € Ezy UE34UE44 : v € V(e)} = (1 £ \/Peov)PptDs PerPiant
and |{e € Ea,4 : v € V(€)}| < 2pbal,1P5  PexPrant.

S10 For each ¢ € F,i € I, and v € S;,

[{e € B2y UEs 4 UEsy:veV(e),cle) € Ci}| = (1= peov)paiPs Dixpiant.

S11 Foreach o € F,i€ Iy and v € S;, [{e € E1 : v € V(e) C Si,cle) € C;}| < (1 £ €)peovpptpsn.

S12 Foreachce€ C and ¢ € F, [{i € I, : ¢ € C;}| = (1 £ &)pptpurpran and |{i € I : c € Cio}| =
(14 poat,1)PotPorPrane.

S13 For each ¢ € C and distinct ¢, ¢’ € F, |[{e € Fa,4 : V(e) C SNSyr,c(e) = c}| > pra,1pEperptan/2.

S14 Foreach ¢ € Fand v € Sy, |{i €Ly :v e T} —|{i €ls:v € Rl}” = (1 £ &)aprpg puptan.

S15 For each ¢ € F, |Sy| < (2+ €)psn.

S16 For each distinct ¢, ¢' € F and v € Sy N Sy,

{e € E34:V(e) CSeNSy,veVie)} < 2pbal,2p§1ptrpfan.

S17 For each distinct ¢, ¢’ € F and distinct z,y € Sy N Sy with & ~4,5 y, letting £ be the set of
(z,y, L)-links (as defined in Theorem whose odd edges are in Fs3 4 and whose even edges are
in F3 4, and whose vertices are in Sy N Sy, we have

a |£| > poas2(Poal 2purpea) 200,

b for each e € E(G), there are at most (pepra)® n?® links in £ which use e, but not as the kth

edge for any k € {1,2,61,62},

c for each e € E(G), there are at most (ptrpfa)("on28 links in £ which use e as either the 2nd

or 61st edge,

d for each v € V(G) \ {z,y}, there are at most (pupra)®?n*® links in £ which use v not as a

neighbour of = or y, and

e for each v € V(G) \ {z,y}, there are at most (pupra)® n?® links in £ which use v as a

neighbour of x or y.

S18 For each ¢ € F, c € C and I C I, with |[I| < no/2Dy, there are at least Do|I| edges e € Ey 4
with colour ¢ such that V(e) C R;,2 for some i € I.

S19 For each ¢ € F,ce€ C and E C {e € E(G) : V(e) C Sy, c(e) = ¢} with |E| < no/2Dy, there are
at least Do|E| values of ¢ € I4 such that ¢ € C; 2 and there is some e € E such that V(e) C R; 2.

S20 Foreachgp € F,ce C,I CIyand E C {e € E(G) : V(e) C Sy, c(e) = ¢} with |I|, |E| > no/2Do,
there are at least go|I||E| pairs ¢ € I and e € E with V(e) C Ry 2.

Proof of Claim[33 To see that hold with high probability, we first observe that [STHSI6]hold

with high probability, each by a simple application of Lemma [2.6] and a union bound. This leaves us
to show, in turn that hold with high probability.

m By Theorem with high probability, we can assume that, setting &g = n>°, hold.
S17t Let ¢, ¢’ € F be distinct, let 2,y € Sg NSy be distinct with © ~4,p y, and let Lo be the
set of (z,y, L)-links in G and L be the set of (z,y, L)-links whose odd edges are in F3 4, whose even
edges are in Ej5 4, and whose vertices are in Sy N Syr. By and we have E|£]| > (1 —¢)((1 —

2e pba172ptrpfap§2)62pé22(b0 > 2pbal,2 (Pbal,2PuPia) 2 ®o. Now, for each v € V(G) \ {z,y}, we have by
that [{H € Lo : v € V(H)}| < 100®g - n~*. For each e € E(G — {x,y}), we have bythat
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H{H € Lo :e € E(H)} <1009 -n~2. For each e € E(G) with {z,y} NV (e) # @, we have bythat
HH € Lo:ec E(H)} <4®g-n"".

Therefore, by Lemma [2.7] we have
P(L| < pbal,2(pbal,thrpfa)62<I)O)

< 2exp (—

2(pbal,2(Pbal,2pepta) > ®o)?
2n - (100®¢ - n=1)2 + n2 - (1009 - n=2)2 + 2n - (4P - n—1)2
< 2exp (-9 (plz)al,Z(pbal,thrpfa)124n)) =nwW,

Thus, taking a union bound, we have that with high probability always holds.

S1 Fix e € E(G — {x,y}) and 3 < k < 60. Let L, = {H € L : e is the kth edge of H}, so that,
by [K4, [Le x| < (1+e)Po-n"? Let L., be the set of links in Le whose odd edges are in Es 4
and whose even edges are in Fj 4/, and whose vertices are in Sy N Sy Let & x be the event that
Vie) CSyNSy and e € E3 4 if k is odd and e € E3 4 if k is even. Then,

E(|Lell€er) < (14 26)poat2peapraps ) - (1 +)@0 - n ™" < (pupra)® o - n ™7 /2.

Now, for each w € V(G)\ ({z,y}UV (e)), we have by that |{H € Leg:v € V(H)} <2-103®,-
n~3. For each €’ € E(G — ({z,y}UV (e)), we have by [K8|that |{H € L.\ : e € E(H)}| < 10*®q-n~%
For each ¢’ € E(G) with ({z,y} UV (e)) NV (e') # 0 and V(¢') ¢ {z,y} UV (e), we have by [K9| that
HH € Lep:e € E(H)} <103®q -n™3.

Therefore, by Lemma [2.7] we have

P(ILe | < (Papsa)® ®o - n 2| Ee k)

< 2exp (- 2((purpra)® o - n"2/2)°
- 2n - (2-1083®g - n=3)2 + n2 - (104Pg - n=4)2 + 4n - (103D - n—3)2

< 2exp (fQ ((ptrpfa)lnn)) =pnvm,

Thus, taking a union bound over all e € E(G — {z,y}) and 3 < k < 60, we have that with high
probability always holds.

Fix e € E(G — {z,y}) and suppose k = 2 (where the case where k = 61) follows similarly. Let
Le ={H € L: e is the kth edge of H}, so that, by |Lek| < (14¢€)®o-n~2. Let L. be the set
of links in L. r whose odd edges are in E3 4 and whose even edges are in F3 4, and whose vertices are
in Sy NSy . Let f be the edge between = and V' (e), and let & » be the event that V(e) C Sp N Sy
and f € E3 4 and e € E3 4. (The difference here to is that when f ¢ Fjs 4 then L[ , is always
empty.) Then,

E(|L0L 1 ]1Ee.k) < (Prat2Pupraps ) - (14 €)@ - 172 < (pupta)®® - Bo -1~ /2.

Working very similarly to [S17b|with only the difference of pbaLgptrpfapgz in the upper bound on the
expectation, we have, by Lemma [2.7] that

P(l£é,k| <(ptrpfa)60 : (I)O ° n72|ge,k)

< 9exo [ — 2((pupra)®® - @0 -n"?/2)"
=S T (210500 - n3)2 + 12 - (10°®p - n—4)2 + 4n - (105®g - n—3)2

< 2exp (—Q ((ptrpfa)lmn)) =n W,
Thus, taking a union bound over all e € E(G — {z,y}), and considering also the case k = 61, we have
that with high probability always holds.

S17d; Fix v € V(G) \ {z,y} and 3 < k < 61. Let L,x = {H € L : eis the kth vertex of H}, so
that, by |Lok| < (14 )P0 -n"". Let L be the set of links in £, whose odd edges are in
E3,4 and whose even edges are in E3 4, and whose vertices are in Sg N Sg/. Let £, be the event that
v € Sy NSy . Then,

E(|Lek]|E0) < (Poar2pupiaps”)® - (14 )P0 - n ™" < (pupra)® - @o-n /2. (74)

Now, for each w € V(G) \ {z,y,v}), we have bythat HH € Lok :w e V(H)} <10°D-n~2.
For each e € E(G — {z,y,v}), we have bythat HH € Lok :e€ E(H)} <10%® - n™3. For each
e € E(G) with {z,y,v} NV (e) # 0, we have by [K5|that |[{H € L, 1 : e € E(H)}| < 10*®, -n"2.
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Therefore, by Lemma 2.7 we have

P(|IL k| <(pepsa)® - @0 -n'E)

< e [ — 2((pupra)® - @0 -1 /2)°
= 2O T o0 (10000 - n2)2 + 12 - (105 - n—3)2 + 3n - (104B - n—2)2

< 2exp (—Q ((ptrpfa)lmn)) =pn @M,

Thus, taking a union bound over all v € V(G) \ {z,y} and 3 < k < 61, we have that with high
probability always holds.

Here, follows very similarly to in the same way that follows similarly to
The difference to is that if v is to be a neighbour of z in the link, then, there are no
such links if zv ¢ 3,4, so we condition on this, and therefore save a factor of (pbal,2ptrprapg>) in the
corresponding version of , which we use to make a saving of p¢psa in the bound in compared
to that in Note that the difference in the two bounds in and is the same saving.
Let ¢ € F, c € C and I C Iy with |I| < ng/2Dg. For each e € E, 4 with colour ¢ such that
V(e) C Ss, the probability that V(e) C Riz is (pr/2ps)? for each i € I, and this is independent
across 4 € I and such e. Therefore, as there is in expectation at least ppeperpran/2 edges e € E4 4 with
colour ¢ such that V(e) C Sy, and Do = phppipupan/8p% we have by Lemma with probability at
least 1 —exp(—w(|I|logn)) there are at least Do|I| edges e € E4,4 with colour ¢ such that V(e) C R; 2
for some i € I. Thus, by a union bound, holds with high probability.

Let g € F,ce€ C,and E C {e € E(G) : V(e) C Sg,c(e) = ¢} with |E| < ng/2Dg. Then, with
high probability, we have ¢ € C; 2 for at least 0.99pptpirpran values of ¢ € I4. Then, for each i € Iy, the
probability that there is some e € E with V(e) C Ry, is 1 — (1 — (pr/2ps)?)! P! > 0.99|E|(pr/2ps)*.
Thus, by Lemma [2.6] with probability at least 1 — exp(—w(|E|logn)) there are at least Do|E| values
of i € I such that ¢ € C; 2 and there is some e € E such that V(e) C R; 2. Thus, by a union bound,
holds with high probability.

Let p € F,ce C, I Cl,and E C {e € E(G) : V(e) C Sy,c(e) = ¢} with |I],|E| > no/4Do.
Now, the events {V(e) C Ri2}, e € E and 4 € I, are independent, and each occur with probability
p% / 4p% = 2qo, so the property follows by a simple application of Lemma and a union bound. [J

7.3 Part Vertex and colour covering

Assuming now the properties we will show we have the required property in Lemma[3.5] For
this, suppose we have any edge set £ C_E(G), and any sets V; C V(G) and C; C C(G), i € [n], which
satisfy By carrying out Parts we will partition E into matchings M, ..., M, such
that hold

_ For Part we will use edges from FE; to, edge-disjointly, find for each ¢ € [n] a rainbow matching

M;,1 using colours in Cj,; and vertices in R; 1 as well as every vertex in V; \ R; and colour in C; \ Cj,
as follows.

Claim 34. There are edge-disjoint rainbow matchings M;.1, i € [n], in E; such that,
T1 For each 7 € [TL], ‘A/-L \ R; C V(Miyl) C Ri71 U (‘A/z \Rz)
T2 For each i € [n], Cs \C; C C(Mi,l) CcCiqa U (éz \ Cs).

T3 For each ¢ € F and v € Sy, |[{i € I : v € V(M;i,1)}| < Dbal,1PerDealt.
Proof of Claim[34 Let J\Z/i,l, i € [n], be a set of edge-disjoint rainbow matchings of edges of By =
Ef @] ElB U Elc §U.Ch that, for each i € [n], V(Mi@) C Ri,1 U (Vz \Rl), C(Mi,g) C Ci,1 U (Cz \ Cl), and
each edge e of M; 1 either
e contains exactly one vertex in v \ R;, which is in A, and e € E{, or
e contains exactly one vertex in Vi \ R;, which is in B, and e € EE or

e contains no vertices in V; \ R; and e € Elc,

for each ¢ € F and v € Sy, [{i € Iy : v € V(Mi;1) N Ri}| < poai,1Pupran/2, and, subject to all this,
such that }°,(,; [Mi1] is maximised.

Suppose, first, for contradiction, that there is some i € [n] such that Vi \R: ¢ V(]\;[Zl) Let
v e V;\ (R UV(M;1)). Assume that v € A, where the case where v € B follows similarly.
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Let ¢ € F be such that i € I5. Let Z be the set of vertices w € Sy for which |{i € I : v €
V(M;1) N Ri}| > poal,1perpean/4, and note that

2161¢ |M21| 2ptrpfan 2. GBn \/Bn

VARS
121 Pbal,1PerPral/4  —  DPbal,1PtrPean/4

By . if E{, ; is the set of edges in F#* between v and R; 1 with colour in Cj 1, then |E1 il =
p2owprn/S. By - and we have that \Mz 1| < 68n, so at most 68n of the edges in Ef "v,; share
their colour with M; 1, and at most 65n of the edges in El v,i share their vertex which is not in Vi \ R;
with any edge in Ml 1. Furthermore, if vz € Ef ~v,; 18 in some MJ 1 with 7 # ¢, then, as v € A we must

have that v € V; \R Thus, byH there are at most 46n j € [n] with v € V; \ R;, and hence at

most 48n edges in El »,s Which are in some M] 1 with j # 1.
Therefore, as 8 << Pcov, PR, there is some edge e € El v \ Uje[n 7,1 whose colour is not used on

M;,1 and whose non-v vertex is in R; 1 \ (V(M;i1)UZ). Adding e to M; 1 would increase > e |M; 1],

contradicting the choice of M;,1, j € [n]. Thus, there was no such i € [n] for which Y/l \R; ¢ V(Z\:Ll)
Suppose, instead, again for contradiction, that there is some ¢ € [n] for which C; \ C; ¢ C(M;1).
Let ¢ € C;\(C;UC(M, Let qzﬁ € F besuch that i € I and, again, let Z be the set of vertices w 6 S¢

for which [{i € I, ) N Ri}| > pral1pupran/4, so that as before, we have |Z| < v/Bn.
Again by |C3 - and C we have that |M2 1| < 66n. By | there are at most 20n edges in

2
EC N (N i€ n] M;,1) with colour c. However, by , there are at least 23PR™ edges in EY with colour
c and vertices in Rl 1

Therefore, as 8 < Pcovs PR there is some edge e € EY \ U J,l with colour ¢ and vertices in
Ri1 which has no vertices in V(M;,1). Adding e to M; Would increase 3 () |M; 1|, contradicting

the choice of Mj 1, j € [n]. Thus, there was no such i € [n] for which C; \ Ci ¢ C(M;.1).
Thus, we have that and hold. For each ¢ € F and v € S,

~ . A
Hielp:ve V(M) <H{i€lp:veV(M;aNR)H+{i€1p:v€Vi\ Ri} < Poal1DerDran,

and therefore [T3] holds as well. B

7.4 Part Balancing colours between families

Taking the matchings M; 1, i € [n], from Part we now partition the rest of the edges in F between
the families, so that each family receives the right number of edges of each colour, as follows.

Claim 35. £\ EUiepm M; 1) can be partitioned into E4, ¢ € F, so that the following hold.
U1 For each ¢ € F, F3 4 U Ey 4 C Ey.

U2 Foreach g€ Fandce C, [{ec Eg:cle)=c}|=|{iels:ceCi\CM)}

U3 For each ¢ € F, every edge in E¢ is contained within Sg.

U4 For each ¢ € F and v € Sy, |{e € E¢ veV(e)}=0=x 3pba1,1)ppcp§1ptrpfan-

U5 Foreach ¢ € F,i € I, and v € Sy, [{e € By :v € V(e),cle) € Ci}| < pi(gptrpfan/l

Proof of Claim[33 Partition £\ (Uper B0 U B3, U Ess) UEU,cpn M; 1)) into sets E,, ¢ € F,
by, for each e € E\ (Uper F.0 U Esg U Esg) U E(U;ep M; 1)), placing e into a set Ey, ¢ € F,
independently and uniformly at random subject to V(e) C S.

By and Lemma [2.6] and, respectively, [S6] [S7] [C6] [C9] and and [C7] and with

high probability, we have the following properties.

U6 For each c € C and ¢ € F, |{e € E}; : c(e) = c}| < 2pcovPg PerPran.

U7 Foreach ¢ € Fand v e Sy, {e€ Ey:veV(e)}| < 2pc0vp§1ptrpfan.

U8 Foreachp € F,iclyandv e S;, {e€ Ej:veVe),cle) € Ci}| < 2pcovpptp§1ptrpfan-

Thus, we can assume that hold.
For each ¢ € F, let Ef = Ej, UEy 4 U Fs34UEy 4. For each ¢ € F and ¢ € C, let

Mo = {e € Bf :cle) = ¢} — [{i € Iy c € Ci\ C(Mi)} . (75)

82



and note that, by [S6] [C6] and [U6]
‘/\4)’0‘ < “{6 €y s UE3 4 UEs: c(e) = C}| — |{Z c€ly:ce Cz}||
+Hi€lsice C\Ci}l+{i€ls:ce C(Mpn)}|
S 2\/pcovptrpfan + 2/8ptrpfan + 2pcovp§2ptrpfan S 3\/ PcovPtrPfall. (76)

Furthermore, we have, for each ¢ € C, that

D Noe=> ({e€ Ef icle)=c}| = [{i € Iy : c € Cs \ C(M;1)}])

PEF PeEF

= He e B\ ( U Mi,l) s c(e) :CH —Hien]:ceCi\C(M;1)}
i€[n]

={e€ B:cle)=c}| - [{i e [n] : ce C:}| 0. (77)

For each ¢ € C, let F.f = {¢ € F : Ape > 0} and F, = {¢ € F : Ay < 0}. Using (77), take
integers Ay ¢/.c > 0, ¢ € F& and ¢’ € F,, such that for each ¢ € FF and ¢/ € F. we have

Z Ao,/ c = Ag,c and Z Ao ph e = — Aol e

¢ EeFT ¢ eFd

For each distinct ¢, ¢’ € F and ¢ € C for which A4 4 . is not defined, that is, when at least one of
Ag,c and Ay o is equal to O, let Ay 4 . = 0, and note that, for each ¢ € F and c € C,

S Moo= D Asrse = Ape (78)
o E€F ¢/ o o E€F g/ Fo

Let £ ={(¢,¢",¢) : ¢,¢ € F,¢p # ¢',c € C}. Take edge disjoint matchings My 4 ., (¢,¢',¢) € &,
such that, for each (¢, ¢, c) € &,
1) (Mgl < Ag60c0
11) V(Mcb,qb/,c) C S¢ n S¢/,
iii) every edge in My 4 . is a colour-c edge in E3 4,

)

iv) and, for each ¢ € F and v € Sy, v is in at most pi{thrpfan/4 edges in the matchings My 4,

¢' € F\{¢} and c€ C,
and, subject to all this, 3°, o ,cec [ Mg o | is maximised.
Suppose, for contradiction, that there is some (¢, ¢',c) € € such that |Mg 4 o] < Ay ¢7,c. Let W

be the set of vertices in at least pi(zptrpfan/S edges in the matchings My 4., ¢’ € F\{¢} and c € C,
and note that

2 Zg |)‘¢7C| @6 2n - 3\/pcovptrpf n
W] < =75°5¢ 2 37 “— < Phal,1PEPDIN. (79)
Pt Puepran/8 Pt Puepran/8

As [Mypr.c| < A ,cr every edge in Ea g \ Uy, Mg,gr e of colour ¢ with vertices in Sy N S5 has a
vertex in W. However, by , there are at least pbal,lpgpfaptrnﬂ such edges in F2 . Thus, as

)
Z |M¢,¢7”,C| < Z Aqﬁ,qﬁ”,c < ‘A¢,c‘ 2 3v/DcovPtrPrat,

¢ EF 19! o ¢ EF 19! 20

POLY

and holds, this is a contradiction as pecov < Pbal,1,Ps. Therefore, we have |M¢7¢r’c| = Ag, ¢, for
each (¢,¢',c) € €.
Now, for each ¢ € F, let

E¢ = (EA’; @] E27¢ @] E3,¢ @] E4}¢) \ U U M¢7¢/7C U U U M¢/7¢7C

¢'eF\{¢} ceC ¢'€F\{¢} ceC
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We now show that hold. That holds follows from That holds follows from
and the fact that we have equality in i)} so that, for each ¢ € F and ¢ € C(G),

l{e € E¢ ic(e)=c}t ={e€ E;b UFE23UFE34UFEsgs:cle) =c} — Z Ao ¢/ Z Aol bc
¢’ eF\{¢} ¢'eF\{¢}

|{6 S EA‘; UFE2¢UE3q4UE4: c(e) = C}‘ — Apre
i€ Iy:ce i\ O(Min)}

That holds follows from , as each edge in E¢ which is not in E:b U F2 4 UE34UFE, 4 is in some
matching My 4 .. Note that follows from (both parts of) and Finally, for each ¢ € F,

1 € Iy and v € S;, by [S10] and
e € By v e V(e),cle) € Ci}| < 202D PerPrant + 2PeovPptDs  PerDrant +pf,{2ptrpfan/4

< pol*prrpran/2
and thus holds. Thus, hold, as required. O

7.5 Part Balancing vertex degrees between families

We now take the partition E¢, ¢ € F, from Claim [35[and alter it slightly to achieve the right number
of edges at each vertex in each part, as per the following claim. Having set up the changes we wish
to make at each vertex in each part (see (80)), we confirm these changes are small (see (81])) and are
balanced within each family (see (82)) and at each vertex (see (83))). The proof then takes two stages.
In stage I, we decompose the changes we wish to make into pairs of changes we will be able to make
together (in a similar approach to that in Section , before making these changes in stage II.

Claim 36. £\ E(Uiepn M; 1) can be partitioned into E;, ¢ € F, so that the following hold.
V1 For each ¢ € F, Es ¢ C E;
V2 For each ¢ € Fand ce C, [{e € Ej) cele)=c}=|{iely:ceCi\C(Mi)}|
V3 For each ¢ € F, every edge in E; is contained within Sg.
V4 For each ¢ € F and v € Sy,
Hec Ej:veV(e)}=|{icly:ve V,\V(M;1)} —|[{i € I : v € Ti}|.

V5 For each ¢ € F,i € Iy and v € S, [{e € B} : v € V(e),c(e) € Ci}| < pi<2ptrpfan.
Proof of Claim[36 For each ¢ € F and v € Sy, let
Xow={e€Es:veV(e)|—{iclsy:veV,\V(Mi1)} +|{i € Is:v €T} (80)
which represents the change in degree of v from E¢ to E; we wish to make in order for to hold.
Note that, by [T3} [U4] and [S14] for each ¢ € F and v € Sy,
Ao <2{i €Iy :veEV(Min)} + |[{e € Ey:veV(e)} -|{iely:veR} +|{icls:ve T}
)
< 2pbar1PuPran + (1 £ 3pvar1)Ppt — (1 £ €)apr| - pg' Puptan < 10pbal1pepian, (81)
so that each of these adjustments is relatively small (compared to the degree of v in E34).
Now, note that, for each ¢ € F the adjustments Ay , to be made at each vertex v € Sy sum to 0,
as

D dow=2lEg| = Y (Vi \ V(Min)| — |T2l)

’UGS¢ i€I¢
=2> e € Ey:cle)=c} = > (IVil = [V(Min)| — |T])
ceC i€l
22 H{ielg:ce Ci\C(M;q1)}| — Z(|Vz| — V(M 1)| = |Ti])
ceC =
=2 |G\ C(M;n)| = Y (il = V(M) - |Ti])
i€l i€ly
A ; 2
=2 |G| = > (il - ) = o (82)
i€ly i€ly
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Furthermore, for each v € V(G), the adjustments Ay, to be made at v for each ¢ € F sum to 0, as

3 Ao = He e U Bs:ve V(e)}( S (i€ Lo v e i\ V(Min)}| — |{i € I : v € Ti})
PEF

per pEF

:Hee U E¢:UEV(6)}‘—|{Z'€[n]:UE‘A/i\V(MZ-J)H—l—HiE [n] :v e T}
PEF

:‘{eE(UE‘¢)U( U Mi,l)ZUGV(@)}I*|{’l:€[Tl]:’l}E‘ZLH‘i’H’L’G[TL]ZUETiH
PEF 1€[n]

= Hee E:ve V(e)}‘ i :veVi}|+|{icn:v ETZ'}\O. (83)

We will now use and to show that we can decompose the changes we need to make into a
collection of directed 2-cycles, similarly to the approach in Section [4.3

I. Decomposing the necessary changes into directed 2-cycles. For each ¢ € F, let qu ={ve
Syt Apw > 0} and V7 = {v € S : Ap» < 0}. Form an auxiliary directed multigraph ¥ with vertex
set V(G) whose edges have symbols (chosen from F) fixed to them (where between any two vertices
we allow multiple edges with the same attached symbol), by adding edges under the following rule.

e For each ¢ € F, using (82), take a matching K, between {(v,j) : v € V(;,j € [Ag,0]} and
{(v,5) v €V, ,j € [=Xp]}, and, for each (v,7)(v',5") € Ky, add an edge e to ¥ directed from
v to v’ which has ¢ attached as a symbol to it. We set symb(e) = ¢.

Note that, for each ¢ € F and v € Sy, we have
{ub € U :u e Sy, symb(ut) = ¢} — [{vi € U : u € Sy, symb(vi) = ¢} = Ag . (84)

Furthermore, for each v € V(G),

G —de@) = 3 Aew— D (Rew) =D hew 20,
4>E.7-':1)6V$' d>€-7::veV$' =
Therefore, E(¥) can be decomposed into a set of directed cycles, C say.

Subject to the stated restrictions on the choice of Ky, ¢ € F, and C, minimise the number of
pairs of edges from E(¥) which are in the same cycle in C and have the same symbol. Suppose, for
contradiction, that there is some S € C which contains two edges, v1v2 and vsb4 say, which have the
same symbol, ¢ say. Note that, as the edges with the symbol ¢ are all directed from qu to V,
these vertices must be distinct. Then, let j1, j2, js and j4 be such that vibe and vsbs were added
to ¥ because (v1,J1)(v2,j2) and (vs, ja)(va, ja) belong to Ky. Note that removing (v1, j1)(v2, j2) and
(vs,ja)(va, ja) from Ky and adding (v1, j1)(va, ja) and (vs, ja)(v2, j2) would have formed ¥ so that it
had a cycle decomposition C’ := (C\ S)U{S1, Sz}, where S1 and S are the two disjoint directed cycles
formed from S by removing viv2 and vsts and adding vibvs and vsbs3, both with symbol ¢ attached.
As C' has fewer pairs of edges in the same cycle with the same symbol, this is a contradiction. Thus,
there is no cycle in C which has two edges with the same symbol.

Let » = |C|, and enumerate C as Li,...,L,. For each j € [r], let £; be the length of L, and, if
£; > 4, let F; be a set of undirected pairs from V(L;) so that the underlying graph of L; + Fj is a
triangulation of L; with maximum degree at most 4 (cf. Figure , and otherwise let F; = 0.

Form ¥’ by starting with ¥ and, greedily in some arbitrary order, for each j € [r] and each
{u,v} € F}, choosing ¢ € F with u,v € Sy and adding uv and v&, both with the symbol ¢ attached
so that the following holds.

W1 For each ¢ € F and v € Sy, there are < /Ppal,1ptrPran edges in ¥’ around v with symbol ¢.

Note that this is possible, as, initially, for each ¢ € F and u,v € S, the number of edges in ¥’ around
u or v with the symbol ¢ is at most |Ag,»| < 10pbal,1PerDean < \/Mptrpfan by . Then, when for
j € [r] and {u,v} € F; we look to select ¢, the number of ¢ € F with u,v € Sy is, by at least
p%pfrlpf;l /2. If none of these possibilities for ¢ can be added without violating then the number
of edges of ¥’ containing u or v must be at least

_ _ 2/3
(Pepu' Pra /2) - v/PoaliPesbran > Doy 110 (85)
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On the other hand, for each w € V(G), by and , the number of cycles in C containing w is at
most
D Pl <2pspi' i’ - 10pbaripuptan = 20pspalan.
PEFwESy
Therefore, the number of edges in ¥’ around u and v with any symbol is (as, by the choice of the Fj,
Jj € [r], the underlying undirected graph of L; + F; has degree at most 4) at most

24 20pspoaian < Pl n, (86)

which contradicts ‘ Thus, we can take ¥’ as claimed, so that holds.

Note that, similarly again to our work in Section due to the choice of the F}, j € [r], we can
now let C' be a directed cycle decomposition of ¥’ into directed 2-cycles and triangles. Form ¥" by
starting with ¥’ and, for each directed triangle L € C with V(L) = {z,y, 2z} and =¥, v%, 2y € E(L),
choose a symbol ¢ with z,y, z € Sy and add y&, 2y, %, each with the symbol ¢, so that the following
holds.

W2 For each ¢ and each w € S, there are < /Dual,1PtrPran €dges in ¥ around w with symbol ¢.

Note that this is possible, as when for L € ¢’ with V(L) = {z,y, 2} and 2}, y%, 2y € E(L) we look
to select ¢, the number of edges in ¥ around z, y or z with any symbol is (noting we are trying to
add at most the same number of edges again around each vertex to get from ¥’ to '), by , at
most Qpigiln, On the other hand, by , there are at least p%pt_rlpf_a1 /2 possibilities for ¢ € F with
z,y,z € Sy, so if no such ¢ € F is such that yz, 27, 2% can be added to ®", each with the symbol ¢,
without violating then there must at least (p‘i’qpt_rlpf;l/Z) . (pkl)éilptrpfan) > 2pigiln edges in ¥’
around x, y or z with any symbol, a contradiction. Therefore, we can find " as claimed.

Note that ¥ has a decomposition into directed 2-cycles, C” say. Let s = |C”| and C" =
{L4,...,L.}. For each i € [s], label vertices and symbols so that V(L;) = {=;,y;} and the edges
of L} are an edge from z; to y; with symbol ¢; and an edge from 7; to x; with symbol ¢;. For each
¢ € F and v € Sy, we have

I{i € [s] 15 = ¢, = v}| = [{i € [s] : & = b, 5 = v}
= [{uv € E(V") : u € Sy, symb(ut) = ¢}| — |[{vts € E(F") : u € Sy, symb(vir) = ¢}|
= |{ub € BE(V') : u € Sy, symb(uv) = ¢}| — [{vis € E(V') : u € Sy, symb(vir) = ¢}|
= |[{ub € E(V) : u € Sy, symb(ub) = ¢}| — [{vl € E(¥) : u € Sy, symb(v) = ¢}|
Aoro- (87)

II. Making the necessary changes using (u,v, L)-links. Now, take a maximal set I C [s] for
which there are edge-disjoint paths P;, ¢ € I, in G satisfying the following conditions.

X1 For each i € I, P; is an x;, y;-path of length 62 with odd edges in E3 ¢, and even edges in Ej 4.

X2 For each i € I, the odd edges of P; have the same colour (with multiplicity) as the even edges of
P;.

X3 For each ¢ € F and v € Sy, there are at most épigﬁlptrpfan values of i € I with ¢ € {¢;, ¢;} for
which v is an internal vertex of P;.

Suppose, for a contradiction, that I # [s]. Take some ¢ € [s]\ I. Let P;, i« € I, be a set of
edge-disjoint paths in G satisfying We will show that there is an (x;,ys, L)-link (with L as
defined in Theorem whose edges alternate between E3 4, and Es 4 which are edge-disjoint from
the paths P;, j € I, (noting that we only need to actively avoid those paths with edges in Fs5 4 UE37¢;),
and whose interior vertices are not in many interior vertices of paths in P;, j € I.

Let then E™™ be the set of edges in 3 4, U Es3 4 which are in some path P;, j € I, and which do
not contain xz; or y;. Let Vb he the set of vertices which are neighbours of z; or y; in some edge
in F3,¢, U E37¢; which appears in some path P;, j € I. Let W™ be the set of vertices v for which

there are at least Tlﬁpi,/dilptrpfan values of j € I with {¢, ¢i} N {¢;, #;} # 0 for which v is an internal
vertex of Pj.

From and [c] we can see that we should take particular care in counting the number of edges
we have used which could be the 2nd or 61st edge of the link, as the corresponding bound we have is
larger by a factor of (ptrpfa)fl. However, any such edge contains a neighbour of {z;, y;} using an edge
of E3 ¢, U E3,¢;, so the number of edges here, as we will see, will be limited by For this, let FfrP
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be the set of edges in E3 4, U E3 4, which are in some path P;, j € I, and which contain a neighbour
of z; or y; in E34, UE'3¢,/.
We will now find an (4, i, L)-link whose edges alternate between Fs 4, and Ej 4 which do not

use any vertices in W™ as interior vertices, or a vertex in V™ as a neighbour of z; or y;, or any
edge in E™ U F™ First, note that

|E*™] < 62 |[{uib € B(P") : symb(uiv) € {¢s, $;}}| S 3psm - \/Poal 1PurPrant
1/5
< pbe/ﬂ,lptrpfan2- (88)
Now, by there are at most 8pptperpran vertices in Sy N Sy which are a neighbour of x; or y; in
Es,4 or E3 4. Thus, using andW2}

forb 1 1/4 1/5
|| < 8perpeam - (4 . gpbglylptrpfan +2- \/pbal,lptrpfan> < pbgl,l(ptrpfan)2~ (89)

Then, note that

K @ﬁ 1
[Vt =< 4. gpigilpnpfan + 2 \/Pral 1 PtrPeant < pégilpnpfan. (90)
Finally, note that

e < 61 - [{ub € E(Y") : symb(ubd) € {¢i, $i}}|
— 4
%pkl)él 1PtrPalt
m 61 - 3psn \/mptrpfan

16 pbél 1PtrPrall

< prl g (91)

Let £ be the set of (zi,y;, L)- hnks with odd edges in E3 4, and even edges in Ej 8 and whose
vertices are in Sy N Sy Then, using [ST7pHe] the number of links in £ which either

i) for some 3 < k < 60, contain an edge of E™™ as their kth edge, or
ii) contain a vertex of W™ as an internal vertex, or
iti) use an edge from F™™ as its 2nd or 61st edge, or
iv) use a vertex of V™ as its 2nd or 62nd vertex,

is at most

100(purpra) 0 * - ((pepta) - [E"| 4 [F"| 4 (prepta)n - (W™ | 4 (puspsa) - [V))
. - Oopbdl b1 (puepra) 0™
However, by |£] > P32 (Peepsa)®®n®. Thus, there is some (zi,yi, L)-link with odd edges in
F3 4, and even edges in Fy which uses no edge in E™ or vertex in W™ (noting that if it has an
edge of E™ as its 2nd or 61st edge, then this edge is in F©™® and if it has an edge of E®™ as its
first or last edge then it contains a vertex of V™™ as its 2nd or 62nd vertex).

Let P; be the path of such a link. Then, we have that and [X2] hold for P; from the properties
of an (z;,y:, L)-link. Furthermore, as P; has no edge in E™™ or vertex in V™ it has no edge in
common with any E(P;) with j € I and {¢:,¢;} N {¢;, ¢} # 0, and therefore, by no edge in
common with any E(P;), j € I. Finally, as V(P;) contains no vertex in W™ we have that holds
with I replaced by I U {i}. Therefore, the set I U {i} contradicts the choice of I, as shown by P;,
jeTuU{i}.

Thus, we have that I = [s]. Take edge-disjoint paths P;, ¢ € [s], in G, then, satisfying
For each ¢ € F, let

Ey={Ey\ U EB@||u U  E@)\Ess
i€[s]:0€{di, )} i€[s]:pe{di P} }

We will show that E;, ¢ € F, satisfy Firstly, as for any ¢ € F and i € [s] with ¢ € {¢;, ¢;}
we have E(P;) N E; C E3,4, we have that holds due to Next, for each ¢ € F, for each i € [s]
with ¢ € {¢:, ¢}, we have that E(P;)\ E3,4, has the same colours (with multiplicity) as E(P;) N Es3,¢,,
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and therefore each colour appears the same number of times in E¢ as in E¢ Thus, follows from
Furthermore, we have that“follows from-as for each ¢ € F, for every i € [s], if ¢ € {¢s, &} }
then P; has all its vertices in Sg.

For each ¢ € F and v € V(G), we have

HeeEj:veV(e)={e€ Es:veV(e)}| - [{i € [s]: ¢ = ¢,z = v} + [{i € [s] : ¢ = ¢, ys = v}|
He€ Bsive V(e —roo @ [icl:ve i\ VL)Y - [{i € I : v e T}

and thus [V4] holds. Finally, for each ¢ € F, i € I, and v € S;, we have

{e€ B :veV(e),cle) €Cil| < {e € By :v e V(e),cle) € Ci}| + [{i € [s] : ¢ € {¢s, 61 },v € V(P)}]

1 3/2 1 4 3/2
< ippf DerPralt + gpiél,lpupfan < pp{ DerPram,

so therefore [V5] holds. O

7.6 Part Partitioning the final edges

Consider the partition of £\ (Uiepn) M; 1) into E¢, ¢ € F, satisfying It is now sufficient to,

for each qi) € F, partition E¢ into matchings M, 2, © € Iy, such that, for each i € Iy, V(M 2) C Rig
and C( i2) = C; \ C(M;,1). Indeed, then, setting M; = M; 1 U M; for each i € [n], we have that
hold Wherefollows from Thus, for the rest of the proof, to simplify the notation
slightly, we will fix a family ¢ € F and omit ¢ from the subscripts.

Fix, then, ¢ € F. For each ¢ € C, we wish to assign one each of the edges of colour ¢ in EA’; to
the ]\;[i,g for which ¢ € C; \ C’(]\;[i,l), doing this in such a way that the assigned edge for ]\;[i,g has its
vertices in R; 2 and that Mi,g is a matching. If possible, this will use exactly all of the colour-c edges
in E;;, due to

For each ¢ € C, let E. be the edges in E;ﬁ with colour ¢ and let I. = {i € I : c € C; \ C (M)}
By we have |E.| = |I.|. For each ¢ € C, let L. be the bipartite graph with vertex classes E. and
I. and edge set {ei: e € E.,i € I.,V(e) C Ri2}. If we can find a perfect matching M. in L. for each
¢ € C, such that no two edges matched to the same ¢ € I in any L. share any vertices, then we will
be able to use M., c € C, to assign the edges in E;Z We will now first sparsify the edges of L. to get
L, for each ¢ € C, by deleting edges independently at random. (For each i € I, this will reduce the
overlap between the edges we are still considering for ]\Zfzg) Then, we will further sparsify L. to get
L! in such a way that if any such perfect matchings M., ¢ € C, can be found in L. then they will
automatically have the additional property we wish to have.

Recalling from that no = 1.01pptPuPian, Do = prpptPupan/S8pE and qo = ph/8p%, we will
use Note that gong = 1.01Dy. By and we have |I:| = (1 £ 2pva1,1)PptPerPratt,
so that 0.98ng < |I.| = |E.| < no. Let Ag = pi{zptrpfan and p = 10/(y/pro), so that

10 3 Do ~1/3 _ , —10, .3
Ao = —= = w(l 2oy - 1 2
Hho = == w(log” n), A, = Poi w(py ™ log” n), (92)
and )
10D 10 1 _
puDo = > = PR > - =w(pr’log®n), (93)

Noy/Pr  8p%/PobT ~ pll

For each ¢ € C, form L. by taking L. and keeping each edge independently at random with probability
. The following then holds.

Claim 37. With high probability, we have the following properties.
Y1 For each ¢ € C and I C I. with 1 < |I| < no(log?n)/uDo, [Nz, (I)] > uDo|I|/3010g? n.
Y2 For each ¢ € C and E C E. with 1 < |E| < no(log?n)/uDo, Ny, (E)| > nDo|E|/3010g” n.

Y3 For each ¢ € C, and any sets I C I and E C E, with |I|,|E.| > nolog® n/4uDo, er; (I, E) >
paolI[|E[/2.
Y4 Foreachce C,i€ I, and w € R; 2,

{z € Ri2:wz € E;,c(wz) € Cy,i(wz) € E(Liwz))} < 2ul0.
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Proof of Claim[37 Let c€ C and I C I. with 1 < |I| < ng/2Dy. Then, we have |N¢_ (I, E4,4)| >
Do|I| by Letting Xc,1 = |Np: (I, E1,4)|, we have EXc 1 > uDo|I|. Thus, by Lemma we have
that P(Xc,; < pDol|I|/2) = exp(—w(]I|logn)). Therefore, by a union bound, with high probability,
for every c € C and I C I. with 1 <|I| < no/2Do, we have [Ny, (I)| > uDol|I]/2 > uDo|I|/3010g? n.

Suppose then ¢ € C and I C I, with nglog®n/2Do < |I| < no/uDo. Let £ = qo|I|/2 < qono/uDo,
so that £ < 1.01log? n/u. Let E be the set of e € E.. with at least £ neighbours in L. in I. Then,

er.(l, Ec\ E) < £-[Ec\ E| < qoll|-|Ec\ E

so that, by [S20] we must have |E. \ E| < no/2Dy, and, hence, |E| > 0.98n¢ — no/2Dg > 0.97n. For
each e € E, setting £/ = £/log®n and using that ¢ < 1.01/pu,

W pgolI| o pDolll

Ple € Ny, (1) > pl/ (1 — p)* > '
( (1)) 2 pl (1 = p) 2e = 4elog®n ~ 20mplog®n

so that, letting Xc,; = [Ny, (I, Esg)|, EXcr > pDol|I||E|/20ne > pDolI|/251log? n. Therefore, by
Lemma [2.6] we have that P(|Ny» ()| < uDolI|/30log® n) = exp(—w(|I|logn)). Thus, using a union
bound, this completes the proof that @ holds with high probability.

holds with high probability similarly to[Y 1} using and in place of and {i € I, :
¢ € Ci2} in place of Ey4 4.

Let c € C, I C I. and E C E. satisfy |I|,|E| > no(log®n)/4uDo. Then, by there
are at least qo|I||F| edges between I. and E. in L.. Letting X;p = eL/C(IC,EC)7 we have that
EX1.e > pqo|I||E|, so that, by Lemma [2.6] there are fewer than pqo|I||E|/2 edges between I and E
in L. with probability at most

exp (7%> < exp (7/“10 - (no(log” n) /4pDo) - max{|1], |E|}) = exp(—w(max{|I], |E|}logn)).

12

Thus, by a union bound, with high probability holds.
Let ce C,ie€l.and w € R; 2. By we have

{2z € Ri,2 : wz € B}, c(wz) € Ci,i(wz) € B(Leqws))}| < pi(2ptrpfan = Ao.

Therefore, E|{z € R;2 : wz € E;Z,c(wz) € C;,i(wz) € E(L.)}| < plo. Thus, holds with high
probability by Lemma [2.6| and a union bound. B

Thus, by Claim [37] we can assume that hold. Now, let

3 2
@ D n%Do

—1/4u00 © pT/40 and Dy = —LEZ0 7 04
K /4180 pr/ o ! 103log?n  4-103A¢log®n (04)

so that, by (92), D1 = w(n >p;' log® n). For each ¢ € C, i € I, and e € E. with ie € E(L.), let z; be
a Bernoulli random variable with probability n. For each ¢ € C, let L) be the subgraph of L. of edges
te for which x;e =1 and, for each ¢ € C'\ {c} and f € E. with V(f)NV(e) #0 and if € E(L.), we
have ;5 = 0.
Claim 38. With high probability, we have the following properties.

Z1 For each c € C and I C I. with 1 < ‘I| < 77,0/2D1, |NL’C’(I)‘ > D1u|

Z2 Yor each c € C and E C E. with 1 < |E| < no/2D1, |Np»(E)| > D1l E|.

Z3 For each ¢ € C, and any sets I C I. and E C E. with |I|,|E| > no/4D1, there is an edge between

I and F in L.

Proof of Claim Let ce C,i € I. and e € E. with ie € E(L.). Let F; . be the set of edges f # e
for which V(f) NV (e) # 0 and if € E(L;;)). Then, we have

N x4
|Fie] < Z {z € Ri2 : wz € B}, c(wz) € Cy,if € E(L'c(f))}| < 4ulo, (95)
weV(e)
and, hence,
Ple € B(LY)) > n(1 —n)/ el > n(1 —n)*20 > /2. (96)

if |I| < no(log®n)/uDo: Let ¢ € C and I C I. with 1 < |I| < no(log?n)/uDo. Then, we
have |Np: (I)| > pDo|I|/30 log?®n by Letting X.,r = |[Npv(I)|, we have that X, is 2-Lipschitz
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and affected by at most [Ny (I)| - 44 random variables x;e by and EX. 1 > |Np/ (I)] - n/2e >
nuDo|I|/60elog?n > 2D1|I|. Thus, by Lemma [2.7} we have that

Np (I)|- e)’ QNL/ !
P(Xer < Dill]) < 2exp (i(-l o ﬁA)> e (Q (W»

2
= 2exp (—Q (77] MDOLI' )> 2exp (—Q <7pTDO|QI| ))
Ao log“n Aplog“n
®2)
= exp(—w(|I|logn)). (97)

)

Therefore, by a union bound, with high probability, for every ¢ € C and I C I. with 1 < [I] <
no(log? n)/pDo, we have [Nz, ()] > D1|l].

if [I] > no(log®n)/uDo: Let ¢ € C and I C I. with no(log®n)/uDo < |I| < no/2D1. Let
¢ = |pqo|I|/4] and note that

0 @ paolll _(, (11D @  (Dilllogn
= 32ul n0Ao o '

(98)

Let E be a maximal set of e € E. for which [Nz, (e) N I| > ¢, and let L, ; C L contain exactly
¢ edges from each vertex in E into I. Suppose, for contradiction, that |E. \ E| > mno/10. Then,
er, (I, E\E) < £-|E\E| < pgo|I||Ec\ E|/4, which contradicts[Y3] Thus, |E| > |Ec|—no/10 > 0.8no.

For each e € E, using (98)), we have P(e € NL’c/ﬁL’C,I(I’ E)) > 1—(1-n/2¢)" > min{0.99,3D1|I|/no}.
Thus, letting X1 5 = |NLQ/QL/CYI(I,E)|, we then have that EX7 g > min{0.75n0, 2D:1|I|} = Q(D1]|I]).
As X1 g is 2-Lipschitz and affected by at most |E| - £-4pA¢ = O(no - pqo|l| - \/pr) random variables
Zie by by Lemma [277] we have that

— e (-0 (%)) — exp(—w(|1]logn)).

Therefore, by a union bound, with high probability, holds if |I| > no(log®n)/uDo.

[Z2} That[Z2]hold with high probability follows similarly, again splitting into cases depending on
whether |E| < ng(log®n)/uDyo or not.

Letce C, I Cl.and E C E. satisty |I|,|E| > no/4D1. Let N = e, (I, E). As log? n/4uDo <
no/4D1, bywe have N > uqol|l||E|/2. By , we have EX g > nN/2e. As X1 g is 2-Lipschitz
and affected by at most N - -4ulAg = O(N/n) random variables x;. by and (94), by Lemma [2.7]
we have that

P(Xr,g > 0) <exp (fQ (%)) = exp (fQ (173N)) = exp (fQ (n3yqo|l\|E|))

: ez
— exp (=0 (i1 uqo max{|1], 1 E1} - no/D1)) @ exp (~92 (a0 log? nmax{|1], | [} - no/Do))
= exp(—w(max{|I|,|E|}logn)).
Therefore, by a union bound, with high probability, holds. B

Thus, by Claim [38] we can assume that hold, using which we show the following claim.
Claim 39. For each ¢ € C, L. has a perfect matching.

Proof of Claim[39 Fix ¢ € C. If I C I. with |I| < no/2D1, then, by [Npo(I)] > Di|I| > |T).
Suppose, then, that I C I. with no/4Dy < |I| < |Ic|/2. Then, by [Z3} we must have |E. \ Npy(I)| <
no/4D1, and, hence

INLi(I)| > |Ec| = no/4D1 = |Ic| — no/4D1 > |Ic|/2 > |I].

Thus, for any I C I. with |I| < |I|/2, we have |[Np,(I)| > |I|. Similarly, byand we have
that [Np» (E)| > |E| for any E C E. with |E| < |E.|/2 = |Ic|/2. Then, for any I C I. with [I[ > |I.|/2,
if [Np(I)] < |I], then we have that |Ec \ N (I)] < |Ic|/2, and thus |1\ I| > [Np(Ec \ Np» (1)) >
|Ee \ Npu»(I)], so that

[Ny (D] = |Ee| = [Ee \ Noy (D] 2 |Ee| = [T\ 1] = [1].

Therefore, Hall’s matching condition holds, and thus there is a perfect matching in L. B
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By Claim 39 . we can choose bijective functions . : I. = Fe, ¢ € C, Such that, for each ¢ € C and
i € I, ip.(i) € E(LY). For each i € Iy, let M; o = {tc(i) : ¢ € C; \ C(M; 1)} Observe that each of
these subgraphs is a matching. Indeed, if i € I, and e, f € E. with ie,if € M; > C E(L.) and e # f,
then we have ;. = z;y = 1. For any edge f’ € E. intersecting e with if € E(L.), we have ;7 = 0,
and thus e and f do not intersect, so that ]\Zfi,z is a matching. Moreover, by construction, Mi,g is
rainbow with colour set (C’ \ C(M;,1))-

For each 7 € let M M 1 U ]\/[Z 2 We will show that M hold, thus completing the
proof of Lemma First, for each i € [n], as Ml 1 and Ml 2 are rainbow matchings with vertex sets
in (Vi \ Ri)URi and R;,2 and colour sets C(M; 1) and C; \ C(M; 1) respectively, we have that M; is
a rainbow matching with colour set C; (and thus 0l holds) and V (M;) C V;. Thus, by the property
from we have that holds.

Finally, for [C12] letting ¢ € F and v € Sy, we wish to show that

Hiely:ve R\V(M)} =|{icly:veT}. (99)
Let, then, ¢ € F and v € Sg. First, note that, by
Hiely:ve RRA\V(M)} =|{i €ly:veVi}|—|{i€ly:veV(M)}. (100)

Now, for each ¢ € F and v € Sy,
Hiely:ve V(M) = He € U M;:ve V(e)}‘ = He € (E;U ( U le)) (v € V(e)}‘
i€l iel,

el veVi}| - [{icl, veT}

In combination with (100), this implies that holds, as required. This completes the proof of
Lemma 3.5
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