
Almost every Latin square has a decomposition into transversals

Candida Bowtell∗ Richard Montgomery†

January 19, 2025

Abstract

In 1782, Euler conjectured that no Latin square of order n ≡ 2 mod 4 has a decomposition into
transversals. While confirmed for n = 6 by Tarry in 1900, Bose, Parker, and Shrikhande constructed
counterexamples in 1960 for each n ≡ 2 mod 4 with n ≥ 10. We show that, in fact, counterexamples
are extremely common, by showing that if a Latin square of order n is chosen uniformly at random
then with high probability it has a decomposition into transversals.
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1 Introduction

A Latin square of order n is an n by n grid filled with n symbols so that each row and column contains
each symbol exactly once. A transversal in a Latin square of order n is a collection of n cells which
share no row, column, or symbol. Latin squares have a long history preceding their modern study;
for more on this, we recommend the historical survey by Andersen [4], while the broader study of
transversals in Latin squares is covered in surveys by Wanless [45] and Montgomery [30].

In 1782, Euler [11] considered: for which n is there a Latin square of order n which can be decom-
posed into n disjoint transversals? The case n = 4 was the topic of an old recreational mathematics
problem [32], while Euler was initially particularly interested in the case n = 6, considering his fa-
mous ‘36 officers problem’. In this problem, there are 36 officers of 6 different ranks from 6 different
regiments, with an officer of each rank in each regiment. Can they stand in a 6 by 6 grid so that
each row and each column contains officers of different ranks and different regiments? If there were a
solution, then, neglecting the ranks, giving each officer the symbol of their regiment will form a Latin
square of order 6. For each rank, the set of officers of that rank marks out a transversal, so that this
arrangement would give a decomposition of the Latin square of order 6 into 6 disjoint transversals1.

Euler believed there was no solution to his 36 officer’s problem, though this was not confirmed
until work by Tarry [43] in 1900. More generally, after demonstrating that there are Latin squares of
order n which can be decomposed into n disjoint transversals when n 6≡ 2 mod 4, Euler conjectured
that there are no examples when n ≡ 2 mod 4. This is true for n = 2 and n = 6, but, in 1959, Bose and
Shrikhande [7] showed that Euler’s conjecture is false by constructing counterexamples for n = 22 and
n = 50, before, shortly after, showing with Parker [6] that the conjecture is false for every n ≡ 2 mod 4
with n ≥ 10.

The development of the probabilistic method has shown the power of considering random objects
as potential counterexamples. It is interesting then, to ask how common counterexamples to Euler’s
conjecture are, and, in particular, whether a random Latin square of order n ≡ 2 mod 4 is typically a
counterexample? For each n ∈ N, let L(n) be the set of Latin squares of order n which use symbols
in [n] = {1, . . . , n}, and let Ln be drawn uniformly at random from L(n). In 1990, van Rees [44]
conjectured that a random Latin square Ln should not have a decomposition into transversals with
high probability (whp), however, Wanless and Webb [46] observed in 2006 that numerical calculations
suggest that Ln should have such a decomposition with high probability.

It has long been known that, when n is even, a Latin square of order n may not have even a
single transversal (as, for example, seen by the canonical example of the addition table for Z2m, for
any m ∈ Z). However, any Latin square of order n does contain a large partial transversal, that
is, a large collection of cells which share no row, column, or symbol. The natural extremal problem
on the size of the largest partial transversal that always exists is the topic of the well-known Ryser-
Brualdi-Stein conjecture [8, 40, 42], with origins from 1967, which suggests that every Latin square of
order n should have a transversal when n is odd, and a partial transversal with n− 1 cells when n is
even. Following a long-standing bound of Shor [41] (whose proof was later corrected by Hatami and
Shor [17]), significant progress towards the Ryser-Brualdi-Stein conjecture has been made in recent
years by studying Latin squares from the perspective of edge-coloured graphs (as we do here, and as
is described in Section 2.1). In particular, after significant progress by Keevash, Pokrovskiy, Sudakov
and Yepremyan [20], Montgomery [29] showed that, for sufficiently large n, every Latin square of order
n has a partial transversal with n− 1 cells. This comes very close to a single transversal, while in this
paper we wish to determine whether, with high probability, we can find n disjoint transversals in a
random Latin square. In every Latin square of order n this is not possible. Indeed, clearly for every
even order n we have examples of Latin squares with not even a single transversal, and Wanless and
Webb [46] confirmed the existence of Latin squares which do not have a decomposition into transversals
for every order n > 3. However, some approximate version of this is true. In particular, Montgomery,
Pokrovskiy and Sudakov [31] showed that every Latin square of order n contains (1− o(1))n disjoint
partial transversals with (1− o(1))n cells.

This is all to say that every large Latin square has some approximation of the properties we want
to find in a random Latin square whp. However, finding these exact properties in a random Latin
square whp is surprisingly difficult. For example, it is very challenging to show even that a typical
random Latin square contains at least one transversal, and this was proved only in 2020, by Kwan [24].

1Neglecting the regiments and affixing each officer with the symbol of their rank also gives a Latin square (see Figure 1),
which is orthogonal to the Latin square given by the regiments. That is, all possible n2 pairs of symbols appear in matching
row/column pairs of the two Latin squares. Finding two orthogonal Latin squares of order n is equivalent to the formulation
of finding a Latin square of order n which decomposes into transversals. In this paper, we will use the latter form.
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Figure 1: Two Latin squares decomposed into transversals. On the left, the addition group of integers
mod 9 is given, which is then decomposed into transversals indicated by integers in the top right, starting
with the transversal along the leading diagonal (marked by 0) which is then moved to the right by 1
mod 9 8 times to create 8 new transversals. On the right, Bose, Parker, and Shrikhande’s example of a
Latin square of order 10 with a transversal decomposition [7].

A significant part of the challenge is finding a way to study a random Latin square. Roughly, this
can reasonably be pinned to the rigidity of Latin squares; that is, that it is hard to make small
modifications to a Latin square to reach another Latin square.

In [24], Kwan’s main focus was the closely related problem of finding a perfect matching in a
uniformly random Steiner triple system of order n ≡ 3 mod 6, using methods that could be adapted
for transversals in Latin squares (see below as well as [24] for more details on this, and its connection
to transversals in Latin squares). Ferber and Kwan [12] subsequently showed that a random Steiner
triple system of order n ≡ 3 mod 6 contains disjoint perfect matchings covering all but o(n2) of its
edges. Though they did not do so, similar adaptations to their methods appear capable of showing
that a random Latin square of order n has, with high probability, (1− o(1))n disjoint transversals. In
this paper, we will show that, in fact, with high probability a random Latin square contains n disjoint
transversals. In particular, then, the proportion of Latin squares of order n ≡ 2 mod 4 which provide
a counterexample to Euler’s conjecture tends to 1 as n tends to infinity.

Theorem 1.1. A random Latin square of order n has a decomposition into transversals with probability
1− o(1).

Since the result of Kwan [24], two alternative methods have been developed to show that a random
Latin square of order n has a transversal with high probability, each moreover strengthening this result
in different ways. Firstly, Eberhard, Manners, and Mrazović [9] gave a remarkably tight estimate on
the number of transversals in a typical random Latin square of order n, using tools from analytic
number theory. Then, Gould and Kelly [15] developed techniques from their previous work with
Kühn and Osthus [16] to show that a random Latin square is likely to contain a particular type of
transversal known as a ‘Hamilton transversal’, using more combinatorial methods than [9], but which
are distinctly different to those in the original approach of Kwan [24]. To prove Theorem 1.1, we also
take a combinatorial approach. Before discussing this further, we will discuss the connection of our
work to resolvable designs.

Resolvable designs. Our main result also forms part of the area of hypergraph decompositions,
with particularly strong links to resolvable designs. An (n, q, r, λ)-design is a collection S of q-element
subsets of an n-element set X such that every r-element subset of X is contained in exactly λ sets in
S. The design, moreover, is called resolvable, if S can be partitioned into perfect matchings, that is,
collections of vertex-disjoint sets in S which cover every element of X. Resolvable designs have a long
history, dating back to Kirkman’s schoolgirl problem [22] from 1850 (see [47] for a detailed history).
For any given parameters, the existence of a resolvable (n, q, r, λ)-design requires some simple necessary
divisibility conditions (see [19]). Subject to these, when r = 2 and n is large, resolvable (n, q, r, λ)-
designs were shown to exist by Ray-Chaudhuri and Wilson [35, 36] in the 1970’s, while for r > 2 and n
sufficiently large, resolvable (n, q, r, λ)-designs were shown to exist by Keevash [19] in 2018, following
his revolutionary proof of the existence of designs in [18].
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A Steiner triple system of order n is an (n, 3, 2, 1)-design; they were observed to exist if and only
if n ≡ 1, 3 mod 6 by Steiner in 1853 (see [47]). Equivalently, a 3-uniform hypergraph H is a Steiner
triple system if it has n vertices, each pair of which is contained in exactly one edge. A Latin square
L of order n is equivalent to a 3-partite 3-uniform hypergraph HL with n vertices in each class A, B
and C, representing the rows, columns and symbols respectively, where we add an edge abc exactly
when the symbol c appears in L in the cell (a, b). Then, the conditions for a Latin square imply that
every pair of vertices of HL from different classes appear in exactly one edge of HL. Furthermore,
a transversal in L corresponds exactly to a perfect matching in HL, so that L has a decomposition
into transversals if and only if HL is resolvable. Thus, we have shown that the hypergraph HL
corresponding to a random Latin square L is with high probability resolvable.

As mentioned above, in 2020 Kwan [24] showed that if a Steiner triple system of order n ≡ 3
mod 6 is chosen uniformly at random then it has a perfect matching with high probability. Subse-
quently, Ferber and Kwan [12] showed that almost every such Steiner triple system has (1/2− o(1))n
disjoint perfect matchings, where these matchings must then use all but o(n2) of the triples, so that
the triple system is thus almost resolvable. Ferber and Kwan [12] conjectured that, if n ≡ 3 mod 6,
then almost every Steiner triple system of order n is resolvable. That is, that the equivalent result to
Theorem 1.1 should hold for Steiner triple systems. It would seem that new ideas are needed, however,
to show this. In particular, we will use results (discussed in Section 2.4) which do not have a known
analogue in the non-partite setting as they follow by counting perfect matchings in bipartite graphs.
The techniques used in [12, 24] are quite different from those we use here. In [24] a random Latin
square is studied by approximating it using a modified random triangle removal process, while [12]
additionally uses a generalisation of the sparse regularity lemma to hypergraphs in conjunction with
a generalisation to linear hypergraphs of the resolved K LR conjecture.

Our methods. To prove Theorem 1.1, we will construct an intricate absorption structure. We first
construct a template independent of the Latin square, and then adapt the template to a randomly
chosen Latin square using the semi-random method applied in auxiliary hypergraphs, finding the
properties we require to hold whp in a random Latin square using the deletion method and (implicitly)
the switching method. Often, we will require strong recent developments of these techniques, along
with further novelties. These techniques are described in detail where appropriate throughout the
paper, beginning with an overview of the proof, and the rest of the paper, in Section 2. Let us
highlight here, though, some particularly key points about our proof.

The first is that we develop an ‘absorption schematic’ (in Part A of our proof) which gives a
sparse set of possible local corrections that together can make any (reasonable) globally-balanced set
of corrections (see Section 3.3 and Section 4 for full details). This is a template for building an absorber
which is independent of our work in random Latin squares, and thus may be useful elsewhere.

Secondly, the switching method can and has been used directly to find small substructures in
random Latin squares (see, for example, [15]), but instead we will use the deletion method. This was
used by Kwan, Sah, and Sawhney [25] to bound above the likely number of certain substructures,
and, as well as developing this, we will show how to use the deletion method to bound below the
likely number of some particular substructures we will use. This, and its advantages over using the
switching method directly, is discussed in Section 5.1.

Finally, let us note here that a major source of the complexity in finding our required absorption
structure in a random Latin square via the semi-random method is that it is found in three applications
of the semi-random method to an auxiliary hypergraph, the last of which depends on a previous
application. That is, we will find part of the absorption structure and require it to satisfy some
carefully chosen properties so that we can then apply the semi-random method again to find certain
paths connecting up this initial structure. While this requires us to use a forbidding list of properties,
and to apply a recent implementation of the semi-random method using weight functions to record
desirable properties (see Section 2.3), all of these properties will confirm some simple heuristic.

2 Proof overview and preliminaries

In this section, we will sketch the overall form of our proof of Theorem 1.1, before briefly outlining
the rest of the paper and then covering some preliminaries. Most notably, these preliminaries include
recalling an implementation of the semi-random method (in Section 2.3) and the results we will use
to prove many of the properties in random Latin squares (in Section 2.4).
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2.1 Proof sketch

As is now common (and following, for example, [20]), we will approach Theorem 1.1 by studying an
equivalent formulation in properly coloured graphs. Let Kn,n be the complete bipartite graph with
vertex classes A and B, where |A| = |B| = n. A proper colouring of Kn,n is a colouring of the edges
so that no two edges which share a vertex have the same colour. An optimal colouring is a proper
colouring which uses the minimum number of colours among all proper colourings, which, for Kn,n, is
n. We will always assume Kn,n is properly coloured using colours from C := [n] = {1, . . . , n}.

Given a Latin square L of order n whose rows are indexed by A and columns by B, which further-
more uses the symbol set [n], we can define an equivalent optimal colouring of Kn,n as follows. For
each a ∈ A and b ∈ B, let the colour of ab, denoted by c(ab), be the symbol in the cell of L whose
row corresponds to a and whose column corresponds to b. That a Latin square has n symbols with
no symbol appearing twice in any row or any column immediately implies that this colouring uses
n colours and is proper, and thus we have an optimal colouring of Kn,n. Similarly, a Latin square
of order n can be constructed from any optimal colouring of Kn,n, and thus the optimal colourings
of Kn,n correspond exactly to the Latin squares of order n. Furthermore, it is easy to see that a
transversal in a Latin square corresponds exactly under this equivalence to a perfect matching in the
corresponding optimally coloured Kn,n which has a different colour on each of its edges. We refer to
such a matching as a rainbow perfect matching. Further connections and related problems on rainbow
subgraphs can be found in the recent survey by Pokrovskiy [34].

We will show the following equivalent version of Theorem 1.1.

Theorem 2.1. Let G be an optimally coloured copy of Kn,n chosen uniformly at random from all such
colourings. Then, with probability 1− o(1), G has a decomposition into rainbow perfect matchings.

We write Gcol
n for the collection of optimally properly coloured copies of Kn,n coloured with colour

set C = [n] and write G ∼ Gcol
n when G is selected uniformly at random from Gcol

n . Our aim, then,
is to show that G ∼ Gcol

n with high probability has a decomposition into n-edge (perfect) rainbow
matchings, M1, . . . ,Mn. We refer to these rainbow matchings as our target matchings. Using the
semi-random method (as, for example, implemented in Latin squares by Montgomery, Pokrovskiy
and Sudakov [31]) it can be shown that any G ∈ Gcol

n contains n disjoint rainbow matchings of size
(1 − o(1))n. With care, this could be used along with a random partitioning of the remaining edges
(somewhat like we do in Section 7.6) to show that, with high probability, G ∼ Gcol

n can be decomposed
into n rainbow subgraphs M1, . . . ,Mn, one for each of our n target matchings, which each have n edges
and are close to perfect matchings, in that they have maximum degree at most 2 and (1 − o(1)) · 2n
of the vertices have degree 1. Our aim is to take such a relaxed decomposition, and correct it into n
perfect rainbow matchings. To do so, we will use methods falling under the overall general technique
of ‘absorption’, as codified by Rödl, Ruciński, and Szemerédi [39] in 2006. The fundamental idea here
is that we should prepare for the corrections we will need to make at the end by initially choosing
parts of our random subgraphs to allow later corrections to be made. In particular, this preparation
and care at the start ensures that we are able to make a large number of different possible corrections,
which subsequently leads to more flexibility in completing to a suitable relaxed decomposition, which
we then know can be corrected into perfect rainbow matchings due to the care taken at the start.

To illustrate this, let us give a simple example (see also Figure 2). Suppose a vertex x has degree
2 in M1 and degree 0 in M2 while a vertex y has degree 2 in M2 and degree 0 in M1. If there are
matchings F1 ⊂ M1 and F2 ⊂ M2 such that F1 and F2 have the same colours and have the same
vertex set except that V (F1) contains x but not y and V (F2) contains y but not x, then we can correct
the degrees of x and y in M1 and M2 by switching F1 and F2 between these near-matchings. That
is, letting M ′1 = (M1 \ F1) ∪ F2 and M ′2 = (M2 \ F2) ∪ F1, we have two subgraphs which still have n
edges and are still rainbow, use all the edges in M1 ∪M2 (so are still edge-disjoint from M3, . . . ,Mn),
and in which the degrees of all the vertices in M ′1 and M ′2 are the same as in M1 and M2 except now
x and y both have degree 1 in these subgraphs. We call (F1, F2) an {(1, x), (2, y)}-switcher, as it can
alter the degree of x and y in M1 and M2 while keeping the edge colours and other vertex degrees the
same.

We could ensure that M1 and M2 contain together such a switcher by finding in G an x, y-path
whose odd and even edges form subgraphs which are rainbow and use the same colour set, and
assigning the even edges to M1 and the odd edges to M2 (see Figure 2 for a shorter example of the
switcher we eventually use). As discussed later, some such paths will likely exist when we choose
G ∼ Gcol

n , though they will be rare enough that we will have to specifically construct our matchings
to contain such a switcher. Given edge-disjoint rainbow near-matchings M1, . . . ,Mn, i, j ∈ [n] and
either x, y ∈ A or x, y ∈ B, we define an {(i, x), (j, y)}-switcher to be an even length x, y-path P
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Figure 2: A simple {(i, x), (j, y)}-switcher.

consisting of edges e1e2 . . . e2s for some s ∈ N such that Modd := {e2k−1 : k ∈ [s]} ⊆ Mi and
Meven := {e2k : k ∈ [s]} ⊆ Mj , with Modd and Meven being rainbow matchings with the same colour
set. As described above, such an x, y-path P would enable us to switch edges in Mi and Mj such that
the updated subgraphs are still rainbow in the same colour set and now in Mi vertex x has degree one
less and y has degree one more, and in Mj vertex y has degree one less and vertex x has degree one
more.

These switchers are a simple mechanism to make a small correction to two near-matchings. We
wish to keep these switchers as simple as possible as it will be difficult to find many of them in a
random optimal colouring of Kn,n. We will, then, need to build and use these switchers very carefully,
due to the following two main considerations.

• We can only create few switchers. There are around n4 choices for i, j, u, v for which we
could find an {(i, u), (j, v)}-switcher, but the switchers we use need to be chosen edge-disjointly,
so we can use at most Θ(n2) of them.

• We have to make local alterations in pairs. Each near-matching M̂i, i ∈ [n], will have a
set of vertices that are not covered, R′i, and a set of vertices that are covered twice, Ti. Using
switchers, we cannot swap out v ∈ Ti from M̂i (i.e., altering its degree from 2 to 1) and swap
in u ∈ R′i without swapping u out of another near-matching M̂j and swapping v into the same
near-matching, M̂j , so we must find some j ∈ [n] such that u /∈ R′j and v /∈ Tj , and that this
swap is desirable.

To reduce the number of switchers we will need, we will divide our target matchings into ‘families’,
and ensure that the corrections we need to make at the end can be done only by switching vertices
between target matchings in the same families. Furthermore, we will ensure that the vertices uncovered
or covered twice by each near-matching M̂i belong to sets Ri and Ti, respectively (where Ri will
function as a ‘vertex reservoir’ in absorption terminology). We will arrange the families into ‘tribes’,
where families in the same tribe will help each other to make their corrections by participating in
swaps that do not change the degrees or edge colours for that matching. The tribes will make their
corrections essentially independently of each other, reducing the number of potential switchers we
need to create.

Having created our absorption schematic, we then find the switching paths we need with high
probability in the randomly chosen graph G ∼ Gcol

n . This will result in rainbow near-matchings
M̂ ′1, . . . , M̂

′
n that we then wish to extend to get n-edge perfect rainbow near-matchings M̂1, . . . , M̂n.

For each i ∈ [n], in extending to get M̂i we wish to use exactly all the colours not used on M̂ ′i , while
also covering a set Li of all the vertices without at least one edge in M̂ ′i which are not in Ri. The
flexibility to do this will come from being able to find edges to cover those vertices in Li that have
their other end point in the reservoir set Ri, where |Ri| is much larger than |Li|. Furthermore, we
wish to do this so that we can make the final corrections only within each family, so we will need to
do these extensions so that the corrections needed for the matchings within each family are suitably
balanced.

To summarise, then, we will divide the proof into three mains parts, as follows.

A Creating an absorption schematic.

B Realising the absorption schematic by finding disjoint rainbow near-matchings.

C Extending the near-matchings to perfect rainbow near-matchings, so that furthermore the re-
quired corrections are balanced within families and any unused vertices lie in the reservoir sets.

Each of these parts is relatively complex and thus we will sketch our methods in detail before
beginning each part. However, for now, we make some brief remarks on some of the ideas we use.
For Part A, we will use ideas from template-based absorption approaches (whose roots lie in the
introduction of distributive absorption in [28]) to reduce the number of different switchers we need to
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create. To decompose the final changes that need to be made to obtain appropriate pairs of switches,
we will use methods inspired by work of Barber, Kühn, Lo and Osthus [5].

For Part B, to find the switching paths we will use the semi-random method as created by Rödl [37],
using a strong recent implementation by Ehard, Glock and Joos [10]. For this, we will need to find
tight bounds on, for example, for each pair of distinct vertices x, y in the same class (i.e., in A or
B) the likely number of x, y-paths of length 62 in G whose odd and even edges use the same 31
(distinct) colours. For the upper-bound on their number that holds with high probability we will use
the deletion method of Rödl and Ruciński [38], following and developing recent work of Kwan, Sah and
Sawhney [25]. In contrast to the direct use of the switching method used by, for example, related work
of Gould, Kelly, Kühn and Osthus [16], we show how to use the deletion method for the lower bound
as well, where more discussion on this approach, and why we take it, can be found in Section 5.1.

For Part C, we again use the semi-random method along with greedy methods to cover vertices not
in the vertex reservoir for each target matching. To balance the corrections needed within each family,
we use structures similar to those in Figure 2, but we will not need to set them aside beforehand for this
purpose. Finally, then, we carefully randomly partition the remaining edges between the matchings.

Paper outline. In the rest of this section we will describe some of our key notation before
covering some other preliminaries. In Section 3, we will give a detailed set-up and divide the proof
of Theorem 2.1 formally into three key lemmas, representing Parts A, B and C respectively. In
Sections 4, 6 and 7 we will carry out Parts A, B and C of our proof respectively, whilst in Section 5
we obtain bounds on the numbers of switchers with certain fixed colours and vertices, which are crucial
for aspects of the proof in both Parts B and C.

2.2 Notation

Much of the notation used throughout this paper is introduced when it first appears, but here we will
comment on some notation used throughout the paper. For each n ∈ N, Kn,n is the complete bipartite
graph with n vertices in each class, where we use A and B throughout as its two vertex classes. We use
C = [n] = {1, . . . , n} throughout as our set of colours, and also use [n]0 = {0, 1, . . . , n}. For vertices
x, y ∈ V (Kn,n), we use x ∼A/B y to indicate that x and y are in the same vertex class A or B, and
x 6∼A/B y to indicate that x and y are in different vertex classes. For a set of colours D ⊆ [n], Gcol

D

is the collection of all properly coloured bipartite (simple) graphs with vertex classes A and B which
have exactly n edges of each colour in D. Then, Gcol

[n] corresponds to the collection of all Latin squares
of order n using the symbols in [n] under the standard equivalence recalled at the start of this section.
We write G ∼ Gcol

D when G is a graph chosen uniformly at random from Gcol
D . When G ∈ Gcol

[n] and
D ⊂ [n], the graph G|D is the subgraph of G of edges with colour in D.

We will occasionally use multisets, where the elements may occur with repetition. Here, we write
X =mult Y to require not only that the elements of X and Y are the same, but that the multiplicity of
each element is the same. For each edge e in a coloured graph G, we write cG(e) to denote the colour
of the edge e, often dropping the subscript when it is clear from context. Furthermore, unless stated
otherwise, we write H ⊂ G, to mean that H is a subgraph of G which inherits the colouring from G.
That is, for each e ∈ E(H) we have that cH(e) = cG(e). An x, y-path P of length ` is a path with `
edges which has x and y as its endvertices, and we set `(P ) = `. We often have an implicit direction
on such a path P , and when referring to its kth edge we count from x.

The notation
poly

� is used throughout the paper to compare variables. Where α
poly

� β, this means
that there is some constant C > 0 which can be chosen so that any required inequalities in the rest
of the proof hold if α ≤ βC/C. For longer hierarchies (as found primarily at (2)), these implicit
constants are to be chosen from right to left. A detailed overview of this notation can be found in [31].
Less commonly, we also use the more standard notation α � β where this means that there is some

non-negative decreasing function f such that what follows will hold for all α ≤ f(β). Thus, α
poly

� β
means that such a function f can be taken to be polynomial in β. We also use ‘big-O’ notation, as
standard. For any a, b, c ∈ R, we say a = b ± c if b − c ≤ a ≤ b + c. For any hypergraph H, we use
∆c(H) to denote the maximum codegree of H.

2.3 Matchings in hypergraphs via the semi-random method

Almost-regular hypergraphs with small codegrees have an almost-perfect matching. This statement
summarises a chain of results using the ‘Rödl nibble’ (also known as the ‘semi-random method’), that
was initiated by Rödl [37] in 1985, and has since seen a range of qualitative improvements in the
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variables implicit in ‘almost’-regular, ‘small’ codegrees and ‘almost’-perfect. The ‘polynomial’ bounds
we will use result from a sequence of improvements due to Frankl and Rödl [13], Pippenger (see [10]),
Alon, Kim, and Spencer [1], and Kostochka and Rödl [23].

Beyond good bounds, we will use that the almost-perfect matching found can in fact have a variety
of pseudorandom conditions. For example, in a hypergraph H, given a medium-sized vertex set V ,
we may wish the almost-perfect matching to cover almost all of V . Alon and Yuster [3] built on work
of Pippenger and Spencer [33] to give the first result of this kind, showing that the almost-perfect
matching could be found to be pseudorandom with respect to many pre-specified vertex sets. We
will use the following result of Ehard, Glock, and Joos [10], which gives good bounds on the various
parameters involved, while producing an almost-perfect matching that is pseudorandom with respect
to many pre-specified weight functions.

Theorem 2.2. [10, Theorem 1.2] Suppose δ ∈ (0, 1) and r ∈ N with r ≥ 2, and let ε = δ/50r2. Then,
there exists ∆0 such that, for all ∆ ≥ ∆0, the following holds.

Let H be an r-uniform hypergraph with ∆(H) ≤ ∆ and ∆c(H) ≤ ∆1−δ as well as e(H) ≤ exp(∆ε2).

Suppose that W is a set of at most exp(∆ε2) weight functions on E(H). Then, there exists a matching
M in H such that ω(M) = (1±∆−ε)ω(E(H))/∆ for all ω ∈ W with ω(E(H)) ≥ maxe∈E(H) ω(e)∆1+δ.

2.4 Results on random Latin squares from switching methods

A Latin rectangle of order n with k rows is a k × n array filled with n symbols so that each symbol
appears in each row or column exactly once. Thus, a Latin rectangle of order n with n rows is a
Latin square of order n, and picking k rows of any Latin square forms a Latin rectangle. Working
in edge-coloured graphs, under the correspondence given at the start of Section 2.1 to move between
Theorem 1.1 and Theorem 2.1, such a Latin rectangle corresponds to a complete bipartite graph
which is properly coloured with n colours before n−k vertices are deleted from one vertex class. More
naturally, we will consider instead here the following equivalence to k-regular bipartite graphs with n
vertices in each vertex class which are properly coloured with k colours.

Let D ⊂ [n] be a set of size k. Let A and B be our two vertex classes of n vertices. Let G be a
k-regular bipartite graph with vertex classes A and B which is properly coloured with the colours in
D. Let L(G) be the k× n grid with rows indexed by D and columns indexed by A, where we put the
symbol b ∈ B in the cell indexed by (c, a), with c ∈ D and a ∈ A, exactly if ab is an edge in G with
colour c. Note that L is a bijection from Gcol

D to the set of Latin rectangles with rows indexed by D,
columns indexed by A, and the set of symbols given by B.

We will use the following result, which is [25, Theorem 3.3] (itself a direct result of McKay and
Wanless [27, Proposition 4]) rephrased equivalently in random optimal colourings (see also [15, Propo-
sition 4.4]).

Theorem 2.3. Let D ⊂ [n] and H,H ′ ∈ Gcol
D . Let G ∼ Gcol

[n]. Then,

P(G|D = H)

P(G|D = H ′)
= eO(n log2 n).

Given a ∈ A, b ∈ B, c ∈ [n] and G ∼ Gcol
[n], the probability that ab has colour c in G is 1/n by

symmetry. In other words, if H is the bipartite graph with vertex classes A and B which has only
one edge, an edge between a and b with colour c, then P(H ⊂ G) = 1/n. As long as H has few
edges and is properly coloured with colours in [n], we might hope to show that P(H ⊂ G) is close to
(1/n)e(H). The rigidity of optimal colourings of Kn,n (i.e., the corresponding rigidity of Latin squares),
however, makes it difficult to determine this probability. However, we can have a good bound on the
corresponding probability for P(H ⊂ G|D), where D ⊂ [n] contains all of the colours of the edges
of H (and not too many edges have the same colour). The following bound is a direct consequence
of Theorem 3.4 in [25] translated into random optimal colouring. The original was, in turn, a direct
consequence of a result by Godsil and McKay [14, Theorem 4.7]) which was proved using the switching
method.

Theorem 2.4. Let δ ≤ 1/10 and D = [δn]. Let H be a properly coloured bipartite graph with vertex
classes A and B which uses colours from D in which each colour appears at most δn times.

Let G ∼ Gcol
D . Then,

P(H ⊂ G) =

(
1 +O(δ)

n

)e(H)

.
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We will always apply Theorem 2.3 and Theorem 2.4 together, and therefore it will be convenient
to do this through the following corollary.

Corollary 2.5. Let δ ≤ 1/10 and G ∼ Gcol
[n]. Let H be a properly coloured bipartite graph with vertex

classes A and B which has at most δn colours, each of which is in [n] and is used at most δn times in
the colouring. Then,

P(H ⊂ G) = eO(δ·e(H)+n log2 n) · n−e(H).

Proof. Let D ⊂ [n] be a set of δn colours containing C(H). Let G′ ∼ Gcol
D , so that, by Theorem 2.4,

P(H ⊂ G′) =

(
1 +O(δ)

n

)e(H)

= eO(δ·e(H))n−e(H). (1)

Then, by Theorem 2.3, we have

P(H ⊂ G) =
∑

Ĝ∈Gcol
D

:H⊂Ĝ

P(G|D = Ĝ) =
∑

Ĝ∈Gcol
D

:H⊂Ĝ

eO(n log2 n)

|Gcol
D |

= eO(n log2 n) · P(H ⊂ G′)

(1)
= eO(δ·e(H)+n log2 n) · n−e(H),

as required.

2.5 Concentration inequalities

We will use the following standard version of Chernoff’s bound (see, for example, [2]).

Lemma 2.6. Let n be an integer and 0 ≤ δ, p ≤ 1. If X is a binomially or hypergeometrically
distributed random variable with mean µ = E[X] = np, then

P(X > (1 + δ)µ) ≤ e−δ
2µ/2 and P(X < (1− δ)µ) ≤ e−δ

2µ/3.

We will also use McDiarmid’s inequality (see [26, Lemma 1.2]), in the following form.

Lemma 2.7. Let X1, . . . , Xm be independent random variables taking values in X1, . . . ,Xm respec-
tively, and let ci > 0 for each i ∈ [m]. Let f : Xm → R be a function of X1, . . . , Xm such that, for all
i ∈ [m], x′i ∈ Xi, and xj ∈ Xj for each j ∈ [m], we have

|f(x1, . . . , xi−1, xi, xi+1, . . . , xm)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ ci.

Then, for all t > 0,

P(|f(X1, . . . , Xm)− E(f(X1, . . . , Xm))| ≥ t) ≤ 2e
− 2t2∑m

i=1
c2
i .

3 Set-up and division into key lemmas

In this section, we will choose the variables we will use in Section 3.1, using them in part to partition
the vertex/colour/edge sets in Section 3.2 in preparation for constructing the matchings. We then
state three key lemmas corresponding to the three parts of our proof in Sections 3.3 to 3.5. The first
key lemma is included here to give concrete details of the absorption schematic, but we do not use it
directly in this section, applying it to prove the second key lemma later. In Section 3.6 we use the
second and third key lemmas in combination to prove Theorem 2.1.

3.1 Variables

Recall that, to prove Theorem 2.1, our aim is to show that a uniformly random choice of an optimally
coloured copy of Kn,n decomposes into n disjoint rainbow perfect matchings, with high probability.
For each target matching i ∈ [n], we will have vertex sets Ri, Si, Ti, Ui, Vi,Wi, Xi, Yi, Zi, as depicted
in Figure 3. We now choose variables, where, for example, for each i ∈ [n], Ri will be chosen (in
Section 3.2) to be a random vertex set with around 2pRn vertices. Take the following variables:

1

n

poly

� ptr, pfa

poly

� ε
poly

� γ
poly

� β
poly

� pcov

poly

� pbal,1 . . .

. . .
poly

� pbal,2

poly

� ppt, α
poly

� pT
poly

� pU
poly

� pV
poly

� pW ,
1

logn
, (2)
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where, after setting up some more variables, we will ensure pW and ppt satisfy two equations (see
(3)). Take the following variables (which are stated first for future reference, and then after briefly
explained).

pR = (1 + α)pT pS = pU + pV + pW pI = 24(pS − pR) pJ = 72(pS − pR),

pX = (1 + β)pT pY = (1 + β)121(pS − pR) pZ = (1 + β) · 61 · 72(pS − pR)

p1 =
2(1 + β)pR

(1 + α)(1− ppt)
p2 =

50(1 + β)(pS − pR)

1− ppt
p3 =

62 · 72 · (1 + β)(pS − pR)

1− ppt

pabs = 1− ppt β0 =
1

1 + β
pS−R = pS − pR

Furthermore, take the values of pW and ppt appropriately so that

pS + pX + pY + pZ = 1 and p1 + p2 + p3 = 1, (3)

where for the first equation this is possible as pW is at the top of the hierarchy at (2) and for the
second equation we can set ppt so that this holds and then, as we do now, check that ppt fits into this
hierarchy. From pS + pX + pY + pZ = 1, we have

pS + (1 + β)(1 + α)−1pR + (121 + 61 · 72) · (1 + β)(pS − pR) = 1,

so that, from p1 + p2 + p3 = 1, we have

(1− ppt) = 2(1 + β)(1 + α)−1pR + (1 + β)50(pS − pR) + (1 + β) · 62 · 72(pS − pR)

= 1− pS + (1 + β)(1 + α)−1pR + (1 + β)(pS − pR)

= 1− pS + (1 + β)pT + (1 + β)(pS − pR)

= 1 + β(pT + pS − pR) + pT − pR
= 1 + β(pT + pS − pR)− pT · α, (4)

and hence

ppt = (1±
√
β)αpT . (5)

Thus, as pR ≈ pT and β
poly

� α
poly

� pT , it follows that β
poly

� ppt, α
poly

� pT , as required.
To give some explanation behind these variables (which will perhaps only really make sense when

they are used), we note the following. Later, we will construct a set I representing the switchers we
wish to create (as discussed in Section 2.1), and we will have |I| ≈ pIn2. The set J with size around
pJn

2 will be found in Part B.2 and represent simpler switchers, where each element of I will give
rise to 3 elements of J , and therefore we have chosen pJ = 3pI . As discussed in Section 2, for each
i ∈ [n] the set Ri will be a little larger than Ti, and this is why we have chosen pR = (1 + α)pT . For
each i ∈ [n], we will match Ti into Xi, and so Xi should be a little larger than Ti, and thus we have
chosen pX = (1 + β)pT .

For each i ∈ [n] and u ∈ Si \Ri (where |Si \Ri| ≈ 2(pS−pR)n), we will wish to create 24 switchers
involving switching u out from the ith near-matching, and thus as our instructions will give two such
pairs (i, u) to switch between, we have chosen pI = 24(pS − pR). For each i ∈ [n] and u ∈ Si \Ri, for
the ith matching we will initially assign 1 vertex from Yi common to all the 24 pairs in I involving
(i, u) and 5 other distinct vertices from Yi to each of these pairs. (For each pair, from the 6 assigned
vertices we will take 3 pairs into J , explaining why pJ = 3pI). As, for each i ∈ [n], we should use
slightly fewer than 2pY n vertices (the rough size of Yi), we have set pY = (1 +β) · (1 + 24 ·5)(pS−pR).
For each pair in J , we will construct a path as in Figure 2 but with length 62, using internal vertices
in Zi when the ith near-matching is involved. For each i ∈ [n], this will be around 2pJn pairs and we
will have |Zi| ≈ 2pZn, and thus we have chosen pZ to be a little larger than 61pJ .

The variables p1, p2 and p3 will be used to partition the colours into sets D1, D2 and D3, where
we reserve edges with probability ppt for Part C, and use the remaining edges of each colour set for
Parts B.1 to B.3, respectively. For Part B.1, we find for each i ∈ [n] a matching from Ti into Xi, and
thus use around 2pTn

2 edges in total; thus (1 − ppt)p1 is a little larger than 2pT = 2pR · (1 + α)−1.
For Part B.2, for similar reasons to those in our discussion with Yi, for each i ∈ [n] and u ∈ Si \ Ri
we find one edge and then, additionally, two edges for each pair in I involving (i, u), for around
2(pS − pR)n2 + 2pIn

2 edges in total. Therefore, we have chosen p2 so that (1− ppt) is a little larger
than 2(pS−pR+pI) = 50(pS−pR). Finally, for Part B.3, we will find 62 edges for the switching path
for each pair in J , for around 62pJn

2 edges in total, and thus we have chosen p3 so that (1− ppt) is
a little larger than p3 = 62pJ = 62 · 72(pS − pR).
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A ∪B

Zi

Yi

Ti

Ri

Ui Vi Wi

Xi

Si

Figure 3: For each i ∈ [n], we have a partition of A ∪ B into Si ∪ Xi ∪ Yi ∪ Zi (which is the same for
individuals i in the same tribe), a partition Si = Ui ∪ Vi ∪Wi (which is the same for individuals i in the
same family) and disjoint sets Ri, Ti ⊂ Ui (which are distinct for each individual i ∈ [n]).

3.2 Tribes, families, and partitions of the vertices, colours and edges

We now partition our target matchings into families, where the families are grouped into tribes, and
partition our vertices, colours, and edges into different sets which are used for different purposes
throughout the paper.

Tribes and families. Let T be a set with size dp−1
tr e, which we use to index our tribes, and,

for each τ ∈ T , let Fτ be a set with size dp−1
fa e, which we use to index the families of the tribe τ .

Partition [n] as equally as possible into Iτ , τ ∈ T , and then, for each τ ∈ T , partition each Iτ as
equally as possible into Iφ, φ ∈ Fτ . Let F =

⋃
τ∈T Fτ be the set of all of the families. Note that

|F| = dp−1
fa edp

−1
tr e = (1 ± ε2)p−1

fa p
−1
tr , for each τ ∈ T , |Iτ | = (1 ± ε2)ptrn, and, for each φ ∈ F ,

|Iφ| = (1± ε2)ptrpfan. For this, we have used that 1/n
poly

� ptr, pfa

poly

� ε.

Vertex partitions (see Figure 3). Recall that A and B are disjoint vertex sets with size n, which
we always use as the vertex classes of our complete bipartite graph. Using (3), independently, for each
τ ∈ T , partition A ∪ B into Sτ , Xτ , Yτ , and Zτ so that the location of each vertex v is independent
and such that

P(v ∈ Sτ ) = pS , P(v ∈ Xτ ) = pX , P(v ∈ Yτ ) = pY and P(v ∈ Zτ ) = pZ .

For each τ ∈ T , using that pS = pU + pV + pW , independently, for each φ ∈ Fτ , partition Sτ into
vertex sets Uφ, Vφ and Wφ by, for each v ∈ Sτ , choosing the location of v independently at random
so that

P(v ∈ Uφ) = pU/pS , P(v ∈ Vφ) = pV /pS , and P(v ∈Wφ) = pW /pS .

For each τ ∈ T , φ ∈ Fτ and i ∈ Iφ, take disjoint sets Ri, Ti ⊂ Uφ such that, for each v ∈ Uφ, the
location of v is chosen independently at random so that

P(v ∈ Ri) = pR/pU and P(v ∈ Ti) = pT /pU .

For each τ ∈ T and φ ∈ Fτ , let Sφ = Sτ , Xφ = Xτ , Yφ = Yτ , and Zφ = Zτ . For each τ ∈ T , φ ∈ Fτ
and i ∈ Iφ, let Si = Sτ , Xi = Xτ , Yi = Yτ , Zi = Zτ , Ui = Uφ, Vi = Vφ and Wi = Wφ.

For each i ∈ [n], create Xi = Xi,0 ∪ Xi,1 by, for each v ∈ Xi, independently at random letting
v ∈ Xi,0 with probability β0, and, similarly, create Yi = Yi,0 ∪ Yi,1 and Zi = Zi,0 ∪ Zi,1.

Colour partitions. Let C = [n], so that C is the set of colours we will use. Partition C = D1∪D2∪D3

by, for each c ∈ C, choosing the location of c independently at random so that

P(c ∈ D1) = p1, P(c ∈ D2) = p2, and P(c ∈ D3) = p3.

For each i ∈ [n], let Ci ⊂ C be formed by including each colour independently at random with
probability ppt. For each j ∈ [3] and i ∈ [n], let Dj,i ⊂ Dj be formed by including each colour
independently at random with probability 1− β0 = β/(1 + β).

Edge partition. Let G ∼ Gcol
[n]. Partition E(G) = Ept ∪ Eabs, by choosing the location of each

e ∈ E(G) independently at random so that P(e ∈ Ept) = ppt and P(e ∈ Eabs) = pabs (using that
pabs = 1− ppt). Partition Eabs = Eabs

0 ∪ Eabs
1 , by choosing the location of e ∈ Eabs independently at

random so that if e ∈ Eabs then P(e ∈ Eabs
0 ) = β0 and P(e ∈ Eabs

1 ) = 1− β0. Furthermore, partition
Eabs

1 as Eabs
1,A ∪ Eabs

1,B ∪ Eabs
1,M by choosing the location of each edge independently and uniformly at

random.
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3.3 Part A: Absorption schematic

To state our main result for Part A, we use the following two definitions.

Definition 3.1. Given a collection C ⊂ {{(i, u), (j, v)} : i, j ∈ [n], i 6= j, u, v ∈ A ∪ B, u 6= v}, i ∈ [n]
and u ∈ A ∪B, we say that (i, u) is (≤ 1)-balanced in C if either
• there is exactly one (j, v) with {(i, u), (j, v)} ∈ C and exactly one (v, j) with {(i, v), (j, u)} ∈ C, or
• there is no (j, v) such that {(i, u), (j, v)} ∈ C and no (v, j) such that {(i, v), (j, u)} ∈ C.

Definition 3.2. We say u ∼A/B v if either u, v ∈ A or u, v ∈ B.

We now state our key lemma which encapsulates Part A, which provides an ‘absorption schematic’
which, as mentioned in Section 2.1, we will use to tell us which switchers we should find in Part B.
The key lemma is proved in Section 4.

Lemma 3.3. With high probability, the sets Ri, Si, Ti, i ∈ [n], set-up as detailed in Sections 3.1
and 3.2 satisfy the following.

For each τ ∈ T , there exists a collection

Iτ ⊂ {{(i, u), (j, v)} : i, j ∈ Iτ , i 6= j, u ∈ Si \ (Ri ∪ Tj), v ∈ Sj \ (Ti ∪Rj), u 6= v, u∼A/Bv} (6)

such that the following hold.

A1 For each i ∈ Iτ and u ∈ Si \Ri, there are exactly 24 pairs (j, v) such that {(i, u), (j, v)} ∈ Iτ .

A2 For each distinct i, j ∈ Iτ and u ∈ Si\Ri, there is at most one v ∈ Sj\Rj with {(i, u), (j, v)} ∈ Iτ .

A3 For each i ∈ Iτ and u ∈ Si \ Ti, there are at most n1/3 pairs (j, v) such that {(i, v), (j, u)} ∈ Iτ .

A4 For each distinct i, j ∈ Iτ , there are at most n1/3 pairs (u, v) with {(i, u), (j, v)} ∈ Iτ .

A5 For each distinct j, j′ ∈ Iτ , there are at most n1/3 tuples (i, u, v, v′) for which we have that
{(i, u), (j, v)}, {(i, u), (j′, v′)} ∈ Iτ .

A6 For each j ∈ Iτ and u ∈ Sj \ Tj there are at most n1/3 pairs (i, v) with {(i, u), (j, v)} ∈ Iτ .

A7 For any collection of sets R′i ⊂ Ri, i ∈ Iτ such that, for each i ∈ [n], |R′i| = |Ti|, and, for each
φ ∈ Fτ ,

⋃
i∈Iφ

R′i =mult

⋃
i∈Iφ

Ti, there exists C ⊆ Iτ satisfying the following.

A7.1 For every i ∈ Iτ and u ∈ Ti, there is exactly one (j, v) such that {(i, u), (j, v)} ∈ C.

A7.2 For every i ∈ Iτ and u ∈ R′i, there is exactly one (v, j) such that {(i, v), (j, u)} ∈ C.

A7.3 For every i ∈ Iτ and u ∈ Ri \R′i, there is no (v, j) such that {(i, v), (j, u)} ∈ C.

A7.4 For every i ∈ Iτ and u ∈ Si \ (Ri ∪ Ti), (i, u) is (≤ 1)-balanced in C.

3.4 Part B: Realisation of the absorption structure

We now state our key lemma which gives the result of Part B (using the schematic found in Part A).
It is proved in Section 6, using the work in Section 5.

Lemma 3.4. Take the set-up detailed in Sections 3.1 and 3.2, where, in particular, we have G ∼ Gcol
[n]

and that the edges of G appear in Eabs ⊂ E(G) independently at random with probability pabs, while,
for each i ∈ [n], Ci ⊂ C is a random set of colours where each colour is included independently at
random with probability ppt = 1− pabs.

Then, with high probability, there are edge-disjoint subgraphs M̂1, . . . , M̂n in G[Eabs] such that the
following hold.

B1 a) For each v ∈ V (G) and φ ∈ F , there are at most 4βptrpfan i ∈ Iφ such that v /∈ V (M̂i)∪Ri.
b) For each c ∈ C(G) and φ ∈ F , there are at most 2βptrpfan i ∈ Iφ such that c /∈ C(M̂i)∪Ci.
c) For each v ∈ V (G), the degree of v in G[Eabs] \ (

⋃
i∈[n] M̂i) is at most 2βn.

d) For each i ∈ [n], there are at most 4βn vertices in V (G) \Ri that have degree 0 in M̂i.

B2 For each i ∈ [n], every vertex in Ri has degree 0 in M̂i, every vertex in Ti has degree 2 in M̂i,
and every other vertex has degree 0 or 1 in M̂i.

B3 For each i ∈ [n], M̂i is a rainbow subgraph with colours in C \ Ci.
B4 If there exist edge-disjoint matchings M̃1, . . . , M̃n in G − M̂1 − . . . − M̂n with the following

properties, then G has a decomposition into perfect rainbow matchings.

i) For each i ∈ [n], M̃i is vertex disjoint from M̂i and contains every vertex outside of Ri that
has degree 0 in M̂i.

ii) For each i ∈ [n], M̂i ∪ M̃i is an n-edge rainbow subgraph.

iii) Letting R′i = V (G) \ V (M̂i ∪ M̃i) for each i ∈ [n], we have, for each τ ∈ T and φ ∈ Fτ , that
|R′i| = |Ti| and

⋃
i∈Iφ

R′i =mult

⋃
i∈Iφ

Ti.
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3.5 Part C: Covering, balancing, and the partition of the final edges

We now state the key lemma for Part C, which we will use to partition the final edges, and which is
proved in Section 7.

Lemma 3.5. Take the set-up detailed in Sections 3.1 and 3.2, where, in particular, we have G ∼ Gcol
[n]

and that the edges of G appear in Ept ⊂ E(G) independently at random with probability ppt, while, for
each i ∈ [n], Ci ⊂ C is a random set of colours where each colour is included independently at random
with probability ppt. Then, with high probability, we have the following.

Suppose we have an edge set Ê ⊂ E(G), and sets V̂i ⊂ V (G) and Ĉi ⊂ C(G), i ∈ [n], which satisfy
the following properties.

C1 Ept ⊂ Ê.

C2 For each i ∈ [n], |V̂i| = 2|Ĉi|+ |Ti|.
C3 For each i ∈ [n], Ri ⊂ V̂i and |V̂i \Ri| ≤ 4βn.

C4 For each i ∈ [n], Ci ⊂ Ĉi and |Ĉi \ Ci| ≤ 2βn.

C5 For each v ∈ V (G) and φ ∈ F , |{i ∈ Iφ : v ∈ V̂i \Ri}| ≤ 4βptrpfan.

C6 For each c ∈ C and φ ∈ F , |{i ∈ Iφ : c ∈ Ĉi \ Ci}| ≤ 2βptrpfan.

C7 For each v ∈ V (G), |{e ∈ Ê \ Ept : v ∈ V (e)}| ≤ 2βn.

C8 For each v ∈ V (G), |{e ∈ Ê : v ∈ V (e)}| = |{i ∈ [n] : v ∈ V̂i}| − |{i ∈ [n] : v ∈ Ti}|.
C9 For each c ∈ C, |{e ∈ Ê : c(e) = c}| = |{i ∈ [n] : c ∈ Ĉi}|.

Then, Ê can be partitioned into matchings M̃1, . . . , M̃n such that the following hold.

C10 For each i ∈ [n], M̃i is a rainbow matching with colour set Ĉi.

C11 For each i ∈ [n], V̂i \Ri ⊂ V (M̃i) ⊂ V̂i.
C12 For each φ ∈ F ,

⋃
i∈Iφ

Ri \ V (M̃i) =mult

⋃
i∈Iφ

Ti.

3.6 Proof of Theorem 2.1 subject to Lemmas 3.4 and 3.5

To finish this section, we deduce Theorem 2.1 from Lemmas 3.4 and 3.5.

Proof of Theorem 2.1. Take the set-up detailed in Sections 3.1 and 3.2 with G ∼ Gcol
[n]. By Lemma 3.5,

we have, with high probability, that if Ê ⊂ E(G), and, for each i ∈ [n], V̂i ⊂ V (G) and Ĉi ⊂ C(G), are
such that C1–C9 hold, then Ê can be partitioned into matchings M̃1, . . . , M̃n such that C10–C12
hold. Furthermore, by Lemma 3.4, with high probability there are disjoint subgraphs M̂1, . . . , M̂n in
G[Eabs] such that B1–B4 hold.

For each i ∈ [n], let Ĉi = C \ C(M̂i) and V̂i = V (G) \ V (M̂i). Let Ê be the set of edges of E(G)
which are not in M̂1, . . . , M̂n, so that, as these subgraphs are all in Eabs, we have that Ept ⊂ Ê and
hence C1 holds. For each i ∈ [n], by B2, we have

|V̂i| = 2n− |V (M̂i)| = 2n− 2|E(M̂i)|+ |Ti| = 2n− 2|C(M̂i)|+ |Ti| = 2|Ĉi|+ |Ti|,

and therefore C2 holds. For each i ∈ [n], note that, by B3, we have that Ci ⊂ Ĉi, and, by B2,
Ri ⊂ V̂i. Then, combining this with B1 d), we have that both C3 and C4 hold.

For each v ∈ V (G) and φ ∈ F , by B1 a),

|{i ∈ Iφ : v ∈ V̂i \Ri}| = |Iφ| − |{i ∈ Iφ : v ∈ Ri}| − |{i ∈ Iφ : v ∈ V (M̂i)| ≤ 4βptrpfan,

and therefore C5 holds. For each c ∈ C, by B1 b),

|{i ∈ Iφ : c ∈ Ĉi \ Ci}| = |Iφ| − |{i ∈ Iφ : c ∈ C(M̂i)}| − |{i ∈ Iφ : c ∈ Ci}| ≤ 2βptrpfan,

and therefore C6 holds. Note that C7 follows from B1 c).
For each v ∈ V (G),

|{e ∈ Ê : v ∈ V (e)}| = n− |{i ∈ [n] : v ∈ V (M̂i)}| − |{i ∈ [n] : v ∈ Ti}|

= |{i ∈ [n] : v ∈ V̂i}| − |{i ∈ [n] : v ∈ Ti}|,

and thus C8 holds. Furthermore, for each c ∈ C, we have

|{e ∈ Ê : c(e) = c}| = n− |{i ∈ [n] : c ∈ C(M̂i)}| = |{i ∈ [n] : c ∈ Ĉi}|,
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and thus C9 holds.
Therefore, C1–C9 all hold. Then, by Lemma 3.5, Ê can be partitioned into matchings M̃1, . . . , M̃n

such that C10 – C12 hold. From C11, for each i ∈ [n], as V̂i = V (G) \ V (M̂i), we have that M̂i and
M̃i are vertex-disjoint, and M̃i contains every vertex outside of Ri with degree 0 in M̂i, and therefore
i) in B4 holds. For each i ∈ [n], by C10, we have C(M̃i) = Ĉi = C \ C(M̂i), and thus, as both M̃i

and M̂i are rainbow, ii) in B4 holds. Now, for each i ∈ [n], let R′i = V (G)\V (M̂i∪M̃i) = Ri \V (M̃i),
so that, by C12, iii) in B4 holds. Therefore, as M̃1, . . . , M̃n satisfy i)–iii) of B4, by B4, G has a
decomposition into perfect rainbow matchings, as required.

4 Part A: Absorption schematic

In this section, we will prove Lemma 3.3. In Section 4.1, we sketch how we construct our absorption
structure, and divide its construction into three parts, which we call Parts A.1–A.3. In Section 4.2,
we give the basic properties we will need for the vertex sets involved in Lemma 3.3. In Section 4.3, we
carry out Part A.1. In Section 4.4, we construct an auxiliary graph that we will use as a template in
our construction. We then carry out Parts A.2 and A.3 in Sections 4.5 and 4.6 respectively, before
using this to complete the proof of Lemma 3.3 in Section 4.7.

4.1 Sketch of the absorption schematic

In this section, and only in this section, we will use colours to index the target matchings to make for
easier visualisation. Note that the lemma we wish to prove, Lemma 3.3, does not involve the colours
of the edges of G ∼ Gcol

[n], or indeed any graph G, but only the vertex subsets we have chosen randomly
in A ∪B. In this section, then, we will consider the target matching Mi to have colour i.

We will make the corrections within each tribe independently of the other tribes, so for this sketch
let us fix τ ∈ T . The key absorption property we want to develop is A7. The property considers
any collection of sets R′i ⊂ Ri, i ∈ Iτ , such that, for each i ∈ [n], |R′i| = |Ti|, and, for each φ ∈ Fτ ,⋃
i∈Iφ

R′i =mult

⋃
i∈Iφ

Ti. At the very end of our constructions, this represents that, for each i ∈ [n],

in the ith near-matching, every vertex will have degree 1 except for the vertices in R′i which will have
degree 0 and the vertices in Ti which will have degree 2. As discussed in Section 2.1, we wish to find
a set C of pairs {(i, u), (j, v)} with i, j ∈ Iτ and u, v ∈ Sτ such that, if for each pair {(i, u), (j, v)} we
decrease the degree of u and increase the degree of v by 1 in the ith near-matching while making the
reverse change in the jth near-matching, then we will correct all the near-matchings indexed by Iτ
into actual matchings. These corrections need to be made in pairs so that they can be done without
affecting any of the other restrictions.

We will use auxiliary coloured multi-digraphs to represent the changes that this makes (see Fig-
ures 4–7). For example, in a digraph with vertex set Sτ , we use an edge from u to v with colour i to
represent in the ith near-matching the decrease of the degree of u by 1 and the increase of the degree
of v by 1. Thus, the change wrought by an {(i, u), (j, v)}-switcher can be represented by a pair of
directed edges: an edge ~uv with colour i and an edge ~vu with colour j.

In Part A, our first task is to take any arbitrary collection of sets R′i ⊂ Ri, i ∈ Iτ , as described,
and find, for each φ ∈ Fτ , a collection Cφ of pairs {(i, u), (j, v)} with i, j ∈ Iφ and u, v ∈ Uφ which
will, overall, for each i ∈ Iφ, in the ith near-matching increase the degree of each vertex in R′i by 1
and decrease the degree of each vertex in Ti by 1 without changing any of the other vertex degrees.
This we will do as Part A.1, in Section 4.3. Though used in a very different way, to do this we are
inspired by elements of a strategy of Barber, Kühn, Lo, and Osthus [5] in their work decomposing
complete graphs into copies of a small fixed graph. We can represent the change we wish to make
by adding to the vertex set Sτ an arbitrary directed perfect matching with colour i from Ti into R′i
for each i ∈ Iτ . This will have a decomposition of its edges into directed cycles (from the condition⋃
i∈Iφ

R′i =mult

⋃
i∈Iφ

Ti for each φ ∈ Fτ ). Inspired by some ideas from [5], we will make changes

to the directed matchings chosen, remove some edges, and add additional directed edges to create a
decomposition instead into directed 2-cycles, so that the collection of directed edges still makes the
same corrections overall. For example, if we have an edge ~uv coloured i, and replace it with edges
~uw and ~wv both coloured i (for some other vertex w), then the change described at w by these two

directed arrows would not result in the change of the degree of w in the ith near-matching. We can also
add monochromatic directed cycles, which we do for certain 2- and 3-cycles, where the cycles will not
change the degree of any of its vertices in the ith near-matching. The operations we used are depicted
in Figures 4 and 5. After these operations, we need that at every vertex there is at most 1 in-edge
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and at most 1 out-edge of each colour, as we will only swap a vertex out of or into a near-matching
at most once. To aid with this, when replacing a directed colour-i edge from an original matching Ti
to R′i by a directed path with colour i, the interior vertices of the path (which will have length 3) will
be chosen in Ui \ (Ti ∪R′i).

Ideally, for each pair {(i, u), (j, v)} in Cφ, we would have an {(i, u), (j, v)}-switcher (see Section 2.1)
within the ith and jth matching. However, we have not imposed any condition on which pairs can
appear in Cφ, so there are Θ(|Iφ|2|U2

φ|) = Θ(p2
trp

2
fap

2
Un

4) possible such pairs. For one family alone, this

is many more than the number of switchers we could find edge-disjointly in the n2 edges of G ∼ Gcol
[n].

Therefore, in Parts A.2 and A.3, we develop a much sparser set of pairs Iτ , such that for any such
Cφ, φ ∈ F , we can find a set C′ ⊂ Iτ which makes the same changes overall as

⋃
φ∈Fτ Cφ.

We do this using ideas from template-based absorption, originating from distributive absorption (as
introduced in [28]). A much simplified idea (expressed slightly vaguely) here is the following. Suppose
we have a set of n vertices V and can construct some ‘switcher’ between any pair of vertices in V . We
could create

(
n
2

)
switchers, and this would allow us to swap any pair of vertices from V . However, if

we have any connected graph H with vertex set V and create a ‘switcher’ for each e ∈ E(H), then,
for any pair of vertices x and y, we could take a path from x to y in H and swap vertices along
this path in order to swap x and y. Thus, we can swap any pair of vertices using at most n − 1
switchers. In practice, we often take H to be a sparse, well-expanding graph (for example a sparse
random regular graph) so that these paths of swaps are not too long, but so that the graph H still
has O(n) edges, and thus require only O(n) switchers. Very roughly, in Parts A.2 and A.3 we will
use two rounds of auxiliary graphs to reduce the number of switchers required for each tribe from
Θ(ptrp

2
fap

2
Un

4) to O(ptrpUn
2 log2 n). Thus, in total over all the tribes, the number of switchers we will

require is O(pSn
2). The choice of the variable pU will then allow us to fit all the required switchers

into the n2 edges of G. We will find the auxiliary graphs we use (roughly speaking) in the template
role of H in Section 4.4.

In Section 4.5 we develop the auxiliary graph found in Section 4.4 so that it can be used to take the
set Cφ and use instead a similar set C′φ which makes the same overall changes but each {(i, u), (j, v)} ∈ C
is only between certain pairs of vertices (u, v). The goal here is to replace each {(i, u), (j, v)} by, for
some r ∈ N, a sequence of pairs

{(i, u), (j, v1)}, {(i, v1), (j, v2)}, {(i, v2), (j, v3)} . . . , {(i, vr−1), (j, vr)}, {(i, vr), (j, v)}, (7)

so that, over all the pairs in C′φ, we only use few pairs of vertices that can appear as (vi, vi+1), (u, v1)
or (vr, v). This corresponds to replacing the edges ~uv with colour i and ~vu with colour j by a directed
u, v-path with colour i and a directed v, u-path with colour j with the same vertex set (see Figure 6).
For each φ ∈ Fτ , the vertices v1, . . . , vr at (7) will come from Vφ.

In Section 4.6 we then show that, essentially, we can take the sets C′φ, φ ∈ Fτ , and use instead
similar sets C′′φ , φ ∈ Fτ , which make the same overall changes but each {(i, u), (j, v)} ∈

⋃
φ∈Fτ C

′′
φ is

now only between certain pairs of vertices (u, v) and only uses certain pairs of colours (i, j). Similarly
to before, the goal here is to replace each {(i, u), (j, v)} by, for some r ∈ N, a sequence of pairs

{(i, u), (i1, v)}, {(i1, u), (i2, v)}, {(i2, u), (i3, u)} . . . , {(ir−1, u), (ir, v)}, {(ir, u), (j, v)}, (8)

so that, over all the pairs in C′′φ , we only use few pairs of colours that can appear as (ij , ij+1), (i, i1)
or (ir, j). This corresponds to considering the edges ~uv with colour i and ~vu with colour j, adding a
directed edge in both directions between u and v with colour ij for each j ∈ [r], and then pairing up
these edges as indicated by (8) (see also Figure 7). Where φ ∈ Fτ is such that i, j ∈ Iφ, the colours
i1, . . . , ir at (8) will each come from some Iφ′ with φ′ ∈ Fτ \ {φ} such that u, v ∈ Wφ′ . This is the
part of the proof where the families in the same tribe assist each other in making the corrections. We
do this as we still want the property in C′′φ , φ ∈ Fτ , that, working in coloured arrows, we never want
to have more than 1 in-edge or more than 1 out-edge of any colour at any vertex.

This will allow us to find the sparse collection of pairs Iτ from which we can find pairs to make
any of our required corrections. Finally, then, for Part A, in Part A.4, we add some more pairs to
Iτ so that when in Part B we find these switchers this can be done using the semi-random method.
For this we need that, for each i ∈ Iτ and each u ∈ Si \ Ri, the same number of paths will be
found starting at u for the ith near-matching, which corresponds to the same number of pairs of
Iτ containing (i, u) (i.e., that A1 holds). While adding these pairs we ensure that the conditions
A3–A6 continue to hold, where they will hold for the initial sparse collection of pairs by our careful
constructions. These conditions are used to ensure low codegrees in certain auxiliary hypergraphs in
which we use the semi-random method. Part A.4 is carried out in Section 4.7, which completes the
proof of Lemma 3.3.
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Where relevant, we include further sketches in this section, but for now we finish with the following
summary of the subparts of Part A.

A Create the absorption schematic, which can be represented by a sparse collection Iτ of edge-
coloured directed 2-cycles. Then, for any sets R′i ⊂ Ri, i ∈ Iτ , with |R′i| = |Ti| for each i ∈ [n]
and

⋃
i∈Iφ

R′i =mult

⋃
i∈Iφ

Ti,

A.1 Find a collection of edge-coloured directed 2-cycles which can make the required changes.

A.2 Find such a collection where the 2-cycles only use certain pairs of vertices.

A.3 Find such a collection where the 2-cycles only use certain pairs of colours/vertices (i.e., only
2-cycles corresponding to pairs in Iτ ).

A.4 Add further pairs to Iτ to regularise the schematic.

4.2 Basic properties of the vertex partition

We will use the following properties of the vertex partitions.

Lemma 4.1. With high probability, the following all hold.

D1 For each i ∈ [n] and X ∈ {A,B}, |Ri ∩X| = (1± ε)pRn, |Si ∩X| = (1± ε)pSn, |Ti ∩X| = (1±
ε)pTn, |Ui∩X| = (1±ε)pUn, |Vi∩X| = (1±ε)pV n, |Wi∩X| = (1±ε)pWn, |Xi∩X| = (1±ε)pXn,
|Yi ∩X| = (1± ε)pY n, and |Zi ∩X| = (1± ε)pZn.

D2 For each τ ∈ T , φ ∈ Fτ and v ∈ Uφ, |{i ∈ Iφ : v ∈ Ti}| = (1± ε)pT p−1
U ptrpfan.

D3 For each τ ∈ T , φ ∈ Fτ and v ∈ Uφ,

|{i ∈ Iφ : v ∈ Ui \ (Ri ∪ Ti)}| ≥ (1− ε)(1− (pR + pT )/pU )ptrpfan ≥ (1−√pT )|Iφ|.

D4 For each τ ∈ T and distinct u, v ∈ Sτ , |{φ ∈ Fτ : u, v ∈ Uφ ∪ Vφ}| = (1± ε)(pU + pV )2p−2
S p−1

fa .

D5 For each τ ∈ T and distinct u, v ∈ Sτ , |{i ∈ Iτ : u, v ∈Wi}| = (1± ε)p2
W p
−2
S ptrn.

D6 For each τ ∈ T and distinct φ, φ′ ∈ Fτ , |(Uφ ∪ Vφ) ∩Wφ′ | = 2(1± ε)(pU + pV )pW p
−1
S n.

D7 For each τ ∈ T and distinct φ, φ′ ∈ Fτ , |{{u, v} ⊂ Sτ : u ∼A/B v, u, v ∈ (Uφ ∪ Vφ) ∩Wφ′}| =
(1± ε)(pU + pV )2p2

W p
2
Sn

2/2.

D8 For each u ∈ Sτ , |{φ ∈ Fτ : u ∈ (Uφ ∪ Vφ)}| = (1± ε)(pU + pV )p−1
fa .

D9 For each u ∈ Sτ , |{(φ, φ′) : φ, φ′ ∈ Fτ , u ∈ (Uφ ∪ Vφ) ∩Wφ′}| = (1± ε)(pU + pV )pW p
−2
fa /2.

Proof. Each of these properties holds with high probability by an application of Lemma 2.6 and a
union bound. To avoid undue repetition, we will only prove a sample of these explicitly.

D1 for Ri, i ∈ [n]: Let τ ∈ T , φ ∈ Fτ and i ∈ Iφ. For each v ∈ A ∪ B, by the partitioning in
Section 3.2,

P(v ∈ Ri) = P(v ∈ Ri|v ∈ Ui) · P(v ∈ Uφ|v ∈ Sτ ) · P(v ∈ Sτ ) = (pR/pU ) · (pU/pS) · pS = pR.

For each X ∈ {A,B}, as |X| = n and 1/n
poly

� ε, pR, by Lemma 2.6, with probability 1−exp(−ω(logn))
we have |Ri∩X| = (1±ε)pRn. Thus, by a union bound, with high probability, |Ri∩X| = (1±ε)2pRn
for each i ∈ [n].

D4: Let τ ∈ T and let u, v ∈ Sτ be distinct. For each φ ∈ Fτ , P(u, v ∈ Uφ ∪Vφ) = (pU + pV )2/p2
S . As

|Fτ | = (1±ε2)p−1
fa , and ptr

poly

� ε, pU , pV
poly

� pW
poly

� 1/ logn, and pS ≥ pW , we have that, by Lemma 2.6,
with probability 1 − exp(−ω(logn)) we have |{φ ∈ Fτ : u, v ∈ Uφ ∪ Vφ}| = (1 ± ε)(pU + pV )2p−1

fa .
Thus, by a union bound, with high probability, D4 holds.

4.3 Part A.1: Initial 2-cycle decomposition

In Part A.1, we prove Lemma 4.2. After stating the lemma, we discuss it from the perspective of the
auxiliary coloured directed graph discussed in Section 4.1.

Lemma 4.2. Let Ri, Ti, Ui, i ∈ [n], satisfy D1–D9. Let τ ∈ T and φ ∈ Fτ . For each i ∈ Iφ, let
R′i ⊂ Ri satisfy |R′i| = |Ti|, and suppose that

⋃
i∈Iφ

R′i =mult

⋃
i∈Iφ

Ti.

Then, there exists a set

Cφ ⊂ {{(i, u), (j, v)} : i, j ∈ Iφ, i 6= j, u ∈ Uφ \ (Ri ∪ Tj) and v ∈ Uφ \ (Ti ∪Rj), u 6= v}. (9)

such that the following hold.
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E1 For every i ∈ Iφ and u ∈ Ti, there is exactly one (v, j) such that {(i, u), (j, v)} ∈ Cφ.

E2 For every i ∈ Iφ and u ∈ R′i there is exactly one (v, j) such that {(i, v), (j, u)} ∈ Cφ.

E3 For every i ∈ Iφ and u ∈ Ri \R′i there is no (v, j) such that {(i, v), (j, u)} ∈ Cφ.

E4 For every i ∈ Iφ and u ∈ Ui \ (Ri ∪ Ti), (i, u) is (≤ 1)-balanced in Cφ.

Consider the set Cφ in Lemma 4.2 and, for each {(i, u), (j, v)} ∈ Cφ, add ~uv with colour i and
~vu with colour j to create the auxiliary coloured multi-digraph D′′. Note that this has a natural
decomposition into directed 2-cycles. Then, for each i ∈ Iφ and u ∈ Ui, using d+,i

D′′(u) and d−,iD′′(u)
as the out- and in-degree of u in the colour-i edges in D′′ respectively, the following table shows the
degrees around u according to E1–E4. (

d+,i
D′′(u), d−,iD′′(u)

)
.u ∈ Ti (1, 0)
u ∈ R′i (0, 1)
u ∈ Ri \R′i (0, 0)
u ∈ Ui \ (Ri ∪ Ti) (0, 0) or (1, 1)

(10)

Thus, the directed arrows of colour i correspond to the required corrections of the degrees of u in the
ith near-matching if u ∈ R′i ∪ Ti, while not affecting the degree of u if u ∈ Ui \ (R′i ∪ Ti).

To find D′′ in the proof of Lemma 4.2, we start by finding a similar coloured multi-digraph which
has a directed cycle decomposition, for which, for each i ∈ Iφ, the vertices in Ui \ (Ri ∪ Ti) are in
no edges with colour i (and the corresponding version of (10) holds). Via some maximalisation in its
construction, we show that in fact this will be a rainbow cycle decomposition. We then add directed
edges to D to get D′ which satisfies the corresponding version of (10), but has a decomposition into
rainbow triangles/2-cycles. Then, we take each rainbow triangle in D′ and replace it with some 2-
cycles, creating D′′ while ensuring (10) is still satisfied. These operations are depicted in Figures 4
and 5.

Proof of Lemma 4.2. For each i ∈ Iφ, using that |Ti| = |R′i|, let Fi be an arbitrary perfect matching
between Ti and R′i with edges directed from Ti to R′i which each have colour i. Let D be the directed
edge-coloured multigraph with vertex set Uφ and edge set

⋃
i∈Iφ

Fi.

Initial cycle decomposition. Note that, for each v ∈ Uφ, as
⋃
i∈Iφ

R′i =mult

⋃
i∈Iφ

Ti, we have

d+
D(v) = |{i ∈ Iφ : v ∈ Ti}| = |{i ∈ Iφ : v ∈ R′i}| = d−D(v).

Therefore, as is well-known, D has a decomposition of its edges into edge-disjoint directed cycles. Take
such a decomposition, C1, . . . , Cr say.

Rainbow cycle decomposition. We claim that there is a choice of the matchings Fi, i ∈ Iφ, for
which there is a cycle decomposition of D in which every cycle is rainbow, that is, no colour appears
more than once on any one cycle in the decomposition. Subject to the constraints so far, then, choose
Fi, i ∈ Iφ, r ∈ N, and C1, . . . , Cr, to maximise r. Suppose, for contradiction, that there is some cycle
Cj , for some j ∈ [r], which is not rainbow. Then, let ~u1u2, ~u3u4 be two edges of Cj which have the
same colour, i say. We thus have that u1, u3 ∈ Ti and u2, u4 ∈ R′i. Note that replacing ~u1u2, ~u3u4 in
Fi by ~u1u4, ~u3u2 and replacing Cj by the two cycles in Cj − ~u1u2 − ~u3u4 + ~u1u4 + ~u2u3 will give a
choice of the directed matchings with r + 1 directed cycles (see Figure 4a)), a contradiction.

a) u1 u2

u3u4

Cj =⇒

u1 u2

u3u4

b) v1 v2

v3v4

=⇒

v1 v2

v3v4

Figure 4: a) Each cycle Cj we consider must be rainbow, for otherwise we would replace, for example, the
orange edges ~u1u2 and ~u3u4 with orange edges ~u1u4 and ~u3u2.

. b) For each rainbow cycle Cj , we take a set Ej = {v4v1, v1v3, v3v2} of edges whose addition allows an
(undirected) decomposition into triangles, and put a directed 2-cycle with colour ie on each e ∈ Ej .
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Triangle/2-cycle decomposition. Now, let I ⊂ [r] index the cycles Cj , j ∈ [r], which have length
at least 4. For each j ∈ I, where `j is the length of the cycle Cj , take a set Ej of `j − 3 (undirected)
pairs of vertices from V (Cj) such that the undirected graph underlying Cj +Ej is a union of triangles
in which each vertex has degree at most 4 (see Figure 4). For each j ∈ I and e = xy ∈ Ej , as we will
show is possible, greedily pick ie ∈ Iφ under the following rules.

1) For each j ∈ I and e = xy ∈ Ej , x, y ∈ Uφ \ (Rie ∪ Tie).

2) For each i ∈ Iφ, and x ∈ Uφ, there is at most one pair (j, e) with j ∈ I, e ∈ Ej , x ∈ V (e) and
ie = i.

3) For each i ∈ Iφ, there are at most 32pTn vertices x ∈ Uφ for which there is some pair (j, e) with
j ∈ I, e ∈ Ej , x ∈ V (e) and ie = i.

Note that the number of times any x ∈ Uφ appears in an edge e = xy for some e ∈ Ej and j ∈ I is

≤ 2|{j ∈ [r] : x ∈ V (Cj)}| ≤ 2|{i ∈ Iφ : x ∈ Ti}|
D2

≤ 3pT p
−1
U ptrpfan. (11)

Thus, when we greedily choose some ie ∈ Iφ, we have that by D3 there are at least ptrpfan/2 options
for ie ∈ Iφ so that 1) is satisfied. Of these, the number for which there are more than 32pTn vertices
x ∈ Uφ for which there is some pair (j, e) with j ∈ I, e ∈ Ij′ , x ∈ V (e) and ie = i is, using (11), at
most

|Uφ| · 3pT p−1
U ptrpfan

32pTn

D1

≤ 8pT ptrpfan
2

32pTn
=
ptrpfan

4
.

Hence, since pT
poly

� pU , we can choose ie so that 2) and 3) hold.
Take D and, for each j ∈ I and xy ∈ Ej , add both the edge ~xy and ~yx to D with colour ixy, and

call the resulting directed multigraph D′ (see Figure 4b)). Note that, from this construction, D′ has
an edge decomposition into rainbow directed cycles of length 2 and 3. Take such a decomposition,
and let r′ be the number of cycles of length 3, labelling them as C′1, . . . , C

′
r′ .

2-cycle decomposition. For each j ∈ [r′], label the vertices of C′j as xj , yj , zj and its colours as
aj , bj , cj , so that ~xjyj , ~yjzj , ~zjxj have colour aj , bj and cj , respectively. For each i ∈ Iφ, let U−i ⊂ Uφ
be the subset of vertices x ∈ Uφ for which there is some pair (j, e) with j ∈ I, e ∈ Ij′ , x ∈ V (e) and
ie = i, and note that, by 3), |U−i | ≤ 32pTn. For each j ∈ [r′], choose distinct vertices x′j , y

′
j , z
′
j and a

colour ij under the following rules.

i) For each j ∈ [r′] and each i ∈ {aj , bj , cj}, x′j , y′j , z′j ∈ Uφ \ (Ri ∪ Ti ∪ U−i ).

ii) For each j ∈ [r′], ij is such that x′j , y
′
j , z
′
j ∈ Uφ \ (Rij ∪ Tij ∪ U

−
ij

).

iii) For each i ∈ Iφ, and v ∈ Uφ \ (Ri ∪ T ′i ), there is at most one j ∈ [r′] with i ∈ {aj , bj , cj , ij} and
v ∈ {x′j , y′j , z′j}.

Similarly to the previous step, this can be done greedily, where this uses |U−i | ≤ 32pTn for each
i ∈ Iφ to select x′j , y

′
j , z
′
j . Then, (11) and D3 can be used to select ij .

As depicted in Figure 5, take D′ and, for each j ∈ [r′], remove the edges in C′j and add the edges
~xjx′j ,

~x′jy
′
j ,

~y′jyj with colour aj , the edges ~yjy′j ,
~y′jz
′
j ,

~z′jzj with colour bj , the edges ~zjz′j ,
~z′jx
′
j ,

~x′jxj

with colour cj , and the edges ~y′jx
′
j ,

~x′jz
′
j ,

~z′jy
′
j with colour ij , and call the resulting directed multigraph

D′′. By construction, D′′ has a decomposition into directed rainbow cycles with length 2. Take such
a decomposition, and, letting r′′ be the number of cycles, let these cycles be C′′1 , . . . , C

′′
r′′ . Let Cφ be

the set of pairs {(i, u), (j, v)} for each cycle C′′i′ , i
′ ∈ [r′′], with vertex set {u, v} and an edge from u to

v with colour i and an edge from v to u with colour j. Note that, in our construction, for each i ∈ Iφ
and u ∈ Ti, we never added an edge with colour i directed into u, and, for each i ∈ Iφ and v ∈ Ri, we
never added an edge with colour i directed out of v, so that (9) holds. We now show that Cφ satisfies
E1–E4.

E1: Note that, for any pair (i, u) such that i ∈ Iφ and u ∈ Ti, we have that u was contained in an
edge directed out of u in colour i in D. In order to construct D′′ from D, either we did not add any
other edges directed out of u in colour i and kept the original edge from D in D′′, or, in building D′′

we replaced the out-edge from u in colour i by a path of length three containing exactly one out-edge
from u in colour i. Since D′′ defines Cφ and there is exactly one pair {(u, i), (v, j)} ∈ Cφ for each
out-edge in D′′ from u in colour i, we have that E1 holds.

E2: Similarly, for i ∈ Iφ and u ∈ R′i, we have that the number of (v, j) such that {(v, i), (u, j)} ∈ Cφ is
the number of in-edges of colour i at u in D′′. As our construction has exactly one in-edge to u with
colour i in each of the digraphs D, D′, and then D′′, we have that, similarly E2 holds.
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E3: To see that E3 holds, note that we need to ensure that D′′ contains no in-edge to u ∈ Ri \R′i in
colour i. Note that by construction we have that D contains no such edge. Furthermore, any edges
that were added in D′ and in D′′ were chosen precisely so that a new edge to a vertex u would be in a
colour i′ such that u /∈ Ri′ . That is, at no point did we add an in-edge to u in colour i, since u ∈ Ri,
so D′′ is as required.

E4: For this, it suffices to show that, for each i ∈ Iφ and u ∈ Ui \ (Ri∪Ti), either u appears in no edge
of colour i, or u appears in exactly one in-edge and exactly one out-edge of colour i. We have that, in
D, u appears in no edge of colour i. When we build D′, either u remains in no edge of colour i, or the
colour i is assigned to some edge uv ∈

⋃
j∈I Ej and by rule 2) this happens no more than once. In the

first case, it then follows similarly by rule iii) that either in building D′′ no edge of colour i containing
u is added, or there is exactly one j ∈ [r′] such that u ∈ {x′j , y′j , z′j} and i ∈ {aj , bj , cj , ij} — either
way, to build D′′ from D′ we add exactly one in-edge of colour i to u and exactly one out-edge of
colour i to u. In the second case, we have that i is assigned to exactly one edge uv ∈

⋃
j∈I Ej . By

construction, then, we have that in D′ there is both an in-edge in colour i and an out-edge in colour
i containing u, and u ∈ U−i . Thus when building D′′ from D′, by rule ii), u is not chosen as a vertex
x′j , y

′
j , z
′
j paired with colour i. In particular, this means that when shifting from D′ to D′′, either the

previous in- and out-edges in colour i which contain u are left as before, or if one is removed, it is
replaced by a path which contains exactly one edge in the same direction to or from u in colour i as
the one that was removed. Thus, u remains in exactly one in-edge in colour i and exactly one out-edge
in colour i, completing the proof of E4 and hence the lemma.

4.4 An auxiliary sparse well-connected graph

The next lemma shows the existence of an auxiliary graph which is used in Part A.3, specifically, in
the proof of Lemma 4.5 in Section 4.6. We prove it, however, before embarking on Part A.2 as it is
a useful preliminary to a similar construction which we use in the proof of Lemma 4.4, our lemma for
carrying out Part A.2. The main idea of the following lemma is to build a sparse graph K which is
the union of trees with roots in a set U , such that we may pair the vertices of U up in any way and
always find a collection of vertex-disjoint paths in K which connect these pairs. As we will use binary
trees, here we use log = log2. The properties of the graph we construct could, as in other template-
based approaches, be found using appropriate random graphs (if not with quite such a low maximum
degree). We use this explicit construction in preparation for the similar version in Section 4.5, where
we want a more delicate property of the auxiliary graph, as explained there.

Lemma 4.3. Let 1/n
poly

� p
poly

� log−1 n. Then, there is a graph K with vertex set [n] and ∆(K) ≤ 4
containing an independent set U ⊂ V (K) with |U | = pn and the following property.

Given any r ∈ N and any set of vertex-disjoint pairs x1y1, . . . , xryr ∈ U (2), there is a set of vertex-
disjoint paths Pi, i ∈ [r], in K with internal vertices in V (K) \ U such that, for each i ∈ [r], Pi is an
xi, yi-path.

Proof. Let U ⊂ [n] have size pn. Let ` be such that 2` ≤ n/10 logn < 2`+1, and note that, as ` ≤ logn,
we have (`+ 1) · 2` ≤ n. Using this, take disjoint sets V (0), V (1), . . . , V (`) in [n] with size 2` such that
U ⊂ V0. Let m = |U | = pn. For each i ∈ [`]0, label the vertices in V (i) as vi,1, . . . , vi,2` , so that, in
particular, U = {v0,1, . . . , v0,m}.

yj

zj

xj

aj

bj

cj =⇒ yj

zj

xj

y′j

z′j

x′
j

aj

bj

cj

ij

Figure 5: Each directed triangle xjyjzj is replaced by a collection of 2-cycles, where each vertex has
balanced in- and out-degree in each colour except for xj , yj , zj which maintain the same in- and out-
degree in each colour.
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Let K be the empty graph with vertex set [n] and, for each i ∈ [`− 1]0, j ∈ [2`] and r ∈ [2], add an
edge to K from vi,j to vi+1,s where s is such that s = 2(j − 1) + r mod 2`, noting that we have added
2 edges to vi,j into V (i+1), so that dK(vi,j , V

(i+1)) = 2. We will show that K has the properties we
require. For this, for each j ∈ [2`], v = v0,j and i ∈ [`]0, let

L(v, i) = {vi,j′ : ∃j′′ ∈ [2`] s.t. 2i(j − 1) + 1 ≤ j′′ ≤ 2i(j − 1) + 2i and j′ = j′′ mod 2`}, (12)

noting in particular that L(v, 0) = {v0,j} = {v}, L(v, `) = V (`) and, for each i ∈ [`]0, |L(v, i)| = 2i.
For each j ∈ [2`] and v = v0,j , let Fv be the graph with vertex set V (Fv) =

⋃
i∈[`]0

L(v, i) and edge

set E(K[V (Fv)]).
We now show that ∆(K) ≤ 4 and, for each v ∈ V (0), that Fv is a binary tree rooted at v, in the

following two claims.

Claim 1. ∆(K) ≤ 4.

Proof of Claim 1. Recall that, for each i ∈ [` − 1]0 and j ∈ [2`], dK(vi,j , V
(i+1)) = 2. Now, let

i ∈ {2, . . . , `} and j ∈ [2`]. Note that, for each j′ ∈ [2`] we added an edge from vi−1,j′ to vi,j only
when there was some r ∈ [2] such that 2(j′ − 1) + r = j mod 2`, so that there are exactly 2 such
j′ ∈ [2`], where in both cases we have r ∈ [2] such that r = j mod 2. Therefore, dK(vi,j , V

(i−1)) = 2.
Thus, as we only added edges to K between V (i) and V (i+1) for each i ∈ [` − 1]0, we have that
∆(K) ≤ 4, as required. �

Claim 2. For each j ∈ [2`] and v = v0,j , Fv is a binary tree rooted at v such that, for each i ∈ [`]0,
the vertices in the ith level of Fv, V (Fv) ∩ V (i), are those in L(v, i) (as defined at (12)).

Proof of Claim 2. Let j ∈ [2`] and set v = v0,j . Recall that, for each i ∈ [`]0, |L(v, i)| = 2i, and, for
each i ∈ [` − 1]0 and j′ ∈ [2`], dK(vi,j′ , V

(i+1)) = 2. Therefore, to show the claim, it is sufficient to
show that, for each i ∈ [`] and w ∈ L(v, i), there is some w′ ∈ L(v, i− 1) with w′w ∈ E(K).

Let, then, i ∈ [`] and let j′ ∈ [2`] be such that vi,j′ ∈ L(v, i). Using the definition of L(v, i), let
r ∈ [2i−1] and s ∈ [2] be such that 2i(j − 1) + 2(r − 1) + s = j′ mod 2`. Then, let j′′ ∈ [2`] be such
that 2i−1(j − 1) + r = j′′ mod 2`, so that vi−1,j′′ ∈ L(v, i− 1), and note that we added an edge from
vi−1,j′′ to vi,j′ in K as j′ = 2(j′′ − 1) + s mod 2` and s ∈ [2]. Thus, for w = vi,j′ ∈ L(v, i), there is
some w′ = vi−1,j′′ ∈ L(v, i− 1) with w′w ∈ E(K), as required. �

We now show that the trees Fv, v ∈ U = {v0,1, . . . , v0,m}, are well spread out, particularly at their
lower levels, as follows.

Claim 3. For each u ∈ U and i ∈ [`]0, there are at most b2i/(100 logn)c vertices u′ ∈ U with
V (i) ∩ (V (Fu) ∩ V (Fu′)) 6= ∅.

Proof of Claim 3. Let u ∈ U and i ∈ [`]0. First, note that if i ≥ ` − 10, then 2i/(100 logn) ≥
2`−10/100(logn) ≥ m, as p � log−1 n, so that there are at most b2i/100 lognc vertices u′ ∈ U .
Assume, then, that i ≤ `− 10.

Let u′ ∈ U with V (i) ∩ (V (Fu) ∩ V (Fu′) 6= ∅. Let r, r′ ∈ [m] be such that u = v0,r and u′ = v0,r′ .
Then, from Claim 2, and the definition of L(u, i) and L(u′, i) at (12) we have that there is some j
such that

2i(r − 1) + 1 ≤ j ≤ 2i(r′ − 1) + 2i

and some j′ such that j = j′ mod 2` and

2i(r′ − 1) + 1 ≤ j′ ≤ 2i(r′ − 1) + 2i,

so that, setting x = j − j′, we have x = 0 mod 2` and

2i(r − r′)− 2i ≤ x ≤ 2i(r − r′) + 2i. (13)

As r, r′ ∈ [m], we have −(m+ 1) · 2i ≤ x ≤ (m+ 1) · 2i.
As i ≤ ` − 10, for each r and x, there is at most one value of r′ for which (13) holds. Therefore,

the number of choices of u′ ∈ U so that V (i) ∩ (V (Fu)∩ V (Fu′)) 6= ∅ is at most the number of choices
of x for which x = 0 mod 2` and −(m+ 1) · 2i ≤ x ≤ (m+ 1) · 2i. There are at most d(2m+ 3)2i/2`e
such values of x. As m = pn and 2`+1 ≥ n/(10 logn) and p

poly

� log−1 n, there are thus at most
d2i/(100 logn)e such values of x. Noting that x = 0 is always a solution, which gives that r = r′ and
so u = u′, we have that the claim holds. �
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Let then r ∈ N and let x1y1, . . . , xryr be vertex-disjoint pairs in U (2). Let I ⊂ [r] be a maximal
subset for which there are vertex-disjoint paths Pi, i ∈ I, with internal vertices in V (K) \ U such

that, for each i ∈ I, Pi is an xi, yi-path in Fxi ∩ Fyi with at most 2 vertices in each set V (i′), for each
i′ ∈ [`]0.

Suppose, for contradiction that I 6= [r], and let i ∈ [r] \ I. Let V forb be the set of internal vertices
in the paths Pi′ , i

′ ∈ I.

Claim 4. For each i′ ∈ [`]0 and u ∈ {xi, yi}, |V (Fu) ∩ V (i′) ∩ V forb| ≤ 2i
′
/10 logn.

Proof of Claim 4. Let i′ ∈ [`]0. By Claim 3, there are at most b2i
′
/100 lognc vertices u′ ∈ U\{xi} with

V (i′) ∩ (V (Fu)∩V (Fxi)) 6= ∅. As the pairs xi′yi′ , i
′ ∈ I, are disjoint, and i /∈ I, there are thus at most

b2i
′
/(100 logn)c values of i′ ∈ I for which V (Pi′) intersects with V (Fxi)∩V (i′). As each of these paths

intersect with V (i′) in at most 2 vertices, we therefore have that |V (Fxi)∩V (i′)∩V forb| ≤ 2i
′
/(10 logn).

As, similarly, |V (Fyi) ∩ V (i′) ∩ V forb| ≤ 2i
′
/(10 logn), the claim follows. �

Then, let F ′xi be the connected component of Fxi − V forb which contains xi. Note that, for

each i′ ∈ [`]0, removing a vertex from L(xi, i
′) removes at most 2`−i

′+1 vertices from the connected
component of Fxi which contains xi. Therefore, by Claim 4, the number of vertices in Fxi which are
not in F ′xi is at most

∑̀
i′=0

|V (Fxi) ∩ V
(i′) ∩ V forb| · 2`−i

′+1 ≤
∑̀
i′=0

2`+1/10 logn ≤ 2`/4,

so that, in particular, |V (F ′xi) ∩ V
`| ≥ 2` − 2`/4 > |V `|/2.

Similarly, letting F ′yi be the connected component of Fyi − V forb, we have |V (F ′yi)∩ V
`| > |V `|/2.

Therefore, F ′xi and F ′yi intersect on V `, Let Pi be a shortest xi, yi-path in F ′xi ∪ F
′
yi . Note that by

this minimality Pi contains at most 2 vertices from each set V (i′), i′ ∈ [` + 1], and, by construction
Pi has no vertices in V forb and therefore no vertices in V (Pi′) for each i′ ∈ I. Thus, the paths Pi′ ,
i′ ∈ I ∪ {i} ⊂ [r], contradict the choice of I. Therefore, we must have I = [r], and thus have the
required paths Pi′ , i

′ ∈ [r]. �

4.5 Part A.2: 2-cycles using few vertex pairs

For each vertex v ∈ Uφ we will attach an edge from v to the roots of 5 binary trees consisting of
vertices from Vφ, which have been chosen so that, across all v ∈ Uφ their vertices at each level are very
well spread (see Claim 7), each pair of trees intersect completely in the last layer, and the union of all
these trees has low maximum degree (as follows from Claim 5). This construction is similar to that
given in Lemma 4.3, but we use some more delicate properties of it. This is because, instead of finding
a collection of vertex-disjoint paths Pi, i ∈ [r], as before, we find a larger collection of paths, P say,
many more than could be vertex-disjoint, but so that many specified pairs of paths are vertex-disjoint
except for possibly on their endvertices (as in F4 below). This requires us to take more care in the
choice of paths.

Lemma 4.4. Let Ui, Vi, i ∈ [n], satisfy D1–D9. Let τ ∈ T and φ ∈ Fτ . Then, there is a graph Kφ

with vertex set Uφ ∪ Vφ and ∆(Kφ) ≤ 5 and the following property.
Suppose C ⊂ {(i, u), (j, v) : i, j ∈ Iφ, u, v ∈ Uφ, i 6= j, u 6= v, u ∼A,B v} satisfies the following

properties.

F1 For each i ∈ Iφ and u ∈ Uφ, there is at most one pair (j, v) with {(i, u), (j, v)} ∈ C.

F2 For each i ∈ Iφ and v ∈ Uφ, there is at most one pair (u, j) with {(i, u), (j, v)} ∈ C.

Then, there are paths Pe, e ∈ C, in Kφ with the following properties.

F3 For each e = {(i, u), (j, v)} ∈ C, Pe is a u, v-path with internal vertices in Vφ ∩A if u, v ∈ A and
internal vertices in Vφ ∩B if u, v ∈ B.

F4 For each e = {(i, u), (j, v)}, e′ = {(i′, u′), (j′, v′)} ∈ C with e 6= e′, if {i, j} ∩ {i′, j′} 6= ∅, then
V (Pe) and V (Pe′) intersect only on {u, v} ∩ {u′, v′}.

Proof. For each e = {(i, u), (j, v)} ∈ C, we have u, v ∈ A or u, v ∈ B, and wish to find Pe such that, as
in F3, all of the vertices of Pe are in A in the first case, and in B in the second case. Therefore, Kφ

will be the disjoint union of two graphs KA
φ and KB

φ with vertex set (Uφ ∪Vφ)∩A and (Uφ ∪Vφ)∩B,
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respectively. To reduce notation, we will give the construction for KA
φ , where the construction for KB

φ

follows identically but with B in place of A.
Let ` be such that 2` ≤ pV n/ logn < 2`+1, and note that, as ` ≤ (logn)− 1, (`+ 1) · 2` ≤ pV n/2.

Using this, and D1, take disjoint sets V
(0)
φ , V

(1)
φ , . . . , V

(`)
φ in Vφ ∩A with size 2` and, for each i ∈ [`]0,

enumerate V
(i)
φ as {vi,1, . . . , vi,2`}. Let K−φ be the empty graph with vertex set V

(0)
φ ∪V (1)

φ ∪ . . .∪V (`)
φ

and, for each i ∈ [` − 1]0, j ∈ [2`] and r ∈ [2], add an edge from vi,j to vi+1,s where s is such that

s = 2(j − 1) + r mod 2`, so that d
K−
φ

(vi,j , V
(i+1)
φ ) = 2. For each j ∈ [2`], v = v0,j and i ∈ [`]0, let

L(v, i) = {vi,j′ : ∃j′′ ∈ [2`] s.t. 2i(j − 1) + 1 ≤ j′′ ≤ 2i(j − 1) + 2i and j′ = j′′ mod 2`}, (14)

noting in particular that L(v, 0) = {v0,j} = {v}, L(v, `) = V
(`)
φ and, for each i ∈ [`]0, |L(v, i)| = 2i.

For each j ∈ [2`] and v = v0,j , let Fv be the graph with vertex set V (Fv) =
⋃
i∈[`]0

L(v, i) and edge

set E(K−φ [V (Fv)]).

We will use that ∆(K−φ ) ≤ 4 and, for each v ∈ V (0)
φ , Fv is a binary tree rooted at v, in the following

two claims. As these two claims are proved virtually identically to Claims 1 and 2 respectively, we
omit their proof.

Claim 5. ∆(K−φ ) ≤ 4. �

Claim 6. For each j ∈ [2`] and v = v0,j , Fv is a binary tree rooted at v such that, for each i ∈ [`]0,

the vertices in the ith level of Fv, V (Fv) ∩ V (i)
φ , are those in L(v, i) (as defined at (14)). �

Now, let m0 = |Uφ∩A|, so that, by D1, we have m0 = (1±ε)pUn. Enumerate Uφ as {u1, . . . , um0}.
For each i ∈ [m0] and j ∈ [5], add an edge to K−φ from ui to w(ui, j) := v0,5(i−1)+j , and call the

resulting graph KA
φ , where we have used that 5m0 ≤ (1 + ε)pUn is much smaller than |V (1)

φ | ≥ pV n/2
as pU

poly

� pV . To each vertex in Uφ we have attached 5 of the binary trees Fv, v ∈ V (0)
φ . As all the

neighbours of Uφ∩A are distinct and within the first 5m0 ≤ p ·pV n for some p� log−1 n, the trees we
have attached are well spread out at each level, in a similar way to Claim 3. As the proof is virtually
identical, we omit it.

Claim 7. For each u ∈ Uφ, j ∈ [5] and i ∈ [` + 1], there are at most b2i/(100 logn)c pairs (u′, j′) 6=
(u, j) with u′ ∈ Uφ, j′ ∈ [5] and V

(i)
φ ∩ (V (Fw(u,j)) ∩ V (Fw(u′,j′))) 6= ∅. �

Similarly, form the graph KB
φ , and let Kφ be the graph with the vertex set Uφ ∪ Vφ and edge set

E(KA
φ ) ∪ E(KB

φ ). We will show that Kφ has the desired property.
First, note that, from Claim 5, and noting that we added vertex-disjoint 5-edge stars from each

vertex in Uφ to vertices in Vφ, we have that dKφ(v) ≤ 5 for each v ∈ (Uφ ∪ Vφ) ∩ A. By a similarly
proved version of Claim 5, we have that this also holds for every v ∈ (Uφ∪Vφ)∩B, so that ∆(Kφ) ≤ 5,
as required.

We now show that the main property of Kφ holds. Let C ⊂ {(i, u), (j, v) : i, j ∈ Iφ, i 6= j, u, v ∈
Uφ, u 6= v, u ∼A/B v} satisfying F1 and F2. We will show that there are paths Pe, e ∈ C, in Kφ such
that F3 and F4 hold. First, choose re ∈ [5] for each e = {(i, u), (j, v)} ∈ C such that

F5 For each e = {(i, u), (j, v)}, e′ = {(i′, u′), (j′, v′)} ∈ C with e 6= e′, if {i, j} ∩ {i′, j′} 6= ∅ and
{u, v} ∩ {u′, v′} 6= ∅, then re 6= re′ .

To see that this is possible, create an auxiliary graph L with vertex set C and for each e =
{(i, u), (j, v)}, e′ = {(i′, u′), (j′, v′)} ∈ C with e 6= e′ put an edge between e and e′ in L if {i, j}∩{i′, j′} 6=
∅ and {u, v} ∩ {u′, v′} 6= ∅. Then, for each e = {(i, u), (j, v)} ∈ C, by F1 and F2 there are at most 4
choices for e′ = {(i′, u′), (j′, v′)} ∈ C with e 6= e′, {i, j} ∩ {i′, j′} 6= ∅ and {u, v} ∩ {u′, v′} 6= ∅. Indeed,
for such an e′, firstly by relabelling if necessary we can assume that j′ 6= i and i′ 6= j. Then, if i = i′

note that we have u′ 6= u by F1 as e 6= e′, and therefore v′ ∈ {u, v}, which, by F2 gives us two options
for v′, j′, u′. Similarly, if j = j′, then there are two options for u′, i′, v′, for at most 4 options in total.
Thus, L has maximum degree 4, and so can be properly coloured with 5 colours, using the colour set
[5]. Take such a colouring, and, for each e ∈ C, let re be the colour of e, noting that, then, F5 holds.

Now, let C′ ⊂ C be a maximal set for which there are paths Pe, e ∈ C′, in Kφ such that F3 and F4
hold with C replaced by C′ and, for each e = {(i, u), (j, v)} ∈ C′, Pe ⊂ Fw(u,re) ∪Fw(v,re) +uw(u, re) +

vw(v, re) and Pe contains at most 2 vertices from each set V
(i′)
φ , i′ ∈ [`]0. Pick such a set of paths Pe,

e ∈ C′.
Noting that we will be done if C′ = C, assume, for a contradiction, that C 6= C′ and pick some

e = {(i, u), (j, v)} ∈ C \ C′. Assume that u, v ∈ A, so that we may use the notation above, where the
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wu,re
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φ
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i je = {(i, u), (j, v)}

Pe Fwv,re

Fwu,re

Figure 6: A u, v-path Pe as found in the sparse auxiliary graph Kφ using the two binary trees Fwu,re and
Fwv,re . In the proof of Lemma 4.4, this path will additionally avoid some set of vertices V forb.

case for u, v ∈ B follows similarly. We will find a path Pe, as depicted in Figure 6, which will have
the properties so that we could add e to C′ to contradict its maximality.

We first define a similar set V forb of vertices as we avoided in the proof of Lemma 4.3, but only
collect together vertices from paths that we need to avoid if we are to find a path Pe which we can
add to the collection Pe′ , e

′ ∈ C′, with F4 still holding for C′ in place of C. Therefore, let V forb be
the set of vertices which appear in some path Pe′ such that e′ = {(i′, u′), (j′, v′)} ∈ C′ with i′ = i or
j′ = j. We will now show a similar claim to Claim 4. Its proof is similar to the proof of Claim 4.

Claim 8. For each i′ ∈ [`]0, |V (Fw(u,re))∩ (V
(i′)
φ ∩ V forb)| ≤ 2i

′
/(10 logn) and |V (Fw(v,re))∩ (V

(i′)
φ ∩

V forb)| ≤ 2i
′
/(10 logn).

Proof of Claim 8. By Claim 7, there are at most b2i
′
/100 lognc pairs (v′, r) 6= (u, re) with v′ ∈ Uφ,

r ∈ [5] and V
(i′)
φ ∩ (V (Fw(u,re))∩V (Fw(v′,r))) 6= ∅. Therefore, by F1, there are at most b2i

′
/100 lognc

triples (u′, v′, j′) for which e′ = {(i, u′), (j′, v′)} ∈ C′ and V
(i′)
φ ∩ (V (Fw(u,re)) ∩ V (Fw(v′,re′ )

)) 6= ∅.
Similarly, by F2, there are at most b2i

′
/100 lognc triples (u′, v′, j′) for which e′ = {(i, v′), (j′, u′)} ∈ C

and V
(i′)
φ ∩ (V (Fw(u,re)) ∩ V (Fw(v′,re′ )

)) 6= ∅. Thus, as for each e′ = {(i′, u′), (j′, v′)} ∈ C′, Pe′ ⊂
Fw(u′,re′ )

∪ Fw(v′,re′ )
and Pe′ contains at most 2 vertices from V

(i′)
φ , |V (Fw(u,re)) ∩ (V

(i′)
φ ∩ V forb)| ≤

2i
′
/(10 logn). Similarly, we have that |V (Fw(v,re)) ∩ (V

(i′)
φ ∩ V forb)| ≤ 2i

′
/(10 logn). �

Then, let F ′w(u,re) be the connected component of Fw(u,re) − V forb which contains w(u, re). Note

that, for each i′ ∈ [`]0, removing a vertex from L(w(u, re), i
′) removes at most 2`−i

′+1 vertices from
the connected component of Fw(u,re) which contains w(u, re). Therefore, by Claim 8, the number of
vertices in Fw(u,re) which are not in F ′w(u,re) is at most

∑̀
i′=0

|V (Fw(u,re)) ∩ (V
(i′)
φ ∩ V forb)| · 2`−i

′+1 ≤
∑̀
i′=0

2`+1/10 logn ≤ 2`/4,

so that, in particular, |V (F ′w(u,re)) ∩ V `φ | ≥ 2` − 2`/4 > |V `φ |/2.

Similarly, letting F ′w(v,re) be the connected component of Fw(v,re) − V forb which contains w(v, re),

we have |V (F ′w(v,re)) ∩ V `φ | > |V `φ |/2. Therefore, F ′w(u,re) and F ′w(v,re) intersect on V `φ . Let Pe be a
shortest u, v-path in F ′w(u,re)∪F ′w(v,re)+uw(u, re)+vw(v, re). Note that by this minimality Pe contains

at most 2 vertices from each set V
(i′)
φ , i′ ∈ [`]0 and, by construction, for each e′ = {(i′, u′), (j′, v′)} ∈ C′,

Pe has no vertices in V forb and therefore no vertices in V (Pe′) \ {u′, v′} if {i′, j′} ∩ {i, j} 6= ∅. Thus,
the paths Pe′ , e

′ ∈ C′ ∪ {e} ⊂ C contradicts the choice of C′. Therefore, we must have C′ = C. Thus,
we can choose the required paths Pe′ , e

′ ∈ C. �

4.6 Part A.3: 2-cycles using few vertex pairs and few colour pairs

Our next lemma, Lemma 4.5, is the most difficult part of this section, but on proving it we will be
very close to proving the main result for Part A, Lemma 3.3. Indeed, Lemma 4.5 is very similar to
Lemma 3.3, producing for each τ ∈ T , a set Iτ satisfying similar conditions as those in Lemma 3.3,
essentially only lacking a regularity condition (i.e., we will have G1 instead of A1). From our previous
work in this section, we are well prepared to take sets R′i ⊂ Ri, i ∈ [n], with |R′i| = |Ti|, for which, for
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Figure 7: Replacing arrows representing a pair {(i, u), (j, v)} with a sequence of pairs which have the same
effect, but take the form {(i′, u), (j′, v)} for only certain pairs (i′, j′), as at (8).

each φ ∈ F ,
⋃
i∈Iφ

R′i =mult

⋃
i∈Iφ

Ti, and decompose the corresponding corrections we will require

into a collection C of pairs of the form {(i, u), (j, v)} such that i and j here always belong to the same
family, and for such a family we only use a sparse collection of vertex pairs u, v (defined by some
auxiliary graph Kφ). Here, we will now replace such a pair with a collection of pairs {(i′, u), (j′, v)}
as at (8) which make the same effective change but for which (i′, j′) come from a sparse set of pairs
(using an appropriate auxiliary graph to restrict which pairs we allow). This is depicted in Figure 7.
When replacing the pair {(i, u), (j, v)} with a collection of pairs {(i′, u), (j′, v)} as at (8), for any
i′, j′ /∈ {i, j}, we will take i′, j′ to be not in the same family as i, j but instead only in the same tribe.
This is the part of the proof where individuals in different families in the same tribe help each other
to develop the absorption properties.

To prove Lemma 4.5, we will use Lemma 4.4 and Lemma 4.3 to build graphs Kφ for each φ ∈ τ ,
and Lφ,uv for each φ ∈ τ and uv ∈ E(Kφ), respectively. Lemma 4.3 allows us to conclude the existence
of these useful graphs Lφ,uv, each with its own connection property. In order to have our ‘codegree
conditions’ in Lemma 3.3 (i.e., A4–A6), we want these graphs Lφ,uv not to share any edge too often.
To get this property, we will take the graph as given by Lemma 4.3 and place it on the desired vertex
set for Lφ,uv in some random manner.

Lemma 4.5. Let Ri, Si, Ti, Ui, Vi,Wi, i ∈ [n], satisfy D1–D9. Then, for each τ ∈ T , there exists a
collection

Iτ ⊂ {{(i, u), (j, v)} : i, j ∈ Iτ , i 6= j, u ∈ Si \ (Ri ∪ Tj), v ∈ Sj \ (Ti ∪Rj), u 6= v, u∼A/Bv} (15)

such that the following hold.

G1 For each i ∈ Iτ and u ∈ Si \Ri, there are at most 20 pairs (j, v) such that {(i, u), (j, v)} ∈ Iτ .

G2 For each i, j ∈ Iτ and u ∈ Si \Ri, there is at most one v ∈ Sj \Rj with {(i, u), (j, v)} ∈ Iτ .

G3 For each i ∈ Iτ and u ∈ Si \ Ti, there are at most 24 pairs (j, v) such that {(i, v), (j, u)} ∈ Iτ .

G4 For each distinct i, j ∈ Iτ there are at most n1/3/2 pairs (u, v) with {(i, u), (j, v)} ∈ Iτ .

G5 For each distinct j, j′ ∈ Iτ , there are at most n1/3/2 tuples (i, u, v, v′) for which we have that
{(i, u), (j, v)}, {(i, u), (j′, v′)} ∈ Iτ .

G6 For each j ∈ Iτ and u ∈ Sj \ Tj there are at most n1/3/2 pairs (i, v) with {(i, u), (j, v)} ∈ Iτ .

G7 For any collection of sets R′i ⊂ Ri, i ∈ Iτ , such that, for each i ∈ Iτ , |R′i| = |Ti| and, for each
φ ∈ Fτ ,

⋃
i∈Iφ

R′i =mult

⋃
i∈Iφ

Ti, there exists C ⊂ Iτ satisfying the following.

G7.1 For every i ∈ Iτ and u ∈ Ti, there is exactly one (v, j) such that {(i, u), (j, v)} ∈ C.

G7.2 For every i ∈ Iτ and u ∈ R′i there is exactly one (v, j) such that {(i, v), (j, u)} ∈ C.

G7.3 For every i ∈ Iτ and u ∈ Ri \R′i, there is no (v, j) such that {(i, v), (j, u)} ∈ C.

G7.4 For every i ∈ Iτ and u ∈ Si \ (Ri ∪ Ti), (i, u) is (≤ 1)-balanced in C.

Proof. Let τ ∈ T . Using Lemma 4.4, for each φ ∈ Fτ , let Kφ be a graph on Uφ ∪ Vφ with ∆(Kφ) ≤ 5
which satisfies the property in Lemma 4.4. That is, ∆(Kφ) ≤ 5 and if

C ⊂ {{(i, u), (j, v)} : i, j ∈ Iφ, u, v ∈ Uφ, i 6= j, u 6= v, u ∼A,B v}

satisfies F1 and F2, then there are paths Pe, e ∈ C, in Kφ for which F3 and F4 hold.
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We now wish, for each φ ∈ Fτ and uv ∈ E(Kφ) to define an auxiliary graph Lφ,uv using Lemma 4.3.
In this, Iφ will function as the set Uφ in that lemma, while we pick some subset Jφ,uv of {i ∈ Iτ \ Iφ :
u, v ∈ Wi} to use as Vφ. Where φ, φ′ ∈ Fτ , uv ∈ E(Kφ) and u′v′ ∈ E(Kφ′) satisfy φ 6= φ′ and
{u, v} ∩ {u′, v′} 6= ∅ we will want Jφ,uv ∩ Jφ′,u′v′ = ∅ for proving that the property G7 holds, which
motivates the following selection of the sets Jφ,uv, φ ∈ Fτ and uv ∈ E(Kφ).

Let q = p−2
V p2

Spfa/10. For each φ ∈ Fτ and uv ∈ E(Kφ), independently at random choose a set
J+
φ,uv ⊂ {i ∈ Iτ \ Iφ : u, v ∈Wi} by including each i ∈ Iτ \ Iφ with u, v ∈Wi independently at random

with probability q. For each φ ∈ Fτ and uv ∈ E(Kφ), let Jφ,uv be the set of i ∈ J+
φ,uv which do not

appear in any J+
φ′,u′v′ with φ′ ∈ Fτ , u′v′ ∈ E(Kφ′), {u, v} ∩ {u′, v′} 6= ∅ and (φ, uv) 6= (φ′, u′v′).

For each φ ∈ Fτ and uv ∈ E(Kφ), by D5 we have |{i ∈ Iτ \ Iφ : u, v ∈ Wi}| ≥ p2
W p
−2
S ptrn/2.

Furthermore, for each i ∈ Iτ \ Iφ with u, v ∈Wi,

|{(φ′, u′v′) : φ′ ∈ Fτ , u′v′ ∈ E(Kφ′), {u, v} ∩ {u′, v′} 6= ∅}| ≤ 5|{φ′ ∈ Fτ : {u, v} ∩ (Uφ′ ∪ Vφ′) 6= ∅}|
D4

≤ 10p2
V p
−2
S p−1

tr = 1/q,

where we have used that pU
poly

� pV . Therefore,

E|Jφ,uv| ≥ q · (1− q)1/p · |{i ∈ Iτ \ Iφ : u, v ∈Wi}| ≥
q

e2
· p

2
W p
−2
S ptrn

2
=
p2
W pfaptrn

2e2p2
V

≥ 4

pV
pfaptrn ≥

2|Iφ|
pV

,

where we have used that pV
poly

� pW . By Chernoff’s bound and a union bound, we can therefore assume
the following property holds with high probability.

H8 For each φ ∈ Fτ and uv ∈ E(Kφ), |Jφ,uv| ≥ |Iφ|/pV .

For each φ ∈ Fτ and uv ∈ E(Kφ), using that 1/n
poly

� pV
poly

� log−1 n, and H8 and Lemma 4.3,
let L′φ,uv be a graph with vertex set Iφ ∪ Jφ,uv and the properties in the lemma with Uφ = Iφ and
Vφ = Jφ,uv. Let σφ,uv be a uniformly random permutation of Iφ ∪Jφ,uv subject to σφ,uv(Iφ) = Iφ and
σφ,uv(Jφ,uv) = Jφ,uv. Let Lφ,uv be the graph with vertex set Iφ∪Jφ,uv and edge set {σφ,uv(x)σφ,uv(y) :
xy ∈ E(L′φ,uv)}. Observe that the properties of L′φ,uv carry through to Lφ,uv, which is to say that
∆(Lφ,uv) ≤ 4 and the following hold.

H9 There are no edges in Lφ,uv with both vertices in Iφ.

H10 Given any r ∈ N and any vertex-disjoint pairs a1b1, . . . , arbr ∈ I
(2)
φ , there are vertex-disjoint

paths Pi, i ∈ [r], in Lφ,uv with internal vertices in Jφ,uv such that, for each i ∈ [r], Pi is an
xi, yi-path.

We can now choose our set of pairs Iτ . Let

Iτ =
⋃
φ∈Fτ

⋃
uv∈E(Kφ)

{{(i, u), (j, v)} : ij ∈ E(Lφ,uv), u ∈ Si \ (Ri ∪ Tj), v ∈ Sj \ (Ti ∪Rj)}. (16)

Note that, as, for each φ ∈ Fτ and uv ∈ E(Kφ), V (Lφ,uv) = Iφ ∪ Jφ,uv, we have that (15) holds.
We will now show that G1–G3, G6, and G7 hold, and G4 and G5 hold with high probability,

and therefore we can take Iτ with the claimed properties.

G1: Let i ∈ Iτ and u ∈ Si \Ri. If u ∈ Ui∪Vi, then, for each φ ∈ Fτ and any v such that uv ∈ E(Kφ),
i /∈ Jφ,uv as u /∈ Wi. Therefore, the only graphs Lφ,uv with i ∈ V (Lφ,uv) are those with i ∈ Iφ and
uv ∈ E(Kφ). As the sets Iφ, φ ∈ Fτ , are disjoint, and, for each Kφ there are at most 5 vertices v such
that uv ∈ E(Kφ), there are at most 5 graphs Lφ,uv, for some φ and v, with i ∈ V (Lφ,uv). As any
graph Lφ,uv has maximum degree at most 4, we thus have that there are at most 20 pairs (j, v) with
{(u, i), (j, v)} ∈ Iτ .

Suppose, then, that u ∈ Wi. Then, for each φ ∈ Fτ and any v such that uv ∈ E(Kφ), i /∈ Iφ
as u /∈ Ui ∪ Vi. Therefore, the only graphs Lφ,uv with i ∈ V (Lφ,uv) are those with i ∈ Jφ,uv and
uv ∈ E(Kφ). For each i ∈ Iτ , there is at most one pair (φ, v) with i ∈ Jφ,uv by the choice of the Jφ,uv.
As, here, Lφ,uv has maximum degree at most 4, we thus have that there are at most 4 pairs (j, v) with
{(u, i), (j, v)} ∈ Iτ . Therefore, G1 holds in both cases u /∈Wi and u ∈Wi.

G2: Suppose for contradiction that there is some i, j ∈ Iτ , u ∈ Si \ Ti and distinct v, v′ ∈ Sj \ Tj
with {(i, u), (j, v)}, {(i, u), (j, v′)} ∈ Iτ . Then, from (16), there is some φ ∈ F with uv ∈ E(Kφ) and
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ij ∈ E(Lφ,uv) as well as some φ′ ∈ F with uv ∈ E(Kφ′) and ij ∈ E(Lφ′,uv). Now, as (φ, uv) 6=
(φ′, u′v′) and {u, v} ∩ {u, v′} 6= ∅, we have that each of i and j cannot appear in both Jφ,uv ⊂ J+

φ,uv

and Jφ′,uv′ ⊂ J+
φ′,uv′ . Then, as V (Lφ,uv) = Iφ ∪ Jφ,uv and V (Lφ′,uv′) = Iφ′ ∪ Jφ′,uv′ , by H9, we have

that (swapping the labels of φ′, v′ with φ, v if necessary), that i ∈ Iφ, j ∈ Jφ,uv, j ∈ Iφ′ and i ∈ Jφ′,uv′ .
As i ∈ Jφ′,uv′ ⊂ J+

φ′,uv′ , we have that u ∈ Wi. On the other hand, uv ∈ E(Kφ) and i ∈ Iφ implies
that u ∈ V (Kφ) = Uφ ∪ Vφ = Ui ∪ Vi, a contradiction. Thus, G2 holds.

G3: Let i ∈ Iτ and u ∈ Si \ Ti. Let φ(i) be the unique φ(i) ∈ Fτ with i ∈ Iφ(i). If (j, v) is such that
{(i, v), (j, u)} ∈ Iτ , then there is some φ(j, v) ∈ Fτ such that ij ∈ Lφ(j,v),uv.

First, we count the choices for such (j, v) for which φ(v, j) 6= φ(i). In this case we have that
i ∈ Jφ(j,v),uv. However, there is at most one pair (φ(j, v), v) with i ∈ Jφ(j,v),uv, and, having chosen
this, at most 4 different vertices j ∈ V (Lφ(j,v),uv) with ij ∈ E(Lφ,uv). Therefore, there are at most 4
choices for (j, v) with φ(j, v) 6= φ(i) and ij ∈ E(Lφ(j,v),uv).

Second, we count the choices for (j, v) for which φ(j, v) = φ(i) and ij ∈ E(Lφ(j,v),uv). As
∆(Kφ(i)) ≤ 5, there are at most 5 choices for v for which uv ∈ E(Kφ(i)). As ∆(Lφ,uv) ≤ 4, there are
then at most 4 choices for j such that ij ∈ E(Lφ,uv).

In total, then, there at most 24 choices for (j, v) such that ij ∈ E(Lφ,uv) for some φ ∈ Fτ . Thus,
there are at most 24 choices for (j, v) such that {(i, v), (j, u)} ∈ Iτ , and therefore G3 holds.

G4: Let i, j ∈ Iτ . Note that the pair (u, v) satisfies {(i, u), (j, v)} ∈ Iτ only if there exists φ ∈ Fτ
with uv ∈ E(Kφ) such that ij ∈ E(Lφ,uv). For each φ ∈ Fτ and uv ∈ E(Kφ), by H9, we have that

P(ij ∈ E(Lφ,uv)) ≤ 4

|Jφ,uv| − 1
≤ 5pV
|Iφ|

≤ 6pV
ptrpfan

, (17)

where we are using that P(ij ∈ E(Lφ,uv)) = 0 if either i or j /∈ V (Lφ,uv). The events {ij ∈ E(Lφ,uv)}
are independent over φ ∈ Fτ and uv ∈ E(Kφ), and there are at most |Fτ | · 5n ≤ 10p−1

fa n such events.
Thus, the expected number of triples (φ, u, v) with uv ∈ E(Kφ) and ij ∈ E(Lφ,uv) is at most

6pV
ptrpfan

· 10p−1
fa n ≤ p

−1
tr p
−2
fa ≤ n

1/3/4,

where we have used that 1/n
poly

� ptr, pfa. Thus, by Lemma 2.6, with probability 1 − exp(−ω(logn)),
the number of pairs (u, v) with {(i, u), (j, v)} ∈ Iτ is at most n1/3/2. Taking a union bound then
completes the proof of G4.

G5: For each φ, φ′ ∈ Fτ , using that ∆(Kφ ∪ Kφ′) ≤ 10, greedily colour the edges of Kφ ∪ Kφ′ as
cφ,φ′ : E(Kφ ∪Kφ′) → [250] so that any two edges of Kφ ∪Kφ′ with the same colour are a distance
at least 2 apart in Kφ ∪Kφ′ (as opposed to the more normal proper colouring where this distance is
at least 1). Let R be the set of (φ, φ′, c, d) with φ, φ′ ∈ Fτ and c, d ∈ [250].

Now, let j, j′ ∈ Iτ be distinct. For each (i, u, v, v′) such that {(i, u), (j, v)}, {(i, u), (j′, v′)} ∈ Iτ
there is some (φ, φ′, c, d) such that uv ∈ E(Kφ), uv′ ∈ E(Kφ′), ij ∈ E(Lφ,uv) and ij′ ∈ E(Lφ′,uv′), and
the edges uv and uv′ have colour c and d respectively in the colouring cφ,φ′ . Note that if (φ, φ′, c, d)
and u are known, then v and v′ are known, let them be vφ,φ′,c,d,u and v′φ,φ′,c,d,u respectively. Then,
for each (φ, φ′, c, d) ∈ R, let E(φ,φ′,c,d) be the set of (i, u) for which u has a colour-c and a colour-d
neighbour in Kφ ∪ Kφ′ under the colouring cφ,φ′ , i, j ∈ V (Kφ,uv) and i, j ∈ V (Kφ′,uv′). Thus, we
have, easily, that |E(φ,φ′,c,d)| ≤ 2n2.

Now, for any fixed (φ, φ′, c, d) ∈ R, the events {ij ∈ E(Lφ,uvφ,φ′,c,d,u) and ij′ ∈ E(Lφ′,uv′
φ,φ′,c,d,u

)}
are independent across all (i, u) ∈ E(φ,φ′,c,d). Each of these events occurs with probability at most

n2 ·(6pV /ptrpfan)2 ≤ n1/4. Therefore, for each (φ, φ′, c, d) ∈ R, with probability 1−exp(−ω(logn)), we
have that the number of (i, u) ∈ E(φ,φ′,c,d) with ij ∈ E(Lφ,uvφ,φ′,c,d,u) and ij′ ∈ E(Lφ′,uv′

φ,φ′,c,d,u
) is at

most 2n1/4. As we have |R| ≤ (2p−1
fa )2 · 2502, and 1/n

poly

� p−1
fa , using a union bound, with probability

1 − exp(−ω(logn)), we have that G5 holds for any distinct fixed j, j′ ∈ Iτ . Thus, by another union
bound, G5 holds with high probability.

G6: Let j ∈ Iτ and u ∈ Sj \ Tj . Then, the pair (i, v) satisfies {(i, u), (j, v)} ∈ Iτ only if there exists
φ ∈ Fτ with uv ∈ E(Kφ) such that ij ∈ E(Lφ,uv). However, there are at most |Fτ | ≤ 2p−1

fa choices
for φ ∈ Fτ , and, after this, at most 5 choices for v with uv ∈ E(Kφ) and then at most 4 choices for
i with ij ∈ E(Lφ,uv). Thus, in total, there are at most 2p−1

fa · 4 · 5 ≤ n1/3/2 choices for (i, v) with
{(i, u), (j, v)} ∈ Iτ .

G7: Let R′i ⊂ Ri, i ∈ Iτ , be any collection of sets such that, for each i ∈ [n], |R′i| = |Ti|, and, for each
φ ∈ Fτ ,

⋃
i∈Iφ

R′i =mult

⋃
i∈Iφ

Ti. As D1–D9 hold, by Lemma 4.2, for each φ ∈ Fτ , there is a set

Cφ ⊂ {{(i, u), (j, v)} : i, j ∈ Iφ, i 6= j, u ∈ Uφ \ (Ri ∪ Tj) and v ∈ Uφ \ (Ti ∪Rj), u 6= v}. (18)
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such that the following hold.

I1 For every i ∈ Iφ and u ∈ Ti, there is exactly one (j, v) such that {(i, u), (j, v)} ∈ Cφ.

I2 For every i ∈ Iφ and u ∈ R′i there is exactly one (j, v) such that {(i, v), (j, u)} ∈ Cφ.

I3 For every i ∈ Iφ and u ∈ Ri \R′i there is no (j, v) such that {(i, v), (j, u)} ∈ Cφ.

I4 For every i ∈ Iτ and u ∈ Ui \ (Ri ∪ Ti), (i, u) is (≤ 1)-balanced in Cφ.

Let D be the coloured multi-digraph with vertex set Sτ where, for each {(i, u), (j, v)} ∈
⋃
φ∈Fτ Cφ

we add ~uv with colour i and ~vu with colour j. Note that, for each i ∈ Iτ , I1–I4 and (18) imply
that the edges with colour i form exactly a vertex-disjoint collection of some directed cycles, with no
2-cycles, and |Ti| directed paths from Ti to R′i, all of which are in D[Ui \ (Ri \R′i)].

Now, for each φ ∈ Fτ , from I1–I4, we have that F1 and F2 hold with C replaced by Cφ. Therefore,
there are paths Pe, e ∈ Cφ, in Kφ for which the following hold.

I5 For each e = {(i, u), (j, v)} ∈ Cφ, Pe is a u, v-path with internal vertices in Vφ ∩A if u, v ∈ A and
internal vertices in Vφ ∩B if u, v ∈ B.

I6 For each e = {(i, u), (j, v)}, e′ = {(i′, u′), (j′, v′)} ∈ C′ with e 6= e′, if {i, j} ∩ {i′, j′} 6= ∅, then
V (Pe) and V (Pe′) intersect only on {u, v} ∩ {u′, v′}.

For each e = {(i, u), (j, v)} ∈ Cφ, arbitrarily direct e from (i, u) to (j, v), let `e be the length of Pe
and label its vertices as ue,0 = u, ue,1, . . . , ue,`e−1, ue,`e = v. For each φ ∈ Fτ , let

C′φ =
⋃

e={(i,u),(j,v)}∈Cφ

⋃
r∈[`e]

{(i, ue,r−1), (j, ue,r)}.

Let D′ be the coloured multi-digraph with vertex set Sτ where, for each {(i, u), (j, v)} ∈
⋃
φ∈Fτ C

′
φ

we add ~uv with colour i and ~vu with colour j. Note that to create D′ from D, we would take each
~uv ∈ E(D), with colour i say, and replace it with a directed u, v-path of edges with colour i whose
underlying path is P{(i,u),(j,v)} for some j, where this j is unique by I1. For each i ∈ Iτ , by I6, the
interior vertices of the paths with colour i are all vertex-disjoint and lie in Vφ. Therefore, from the
similar property for D, for each i ∈ Iτ , the edges with colour i in D′ form exactly a vertex-disjoint
collection of some directed cycles, with no 2-cycles, and |Ti| vertex-disjoint directed paths from Ti to
R′i in D′[(Ui ∪ Vi) \ (Ri \R′i)].

Then, for each φ ∈ Fτ and uv ∈ E(Kφ), let Iφ,uv be the set of pairs {i, j} such that {(i, u), (j, v)} ∈
C′φ. For each i ∈ Iτ , as D′ has no directed 2-cycles of colour i and every vertex has out-degree in D′

at most 1 in the colour i edges, for each u, v ∈ Sτ there is at most one edge with vertex set {u, v}
and colour i in D′. Therefore, the pairs in Iφ,uv are disjoint for each φ ∈ Fτ and uv ∈ E(Kφ). Thus,
by H10, we can find paths Qe, e ∈ Iφ,uv, which are vertex-disjoint, such that, for each φ ∈ Fτ and
e = (i, j) ∈ Iφ,uv, Qe is an i, j-path in Lφ,uv with interior vertices in Jφ,uv. For such a path Qe, let se
be the length of Qe and label its vertices as ie,0 = i, ie,1, . . ., ie,se = j.

For each φ ∈ Fτ , let

C′′φ =
⋃

e={(i,u),(j,v)}∈C′
φ

⋃
r∈[se]

{(ie,r−1, u), (ie,r, v)},

Let C =
⋃
φ∈Fτ C

′
φ, noting that it follows from (16) that C ⊂ Iτ . Let D′′ be the coloured multi-digraph

with vertex set Sτ where, for each {(i, u), (j, v)} ∈ C we add ~uv with colour i and ~vu with colour j. Note
that to create D′′ from D′, we would take each pair ~uv, ~vu ∈ E(D′) with colour i and j respectively,
such that e = {(i, u), (j, v)} ∈

⋃
φ∈Fτ C

′
φ, and add the edges ~uv, ~vu with colour ie,r for each r ∈ [se−1].

Here, ie,r is an interior vertex of the path Qe, and therefore lies in Jφ,uv, so that u, v ∈ Wie,r . Using
this, and the definition of the sets Jφ,uv, we have, for each i ∈ [n], that the 2-cycles with colour i
that we add to get from D′ to D′′ are vertex-disjoint from each other and from the edges in D′ with
colour i. Thus, from the similar property for D′ and the construction of D′′ from D′, for each i ∈ Iτ ,
the edges with colour i in D′ form exactly a vertex-disjoint collection of some directed cycles, with no
2-cycles, and |Ti| vertex-disjoint directed paths from Ti to R′i in D[(Ui ∪ Vi ∪Wi) \ (Ri \ R′i)]. From
the direct definition of D′′, we therefore have that G7.1–G7.4 hold for C, as required.
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4.7 Part A.4: regularisation of the collection of pairs

For each τ ∈ T , we now take a collection Iτ for which G1–G7 hold, as provided by Lemma 3.3, and
add more pairs to it so that, for all i ∈ Iτ and u ∈ Si \Ri, (i, u) is in the same number of pairs in Iτ .
I.e., we will have that A1 holds instead of G1. This is the key regularity property we use when later
showing the near-regularity of a certain auxiliary hypergraph in Section 6.

While achieving this regularity, we need that the pairs added will not worsen overmuch the other
conditions on Iτ . It is useful then to compare the properties A1–A7 and G1–G7 used in Lemma 3.3
and Lemma 4.5, respectively. As noted, our aim is to add pairs to Iτ so that A1 holds instead of
G1. The conditions A7 and G7 are the same, and continue to hold on the addition of new pairs
to Iτ . The conditions A3–A6 are a relaxation of G3–G6 respectively, where an extra factor of at
least 2 is permitted in the bounds they each claim. This allows us the room to add more pairs to Iτ
without breaking the relaxed conditions, and we will do this by only adding pairs from some random
collection.

On the other hand, A2 and G2 are the same condition. For convenience we repeat this, as follows.

A2/G2 For each i, j ∈ Iτ and u ∈ Si \Ri, there is at most one v ∈ Sj \Rj with {(i, u), (j, v)} ∈ Iτ .

Therefore, this condition gives triples (i, j, u) which cannot appear together in any pair {(i, u), (j, v)}
we add to Iτ , and for each other such triple (i, j, u) we can add at most 1 pair {(i, u), (j, v)}. This
condition is not too onerous: as we certainly always need |Iτ | ≤ n2, this is a small proportion of the
triples (i, j, u) with i, j ∈ Iτ and u ∈ Si \ Ri. Thus, within the random collection of pairs which we
consider for addition to Iτ , we will only need to remove a few more pairs in order to guarantee that
A2 holds whichever set of pairs from this random collection we add.

Proof of Lemma 3.3. Using Lemma 4.5, let

Iτ ⊂ {{(i, u), (j, v)} : i, j ∈ Iτ , i 6= j, u ∈ Si \ (Ri ∪ Tj), v ∈ Sj \ (Ti ∪Rj), u 6= v, u∼A/Bv}

satisfy G1–G7. For each i ∈ Iτ and u ∈ Si \ Ri, let λ−i,u be the number of pairs (j, v) such that

{(i, u), (j, v)} ∈ Iτ , so that λ−i,u ≤ 20 by G1, and let λi,u = 24− λ−i,u, so that 4 ≤ λi,u ≤ 24.

Let EA = {(i, u, r) : i ∈ Iτ , u ∈ A ∩ (Si \ Ri) and r ∈ [λi,u]}. Note that, as 24|{(i, u) : i ∈
Iτ , A∩ (Si \Ri)}| is even, and any {(i, u), (j, v)} ∈ Iτ with u ∈ A has v ∈ A, we have that |EA| is even.
Form the auxiliary graph LA with vertex set EA and, for each (i, u, r), (j, v, s) ∈ EA, an edge between
(i, u, r) and (j, v, s) if u /∈ Tj , v /∈ Ti, u 6= v, i 6= j, and there is no w such that {(i, u), (j, w)} ∈ Iτ or
{(i, w), (j, v)} ∈ Iτ . We now show that LA has high minimum degree.

Claim 9. δ(LA) ≥ (1−√pT )|LA| and |LA| ≥ pSptrn
2.

Proof of Claim 9. Let (i, u, r) ∈ EA, so that i ∈ Iτ , u ∈ A∩ (Si \Ri) and r ∈ [λi,u]. Let (j, v, s) ∈ EA.
We have that (j, v, s) /∈ NLA((i, u, r)) only if at least one of the following hold: i) u ∈ Tj , ii) v ∈ Ti,
iii) u = v, iv) i = j, v) there is some w such that {(i, u), (j, w)} ∈ Iτ , or vi) there is some w such
that {(i, w), (j, v)} ∈ Iτ . We will count the number of (j, v, s) ∈ EA \ {(i, u, r)} satisfying each of i) –
vi) in turn.

Using D1–D9, and that |Iτ | = (1 ± ε)ptrn and |Fτ | = (1 ± ε)p−1
fa for any τ ∈ T , we have the

following. i) By D2, there are at most |Fτ | · 2(1 + ε)pT p
−1
U pfaptrn ≤ 8pT p−1

U ptrn choices for j ∈ Iτ
such that u ∈ Tj , and thus at most 8pT p

−1
U ptrn · 2pSn · 24 ≤ √pT ptrn

2/10 choices with (j, v, s) ∈ EA

and u ∈ Tj , where we have used that pT
poly

� pU . ii) By D1, there are at most 2pTn choices of
v ∈ A ∩ Ti, so that there are thus at most 2ptrn · 2pTn · 24 ≤ √pT pSptrn

2/10 choices of (j, v, s) ∈ EA
with v ∈ Ti.

iii) There are at most 2ptrn · 1 · 24 ≤ √pT pSptrn
2/10 choices of (j, v, s) ∈ EA with v ∈ Ti with

v = u. iv) By D1, there are at most 2pSn · 24 ≤ √pT pSptrn
2/10 choices of (j, v, s) ∈ EA with j = i.

v) By G1, there are at most 20 choices of j for which there is some w with {(i, u), (j, w)} ∈ Iτ , and
therefore at most 20 · 24pSn ≤

√
pT pSptrn

2/10 choices of (j, v, s) ∈ EA for which there is some w
with {(i, u), (j, w)} ∈ Iτ . vi) Similarly, but using G3, there are at most 24 · 24pSn ≤

√
pT pSptrn

2/10
choices of (j, v, s) ∈ EA for which there is some w with {(i, w), (j, v)}. Combining all of this, the
number of non-neighbours of (i, u, r) in LA is at most

√
pT pSptrn

2.
Now, as λi,u ≥ 4 for each i ∈ Iτ and u ∈ A ∩ (Si \Ri), we have that

|LA| = |EA| ≥ 4|Iτ | · |A ∩ (Si \Ri)| ≥ 4(1− ε)ptrn · (1− ε)pSn ≥ pSptrn
2,

so that, in combination with |V (LA) \NLA(x)| ≤ √pT pSptrn
2 for each x ∈ V (LA), we have that the

claim holds. �
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Let p = log2 n/|LA|. Form L̂A ⊂ LA with V (L̂A) = V (LA) by including each edge of LA indepen-
dently at random with probability p. We will show the following claim.

Claim 10. With high probability, we have the following properties.

J1 For each U ⊂ V (L̂A) with |U | ≤ |L̂A|/103, |NL̂A(U)| ≥ 20|U |.

J2 For each disjoint U, V ⊂ V (L̂A) with |U |, |V | ≥ |L̂A|/104, eL̂A(U, V ) ≥ 20|U |.
J3 For each x ∈ EA, there are at most 12 tuples (j, v, s, v′, s′) for which (j, v, s), (j, v′, s) ∈ NL̂A(x).

J4 For each x ∈ EA, there are at most 4 tuples (j, v, s, u, r) with (i, u, r) 6= x for which (j, v, s) ∈
NL̂A(x) and (i, u, r)(j, v, s) ∈ E(L̂)A.

J5 For each i ∈ Iτ and u ∈ Si \ Ti, there are at most n1/3/4 pairs (j, v) such that {(i, v), (j, u)} ∈
E(L̂A).

J6 For each distinct i, j ∈ Iτ there are at most n1/3/4 pairs (u, v) with {(i, u), (j, v)} ∈ E(L̂A).

J7 For each distinct j, j′ ∈ Iτ , there are at most n1/3/4 tuples (i, u, v, v′) for which we have that
{(i, u), (j, v)}, {(i, u), (j′, v′)} ∈ E(L̂A).

J8 For each j ∈ Iτ and u ∈ Sj \Tj there are at most n1/3/4 pairs (i, v) with {(i, u), (j, v)} ∈ E(L̂A).

Proof of Claim 10. J1: Let U ⊂ V (L̂A) with |U | ≤ |L̂A|/103. By Claim 9 and a simple double-
counting argument, there are at least |LA|/2 vertices x ∈ V (L) with at least |U |/2 neighbours in U in
LA. For each such x, P(x ∈ NL̂A(U)) ≥ 1− (1−p)|U| ≥ p|U |/2 = (2/|LA|) · |U | log2 n/4. Therefore, by
Lemma 2.6, with probability 1− exp(−ω(|U | logn)) we have that |NL̂A(U)| ≥ 20|U |. Thus, J1 holds
with high probability by a union bound.

J2: Let N = |LA|. Let U, V ⊂ V (LA) be disjoint with |U |, |V | ≥ N/104. Then, by Claim 9,
eLA(U, V ) ≥ |U ||V | − max{|U |, |V |} · √pTN ≥ N2/109. Then, by Lemma 2.6, with probability
1 − exp(−ω(N)), we have that eL̂A(U, V ) ≥ 20N . Thus, by a union bound, J2 holds with high
probability.

J3: Let x = (i, u, r) ∈ EA. For each j ∈ Iτ \ {i}, there are at most 24n pairs (v, s) with (j, v, s) ∈ EA.
Thus, the probability that there are at least 5 pairs (v, s) with (j, v, s) ∈ EA and x(j, v, s) ∈ E(L̂A) is at
most (24n)5p5 ≤ n−4, and the probability there are at least 2 such pairs is at most (24n)2p2 ≤ n−1.9.
Then, the probability that there are at least 3 values of j ∈ Iτ \ {i} for which there are at least 3
pairs (v, s) with (j, v, s) ∈ E and x(j, v, s) ∈ E(L̂A) is at most n3 · (n−1.9)3 = n−2.7. Furthermore, the
probability that there is some j ∈ Iτ \ {i} for which there are at least 5 pairs (v, s) with (j, v, s) ∈ E
and x(j, v, s) ∈ E(L̂A) is at most n · n−4 = n−3. Combining these, we have that with probability at
least 1 − 2n−2.7 the number of tuples (j, v, s, v′, s′) for which (j, v, s), (j, v′, s′) ∈ NL̂A(x) is at most
2 ·
(

4
2

)
= 12. Thus, by a union bound over x = (i, u, r) ∈ EA, we have that J3 holds with high

probability.

J4: Let x = (i, u, r) ∈ EA. By Lemma 2.6, with probability 1 − exp(−ω(logn)) the set, Y say, of
y ∈ EA with xy ∈ E(LA) satisfies |Y | ≤ 2 log2 n. For each y ∈ Y , the probability there is some
(u′, r′) 6= (u, r) with (i, u′, r′)y ∈ E(LA) is at most 24n · p ≤ n−0.9, and the probability there are at
least 3 such (u′, r′) is at most (24n)3 ·p3 ≤ n−2.7. Thus, with probability at least 1−(2 log2 n) ·n−2.7−
(2 log2 n)3 · n−3·0.9 ≤ n−2.6, there is no y ∈ Y for which there are at least 3 pairs (u′, r′) 6= (u, r)
with (i, u′, r′)y ∈ E(LA) and there are at most 2 choices for y ∈ Y for which there is some pair
(u′, r′) 6= (u, r) with (i, u′, r′)y ∈ E(LA). Note that when this holds then J4 holds for x. Thus, J4
holds with high probability by a union bound.

J5: Let i ∈ Iτ and u ∈ Si \Ti. There are at most n2 pairs (j, v) such that {(i, v), (j, u)} ∈ E(L̂A), and,
for each such (j, v), the probability that {(i, v), (j, u)} ∈ E(L̂A) is p ≤ n−1.9. Thus, by Lemma 2.6,
with probability 1−ω(− logn), there are at most n1/3/4 pairs (j, v) such that {(i, v), (j, u)} ∈ E(L̂A).
Thus, J5 holds with high probability by a union bound.

J6,J8: These hold with high probability virtually identically to J5.

J7. Let j, j′ ∈ Iτ be distinct. For each (i, u, r) ∈ EA, with i /∈ {j, j′}, the probability there are at
least 6 pairs (v, s) with (j, v, s) ∈ E and x(j, v, s) ∈ E(L̂A) or (j′, v, s) ∈ E and x(j′, v, s) ∈ E(L̂A) is
at most (24n)6(2p)6 ≤ n−5. Furthermore, the probability there are at least 2 such pairs is at most
(24n)2(2p)2 ≤ n−1.9. Then, for each i ∈ Iτ \ {j, j′}, with probability 1 − n−4 − (24n)4 · (n−1.9)4 ≥
1−2n3.5 there are at most 3 values of (u, r) with (i, u, r) ∈ EA for which there are at least 2 such pairs,
and there is no value of u with (i, u) ∈ EA for which there are more than 5 such pairs. When this
happens, there are at most 3 ·

(
5
2

)
= 30 choices for (u, r, j, j′, v, v′, s, s′) for which (j, v, s), (j′, v′, s′) ∈ E

and x(j, v, s), x(j′, v′, s′) ∈ E(L̂A). Thus, with high probability this holds for all distinct j, j′ ∈ Iτ and
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i ∈ Iτ \ {j, j′} by a union bound. That is, for each j, j′ ∈ Iτ and i ∈ Iτ \ {j, j′} there are at most 30
choices for (u, v, v′) for which we have that {(i, u), (j, v)}, {(i, u), (j′, v′)} ∈ E(L̂A).

Let again j, j′ ∈ Iτ be distinct. For each i ∈ Iτ \{j, j′}, the probability that there is some (i, u, v, v′)
for which we have that {(i, u), (j, v)}, {(i, u), (j′, v′)} ∈ E(L̂A) is at most (24n)3p2 ≤ n−0.8. Therefore,
by Lemma 2.6, with probability 1 − exp(−ω(logn)) we have that the number of i ∈ Iτ \ {j, j′} for
which there is (u, v, v′) for which we have that {(i, u), (j, v)}, {(i, u), (j′, v′)} ∈ E(L̂A) is at most n1/4.
Thus, by a union bound, this holds with high probability for every distinct j, j′ ∈ Iτ

In combination, the two properties we have shown hold with high probability imply that, for every
distinct j, j′ ∈ Iτ , the number of tuples (i, u, v, v′) for which we have that {(i, u), (j, v)}, {(i, u), (j′, v′)} ∈
E(L̂A) is at most n1/4 · 30 ≤ n1/3/4, as required. Thus, J7 holds with high probability. �

Thus, we can assume that J1–J8 hold. Now, let L̃A be the graph L̂A where we remove any edge
(i, u, r)(j, v, s) if there exists some (v′, s′) with (i, u, r)(j, v′, s′) ∈ E(L̂A). Note that, by J3 and J4 this
removes at most 16 edges around any one vertex. Therefore, J1 and J2 easily imply the following.

J1’ For each U ⊂ V (L̂A) with |U | ≤ |L̂A|/103, |NL̂A(U)| ≥ 3|U |.

J2’ For each disjoint U, V ⊂ V (L̂A) with |U |, |V | ≥ |L̂A|/104, eL̂A(U, V ) > 0.

We now show that J1’ and J2’ imply L̃A contains a perfect matching via Tutte’s theorem. Let
U ⊂ V (L̃A). If U 6= ∅, then as |L̃A| is even and J1’ and J2’ easily imply that L̃A is connected,
L̃A−U has no components with an odd number of vertices, i.e., it has no odd components. If |U | > 0
and L̃A − U has at least |U | + 1 components then V (L̃A − U) can be partitioned into V1, V2 with
|V1|, |V2| ≥ |U |/2 so that there are no edges between V1 and V2 in L̃A − U . By J2’, we then have
|U |/2 ≤ |L̃A|/104. Taking an arbitrary set V ′1 ⊂ V1 with |V ′1 | = d|U |/2e, we then have by J1’ that

|U | ≥ |NL̃A(V ′1 )| ≥ 3|V ′1 | > |U |,

a contradiction. Thus, for every U ⊂ V (L̃A), L̃A −U has at most |U | odd components. Therefore, by
Tutte’s theorem, L̃A has a perfect matching, MA, say.

Similarly, form the auxiliary graph LB with vertex set EB and, for each (i, u, r), (j, v, s) ∈ EB ,
an edge between (i, u, r) and (j, v, s) if u /∈ Tj , v /∈ Ti, u 6= v, i 6= j, and there is no w such that
{(i, u), (j, w)} ∈ Iτ or {(i, w), (j, v)} ∈ Iτ and no (w, r, s) such that (i, u, r)(j, w, s) ∈ MA. Similarly,
form L̃B and MB , where the extra condition on edges in LB is small enough that Claim 9 can easily
be seen to still hold with B in place of A.

Then, let

I′τ = Iτ ∪

 ⋃
(i,u,r)(j,v,s)∈MA∪MB

{(i, u), (j, v)}

 . (19)

By the construction of MA ∪MB , all the pairs added to Iτ in (19) are distinct and not in Iτ .
By the choice of the λi,u, then, we have that A1 holds with I′τ in place of Iτ . A2 follows with

I′τ in place of Iτ from G2, the definition of LA and LB , and the definition of L̃A and L̃B . A3–A6
hold with I′τ in place of Iτ by combining G3–G6 and J5–J8, as well as the corresponding versions
of J5–J8 for L̃B . Furthermore, A7 follows directly from G7 with I′τ in place of Iτ . Finally, we have
that (6) holds with I′τ in place of Iτ . Therefore, I′τ satisfies the conditions in Lemma 3.3 in place of
Iτ , completing the proof of the lemma. �

5 Random Latin squares and links

In this section, we give tight bounds on the number of paths with certain patterns of colours, which
hold with very high probability in G ∼ Gcol

[n]. To describe this, we will use the following notation.

Definition 5.1 (Patterns and links). Say L = (H, f) is a pattern if H is a graph with a specified
start vertex uL and a specified end vertex vL 6= uL and f is a function from E(H) to N.

Given distinct vertices u, v in a coloured graph G, and a pattern L = (H, f), a (u, v, L)-link is a
graph H ′ ⊆ G for which there is an isomorphism ψ : H → H ′ such that, for each i ∈ im(f), ψ(f−1(i))
are edges in G of the same colour, where this colour is distinct over i ∈ im(f).

The main result of this section, and the only one used elsewhere, is the following theorem which
counts certain paths with a given structure. In particular, we are interested in paths of length 62 with
fixed endvertices u and v, which, starting from u, use 31 distinct colours and then repeat each of these
colours in the same order exactly once before ending at v. Note that the number of possible ordered
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choices for the 31 colours on such a path is (1−O(n−1))n31, and for each such choice, by symmetry,
the probability that starting from u and choosing the edges in the required colours and order produces
a path that arrives at v is essentially 1/n. Thus, the expected number of links we wish to count is very
close to the parameter Φ0 = n30 in Theorem 5.2. The first property in Theorem 5.2 that holds with
high probability, K1, is that the number of links we are counting is close to this expectation. The
remaining properties count the number of links given additional constraints (fixing certain vertices,
edges and colours, sometimes at particular points in the path) – each case there is a natural heuristic
that, for example, if the link is additionally required to have a vertex x in the kth position then the
expected number of such links is reduced by a factor of n−1. In Section 6, we will consider an auxiliary
hypergraph whose regularity depends on the number of links containing any particular vertex, edge,
or colour in a particular position. We require this auxiliary hypergraph to be approximately regular
with sufficiently small codegrees. Thus the tight bounds of K2–K4 are required for this approximate
regularity, whilst only upper bounds are needed for the properties covered by K5–K9 as we need only
show that these are not too large in order to bound the codegrees of the auxiliary hypergraph (and
also to bound certain dependencies in Section 7).

Theorem 5.2. Let 1/n
poly

� ε and G ∼ Gcol
[n]. Let L be the following pattern, a path of length 62 with

31 different colours in the first 31 edges which then repeat in the same order:

1
12

23
34

45
56

67
78

89
9

27
2728

2829
2930

3031
31

uL vL

Then, with probability 1− n−ω(1), the following hold with Φ0 = n30.

K1 For each distinct u, v ∈ V (G) with u ∼A/B v, the number of (u, v, L)-links in G is (1± ε)Φ0.

K2 For each k with 2 ≤ k ≤ 62 and each distinct u, v ∈ V (G) with u ∼A/B v, and each x ∈
V (G) \ {u, v} with x 6∼A/B u, v if k is even and x ∼A/B u, v if k is odd, the number of (u, v, L)-
links in G in which x is the kth vertex is (1± ε) · Φ0 · n−1.

K3 For each k ∈ [62], and each distinct u, v ∈ V (G) with u ∼A/B v and each c ∈ C, the number of
(u, v, L)-links in G in which the kth edge has colour c is (1± ε) · Φ0 · n−1.

K4 For each k with 2 ≤ k ≤ 61 and each distinct u, v ∈ V (G) with u ∼A/B v, and each xy ∈ E(G)
with {x, y} ∩ {u, v} = ∅, the number of (u, v, L)-links in G which have xy as the kth edge is
(1± ε) · Φ0 · n−2.

K5 For each distinct u, v, x, y ∈ V (G), the number of (u, v, L)-links in G containing x and y is at
most 104 · Φ0 · n−2.

K6 For each distinct u, v, x ∈ V (G) and each c ∈ C, the number of (u, v, L)-links in G using x and
c in which there is not a colour-c edge ux or xv is at most 104 · Φ0 · n−2.

K7 For each distinct u, v ∈ V (G) and each distinct c, d ∈ C, the number of (u, v, L)-links in G using
c and d is at most 104 · Φ0 · n−2.

K8 For each distinct u, v ∈ V (G) and each distinct e, e′ ∈ E(G − {u, v}) with different colours
and which share no vertices, the number of (u, v, L)-links in G containing e and e′ is at most
104 · Φ0 · n−4.

K9 For each distinct u, v, w ∈ V (G) and each e ∈ E(G− {u, v, w}), the number of (u, v, L)-links in
G containing w and e is at most 108 · Φ0 · n−3.

We discuss our proof of Theorem 5.2 in Section 5.1, before outlining the rest of this section.

5.1 Discussion of methods and section outline

As we have noted in Sections 1 and 2, to prove Theorem 5.2 we will use the deletion method of Rödl
and Ruciński [38], developing its use in Latin squares by Kwan, Sah and Sawhney [25], where they
use it to prove likely upper bounds on the counts of different substructures. We will first describe how
we use it in this way, before explaining how and why we use it for our key lower bound.

Suppose we have a collection F of small properly-coloured graphs that might appear in G ∼ Gcol
[n],

and we wish to give an upper bound on the number of graphs in F that appear as subgraphs of G. As
each F ⊂ F is small and properly coloured, and the probability the corresponding edge in G has the
same colour as that edge in F is, by symmetry, 1/n, we expect that P(F ⊂ G) ≈ n−e(F ). However,
the challenges of working in the uniformly random Latin square model mean that this probability is
severely dominated by the error terms we need to use for the known bounds on P(F ⊂ G) if e(F )

32



is small (i.e., using Corollary 2.5 is far off even the trivial bound P(F ⊂ G) ≤ 1). However, if H is
a properly coloured subgraph which is the union of many edge-disjoint subgraphs in F , then we can
give an effective bound on P(H ⊂ G) (via Corollary 2.5). Moreover, if G contained plenty of graphs
in F that did not overly overlap, then it would contain some such subgraph H.

The deletion method uses this reasoning to give an upper bound on the number of graphs in F
that appear in G that holds with high probability. The form of this argument (using similar notation
to later in this section) will go as follows, for a set D ⊂ [n] of pn colours and for G ∼ Gcol

[n].

• Suppose F is a collection of N properly-coloured subgraphs which might appear in G|D, each
with r edges, and let κ ∈ N.

• Consider the collection S of sequences S = (F1, . . . , Fκ) of subgraphs drawn from F which are
edge-disjoint and whose union HS := ∪i∈[κ]Fi is properly coloured.

• Then, as |S| ≤ Nκ, the expected number of such sequences S ∈ S with HS ⊂ G will be, by

Corollary 2.5, at most eO(prκ+n log2 n)(Nn−r)κ.

• Thus, by Markov’s inequality, with probability 1 − n−ω(1), the number of S ∈ S with HS ⊂ G

will be at most nω(1) · eO(prκ+n log2 n)(Nn−r)κ ≤ ((1 + ε/2)Nn−r)κ, where the inequality will

hold if, for example, 1/n
poly

� p
poly

� ε and κ = n1.01.

• If G contains more than (1 + ε)Nrn−r of the graphs in F which are well enough distributed that
selecting these graphs greedily shows there are at least ((1 + ε/2)Nrn−r)κ sequences S ∈ S with
HS ⊂ G, then from the previous step it must be the case that, with probability 1 − n−ω(1), G
contains at most (1 + ε)Nrn−r of the graphs in F .

The method is applied in Sections 5.2, 5.3 and 5.5. These applications build in complexity, and rely
on the previous applications, and so we repeat each application largely in full rather than attempting
to amalgamate them into a general result. Before discussing our application of the deletion method
for a lower bound, we make the following further remarks.

• In order to give a likely upper-bound on the number of graphs in F appearing in G, we need to
show that, with high probability, there are not many heavily overlapping graphs in F appearing
in G. For some of our applications of the deletion method, this will only hold with very high
probability in G ∼ Gcol

[n], something we show using a simpler application of the deletion method.
Where we do this, B will be the event that there are not many heavily overlapping graphs in F
appearing in G (see, for example, Claim 11 and the argument just after this).

• The sketch above uses p
poly

� ε, while, for example, for Theorem 5.2, we want to count the number
of (u, v, L)-links in G ∼ Gcol

[n] using any colour. To make the deletion method approaches work,
then, we have to count the number of substructures we are interested in that use colours in some
set (D, D1, or D2) that is not too large, and sometimes using only edges in some random set
of edges. Thus, we often prove results with extra restrictions like these (e.g. Lemma 5.3) before
using simple probabilistic arguments with a Chernoff bound or McDiarmid’s inequality to give
a result without these restrictions (e.g. Corollary 5.4).

• In order to apply Corollary 2.5 to bound P(HS ⊂ G), we need to have that each colour appears
at most pn times in HS , so this is an added condition we will take on sequences S ∈ S.

• This sketch so far follows the use of the deletion method in [25], though we additionally use
the deletion method to control the likely spread of graphs in F . A larger difference is that the
subgraphs we are using will have some vertices contained in all of them – for example, for some
u, v, F could be a collection of coloured u, v-paths. Then, if we can take κ edge-disjoint graphs

from F which can appear in G, we must have κ ≤ n, so that the error term eO(prκ+n log2 n) from
Corollary 2.5 is too large to give the tight bounds we need as n log2 n will be larger than κ,
preventing the above sketch from working.

However, it is not difficult to see how to fix this. In the example above for u, v-paths, we would
let H be the graph of edges of G with colour in D which contains u or v. Then, considering
instead the collection F ′ = {GF := F − u− v : F ∈ F}, we can consider κ = n1.01 edge disjoint
graphs GF ∈ F ′ for which F ⊂ G. We can then work by conditioning on the different possible
outcomes of H, where, as we will see (for example, in Claim 12, and its proof) that this will
introduce an additional error term of ee(H) into the application of Corollary 2.5. This is small

compared to the error term eO(n log2 n) we already have, as e(H) ≤ 2n.
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We will now describe how we use the deletion method to give a likely lower bound, as we do in
the proof of Lemma 5.12 in Section 5.5. In this, we have G ∼ Gcol

[n] and distinct x1, x2, y1, y2 ∈ V (G)
with x1 6∼A/B y1 and x2 6∼A/B y2. We wish to give a lower bound which holds with high probability
on the number of pairs (P1, P2) of vertex-disjoint paths in G|D such that, for each i ∈ [2], Pi is an
xi, yi-path of length 15 and these paths have the same colours in the same order. To make this easier,
we split D into D1 ∪ D2 and count the pairs of such paths whose edges are all in G|D1 except the
middle edges of each path, which has colour in D2. In Section 5.4, we show that G|D1 will very likely
be such that for all but o(n4) distinct (uncoloured) edges e, f /∈ E(G|D1), if e and f have the same
colour in G then there will at most only a little fewer than can be expected paths (P1, P2) of the sort
we are counting which have e and f as their respective middle edges. In other words, we will have
E which is a relatively small set of pairs of uncoloured edges e, f /∈ E(G|D1) which would not fewer
than average of the structures we want if they appear in G together with the same colour. Bounding
above the number of these which appear in G with the same colour (using the deletion method) we
then have a lower bound for the structures in G we wish to count.

We leave further details to the proof of Lemma 5.12, but as this implementation is relatively
complex, we think it worth noting here why using switching methods instead would be even more
complicated. In this setting, using the deletion method and using the switching method for a likely
lower bound on the number of certain small coloured subgraphs here is actually closely related. In
particular they would both use the counting of small coloured subgraphs which can be found robustly
(for example, in the work of Gould, Kelly, Kühn, and Osthus [16], the subgraphs called ‘spin systems’
and ‘twist systems’ in its Definition 7.4). With apologies to any readers not familiar with the switching
method, we will not overburden this explanation with the details of a method we are not using, but
this comparison roughly goes as follows. For the switching method, the aim would be to argue that
(where Φ is the expected number of subgraphs we are counting), when X ≤ (1 − ε)Φ the number of
G ∈ Gcol

[n] with X such subgraphs is outnumbered by a (1 + Ωε(1)) factor by those G ∈ Gcol
[n] with X + 1

such subgraphs. This would then be iterated to show that a proportion of at most (1 − Ωε(1))εΦ of
the graphs in G ∈ Gcol

[n] can have X such subgraphs if X ≤ (1 − 2ε)Φ, which translates into the very
small probabilities we would need. The point here is that this would involve counting small coloured
subgraphs not only in a typical G ∈ Gcol

[n] but doing so in a way that remains possible as G is iteratively
altered by switching operations. For our new approach to such lower bounds via the deletion method
(using the notation above) we consider a sequence of κ small coloured subgraphs as well, but these
are drawn from the same coloured graph, and this makes for a less technical approach as our parent
graph is not changing.

Section outline. In Section 5.2, we give a loose bound on pairs of paths of length 3 with fixed
endvertices and the same colours which holds with very high probability in G ∼ Gcol

[n]. The first such
result is Lemma 5.3 (proved with our first application of the deletion method), which bounds the
number of such paths with colours in some set D ⊂ [n], before we use this to deduce for Corollary 5.4
a bound which holds with high probability for paths of any colours. Then, in Section 5.3, we use
this to ensure certain longer paths are likely to be well enough distributed that we can bound above
their number using the deletion method. This will give us a strong bound on the pairs of paths of
length 7 with the same colours and fixed endvertices. In Section 5.4, we prepare for the lower bound
we show in Section 5.5, using relatively straight-forward combinatorial and probabilistic arguments to
give good a good upper bound on the size of the collection E described above. This allows us to use
the deletion method to give our main likely lower bound in Section 5.5, before we put all of the work
in this section together to prove Theorem 5.2 in Section 5.6.

5.2 Loose upper bounds for length 3 paths with the same colours

As described in Section 5.1, we will first prove a loose bound on the number of paths of length 3 with
fixed endvertices and the same colours, using only colours in some set D ⊂ [n], which holds with very
high probability in G ∼ Gcol

[n], as follows.

Lemma 5.3. Let η = 0.01 and 1/n
poly

� p� η. Let D ⊂ [n] have size pn. Let G ∼ Gcol
[n]. Let x1, x2 ∈ A

be distinct and let y1, y2 ∈ B be distinct. Then, with probability 1 − n−ω(1), there are at most n1+η

pairs (P1, P2) of vertex-disjoint paths in G|D of length three such that P1 is an x1, y1-path, P2 is an
x2, y2-path and they have the same colours in the same order.
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Proof. Note that we can assume that x1 6∼A/B y1 and x2 6∼A/B y2, for otherwise there are trivially no
such paths. Let H be the graph of edges in G next to {x1, x2, y1, y2} with colour in D, and let H be
the set of possibilities for H. Let A be the property that there are more than n1+η pairs (P1, P2) of
vertex-disjoint paths in G|D of length three such that P1 is an x1, y1-path, P2 is an x2, y2-path and
they have the same colours in the same order. We will show the following claim.

Claim 11. For each Ĥ ∈ H, P(A|H = Ĥ) = n−ω(1).

Given this claim, we will have

P(A) =
∑
Ĥ∈H

P(A ∧ (H = Ĥ)) =
∑
Ĥ∈H

P(A|H = Ĥ) · P(H = Ĥ) ≤ max
Ĥ∈H

P(A|H = Ĥ) = n−ω(1).

Therefore, it is sufficient to prove Claim 11.

Proof of Claim 11. Let Ĥ ∈ H. Let κ = n1+η/2. Let FĤ be the set of properly coloured graphs F with
vertices in (A ∪B) \ {x1, x2, y1, y2} which each comprise two coloured edges, e and f say, with colour
in D, such that Ĥ+e+f is a properly coloured graph which contains a pair (P1, P2) of vertex-disjoint
paths in G|D of length three such that P1 is an x1, y1-path, P2 is an x2, y2-path and they have the
same colours in the same order. Such a subgraph F is determined by the middle edge in P1 (including
the edge’s colour), and therefore |FĤ | ≤ n

3.
Let SĤ be the set of sequences (F1, . . . , Fκ) of length κ of edge-disjoint subgraphs from FĤ for

which each colour appears on
⋃
i∈[κ] Fi at most pn/2 times, and note that, then,

|SĤ | ≤ |FĤ |
κ ≤ n3κ. (20)

For each S = (F1, . . . , Fκ) ∈ SĤ , let HS = ∪i∈[κ]Fi, so that e(HS) = 2κ, each colour appears on HS
at most pn/2 times and every edge of HS has colour in D. Let ZĤ be the number of S ∈ SĤ with
HS ⊂ G.

Now, we have that each subgraph F ∈ FĤ is determined by either of its edges along with which
of the paths P1 and P2 it is in. Thus, any edge can appear in at most two graphs in FĤ appearing as
subgraphs of G, and (as any colour in D appears on n edges of G) any colour can appear on at most
2n graphs in FĤ appearing as subgraphs of G. Assuming A holds, then we have ZĤ ≥ (n1+η/2)κ, as
follows. Indeed, if A holds, then we can pick a sequence (F1, . . . , Fκ) of edge-disjoint subgraphs from
FĤ by picking each Fi, 1 ≤ i ≤ κ, in turn, where at the selection of each Fi, i ∈ [κ], there will be
(i− 1) · 2 edges we wish to avoid and at most 2(i− 1) · 2/pn colours, so the number of possibilities for
Fi is at least

n1+η − 2 · 2κ− 2n · 2κ

pn/2
≥ n1+η/2,

as 1/n
poly

� p and η = 0.01, and therefore ZĤ ≥ (n1+η/2)κ.

For each S ∈ SĤ , note that HS ∪ Ĥ has at most pn/2 + 4 ≤ pn edges of each colour, and every

edge of HS ∪ Ĥ has colour in D. Therefore, for each S ∈ SĤ for which HS ∪ Ĥ is properly coloured,

using Corollary 2.5 (applied to both HS and HS ∪ Ĥ) and that e(HS) = 2κ ≥ n log2 n ≥ 4n ≥ e(Ĥ),
we have

P(HS ⊂ G|H = Ĥ) =
P((HS ∪ Ĥ) ⊂ G)

P(Ĥ ⊂ G)
= eO(p·e(HS)+n log2 n) · n

−e(HS∪Ĥ)

n−e(Ĥ)
= eO(pκ)n−2κ, (21)

where we have used that pκ = pn1+η/2 = Ω(n log2 n) as 1/n
poly

� p. Therefore, as this holds for each
S ∈ SĤ such that HS ∪ Ĥ is properly coloured,

E(ZĤ |H = Ĥ) ≤ |SĤ | · e
O(pκ)n−2κ

(20)

≤ n3κ · eO(pκ)n−2κ ≤ (n1+O(p))κ = (n(1+η/2))κ · n−ω(1),

so that, by Markov’s inequality, we have

P(A|H = Ĥ) ≤ P(ZĤ ≥ (n1+η/2)κ) ≤
E(ZĤ |H = Ĥ)

(n1+η/2)κ
= n−ω(1).

This completes the proof of the claim, and hence the lemma. �
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Using Lemma 5.3, we now deduce a similar bound which is very likely to hold in G ∼ Gcol
[n] but

where the paths can use any colours in G.

Corollary 5.4. Let η = 0.02 and n ∈ N. Let G ∼ Gcol
[n]. Let x1, x2 ∈ A be distinct and let y1, y2 ∈ B

be distinct. Then, with probability 1− n−ω(1), there are at most n1+η pairs (P1, P2) of vertex-disjoint
paths in G of length three such that P1 is an x1, y1-path, P2 is an x2, y2-path and they have the same
colours in the same order.

Proof. Let p � η, let x1, x2 ∈ A be distinct, let y1, y2 ∈ B be distinct and let G ∼ Gcol
[n]. For each

i ∈ [n], let D̂i be a uniformly random subset of C with size pn. By Chernoff’s bound, with high
probability we have that, for each set Ĉ ⊂ C of 3 colours, there are at least p3n/2 values of i ∈ [n] for
which Ĉ ⊂ D̂i. Furthermore, by Lemma 5.3, with probability 1−n−ω(1), for each i ∈ [n], we have that
there are at most n1.01 pairs (P1, P2) of vertex-disjoint paths in G|D̂i of length three such that P1 is
an x1, y1-path, P2 is an x2, y2-path and they have the same colours in the same order. Therefore, the
number of pairs of vertex-disjoint paths (P1, P2) in G of length three such that P1 is an x1, y1-path,
P2 is an x2, y2-path and they have the same colours in the same order is at most

n · n1.01

p3n/2
≤ n1+η,

as required, where the last inequality holds for sufficiently large n, which holds with probability
1− n−ω(1).

5.3 Tight upper bounds for length 7 paths with the same colours

We now prove a tighter upper bound for pairs of paths of length 7 instead of pairs of paths of length
3. We will use Corollary 5.4 to show that the subgraphs we now seek in G ∼ Gcol

[n] are likely to be well
distributed in G, through the following result.

Proposition 5.5. Let G ∼ Gcol
[n]. Let x1, x2 ∈ A and y1, y2 ∈ B all be distinct. Then, with probability

1−n−ω(1), for each e ∈ E(G−{x1, x2, y1, y2}), there are at most n3.03 pairs (P1, P2) of vertex-disjoint
paths in G of length seven such that P1 is an x1, y1-path, P2 is an x2, y2-path, they have the same
colours in the same order, and e ∈ E(P1 ∪ P2).

Proof. Let η = 0.02. From Corollary 5.4, with probability 1− n−ω(1), for any distinct x′1, x
′
2, y
′
1, y
′
2 ∈

V (G) there are at most n1+η pairs (P ′1, P
′
2) of vertex-disjoint paths in G of length three such that P ′1

is an x′1, y
′
1-path, P2 is an x′2, y

′
2-path and they have the same colours in the same order. Assuming

this property, we will now show the required property holds.
For this, let x1, x2 ∈ A be distinct and let y1, y2 ∈ B be distinct and let e ∈ E(G−{x1, x2, y1, y2}).

Let (P1, P2) be a pair of vertex-disjoint paths in G of length seven such that P1 is an x1, y1-path, P2

is an x2, y2-path, they have the same colours in the same order, and e ∈ E(P1 ∪ P2). Suppose that
e is one of the first 4 edges of P1, say the ith edge and note that, as x1 /∈ V (e), 2 ≤ i ≤ 4. Note
further that the first 4 edges of P1 are determined by choosing which of them is e and additionally
choosing the colour of the other edges among the 2nd, 3rd and 4th edge. As the colours on P1 and
P2 are the same and in the same order, this then determines the first 4 edges of P2. By the property
from Corollary 5.4, the pair (P1, P2) is then determined up to at most n1+η possibilities. Thus, there
are overall at most 3n3+η possibilities for (P1, P2) for which e is one of the first 4 edges of P1.

By the same argument, there are at most 3n3+η possibilities for (P1, P2) when e is one of the last
4 edges of P1, or one of the first 4 edges of P2, or one of the last 4 edges of P2. Therefore, in total,
there are at most 12n3+η ≤ n3.03 pairs (P1, P2) of vertex-disjoint paths in G of length seven such
that P1 is an x1, y1-path, P2 is an x2, y2-path, they have the same colours in the same order, and
e ∈ E(P1 ∪ P2).

Using Proposition 5.5, we now prove our tight upper bound likely to hold for pairs of length 7
paths with the same colour pattern and colours within some subset D ⊂ [n], as follows.

Lemma 5.6. Let 1/n
poly

� p
poly

� ε. Let D ⊂ [n] have size pn. Let G ∼ Gcol
[n]. Let x1, x2 ∈ A be

distinct and let y1, y2 ∈ B be distinct. Then, with probability 1−n−ω(1), there are at most (1 + ε)p7n5

pairs (P1, P2) of vertex-disjoint paths in G|D of length seven such that P1 is an x1, y1-path, P2 is an
x2, y2-path and they have the same colours in the same order.
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Proof. Let H be the graph of edges in G next to {x1, x2, y1, y2} with colour in D, and let H be the set
of possibilities for H. Let A be the event that there are more than (1+ε)p7n5 pairs (P1, P2) of vertex-
disjoint paths in G|D of length seven such that P1 is an x1, y1-path, P2 is an x2, y2-path and they
have the same colours in the same order. Let B be the event that, for each e ∈ E(G−{x1, x2, y1, y2}),
there are at most n3.03 pairs (P1, P2) of vertex-disjoint paths in G of length seven such that P1 is an
x1, y1-path, P2 is an x2, y2-path, they have the same colours in the same order, and e ∈ E(P1 ∪ P2).
We will show the following claim.

Claim 12. For each Ĥ ∈ H, P(A ∧ B|H = Ĥ) = n−ω(1).

Given this claim, as, by Proposition 5.5, P(B) = 1− n−ω(1), we will have

P(A) ≤ P(B̄) + P(A ∧ B) = n−ω(1) +
∑
Ĥ∈H

P((A ∧ B) ∧ (H = Ĥ))

= n−ω(1) +
∑
Ĥ∈H

P(A ∧ B|H = Ĥ) · P(H = Ĥ) ≤ n−ω(1) + max
Ĥ∈H

P(A ∧ B|H = Ĥ)

= n−ω(1). (22)

Therefore, it is left only to prove Claim 12.

Proof of Claim 12. Let Ĥ ∈ H, η = 0.01 and κ = n1+η. Let FĤ be the set of subgraphs F which
consist of two vertex-disjoint paths of length 5 with vertices in (A ∪ B) \ {x1, x2, y1, y2}, where F is
additionally labelled2 with a colour c, such that there is a pair (P1, P2) of vertex-disjoint paths in
Ĥ ∪ F of length seven such that P1 is an x1, y1-path, P2 is an x2, y2-path and they have the same
colours in the same order, all of which are in D, and such that c is the first colour on P1. Such a pair
(P1, P2) is determined by choice of the first and last colour of P1 (with at most (pn)2 choices, and
which determines x1, x2, y1 and y2), the 4 internal vertices of P1 which are not neighbours of x1 or y1

in P1, the 4 internal vertices of P2 which are not neighbours of x2 or y2 in P2, and the 5 colours in
order appearing on the edges of P1 which are not in Ĥ. Note (in part for the implication of A holding
later) that each such pair (P1, P2) gives rise to exactly one subgraph in FĤ (labelled with the first
colour of P1) and each such subgraph in FĤ has exactly one such pair (P1, P2). In particular, then,
|FĤ | ≤ (pn)2 · n4 · n4 · (pn)5 = p7n15. Note that each subgraph in FĤ has 10 edges.

Let SĤ be the set of sequences (F1, . . . , Fκ) of length κ of edge-disjoint subgraphs from FĤ for
which each colour appears on

⋃
i∈[κ] Fi at most pn/2 times, and note that, then,

|SĤ | ≤ p
7κn15κ. (23)

For each S = (F1, . . . , Fκ) ∈ SĤ , let HS = ∪i∈[κ]Fi, so that e(HS) = 10κ and each colour appears
on HS at most pn/2 times. Let ZĤ be the number of S ∈ SĤ with HS ⊂ G. As follows, if A and B
hold, then ZĤ ≥ ((1 + ε/2)p7n5)κ. Indeed, if A and B hold, then we can pick a sequence (F1, . . . , Fκ)
of edge-disjoint subgraphs from FĤ by picking each Fi, 1 ≤ i ≤ κ, in turn, where at the selection
of each Fi, i ∈ [κ], as A and B hold and there will be 10(i − 1) edges we wish to avoid and at most
10(i− 1) · 2/pn colours, the number of possibilities for the choice of Fi will be at least

(1 + ε)p7n5 − 10κ · n3.03 − 10κ

pn/2
· n · n3.03 ≥ (1 + ε)p7n5 − 30 · n1+η · n3.03

p
≥ (1 + ε/2)p7n5,

where we have used that 1/n
poly

� p, ε.
For each S ∈ H, HS ∪ Ĥ has at most pn/2+4 ≤ pn edges of each colour and every edge on HS ∪ Ĥ

has colour in D. Therefore, for each S ∈ S such that HS ∪ Ĥ is properly coloured, similarly to (21),
and using Corollary 2.5 twice and that pκ ≥ n log2 n, we have

P(HS ⊂ G|H = Ĥ) = eO(pκ+n log2 n)n−10κ = eO(pκ)n−10κ.

2This is done as otherwise each F can have 2 matching paths (P1, P2). This did not matter analogously in the proof of
Claim 11 as we were proving a looser bound.
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Thus, as this holds for every S ∈ SĤ such that HS ∪ Ĥ is properly coloured, and p
poly

� ε,

E(ZĤ |H = Ĥ) ≤ |SH| · eO(pκ)n−10κ
(23)

≤ p7κn5κ · eO(pκ) = (1 + ε/2)κ/2p7κn5κ

= ((1 + ε/2)p7n5)κ · n−ω(1).

Then, by Markov’s inequality, we have

P(A ∧ B|H = Ĥ) ≤ P(ZĤ ≥ ((1 + ε/2)p7n5)κ) ≤
E(ZĤ |H = Ĥ)

((1 + ε/2)p7n5)κ
= n−ω(1).

This completes the proof of the claim, and hence the lemma. �

In the same way as Corollary 5.4 follows from Lemma 5.3, the following corollary follows from
Lemma 5.6, where again the paths counted can now have any colours, not just those in D.

Corollary 5.7. Let 1/n
poly

� ε. Let G ∼ Gcol
[n]. Let x1, x2, y1, y2 ∈ V (G) be distinct with x1 6∼A/B y1

and x2 6∼A/B y2. Then, with probability 1 − n−ω(1), there are at most (1 + ε)n5 pairs (P1, P2) of
vertex-disjoint paths in G of length seven such that P1 is an x1, y1-path, P2 is an x2, y2-path and they
have the same colours in the same order.

5.4 Preparation for the lower bound for length 15 paths

We now prepare to prove, for distinct x1, x2, y1, y2 ∈ V (G) with x1 6∼A/B y1 and x2 6∼A/B y2, a likely
lower bound on the number of pairs of vertex-disjoint paths with length 15 between (x1, y1) and (x2, y2)
respectively which use the same colours in the same order. To do this, we consider the number of such
pairs where the respective middle edges may instead have any colours (as pictured in Lemma 5.8),
and show firstly that many such pairs of paths will exist (see Lemma 5.8). Not imposing a colour
condition on the middle two edges means that this can be done using relatively simple combinatorial
and probabilistic arguments. Then, using our previously shown likely upper bounds, we show that it
is very likely that no pair of edges e, f appear as these middle edges more than we should expect (see
Corollary 5.9), before turning this into a result on the number of pairs e, f that can appear as these
middle edges distinctly less than we should expect (see Corollary 5.10). We start with the following
lemma, which gives a lower bound on these paths with colours in D and edges in E. The set E is used
because eventually we will use this to control the number of edges of each colour and at each vertex
in a subgraph to which we apply Corollary 2.5 (see H in the proof of Lemma 5.12).

Lemma 5.8. Let 1/n
poly

� p, ε ≤ 1. Let D ⊂ [n] have size pn and let G ∼ Gcol
[n]. Let E ⊂ E(G) be

formed by including each edge independently at random with probability p. Let x1, x2, y1, y2 ∈ V (G) be
distinct with x1 6∼A/B y1 and x2 6∼A/B y2.

Then, with probability 1− n−ω(1), there are at least (1− ε)p42(1− p)2n14 pairs (P1, P2) of vertex-
disjoint rainbow paths of length 15 in G, each of whose middle edges have colour not in D and all other
edges in E with colour in D, and such that P1 is an x1, y1-path, P2 is an x2, y2-path, and, apart from
possibly their middle edges, the paths P1 and P2 have the same colours in the same order, as pictured
below.
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Proof. Note that we can assume that ε = o(1). Let G′ ∈ Gcol
[n]. We start by proving three claims

about G′, before using this to derive likely properties of G ∼ Gcol
[n]. Let P be the set of pairs (P1, P2)

of vertex-disjoint rainbow paths of length 15 in G′, each of whose middle edge has colour not in D
and all its other edges have colour in D, and such that P1 is an x1, y1-path, P2 is an x2, y2-path, and,
apart from possibly their middle edges, the paths P1 and P2 have the same colours in the same order.

Claim 13. |P| ≥ (1− ε/2)n14.

Proof of Claim 13. Let Dx be the set of sequences c = (c1, c2, . . . , c7) of distinct colours such that
there are vertex-disjoint paths Pc,1 and Pc,2 of length 7 in G′ which, respectively, are from x1 and x2,
and have colours in the order in c. Similarly, define Dy, and paths Qc,1 and Qc,2, for each c ∈ Dy,
starting from y.
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Note that, if c = (c1, c2, . . . , c7) is chosen in order, so that, at each stage i ∈ [7], the two paths of
length i leading from x1 and x2 with colours c1, . . . , ci in order are vertex-disjoint, then when choosing
cj with j ∈ [7], there are O(1) colours that need to be avoided because adding an edge of that colour
to one of the paths will lead to a vertex on either path or have a colour already on the paths. Thus,
|Dx| ≥ (n−O(1))7 ≥ n7 −O(n6), and, similarly, |Dy| ≥ n7 −O(n6).

For each c ∈ Dx, there are 16 vertices and 7 colours together in the paths Pc,1 and Pc,2, and thus
O(n6) paths of length 7 from y1 or y2 which contain a vertex in Pc,1 and Pc,2 or have an edge to
V (Pc,1 ∪ Pc,2) with a colour in c. As this holds similarly for each d ∈ Dy, there are n14 − O(n13)
choices of (c,d) with c ∈ Dx, d ∈ Dy such that V (Pc,1 ∪ Pc,2) and V (Qd,1 ∪ Qd,2) are disjoint and
have no edge between them with colour in c or d. Thus, |P| = n14 −O(n13) ≥ (1− ε/2)n14. �

Claim 14. For each e ∈ E(G′ − {x1, x2, y1, y2}) there are O(n12) pairs of paths in P where one of
the paths contains e.

Proof. Let e ∈ E(G′−{x1, x2, y1, y2}). Any x1, y1-path of length 15 in G containing e then contains 12
vertices not in V (e) ∪ {x1, x2}, so there are O(n12) different x1, y1-paths of length 15 in G containing
e. Similarly, there are there are O(n12) different x2, y2-paths of length 15 in G containing e. Noting
that each path P1 appears in at most one pair (P1, P2) ∈ P or (P2, P1) ∈ P, the claim follows. �

Claim 15. For each edge e ∈ E(G′) containing x1, x2, y1 or y2, there are O(n13) pairs of paths in P
where one of the paths contains e.

Proof. Let e ∈ E(G′) contain x1, x2, y1 or y2, and suppose without loss of generality that it contains
one of x1, x2. Any x1, y1-path of length 15 in G containing e then contains 13 vertices not in V (e) ∪
{x1, x2}, so there are O(n13) different x1, y1-paths of length 15 in G containing e. Noting that each
path P1 appears in at most one pair (P1, P2) ∈ P, the claim follows. �

We will now create a set of random colours D̂ and deduce likely properties about the pairs of paths
in P which use colours only in D̂, except for their middle edges which do not have colour in D̂. Now,
let D̂0, D̂1 ⊂ C be disjoint random sets of colours such that each colour c ∈ C is independently added
to D̂0 with probability (1− ε2)p and to D̂1 with probability (1− ε2)(1− p). Let D̂ ⊂ C be a random
set of colours such that if |D̂0| ≤ pn and |D̂1| ≤ (1 − p)n, D̂ is chosen uniformly at random from
all subsets of C with size pn such that D̂0 ⊂ D̂ ⊂ C \ D̂1, and, otherwise, D̂ is chosen uniformly at
random from all subsets of C with size pn. Note that, by Lemma 2.6, with probability 1− n−ω(1), we
have D̂0 ⊂ D̂ ⊂ C \ D̂1.

Let X be the number of pairs of paths (P1, P2) ∈ P whose edges all have colour in D̂0 and which
are in E, except for their middle edges which have colour in D̂1 and which may be in E or not. For
each (P1, P2) ∈ P, the probability (P1, P2) satisfies these conditions is (as the middle edges may or
may not have the same colour) at least (1− ε2)16p28p14(1− p)2, and thus, from Claim 13, we have

EX ≥ (1− ε2)16p42(1− p)2 · (1− ε/2)n14 ≥ (1− 2ε/3)p42(1− p)2n14.

Now, by Claim 14, there is some λ1 = O(1) such that, if e ∈ E(G′ − {x1, x2, y1, y2}), then changing
whether or not e is in E changes X by at most λ1n

12. Furthermore, by Claim 15, there is some
λ2 = O(1) such that, if e ∈ E(G′) does contain x1, x2, y1 or y2, then changing whether or not e is in
E changes X by at most λ2n

13. Finally, again by Claim 14 and Claim 15, and as each colour appears
in G′ n times, and has at most 4 edges touching {x1, x2, y1, y2}, there is some λ3 = O(1) such that,
for each c ∈ [n], changing whether c is in D̂0, or D̂1, or neither D̂0 nor D̂1, changes X by at most
λ3n

13. Thus, by Lemma 2.7 with t = εp42(1− p)2n14/3,

P(X ≤ (1− ε)p42(1− p)2n14) ≤ 2 exp

(
− 2t2

n2 · (λ1n12)2 + 4n · (λ2n13)2 + n · (λ3n13)2

)
≤ 2 exp

(
−Ω(t2/n27) = 2 exp

(
−Ω(ε2p84(1− p)4n)

)
= n−ω(1), (24)

where we have used that 1/n
poly

� ε, p. Thus, as D̂1 ⊂ D̂ ⊂ C \ D̂2 with probability 1 − n−ω(1), with
probability 1−n−ω(1) there are at least (1− ε)p42(1− p)2n14 pairs (P1, P2) of vertex-disjoint rainbow
paths in G′, each of whose middle edge has colour not in D̂ and all its other edges are in E and have
colour in D̂, and such that P1 is an x1, y1-path, P2 is an x2, y2-path, and, apart from possibly their
middle edges, the paths P1 and P2 have the same colours in the same order, as pictured below. As
the distribution D̂ is that of a set of pn colours chosen uniformly at random from C for each fixed
G′ ∈ Gcol

[n] , and G ∼ Gcol
[n], the result of the lemma follows easily. �
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We now deduce from our previous likely upper bounds (specifically Lemma 5.3 and Lemma 5.6),
that no pair e, f is likely to appear much more often than expected as the middle two edges in the
pairs of paths counted in Lemma 5.8.

Corollary 5.9. Let 1/n
poly

� p
poly

� ε. Let D ⊂ [n] have size pn and let G ∼ Gcol
[n]. Let E ⊂ E(G) be

formed by including each edge independently at random with probability p. Let x1, x2, y1, y2 ∈ V (G) be
distinct with x1 6∼A/B y1 and x2 6∼A/B y2.

Then, with probability 1−n−ω(1), for any pair of edges e, f ∈ E(G), there are at most (1+ε)p42n10

pairs (P1, P2) of vertex-disjoint rainbow paths in G of length 15, and all the edges of the paths apart
from the two middle edges are in E and have colour in D, and such that P1 is an x1, y1-path with
middle edge e, P2 is an x2, y2-path with middle edge f , and, apart from possibly their middle edges,
the paths P1 and P2 have the same colours in the same order.

Proof. By Lemma 5.6, with probability 1 − n−ω(1), we have that, for every distinct x′1, x
′
2 ∈ A and

distinct y′1, y
′
2 ∈ B, there are at most (1 + ε/3)p7n5 pairs (P ′1, P

′
2) of vertex-disjoint paths in G|D of

length 7 such that P ′1 is an x′1, y
′
1-path, P ′2 is an x′2, y

′
2-path and they have the same colours in the

same order. By Lemma 5.3, with probability 1 − n−ω(1), we have that, for every distinct x′1, x
′
2 ∈ A

and distinct y′1, y
′
2 ∈ B, there are at most n1.01 pairs (P ′1, P

′
2) of vertex-disjoint paths in G|D of length

3 such that P ′1 is an x′1, y
′
1-path, P ′2 is an x′2, y

′
2-path and they have the same colours in the same order.

Assuming these properties for G|D, and revealing E, we will show that, with probability 1 − n−ω(1),
for every distinct a1, a2 ∈ A and distinct b1, b2 ∈ B, there are at most (1 + ε/3)p21n5 pairs (P ′1, P

′
2) of

vertex-disjoint paths in G|D of length seven such that all of their edges are in E, P ′1 is an a1, a2-path,
P ′2 is an b1, b2-path and they have the same colours in the same order.

For this, suppose that a1, a2 ∈ A and b1, b2 ∈ B are all distinct, and let P be the set of pairs
(P ′1, P

′
2) of vertex-disjoint paths in G|D of length seven such that P ′1 is an a1, a2-path, P ′2 is an b1, b2-

path and they have the same colours in the same order. Then, by the property from Lemma 5.6, we
have |P| ≤ (1 + ε/3)p7n5. Furthermore, given any edge e ∈ E(G− {a1, a2, b1, b2}), we can count the
number of pairs of paths (P ′1, P

′
2) ∈ P which use e by choosing which of P ′1 or P ′2 contains e and which

edge of the path this is (with at most 14 choices). Then, assuming e is among the first 4 edges of
P ′1 (where the other cases follow almost identically), we can choose the other vertices for the first 4
interior vertices of P ′1 (with at most n2 options) which also determines the first 4 interior vertices of
P ′2, whereupon we have at most n1.01 options to choose the remaining subpaths of P ′1 and P ′2 using
the property from Lemma 5.3. Thus, each edge in G− {a1, a2, b1, b2} is contained in at most 10n3.01

pairs of paths in P. Similarly, each edge in G which contains a vertex in {a1, a2, b1, b2} is contained
in at most 4n4.01 pairs of paths.

Then, as the expected number of pairs of paths in P whose edges are all in E is p14|P| ≤ (1 +

ε/3)p21n5, as 1/n
poly

� p, ε, using McDiarmid’s inequality (Lemma 2.7) similarly to how we did at (24)
we have that, with probability 1− n−ω(1), there are at most (1 + 2ε/3)p21n5 pairs (P ′1, P

′
2) ∈ P such

that all of their edges are in E. Taking a union bound, with probability 1 − n−ω(1), we will have
that for any a1, a2 ∈ A and distinct b1, b2 ∈ B, there are at most (1 + 2ε/3)p21n5 pairs (P ′1, P

′
2) of

vertex-disjoint paths in G|D with edges in E such that P ′1 is an a1, a2-path, P ′2 is a b1, b2-path and
they have the same colours in the same order.

Assuming this, the property we want for any pair of edges e, f ∈ E(G) follows. Indeed, first
note that the property we want is trivial unless these edges share no vertices and have no vertices in
{x1, y1, x2, y2}. Assuming otherwise, then, we can let a1, b1, a2, b2 be such that e = a1b1, b1 6∼A/B x1,
f = a2b2 and a2 6∼A/B x2. There are at most ((1 + ε/3)p21n5)2 choices for paths P1, P2, P3, P4 such
that (as depicted in Figure 8) they all have length 7, P1 is an x1, b1-path, P2 is an a1, y1-path, P3

is an x2, a2-path, P4 is an b2, y2-path, P1 and P3 have the same colours in the same order and are
vertex-disjoint, and P2 and P4 have the same colours in the same order and are vertex-disjoint. Thus,
there are at most (1 + ε)p42n10 pairs (P ′1, P

′
2) of vertex-disjoint rainbow paths in G of length 15, and

all the edges of the paths apart from the two middle edges are in E and have colour in D, and such
that P ′1 is an x1, y1-path with middle edge e, P ′2 is an x2, y2-path with middle edge f , and, apart
from possibly their middle edges, the paths P ′1 and P ′2 have the same colours in the same order, as
required.

We now show that, roughly speaking, as, by Corollary 5.9, no pair e, f can contribute as the
middle two edges of the pairs of paths counted in Lemma 5.8, almost all of the possible pairs e, f must
contribute not much below what can be expected of them, as follows.

Corollary 5.10. Let 1/n
poly

� p, ε ≤ 1. Let D ⊂ [n] have size pn and let G ∼ Gcol
[n]. Let E ⊂ E(G) be

formed by including each edge independently at random with probability p. Let x1, x2, y1, y2 ∈ V (G) be
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Figure 8: The more general structure counted in the proof of Corollary 5.9, where P1 and P3 are paths
with length seven with colours in the same order, as are P2 and P4 (using potentially some of the same
colours as in P1 and P3).

distinct with x1 6∼A/B y1 and x2 6∼A/B y2.

Then, with probability 1 − n−ω(1), for any pair of edges e, f ∈ E(G), there are at most εn4 pairs
of distinct edges e, f ∈ E(G|[n]\D) for which there are at most (1 − ε)p42n10 pairs (P1, P2) of vertex-
disjoint rainbow paths in G with length 15, and all the edges of the paths apart from the two middle
edges are in E and have colour in D, and such that P1 is an x1, y1-path with middle edge e, P2 is an
x2, y2-path with middle edge f , and, apart from possibly their middle edges, the paths P1 and P2 have
the same colours in the same order.

Proof. This follows directly from Lemma 5.8 and Corollary 5.9, as follows. For each e, f ∈ E(G) let
Xe,f be the number of pairs (P1, P2) of vertex-disjoint rainbow paths in G of length 15 for which all
the edges of the paths apart from the two middle edges are in E and have colour in D, and such that
P1 is an x1, y1-path with middle edge e, P2 is an x2, y2-path with middle edge f , and, apart from
possibly their middle edges, the paths P1 and P2 have the same colours in the same order. Let E be
the set of pairs of distinct edges e, f ∈ E(G|[n]\D) such that Xe,f ≤ (1− ε)p42n10. By Corollary 5.9,

with probability n−ω(1) we have Xe,f ≤ (1 + ε2/2)p42n10 for each e, f ∈ E(G). If |E| ≥ εn2, then∑
e,f∈E(G|D)

Xe,f ≤εn4 · (1− ε) · p42n10 +
(
(e(G|[n]\D)2 − εn4) · (1 + ε2/2) · p42n10

≤ εn4 · (1− ε) · p42n10 +
(
(1− p)2n4 − εn4) · (1 + ε2/2) · p42n10

≤ (1− ε2/2) · p42(1− p)2n14.

However, by Lemma 5.8 this does not hold with probability 1 − n−ω(1). Therefore, with probability
1− n−ω(1), we must have |E| ≤ εn4, as required.

5.5 Tight bounds for length 15 paths with the same colours

We are now ready to prove our required likely lower bound for pairs of paths of length 15. For
convenience, we will record this along with our upper bound in the following result.

Lemma 5.11. Let 1/n
poly

� ε. Let G ∼ Gcol
[n] and let x1, x2, y1, y2 ∈ V (G) be distinct with x1 6∼A/B y1

and x2 6∼A/B y2. Then, with probability 1 − n−ω(1), the following holds. There are (1 ± ε)n13 pairs
(P1, P2) of vertex-disjoint paths in G of length 15 such that P1 is an x1, y1-path, P2 is an x2, y2-path,
and they have the same colours in the same order.

For the lower bound in Lemma 5.11, we first prove a similar lower bound where the edges of the
paths have colour within some specified subset D1 or D2, as follows, and some edges are in a random
set E of edges.

Lemma 5.12. Let 1/n
poly

� p1

poly

� p2

poly

� ε. Let D1, D2 ⊂ [n] be disjoint sets with size p1n and p2n
respectively. Let E ⊂ E(G) be formed by including each edge at random with probability p1. Let
G ∼ Gcol

[n] and let x1, x2, y1, y2 ∈ V (G) be distinct with x1 6∼A/B y1 and x2 6∼A/B y2. Then, with

probability 1− n−ω(1), there are at least (1− ε)p42
1 p2n

13 pairs (P1, P2) of vertex-disjoint paths in G of
length 15 such that P1 is an x1, y1-path, P2 is an x2, y2-path, they have the same colours in the same
order, all but their middle edges have colour in D1 and are in E, and their middle edges have colour
in D2.

Proof. Let µ satisfy 1/n
poly

� µ
poly

� p1. Let H be the graph of edges in E with colour in D1, and let H
be the set of possibilities for H. Let E be the set of pairs (e, f) of edges of the (uncoloured) complete
bipartite graph which do not appear (coloured) in H such that there are at most (1− µ)p42

1 n
10 pairs

(P1, P2) of vertex-disjoint paths in H + e+ f of length 15 such that P1 is an x1, y1-path with middle
edge e, P2 is an x2, y2-path with middle edge f , and P1 and P2 have, apart from the middle edges (e
and f), the same colours in the same order. Let A be the event that there are at least εp2n

3/2 pairs
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(e, f) ∈ E for which e and f have the same colour and this colour is in D2. Let B be the event that
there are at most 2pn edges of each colour in E and |E| ≤ µn4.

We will show the following claim.

Claim 16. For each Ĥ ∈ H, P(A ∧ B|H = Ĥ) = n−ω(1).

Given this claim, as P(B) = 1 − n−ω(1) by Corollary 5.10 and Lemma 2.6, following the same
reasoning as for (22), we have P(A) = n−ω(1). Furthermore, if A does not occur, then the number
of pairs (P1, P2) of vertex-disjoint paths in G of length 15 such that P1 is an x1, y1-path, P2 is an
x2, y2-path, they have the same colours in the same order, all but their middle edges have colour in
D1 and are in E, and their middle edges have colour in D2, is at least(

|D2| · n(n− 1)− εp2n
3

2

)
· (1− µ)p42

1 n
10 ≥ (1− ε)p42

1 p2n
13,

as required. Therefore, it is left only to prove Claim 16.

Proof of Claim 16. Let H′ be the set of Ĥ ∈ H for which B holds whenever H = Ĥ. Note that if
Ĥ ∈ H \ H′, then P(A ∧ B|H = Ĥ) ≤ P(B|H = Ĥ) = 0, so Claim 16 holds trivially in this case.
Therefore, let Ĥ ∈ H′.

Let p = p1 + p2, D = D1 ∪D2 and κ = p1n
2. Let FĤ be the set of subgraphs F such that F has

exactly two edges, e and f say, which both have the same colour, which is in D2, and are such that
(e, f) ∈ E or (f, e) ∈ E . As B holds when H = Ĥ, and there are n colours, we have |FĤ | ≤ 2µn5.

Let SĤ be the set of (F1, . . . , Fκ) of sequences of length κ of edge-disjoint subgraphs from FĤ for
which each colour appears on

⋃
i∈[κ] Fi at most pn times, so that, if B holds, then

|SĤ | ≤ (2µ)κn5κ. (25)

For each S = (F1, . . . , Fκ) ∈ SĤ , let HS = ∪i∈[κ]Fi, so that e(HS) = 2κ, each colour appears on HS
at most pn times, and all of the colours of HS are in D2. Let ZĤ be the number of S ∈ SĤ with

HS ⊂ G. Now, observe that if A and B hold and H = Ĥ, then ZĤ ≥ (εn3/4)κ. Indeed, first note
simply that any edge e ∈ E(G|[n]\D1

) is in at most n graphs in FĤ which are a subgraph of G as
such subgraphs are pairs of edges with the same colour, and thus, moreover, every colour appears on
at most n2 subgraphs in FĤ . Therefore, if A and B hold, then we can pick a sequence (F1, . . . , Fκ)
of edge-disjoint subgraphs from FĤ by picking each Fi, 1 ≤ i ≤ κ, in turn, where at the selection
of each Fi, i ∈ [κ], as A and B hold and there will be 2(i − 1) edges we wish to avoid and at most
2(i− 1) · (pn/2)−1 colours, the number of possibilities for the choice of Fi will be at least

εn3

2
− 2κ · n− 2κ

pn/2
· n2 ≥ εn3

2
− 8κn

p
≥ εn3

4
,

as κ = p1n
2 and p1

poly

� p, ε.
For each S ∈ SĤ , we have, as B holds if H = Ĥ, that HS ∪ Ĥ has at most pn + pn ≤ 2pn edges

of each colour. Furthermore, the edges of HS ∪ Ĥ only have colour in D = D1 ∪D2, a set of size pn.
Thus, for every S ∈ SĤ such that HS ∪ Ĥ is properly coloured, similarly to (21), using Corollary 2.5
twice and that pκ ≥ n log2 n, we have that

P(HS ⊂ G|H ′ = Ĥ) =
P((HS ∪ Ĥ) ⊂ G)

P(H ′ = Ĥ)
=

(
1+O(p)

n

)e(Ĥ)+2κ

(
1+O(p)

n

)e(Ĥ)
= (1 +O(p))2e(Ĥ)+2κn−2κ

= eO(pκ)n−2κ, (26)

where we have used that e(Ĥ) = p1n
2 = κ. Thus, as this holds for every S ∈ SĤ such that HS ∪ Ĥ is

properly coloured,

E(ZĤ |H = Ĥ) ≤ |SH| · eO(pκ)n−2κ
(25)

≤ eO(pκ) · (2µ)κn3κ = (εn3/4)κ · n−ω(1),

where we have used that 1/n
poly

� µ
poly

� ε. Then, by Markov’s inequality, we have

P(A ∧ B|H = Ĥ) ≤ P(ZĤ ≥ (εn3/4)κ) ≤
E(ZĤ |H = Ĥ)

(εn3/4)κ
= n−ω(1).

This completes the proof of the claim, and hence the lemma. �
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Using Corollary 5.7 and Lemma 5.12, it is now short work to deduce Lemma 5.11.

Proof of Lemma 5.11. Let P be the set of pairs (P1, P2) of vertex-disjoint rainbow paths in G of length
15 with the same colours in the same order, such that P1 is an x1, y1-path and P2 is an x2, y2-path.
By Corollary 5.7, with probability 1− n−ω(1), for any distinct x′1, x

′
2, y
′
1, y
′
2 ∈ V (G) with x′1 6∼A/B y′1

and x′2 6∼A/B y′2, there are at most (1 + ε)n5 pairs (P1, P2) of vertex-disjoint paths in G of length
seven such that P1 is an x′1, y

′
1-path, P2 is an x′2, y

′
2-path and they have the same colours in the same

order. Note that, for any distinct x1, x2, y1, y2 ∈ V (G) with x1 6∼A/B y1 and x2 6∼A/B y2, there are
at most n8 pairs (P1, P2) paths of length 8 which start at x1 and x2 respectively and have the same
colours in the same order. Therefore, applying the property of paths of length 7 to the other ends of
these paths with y1 or y2 as appropriate, we get that there are at most (1 + ε)n13 pairs in P.

Furthermore, given any edge e ∈ E(G) − {x1, x2, y1, y2}, and any 2 ≤ k ≤ 8, there are at most
n6 pairs (P1, P2) paths of length 8 which start at x1 and x2 respectively and have the same colours
in the same order and where e is the k edge of the path from x1. Thus, arguing as above, there are
O(n11) pairs (P1, P2) ∈ P in which e is the kth edge of P1 from x1. Working similarly, we have that
there are altogether O(n11) pairs (P1, P2) ∈ P in which e ∈ E(P1 ∪ P2). If e ∈ E(G) contains a
vertex in {x1, x2, y1, y2}, then arguing similarly to before, we have that there are at most O(n12) pairs
(P1, P2) ∈ P with e ∈ E(P1 ∪ P2).

Let p1 and p2 satisfy 1/n
poly

� p1

poly

� p2

poly

� ε. Let D̂1, D̂2 ⊂ C be disjoint random sets of colours
such that each colour c ∈ C is independently added to D̂0 with probability (1 − ε2)p1 and to D̂2

with probability (1− ε2)p2. Let D1, D2 be disjoint random sets of colours such that if |D̂1| ≤ pn and
|D̂1| ≤ p2n, D1 and D2 are chosen uniformly at random subject to D̂1 ⊂ D1 ⊂ C, D̂2 ⊂ D2 ⊂ C,
|D1| = p1n, |D2| = p2n, and D1 and D2 are disjoint, and, otherwise D1 and D2 are chosen uniformly
at random subject to D1, D2 ⊂ C, |D1| = p1n, |D2| = p2n, and D1 and D2 are disjoint. Note that, by
Lemma 2.6, with probability 1− n−ω(1), we have D̂1 ⊂ D1 and D̂2 ⊂ D2. Let E ⊂ E(G) be a formed
by including each edge independently at random with probability p1.

Let P ′ ⊂ P be the set of (P1, P2) ∈ P for which the colours of P1 not on the middle edge are all in
D1 and in E, and whose middle edge has colour in D2. By Lemma 5.12, with probability 1− n−ω(1),
we have |P ′| ≥ (1− ε/3)p42

1 p2n
13. On the other hand, if |P| ≤ (1− ε)n13, then, by an application of

Lemma 2.7 similar to (24), |P ′| ≤ (1− 2ε/3)p42
1 p2n

13 with probability 1−n−ω(1). Therefore, we must
have that, with probability 1− n−ω(1), |P| ≥ (1− ε)n13, as claimed.

5.6 L-links: proof of Theorem 5.2

Finally in this section, we put our work together to prove Theorem 5.2.

Proof of Theorem 5.2. Note that we can assume that ε� 1. By Corollary 5.7 and Lemma 5.11, with
probability 1− n−ω(1), we can assume that the following hold.

L1 For every distinct x1, x2, y1, y2 ∈ V (G) with x1 6∼A/B y1 and x2 6∼A/B y2, there are at most
(1 + ε/8)n5 pairs (P1, P2) of vertex-disjoint paths in G of length 7 such that P1 is an x1, y1-path,
P2 is an x2, y2-path, and they have the same colours in the same order.

L2 For every distinct x1, x2, y1, y2 ∈ V (G) with x1 6∼A/B y1 and x2 6∼A/B y2, there are (1± ε/8)n13

pairs (P1, P2) of vertex-disjoint paths in G of length 15 such that P1 is an x1, y1-path, P2 is an
x2, y2-path, and they have the same colours in the same order.

Note that L1 and L2 easily give the following.

L3 For every distinct x1, x2, y1, y2 ∈ V (G) with x1 6∼A/B y1 and x2 6∼A/B y2, and any set U ⊂
V (G) \ {x1, x2, y1, y2} with |U | ≤ 100, there are (1 ± ε/4)n13 pairs (P1, P2) of vertex-disjoint
paths in G−U of length 15 such that P1 is a x1, y1-path, P2 is a x2, y2-path, and they have the
same colours in the same order.

We can now show that K1–K9 hold. We will first show that K4 holds with ε replaced by ε/2. Let
then k satisfy 2 ≤ k ≤ 61 and let u, v, x, y ∈ V (G) be distinct with u ∼A/B v and xy ∈ E(G). Note
that, by swapping u and v if necessary, we can assume that k ≤ 31. Let H be a (u, v, L)-link in G
with xy as its kth edge. Note that which of A and B x (and thus y) is in, determines which vertex in
the link is x and which is y, which are the kth and (k+ 1)th vertex in some order. Suppose first that
16 ≤ k ≤ 31. Note that we have (1 ± ε/6)n15 choices for picking the other edges which are the k′th
link for 16 ≤ k′ ≤ 31 with k′ 6= k, which determines the 16th to 31st colour (in order) of the link, and
thus, working backwards from v, the 47th to 62th edge of the link. Then, by L3, there are (1±ε/4)n13
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ways to complete the link, giving (1 ± ε/4)n13 · (1 ± ε/6)n15 = (1 ± ε/2)Φ0 · n−2 (u, v, L)-links with
xy as the kth edge.

Suppose then that 2 ≤ k ≤ 15. Note that we have (1± ε/6)n14 choices for picking the other edges
which are the k′th link for 2 ≤ k′ ≤ 16 with k′ 6= k, which also then determines the first edge of the
link and its 1st to 16th colour (in order) of the link. There are then n − O(1) choices for a path of
length 16 with these colours in the same order and which does not use any of the known vertices so far
and so that the start vertex is in the opposite vertex class A or B to u and v, and thus we can use this
path to give us the 32nd to 47th edge of the link. Finally, by L3, there are at most (1± ε/4)n13 ways
to complete the link, giving (1± ε/4)n13 · (1± ε/6)n14 · (n−O(1)) = (1± ε/2)Φ0 · n−2 (u, v, L)-links
with xy as the kth edge.

This completes the proof of K4 with ε replaced by ε/2. Now, note that K1–K3 are easily implied
by K4 with ε replaced by ε/2. Indeed, for K1, suppose u, v ∈ V (G) are distinct with u ∼A/B v.
There are (n− 1)2 choices for an edge e in G which does not contain u or v, and then (1± ε/2)Φ0n

−2

choices for an (u, v, L)-link in G where e is the 2nd edge (by K4 with ε replaced by ε/2). Thus, in
total there are (n− 1)2 · (1± ε/2)Φ0n

−2 = (1± ε)Φ0 (u, v, L)-links in G.
Similarly, for K2, let k satisfy 2 ≤ k ≤ 62 and let u, v ∈ V (G) with u ∼A/B v be distinct. Note

that, by swapping u and v if necessary, we can assume that k ≤ 32. Let x ∈ V (G) \ {u, v} with
x 6∼A/B u, v if k is even and x ∼A/B u, v if k is odd. Choose an edge e ∈ E(G) containing x but
not u or v, noting there are either n or (n − 2) choices for e. Then, applying K4 with ε replaced
by ε/2 with e and k, we have that the number of (u, v, L)-links in G in which x is the kth vertex is
(n± 2) · (1± ε/2) · Φ0n

−2 = (1± ε) · Φ0 · n−1, as required.
For K3, let u, v ∈ V (G) be distinct with u ∼A/B v, and let c ∈ C and k ∈ [62]. If k = 1 or k = 62,

then note that (u, v, L)-links in G in which the kth edge has colour c are exactly those that contain
the c-neighbour in G of u or of v as the 2nd or 62nd vertex of the link, respectively, and thus the
result follows from K2. If 2 ≤ k ≤ 61, then there are (n− 2) choices for an edge e in G of colour c not
containing u or v, so that, again by K4 with ε replaced by ε/2 with e and k, we have that the number
of (u, v, L)-links in G in which the kth edge has colour c is (n−2) · (1±ε/2) ·Φ0n

−2 = (1±ε) ·Φ0 ·n−1,
as required.

K5: For K5, let u, v, x, y ∈ V (G) be distinct. Let H be a (u, v, L)-link in G containing x and y.
Firstly, there are at most 61 · 60 choices for distinct 2 ≤ kx, ky ≤ 62 which determine, respectively,
the position of x and y in the link. Then, partition H into paths P1, P2, P3, Q1, Q2, Q3 (some possibly
with length 0) such that H = P1P2P3Q1Q2Q3, P2 and Q2 have length 7, for each i ∈ {1, 3} Pi and
Qi have the same length, and neither x or y is an internal vertex of P2 or Q2.

If both x and y are in P3∪Q1, then note that (P1, P3, Q1, Q3) is determined by V (P3∪Q1)\{x, y},
so there are at most n`(P3)+`(Q1)+1−2 = n31−`(P2)−1 = n23 choices for (P1, P3, Q1, Q3). If x is in
P3 ∪ Q1 and y is in P1, then (P1, P3, Q1, Q3) is determined by the choices of the vertices V (P1) \
{u, y} and V (Q3) \ {v}, so there are at most n`(P3)+`(Q3)+2−3 = n23 choices for (P1, P3, Q1, Q3).
If both x and y are in P1 ∪ Q3, then (P1, P3, Q1, Q3) is determined by the choices of the vertices
in V (P1) ∪ V (Q3) \ {u, v, x, y} and the 31th vertex of H, for at most n`(P1)+1+`(Q3)+1−4+1 = n23

choices for (P1, P3, Q1, Q3). Therefore, after kx, ky are chosen, there are at most n23 choices for
(P1, P3, Q1, Q3). Thus, using L1, the total number of (u, v, L)-links containing x and y is at most
61 · 62 · (1 + ε/8)n5 · n23 ≤ 104Φ0 · n−2, completing the proof of K5.

K6: Let u, v, x ∈ V (G) be distinct and let c ∈ C. Let H be a (u, v, L)-link in G containing x and using
the colour c, which does not contain ux or vx if this is a colour-c edge in G. First, there are at most
61 · 31 choices for 2 ≤ kx ≤ 62 and k ∈ [31]. Having chosen such kx and k, we count the choices for H
with x as the kxth vertex and c as the kth colour. Partition H into paths P1, P2, P3, Q1, Q2, Q3 (some
possibly with length 0) such that H = P1P2P3Q1Q2Q3, P2 and Q2 have length 7, for each i ∈ {1, 3}
Pi and Qi have the same length, and x is not an internal vertex of P2 or Q2, and the colour c is not
used on P2 (and hence either Q2).

If x is in V (P1), then (P1, Q3) can be determined by choosing all the other colours in (C(P1) ∪
C(Q3)) \ {c} except for the colour just before x in H, or the colour before that if that edge has
colour c (which exists as if ux ∈ E(H) then this is not a colour-c edge). Therefore, there are at most
n`(P1)+`(Q3)−2 choices for (P1, Q3). As (P3, Q1) is then determined by the choice of the 32nd vertex
(for example) of H there are at most n choices for (P3, Q1), so there are at most n`(P1)+`(Q3)−1 =
n31−7−1 = n23 choices for (P1, P3, Q1, Q3) in this case. Similarly, if x is in V (Q3), then there are at
most n23 choices for (P1, P3, Q1, Q3). If x is in V (P3)∪ V (Q1), then (P1, P3, Q1, Q3) is determined by
choosing the colours in (C(P1) ∪ C(Q3)) \ {c}, so there are at most n`(P1)+`(Q3)−1 = n23 choices for
(P1, P3, Q1, Q3) in this case as well.
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Therefore, counting the possibilities for (kx, k) and putting this together with L1 for the number
of choices for (P2, Q2), the total number of (u, v, L)-links in G using x and c in which there is not a
colour-c edge ux or xv is at most 61 · 31 · (1 + ε/8)n5 · n23 ≤ 104Φ0 · n−2, as required.

K7: Let u, v ∈ V (G) be distinct and let c, d ∈ C be distinct. Let H be a (u, v, L)-link in G using
c and d. Choose kc, kd ∈ [31] so that c is the kcth colour of H and d is the kdth colour (with
31 · 30 choices). Partition H into paths P1, P2, P3, Q1, Q2, Q3 (some possibly with length 0) such that
H = P1P2P3Q1Q2Q3, P2 and Q2 have length 7, for each i ∈ {1, 3} Pi and Qi have the same length,
and neither colour c nor d is used on P2 (and hence neither is used on Q2). Then, (P1, P3, Q1, Q3) is
determined by choosing the colours in (C(P1) ∪ C(P3)) \ {c, d} and (for example) the 31th vertex of
H, so, in total, the number of choices for (P1, P3, Q1, Q3) is at most 31 · 30 · n31−`(P2)−2 · n ≤ 103n23.
Therefore, using L1 for the number of choices for (P2, Q2), the number of (u, v, L)-links in G using c
and d is at most 103 · n23 · (1 + ε/8)n5 ≤ 104Φ0 · n−2, as required.

K8: Let u, v ∈ V (G) be distinct and let e, e′ ∈ E(G − {u, v}) have different colours and share no
vertices. Let H be a (u, v, L)-link in G which contains e and e′. Choose 2 ≤ ke, ke′ ≤ 61 such
that e is the keth edge and e′ is the ke′th edge of H, noting there are at most 60 · 59 choices for
(ke, ke′). Partition H into paths P1, P2, P3, Q1, Q2, Q3 (some possibly with length 0) for which we
have H = P1P2P3Q1Q2Q3, P2 and Q2 have length 7, for each i ∈ {1, 3} Pi and Qi have the same
length, and neither e or e′ are used on P2 (and hence either Q2). Assume, without loss of generality,
that e ∈ E(P1 ∪ P3). By looking at different cases, we will show that (having chosen (ke, ke′)) there
are always at most n21 choices for (P1, P3, Q1, Q3).

If e and e′ appear together on P3 ∪Q1, then there are at most n`(P3∪Q1)+1−4 = n31−`(P2)−3 = n21

choices for the rest of P3∪Q1, which then determines (P1, P3, Q1, Q3). If e ∈ E(P1) and e′ ∈ E(P3), or
vice versa, then there are at most n`(P1)+1−3 choices for the rest of P1 and at most n`(P3)+1−2 choices for
the rest of P3, for at most n`(P1)+`(P3)−3 = n21 choices in total, which then determines (P1, P3, Q1, Q3)
If e ∈ E(P1) and e′ ∈ E(Q3), then there are at most n`(P1)+1−3 ·n`(Q3)+1−3 = n21 choices for (P1, Q3),
after which there are at most n choices for (P1, P3, Q1, Q3), for at most n`(P1)+`(P3)−3 choices in total.
If e, e′ ∈ E(P1), then, as e and e′ share no vertices, there are at most n`(P1)+1−5 choices for the rest of
P1, after which there are at most n choices for Q1, and at most n`(P3) choices for the colours of P3 in
order, which then determines (P1, P3, Q1, Q3), for at most n`(P1)+`(P3)−3 choices in total. If e ∈ E(P1)
and e′ ∈ E(Q1), then, as e and e′ are different colours, there are at most n`(P1)−3 choices for the rest
of P1 (using the colour c(e′) in the appropriate place), which then determines Q1, after which there
are at most n`(P3) choices for the colours of P3 in order, which then determines (P1, P3, Q1, Q3), for at
most n`(P1)+`(P3)−3 = n21 choices in total. If e, e′ ∈ E(P3), then, there are at most n`(P3)−3 choices for
the rest of P3, which determines Q3, and after which there are at most n`(P3) choices for the colours of
P1 in order, which then determines (P1, P3, Q1, Q3), for at most n`(P1)+`(P3)−3 = n21 choices in total.
Thus, there are always at most n21 choices for (P1, P3, Q1, Q3).

Therefore, using L1 for the number of choices for (P2, Q2), the number of (u, v, L)-links in G
containing e and e′ is at most 60 · 59 · n21 · (1 + ε/8)n5 ≤ 104Φ0 · n−4, as required.

K9: Let u, v, w ∈ V (G) be distinct and let e ∈ E(G − {u, v, w}). Let H be a (u, v, L)-link in G
which contains w and e. Choose 2 ≤ kw ≤ 62 and 2 ≤ ke ≤ 61 such that w is the kwth vertex of
H and e is the keth edge of H, noting there are at most 61 · 60 choices for (kw, ke). Assume that
kw ≤ 32, where the case where kw > 32 follows similarly. Note that for all except (kw, ke) = (2, 3)
and (kw, ke) = (2, 33), w is contained in an edge of H − ({u, v} ∪ V (e)) with colour not the same as
the colour of e. As there are at most n choices for such an edge, by K8, there are at most 104Φ0 ·n−3

choices of H if (kw, ke) 6= (2, 3), (2, 33).
Now, partition H into paths P1, P2, Q1, Q2 for which we have H = P1P2Q1Q2, P1 and Q1 have

length 24 and P2 and Q2 have length 7. If (kw, ke) = (2, 3), then, as the first 3 interior vertices
of P1 are known, there are at most n21 choices for the rest of P1, after which there are at most
n choices for Q1, and then, using L1 for the number of choices for (P2, Q2), in total there are at
most (1 + ε/8)n5 · n21 · n ≤ 2n27 = 2Φ0 · n−3 choices for H. If (kw, ke) = (2, 33), then, as the
first 2 interior vertices of P1 are known, there are at most n22 choices for the rest of P1, after which
Q1 is known, and then, using L1 for the number of choices for (P2, Q2), in total there are at most
(1 + ε/8)n5 ·n22 ≤ 2n27 = 2Φ0 ·n−3 choices for H. Over all the different choices of kw and ke, we have
that the number of (u, v, L)-links in G containing w and e is at most 108Φ0 · n−3, as required.
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6 Part B: Realisation of the absorption structure

In this section, we prove Lemma 3.4. We begin by giving a sketch of the proof in Section 6.1, after
which we outline the rest of this section.

6.1 Overview of Part B

To recap, for each tribe τ ∈ T , from Part A (in particular, from Lemma 3.3), we will get a collection

Iτ ⊂ {{(i, u), (j, v)} : i, j ∈ Iτ , i 6= j, u ∈ Si \ (Ri ∪ Tj), v ∈ Sj \ (Ti ∪Rj), u 6= v, u∼A/Bv}

which represents a set of instructions. We wish to find, with high probability, near-matchings M̂i,
i ∈ Iτ , in G ∼ Gcol

[n] so that, for each i ∈ Iτ the vertices in Ti and Ri have degree 2 and 0 in M̂i

respectively, while the vertices in V (G) \ (Ri ∪ Ti) each have degree 0 or 1 in M̂i. Furthermore, we
wish to have the property that, for each {(i, u), (j, v)} ∈ Iτ , we can reduce the degree of u by 1 and
increase the degree of v by 1 in M̂i and increase the degree of v by 1 and decrease the degree of u by
1 in M̂j , doing so by switching a small number of edges between M̂i and M̂j so that a small number
of edges are changed and the colours and vertices other than u and v appearing on M̂i and M̂j do
not change. Crucially, we wish to be able to do this largely independently, so that for any collection
C ⊂ Iτ satisfying A7.1–A7.4 these alterations can be made simultaneously for each {(i, u), (j, v)} ∈ C
without interfering with each other.

We split Part B into three sub-parts. Roughly speaking, in Part B.1 we find matchings covering
Ti for each i ∈ [n]. In Part B.2 we find, for each i ∈ [n] and vertex u ∈ Si \Ri, a small monochromatic
matching consisting of an edge containing u and a small set of other edges Mi,u. Finally, in Part B.3
we find certain even-length paths connecting edges which were found in Part B.2. Of course, each of
these substructures is found subject to certain constraints which we describe in more detail below.

The first part, Part B.1, is the simplest and is largely independent of the others. For each near-
matching M̂i, we find a rainbow matching that covers Ti, by matching each vertex in Ti to a distinct
vertex in Xi, with each edge of the matching using a distinct colour from Di, so that when we later
find another edge to add to M̂i for each vertex in Ti they will all have degree 2 in M̂i. This we will
do using an application of Theorem 2.2 to an auxiliary hypergraph as described later in this sketch.

For now, we move on to describe Parts B.2 and B.3. For each {(i, u), (j, v)} ∈ Iτ , our key
mechanism to set up the switching property described above are the L-links we defined in Section 5.
Ideally, for each {(i, u), (j, v)} ∈ Iτ , we could find a (u, v, L)-link, R say, and put the odd edges of R
into M̂i and the even edges of R into M̂j , so that switching these edges between M̂i and M̂j would
exactly decrease the degree of u in M̂i by 1 and increase the degree of v in M̂i by 1 (and vice versa
in M̂j) while making no other meaningful changes (i.e., the colours of the matchings and all the other
vertex degrees would stay the same, and between them M̂i and M̂j would have the same edges).
Unfortunately, this is not possible. The reason is that there will be multiple pairs from Iτ containing
(i, u) so that if we do this for each such pair we will be adding multiple edges in M̂i next to u, where
(not counting those added in Part B.1), we want only 1.

Instead, for i ∈ [n] and u ∈ Si \ Ri, if Ji,u is the set of (j, v) for which {(i, u), (j, v)} ∈ Iτ , in
Part B.2, we first find an edge eu,i from u to Yi along with a monochromatic matching Mi,u of the
same colour as eu,i which also uses vertices in Yi, with one edge eu,i,j for each j ∈ Ji,u (as depicted
on the left in Figure 9). The first edge (ux1 say) we add to M̂i, while for each j ∈ Ji,u we add eu,i,j
to M̂j . Now, fix j ∈ Ji,u and let v be such that {(i, u), (j, v)} ∈ Iτ (which will be unique due to A2)
and suppose eu,i,j = x2x3 is the edge assigned to M̂j from Mi,u. We will have i ∈ Jj,v, so we will
also have found an edge, ev,j = vy1, next to v for M̂j as well as an edge, ev,j,i = y2y3, of the same
colour in Mj,v which is assigned to M̂i. Furthermore, we will do this so that c(eu,i) 6= c(ev,j) and
{u, x1, x2, x3, v, y1, y2, y3} are all distinct.

Now, if we find an (x1, x2, L)-link P , an (x3, y3, L)-link Q and a (y2, y1, L)-link R so that

ux1Px2x3Qy3y2Ry1v

is a path in G (see the right of Figure 9), then having added the odd edges of this path to M̂i and
the even edges to M̂j , by switching between these edges we have the change we want in M̂i and M̂j .
Importantly, for each j ∈ Ji,u, this uses the same edge, ux1, at u, allowing us to only add one edge
at u in M̂i, while the conditions on C (namely A7.1 and A7.4) will imply that we only do a switch
involving the ux1 edge at most once, as there will be at most one j ∈ Ji,u with {(i, u), (j, v)} ∈ C for
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Figure 9: In Part B.2, as on the left, for each i ∈ [n] and u ∈ Si\Ri we find an edge from u to Yi along with
a monochromatic matching with the same colour, with one edge for each j such that {(i, u), (j, v)} ∈ I
(depicted for {(i, u), (j1, v1)}, {(i, u), (j2, v2)}, {(i, u), (j3, v3)} ∈ I). Then, in Part B.3, for each pair
{(i, u), (j, v)} ∈ I we find L-links which connect together some of the edges found for (i, u) and (j, v), as
depicted on the right for (i, u) and (j2, v2). Each path P1, P2, P3, Q1, Q2, Q3, R1, R2, R3 has length 62 and
forms a link with the pattern L, where, for each j ∈ [3], Pj , Qj and Rj use a disjoint set of colours and
new vertices coming from Zi.

some v. Considering pairs {(i, u)(j, v)} ∈ Iτ , we find the paths P , Q and R using internal vertices
coming from Zi (= Zj = Zτ ) and colours from D3.

Of course, in finding all of these edges, matchings and paths, we need to ensure that all of the edges
assigned to near-matching M̂i form a rainbow matching for each i ∈ [n], and that the matchings are
all edge-disjoint. This requires some delicacy, but overall the above sketch gives the key mechanism
that we use to find the near-matchings we need. We will find the small matchings Mi,u, i ∈ [n] and
u ∈ Si \ Ri, in Part B.2, before finding the switching paths in Part B.3. To recap, then, we will do
the following.

B Realise the absorption structure in the random colouring by doing the following:

B.1 Edge-disjointly matching Ti into Xi for each i ∈ [n] using colours in D1.

B.2 Edge-disjointly finding small matchings for each i ∈ [n] and u ∈ Si \Ri, using colours in D2

and vertices in Yi.

B.3 Edge-disjointly finding the switching paths using colours in D3 and vertices in Zi.

Finding matchings/paths using Theorem 2.2. Each of the structures mentioned above will be
found using the Rödl nibble, as discussed in Section 2.3, via Theorem 2.2 applied to an auxiliary
hypergraph. Using an auxiliary hypergraph in this manner was first done by Kim, Kühn, Kupavskii,
and Osthus [21]. A rough overview goes as follows. Suppose we have in G collections of edge-coloured
subgraphs Fi,j , i ∈ [n] and j ∈ [m] (for some m), and we wish to choose subgraphs Fi,j ∈ Fi,j which
are all edge-disjoint and, for each i ∈ [n], Fi,j and Fi,j′ are colour- and vertex-disjoint if j 6= j′. We
form a hypergraph H with 4 vertex classes

i) [n]× [m] ii)
⋃
i∈[n]({i} × V (G))

iii)
⋃
i∈[n]({i} × C(G)) iv) E(G),

(27)

where, for each i ∈ [n], j ∈ [m] and F ∈ Fi,j we add the edge

{(i, j)} ∪ (V (F )× {i}) ∪ (C(F )× {i}) ∪ E(G)

to H. Observe that if the edges corresponding to Fi,j ∈ Fi,j , i ∈ [n] and j ∈ [m], form a matching in
H, then we have exactly the conditions we want of edge-disjointness and (for each i ∈ [n]) colour- and
vertex-disjointness. By setting up H to be a uniform, almost regular hypergraph with small codegrees,
we will be able to use Theorem 2.2 to find a large matching in H, which would then allow us to find
many of the graphs Fi,j , i ∈ [n] and j ∈ [m]. The remaining graphs Fi,j , i ∈ [n] and j ∈ [m], will then
be found using vertices, colours and edges set aside for this purpose.

We will need further properties from the subgraphs we find. In particular, we will need some delicate
conditions from the subgraphs found in Part B.2 so that we can then apply Theorem 2.2 again for
Part B.3, as the pairs of vertices we wish to find paths between will depend on the structures found in
Part B.2. To do this, we use a careful choice of weight functions for the application of Theorem 2.2,
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and it is here that we need the full power of Theorem 2.2 over previous implementations of the
semi-random method.

The simplest of our weight functions will, for example, ensure that, when finding subgraphs, we
will use most of the edges we have allocated for this purpose in the subgraphs found. To record such
properties efficiently, we will use the following definition.

Definition 6.1. An edge-coloured graph G is m-bounded if every v ∈ V (G) has dG(v) ≤ m and every
colour appears on at most m edges in G.

Variables and applications of Theorem 2.2. We now discuss further our applications of the semi-
random method via Theorem 2.2 to auxiliary hypergraphs. We will apply this 3 times, to auxiliary
hypergraphs H1, H2 and H3. The application to H1 is the most straightforward, and so we sketch
this briefly. The application to H3 uses the outcome of the application to H2, and therefore the order
of variables in critical here, and so we also discuss this. The relevant variables from (2) are

1

n

poly

� ε
poly

� γ
poly

� β.

For the initial properties we need, in Section 6.2, we use the error term ε. That is, for example, we
will have properties like |Xi| = (1± ε)2pXn for each i ∈ [n].

In Part B.1, for the variables in Theorem 2.2 we will use r0 = 4, δ0 = 1/10 and thus set ε0 = δ2
0/50r0

and have some ∆0 as in that theorem. We will construct H1 which is a 4-uniform hypergraph with
dH1(v) = (1 ± ε)δ1 for each v ∈ V (H1) (see Claim 18), where we will have δ1 = q1n ≤ n for some q1

depending on the variables in (2), so that 1/n
poly

� q1. In particular, then, we will have n0.9 ≤ δ1 ≤ n.
Set ∆ = (1 + ε)δ1, so that ∆(H1) ≤ ∆ and ∆ ≥ ∆0 as 1/n � 1. We will have that ∆c(H1) ≤ 1 (see
Claim 19), so that ∆c(H1) ≤ ∆1−δ0 .

Furthermore, there will be a collection W1 of at most 4n ≤ exp(∆ε20) weight functions such that,
for each w ∈ W1, w(e) ≤ 1 for each e ∈ E(H1) and w(E(H1)) ≥ n3/2 for each w ∈ W1, so that

w(E(H1)) ≥ ∆1+δ0 · max
e∈E(H1)

w(e).

Then, using the property from Theorem 2.2, we can find a matching M1 in H1 such that, for each
w ∈ W1,

w(M1) = (1±∆−ε0) · w(E(H1))/∆ = (1± 2ε) · δ−1
1 · w(E(H1)),

where we have used that 1/n
poly

� ε and ∆ ≥ n0.9.
In Part B.2, letting r = 24, we will construct H2 which is a (7r + 4)-uniform hypergraph. When

bounding the vertex degrees of H2 we will use r+1 different properties, so from our initial error term of
ε, we will increase this, showing that dH2(v) = (1± 100ε)δ2 for each v ∈ V (H2) (see Claim 22), where

we will have δ2 = q2n
r+1 ≤ nr+1 for some q2 depending on the variables in (2), so that 1/n

poly

� q2. In
particular, then, we will have nr+0.9 ≤ δ2 ≤ nr+1.

We will have that ∆c(H2) = O(nr+0.5) (see Claim 23), so that ∆c(H2) ≤ (∆(H2))1−c, for some
small fixed c > 0. We will consider O(n2) weight functions w, such that, for each such w, we have
w(E(H2)) ≥ nr+1.5. Then, from Theorem 2.2, we will find a matching M3 in H3 such that, for each
of these weight functions w,

w(M3) = (1± (∆(H3))−c
′
) ·w(E(H2))/∆(H3) = (1± 101ε) · δ−1

2 w(E(H3)) = (1± γ) · δ−1
2 w(E(H3)),

for some small fixed c′ > 0, where we have used that 1/n
poly

� ε
poly

� γ.
The properties produced by this application of Theorem 2.2 in Part B.2 will then give bounds for

our last auxiliary hypergraph H3, allowing us to show that dH3(v) = (1± 10γ)δ3 for each v ∈ V (H3)
(see Claim 22), where we will have δ3 = q3n

30 for some q3 depending on the variables in (2), so that

1/n
poly

� q3. We will have that H3 is 247-uniform and ∆c(H3) = O(n29.5) (see Claim 29) and consider
O(n) weight functions w, each with w(E(H3)) ≥ n30.25. Similarly to the application of Theorem 2.2
in Part B.2, we will then be able to find a matching M3 in H3 such that, for each of these weight
functions w,

w(M3) = (1± 20γ) · δ−1
3 w(E(H3)).

As γ
poly

� β, this will then allow us to record our final properties using the variable β for B1.

Section outline. After some further set-up, in Section 6.2 we will record a long list of properties
that hold together with high probability in G ∼ Gcol

[n]. Then, we will carry out Parts B.1–B.3 in
Sections 6.3–6.5 respectively. Finally, in Section 6.6, we will show that the near-matchings we have
found satisfy our desired conditions, completing the proof of Lemma 3.4.
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6.2 Further set-up and properties for Part B

Take the set-up from Lemma 3.4. Recall that β0 = 1/(1 + β) and, for each i ∈ [n], we have partitions
Xi = Xi,0 ∪Xi,1, Yi = Yi,0 ∪ Yi,1 and Zi = Zi,0 ∪ Zi,1 and random subsets Ci ⊂ C and Dj,i ⊂ Dj for
each j ∈ [3]. Furthermore, the edges of G are randomly partitioned as Eabs = Eabs

0 ∪ Eabs
1 , and then

Eabs
1 is randomly partitioned as Eabs

1,A ∪ Eabs
1,B ∪ Eabs

1,M .
Using Lemma 3.3, for each τ ∈ T , let

Iτ ⊂ {{(i, u), (j, v)} : i, j ∈ Iτ , i 6= j, u ∈ Si \ (Ri ∪ Tj), v ∈ Sj \ (Ti ∪Rj), u 6= v, u∼A/Bv}

such that A1–A7 hold. Let I = ∪τ∈T Iτ . For each τ ∈ T , i ∈ Iτ and u ∈ Si \ Ri, let Ji,u be the
set of j for which there is some v with {(i, u), (j, v)} ∈ Iτ . For each i ∈ [n] and u ∈ Si \ Ri, let
Yi,u,0 =

⋂
j∈Ji,u∪{i} Yj,0.

For each i, j ∈ [n] with i ∼T j, let Lij be the set of links R such that, for some distinct u, v ∈ Si,
R is a (u, v, L)-link with colours in D3 \ (Ci ∪Cj ∪D3,i ∪D3,j), edges in Eabs

0 and internal vertices in
Zi,0 ∩ Zj,0.

For any vertex v inG, if i and j are in the same tribe then the probability that v ∈ Zi,0∩Zj,0 is β2
0pZ .

For any colour c ∈ C, and any distinct i, j ∈ [n], the probability that c ∈ D3 \ (Ci∪Cj ∪D3,i∪D3,j) is
β2

0p
2
absp3. For any edge e ∈ E(G), the probability that e ∈ Eabs

0 is β0pabs. Thus, it will be convenient
to set

pvx = β2
0pZ , pcol = β2

0p
2
absp3, and pedge = β0pabs.

For each path P in G with length 62 which has 30 colours, and each distinct i and j in the same
tribe, the probability that E(P ) ⊂ Eabs

0 , and C(P ) ⊂ D3 \ (Ci ∪Cj ∪D3,i ∪D3,j), and all the interior
vertices of P are in Zi,0 ∩Zj,0 is p61

vx · p30
col · p62

edge. We will let Φ be (very close to) the expected number

of (u, v, L)-links in G ∼ Gcol
[n] for any fixed pair of vertices u ∼A/B v, setting

Φ := p61
vx · p30

col · p62
edge · n30. (28)

Let J0 = {{(i, u), (j, v)} : i, j ∈ [n], i 6= j, u, v ∈ V (G), u ∼A/B v}. For the links that we want that
we do not find using an application of Theorem 2.2, we will find such an L-link for {(i, u), (j, v)} ∈ J0

using colours in (D3,i∩D3,j)\(Ci∪Cj), edges in Eabs
1 and vertices in Zi,1∩Zj,1, so it will be convenient

to set
β1 = 1− β0, qvx = β2

1pZ , qcol = β2
1p

2
absp3, and qedge = β1pabs,

and let
Φ1 := q61

vx · q30
col · q62

edge · n30, (29)

so that the expected number of such links is (very close to) Φ1.

Claim 17. With high probability, we have the following properties.

Properties for B.1: hypergraph degrees

M1 For each i ∈ [n] and u ∈ V (G), |{v ∈ Xi,0 : c(uv) ∈ D1 \ (Ci ∪ D1,i), uv ∈ Eabs
0 }| = (1 ±

ε)β3
0pXp1p

2
absn.

M2 For each i ∈ [n] and v ∈ V (G), |{u ∈ Ti : c(uv) ∈ D1 \ (Ci ∪ D1,i), uv ∈ Eabs
0 }| = (1 ±

ε)β2
0pT p1p

2
absn.

M3 For each i ∈ [n] and c ∈ C, |{uv ∈ Eabs
0 : c(uv) = c, u ∈ Ti, v ∈ Xi,0}| = (1± ε)2β2

0pabspT pXn.

M4 For each distinct u, v ∈ V (G) and c ∈ D1, |{i ∈ [n] : u ∈ Ti, v ∈ Xi,0, c /∈ Ci ∪ D1,i}| =
(1± ε)β2

0pT pXpabsn.

Properties for B.1: boundedness and missing edges

M5 For each v ∈ V (G), |{i ∈ [n] : v ∈ Ti or v ∈ Xi,0}| = (1± ε)2pTn.

M6 For each i ∈ [n], |Ti| = (1± ε)pTn, |Xi| = (1± ε)pXn and |Xi,0| = (1± ε)β0pXn.

M7 For each v ∈ V (G), |{uv ∈ Eabs
0 : c(uv) ∈ D1}| = (1± ε)β0p1pabsn.

M8 For each i ∈ [n], X ∈ {A,B} and u ∈ X, |{v ∈ Xi,1 : c(uv) ∈ D1,i \ Ci, uv ∈ Eabs
1,X}| =

(1± 2ε)(1− β0)3pXp
2
absn.

M9 For each c ∈ D1 and φ ∈ F , |{i ∈ Iφ : c ∈ D1 \ (Ci ∪ D1,i)}| = (1 ± ε)β0pabsptrpfan and
|{uv ∈ Eabs

0 : c(uv) = c}| = (1± ε)β0pabsn.

M10 Setting Gabs
1 to be the graph with vertex set V (G) and edge set Eabs

1 , Gabs
1 |D1 is (γn)-bounded.

Properties for B.2: hypergraph degrees
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M11 For each i ∈ [n] and u ∈ Si \ Ri, there are (1 ± ε)β2r+3
0 p2pY p

r+2
abs n choices of v ∈ Yi,u,0 with

uv ∈ Eabs
0 , and c(uv) ∈ D2 \ (Cj ∪D2,j) for each j ∈ Ji,u ∪ {i}.

M12 For each φ ∈ F , distinct i, j ∈ φ, and c ∈ C, there are (1 ± ε)β5
0p

2
Y pabsn choices of a colour-c

edge in Eabs
0 with vertices in Yi,0 ∩ Yj,0.

M13 For each i ∈ [n] and x ∈ Yi,0, there are (1± ε)β2r+2
0 pS−Rp2p

r+2
abs n choices of u ∈ Si \Ri such that

c(ux) ∈ D2 \ (Ci ∪D2,i), ux ∈ Eabs
0 , and, for each j ∈ Ji,u, x ∈ Yj,0 and c(ux) ∈ D2 \ (Cj ∪Dj).

M14 For each i ∈ [n] and x ∈ Yi,0, there are (1± ε)2β0pS−Rrn choices of u ∈ Si \Ri and j ∈ Ji,u such
that x ∈ Yj,0.

M15 For each i ∈ [n], u ∈ Si \Ri, j ∈ Ji,u and x ∈ Yi,0∩Yj,0, there are (1±ε)β2r+6
0 p2p

2
Y p

r+3
abs n choices

of c for which c ∈ D2 \ (Ci′ ∪D2,i′) for each i′ ∈ Ji,u ∪ {i} and such that there is a colour-c edge
in Eabs

0 from u to Yi,u,0 and from x to Yi,0 ∩ Yj,0.

M16 For each j ∈ [n] and x ∈ Yj,0, there are (1 ± ε)rβ2r+2
0 pS−Rp2p

r+2
abs n choices of i ∈ [n] and

u ∈ Si \ Ri such that j ∈ Ji,u, x ∈ Yj′,0 for each j′ ∈ Ji,u ∪ {i}, ux is in Eabs
0 and has colour, c

say, which is in D2 \ (Cj′ ∪D2,j′) for each j′ ∈ Yi,u ∪ {i}.
M17 For each j ∈ [n] and x ∈ Yj,0, there are (1± ε)2rβ0pS−Rn choices of i ∈ [n] and u ∈ Si \Ri such

that j ∈ Ji,u and x ∈ Yi,0.

M18 For each i ∈ [n] and c ∈ D2\(Ci∪D2,i), there are (1±ε)2β2r+2
0 pS−RpY p

r+1
abs n choices of u ∈ Si\Ri

so that c ∈ D2 \ (Cj′ ∪D2,j′) for each j′ ∈ Ji,u and u has a colour-c edge in Eabs
2 to Yi,u,0.

M19 For each j ∈ [n] and c ∈ D2 \ (Cj ∪D2,j), there are (1±ε)2rβ2r+2
0 pS−RpY p

r+1
abs n choices of i ∈ [n]

and u ∈ Si \Ri such that j ∈ Ji,u and c ∈ D2 \ (Cj′ ∪D2,j′) for each j′ ∈ Ji,u ∪ {i} and u has a
colour-c edge in Eabs

2 to Yi,u,0.

M20 For each xy ∈ E(G|D2), there are (1±ε)β2r+2
0 pS−RpY p

r+1
abs n choices of i ∈ [n] such that x ∈ Si\Ri,

c(xy) ∈ D2 \ (Cj ∪D2,j) for each j ∈ Ji,u ∪ {i} and y ∈ Yi,u,0.

M21 For each xy ∈ E(G|D2), there are (1 ± ε)2rβ2r+7
0 pS−Rp

3
Y p

r+2
abs n

2 choices for i ∈ [n], u ∈ Si \ Ri
and j ∈ Ji,u such that c(xy) ∈ D2 \ (Cj′ ∪D2,j′) for each j′ ∈ Ji,u ∪ {i}, x, y ∈ Yi,0 ∩ Yj,0 and u
has a colour-c(xy) neighbour in Eabs

0 in Yi,u,0.

Properties for B.2: weight functions

M22 For each i ∈ [n] and x ∈ Zi,0, |{(u, j) : u ∈ Si \Ri, j ∈ Ji,u, x ∈ Zj,0}| = (1± ε) · 2rβ0pS−Rn.

M23 For each j ∈ [n] and x ∈ Zj,0, |{(i, u) : u ∈ Si \ Ri, j ∈ Ji,u, x ∈ Zi,0, u ∼A/B x}| = (1 ± ε) ·
rβ0pS−Rn.

M24 For each i ∈ [n] and x ∈ Zi,0, |{(j, u) : u ∈ Si \ Ri, j ∈ Ji,u, x ∈ Zj,0, u ∼A/B x}| = (1 ± ε) ·
rβ0pS−Rn.

M25 For each j ∈ [n] and x ∈ Zj,0, |{(i, u) : u ∈ Si \Ri, j ∈ Ji,u, x ∈ Zi,0}| = (1± ε) · 2rβ0pS−Rn.

M26 For each i ∈ [n], u ∈ Si \ Ri, j ∈ Ji,u, x ∈ V (G) and c ∈ C, there are (1± ε)β8
0p

2
Y p3p

4
absn edges

in Eabs
0 with colour c and vertices in Yi,0 ∩ Yj,0 which have an edge to x in Eabs

0 with colour in
D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j).

M27 For each i ∈ [n], u ∈ Si \ Ri, j ∈ Ji,u, and x ∈ V (G) with x ∼A/B u, there are (1 ±
ε)β2r+6

0 pY p2p3p
r+5
abs n vertices v ∈ Yi,u,0 with uv, xv ∈ Eabs

0 , c(uv) ∈ D2 \ (Ci′ ∪ D2,i′) for each
i′ ∈ Jj,u ∪ {j}, and c(xv) ∈ D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j).

M28 For each i ∈ [n] and c ∈ D3 \ (Ci ∪ C3,i), there are (1± ε)β0pabsr · pS−Rn choices of u ∈ Si \Ri
and j ∈ Ji,u with c /∈ Cj ∪D3,j .

M29 For each j ∈ [n] and c ∈ D3 \ (Cj ∪C3,j), there are (1± ε) · rβ0pabspS−Rn choices for i ∈ [n] and
u ∈ Si \Ri with j ∈ Ji,u and c /∈ Ci ∪D3,i.

M30 For each i ∈ [n], u ∈ Si \Ri, j ∈ Ji,u and distinct c, c′ ∈ C, there are (1± ε)β6
0p

2
Y pZp

2
absn choices

for w ∈ Yi,0 ∩ Yj,0 which has a colour-c edge in Eabs
0 to Zj,0 ∩ Zj′,0 and a colour-c′ edge in Eabs

0

to Yj,0 ∩ Yj′,0.

M31 For each i ∈ [n] u ∈ Si \ Ri, j ∈ Ji,u, and c′ ∈ C there are (1± ε)β2r+6
0 pY pZp2p

r+3
abs n choices of

v ∈ Yi,u,0 with uv ∈ Eabs
0 and c(uv) ∈ D2 \ (Ci′ ∪ D2,i′) for each i′ ∈ Ji,u ∪ {i} and there is a

colour-c′ edge from v to Zi,0 ∩ Zj,0 in Eabs
0 .

M32 For each xy ∈ E(G) with c(xy) ∈ D3, there are β2r+6
0 pZpY p2p

r+3
abs rpS−Rn

2 choices for i ∈ [n],
u ∈ Si\Ri and j ∈ Ji,u with x ∈ Yi,u,0, c(ux) ∈ D2\(Cj′∪D2,j′) for each j′ ∈ Ji,u, y ∈ Zi,0∩Zj,0
and c(xy) /∈ Ci ∪ Cj ∪D3,i ∪D3,j .
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M33 For each xy ∈ E(G) with c(xy) ∈ D3, there are (1± ε) · rβ6
0p

2
abspY pZpS−Rn

2 choices for i ∈ [n],
u ∈ Si \Ri and j ∈ Ji,u with c(xy) /∈ (Ci ∪Cj ∪D3,i ∪D3,j), x ∈ Yi,0 ∩ Yj,0 and y ∈ Zi,0 ∩ Zj,0.

M34 For each xy ∈ E(G) with c(xy) ∈ D3, and each i ∈ [n], u ∈ Si \ Ri and j ∈ Ji,u there are
(1 ± ε)β2r+6

0 pY p2p
r+2
abs n choices of v ∈ Yi,u,0 with uv ∈ Eabs

0 and c(uv) ∈ D2 \ (Ci′ ∪ D2,i′) for
each i′ ∈ Ji,u ∪ {i} such that x has a colour-c(uv) edge in Eabs

0 to Yi,0 ∩ Yj,0 .

M35 For each xy ∈ E(G) with c(xy) ∈ D3, there are β6
0p

2
Zp

2
absrpS−Rn

2 choices for i ∈ [n], u ∈ Si \Ri
and j ∈ Ji,u with x, y ∈ Zi,0 ∩ Zj,0 and c(xy) /∈ Ci ∪ Cj ∪D3,i ∪D3,j .

M36 For each i ∈ [n], |Si \Ri| = (1± ε) · 2pS−Rn and |Yi,0| = (1± ε) · 2β0pY n.

M37 For each u ∈ V (G) and φ ∈ F , |{i ∈ Iφ : u ∈ Si \Ri}| = (1± ε) · pS−Rptrpfan and |{i ∈ Iφ : u ∈
Yi,0}| = (1± ε) · β0pY nptrpfa.

M38 For each c ∈ C(G) and φ ∈ F , |{i ∈ Iφ : c ∈ D2 \ (Ci ∪D2,i)}| = (1± ε)β0pabsptrpfan.

Properties for B.2: missing small matchings

M39 For each i ∈ [n], u ∈ Si\Ri and X ∈ {A,B}, there are at least 10
√
γn vertices v ∈ ∩j∈Ji,u∪{i}Yj,1

with colour in ∩j∈Ji,u∪{i}(D2,j \ Cj) and such that uv ∈ Eabs
1,X .

M40 For each i ∈ [n], u ∈ Si \Ri and c ∈ C, there are at least γ1/3n edges in Eabs
1,M with colour c and

vertices in ∩j∈Ji,u∪{i}Yj,1.

Properties for B.3: relevant properties of I
M41 For each i ∈ [n] and x ∈ Zi,0, there are (1 ± ε)β0 · pI · n labelled3 choices for {(i, u), (j, v)} ∈ I

with x ∈ Zj,0 and u 6∼A/B x.

M42 For each i ∈ [n] and x ∈ Zi,0, there are (1 ± ε)β0 · pI · n labelled choices for {(i, u), (j, v)} ∈ I
with x ∈ Zj,0 and u ∼A/B x.

M43 For each i ∈ [n] and c ∈ D3 \ (Ci ∪ D3,i), there are (1 ± ε)2β0pabs · pI · n labelled choices for
{(i, u), (j, v)} ∈ I with c /∈ Cj ∪D3,j .

M44 For each xy ∈ Eabs
0 with c(xy) ∈ D3, there are (1 ± ε)2p2

vx · pcol · pI · n2 labelled choices for
{(i, u), (j, v)} ∈ I for which c(xy) ∈ D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j) and x, y ∈ Zi,0 ∩ Zj,0.

Properties for B.3: link counts for hypergraph degrees

M45 K1–K9 hold with Φ0 = n30.

M46 For each {(i, u), (j, v)} ∈ J0, the number of (u, v, L)-links in Lij is (1± ε)Φ.

M47 For each {(i, u), (j, v)} ∈ J0 and x ∈ V (G) \ {u, v} with c(ux) ∈ D3 \ (Ci ∪ Cj ∪ D3,i ∪ D3,j),
x ∈ Zi,0 ∩ Zj,0 and ux ∈ Eabs

0 , the number of (u, v, L)-links in Lij in which x is the 2nd vertex
is (1± ε) · Φ · p−1

vx · p−1
col · p

−1
edge · n

−1.

M48 For each k with 3 ≤ k ≤ 59 and each {(i, u), (j, v)} ∈ J0 and x ∈ V (G)\{u, v} with x ∈ Zi,0∩Zj,0,
the number of (u, v, L)-links in Lij in which x is the kth vertex is (1± ε) · Φ · p−1

vx · n−1.

M49 For each {(i, u), (j, v)} ∈ J0 and xy ∈ Eabs
0 with x = u, c(xy) ∈ D3 \ (Ci ∪Cj ∪D3,i ∪D3,j) and

y ∈ Zi,0 ∩ Zj,0, the number of (u, v, L)-links in Lij which have xy as the 1st edge is (1± ε) · Φ ·
p−1

vx · p−1
col · p

−1
edge · n

−1.

M50 For each k with 2 ≤ k ≤ 59, and each {(i, u), (j, v)} ∈ J0 and c′ ∈ D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j),
the number of (u, v, L)-links in Lij whose kth edge has colour c′ is (1± ε) · Φ · p−1

col · n
−1.

M51 For each {(i, u), (j, v)} ∈ J0 and xy ∈ Eabs
0 for which c(ux), c(xy) ∈ D3 \ (Ci ∪Cj ∪D3,i ∪D3,j),

x, y ∈ Zi,0 ∩ Zj,0, and ux, xy ∈ Eabs
0 , the number of (u, v, L)-links in Lij which have xy as the

2nd edge is (1± ε) · Φ · p−2
vx · p−2

col · p
−2
edge · n

−2.

M52 For each k with 3 ≤ k ≤ 59, and each {(i, u), (j, v)} ∈ J0 and xy ∈ Eabs
0 with c(xy) ∈ D3 \ (Ci ∪

Cj ∪D3,i ∪D3,j) and x, y ∈ Zi,0 ∩Zj,0, the number of (u, v, L)-links in Lij which have xy as the
kth edge is (1± ε) · Φ · p−2

vx · p−1
col · p

−1
edge · n

−2.

M53 For each c ∈ C, |{e ∈ E(Gabs
0 ) : c(e) = c}| = (1±ε)·β0pabsn and |{i ∈ [n] : c ∈ D3\(Ci∪D3,i)}| =

(1± ε) · β0pabsn.

M54 For each v ∈ V (G), |{i ∈ [n] : v ∈ Zi,0}| = (1± ε) · pZβ0n.

Property for B.3: missing links

3I.e., we consider the number of choices of (i, u, j, v) for which {(i, u), (j, v)} ∈ I.
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M55 For each {(i, u), (j, v)} ∈ J0, the number of (u, v, L)-links with colours in (D3,i∪D3,j)\(Ci∪Cj),
edges in Eabs

1 and internal vertices in Zi,1 ∩ Zj,1 is (1± ε)Φ1.

Properties for bounded remainder

M56 For each v ∈ V (G) and φ ∈ F , |{i ∈ Iφ : v ∈ Xi,1 ∪ Yi,1 ∪ Zi,1}| ≤ γptrpfan.

M57 For each k ∈ [3], c ∈ Dk and φ ∈ F , |{i ∈ Iφ : c ∈ Dk,i}| ≤ γptrpfan.

M58 For each v ∈ V (G), |{u : uv ∈ Eabs
1 }| = (1± α)pabsn.

M59 For each i ∈ [n], |Zi,0| = (1± ε)β0pZn.

Proof of Claim 17. By Theorem 5.2, with high probability, K1–K9 hold with Φ0 = n30. That is, with
high probability M45 holds. Supposing, then, that M45 holds, we choose our various random vertex,
colour and edge partitions, and show that each other property from M1–M59 will hold with high
probability. There is a large overlap in proving that each of the properties hold with high probability.
For brevity, we will select only some key properties to prove this for explicitly, as follows, where we
have selected a range of properties that cover the different approaches required.

M1: Let i ∈ [n] and u ∈ V (G), and let Z = {v ∈ Xi,0 : c(uv) ∈ D1 \ (Ci ∪ D1,i), uv ∈ Eabs
0 }. Let

Vu = |{v ∈ V (G) : c(uv) ∈ D1}|, so that |Vu| = |D1|, and thus, with probability 1 − o(n−ω(1)) by
Lemma 2.6, |D1| = (1 ± ε/2)n. Then, having chosen D1, for each v ∈ Bu, P(v ∈ Xi,0) = β0pX ,
P(c(uv) /∈ (Ci ∪ Di,1)) = β0pabs, and P(uv ∈ Eabs

0 ) = β0pabs, so that P(v ∈ Z) = β3
0pXp

2
abs, and,

hence E|Z| = (1 ± ε/2)β3
0pXp

2
absn. The events {v ∈ Z}, v ∈ Vu, are independent, so, as 1/n

poly

�
β0, pX , pabs, p1, by Lemma 2.6, with probability 1 − o(n−2) we have that |Z| = (1 ± ε)β3

0pXp1p
2
absn.

Taking a union bound then completes the proof that M1 holds with high probability.

M4: Let u, v ∈ V (G) be distinct and c ∈ D1. Let Z = {i ∈ [n] : u ∈ Ti, v ∈ Xi,0, c /∈ Ci ∪D1,i}. A
feature here is that the events {i ∈ Z} and {j ∈ Z} are not independent if i and j are from the same
tribe. Let T ′ ⊂ T be the set of tribes for which u ∈ Sτ and v ∈ Xτ , noting that, by Lemma 2.6, with

probability 1− o(n−ω(1)) we have |T ′| = (1± ε/4)pSpXp
−1
tr , where we have used that ptr

poly

� pX , pS , ε.
For each τ ∈ T ′, let F ′τ be the set of φ ∈ Fτ for which u ∈ Ui. By Lemma 2.6 and a union bound,
with probability 1− o(n−ω(1)) we have |F ′τ | = (1± ε/4)(pU/pS)p−1

fa for each τ ∈ T . For each φ ∈ Fτ ,
let I ′φ be the set of i ∈ Iφ such that u ∈ Si, v ∈ Xi,0 and c /∈ Ci ∪D1,i. By Lemma 2.6 and a union

bound, with probability 1− o(n−ω(1)), we have that |I ′φ| = (1± ε/4) · (pT /pU ) · β0 · β0pabs · ptrpfan for
each φ ∈ T . Putting this altogether, and taking a union bound, we then have, with high probability,

|Z| =
∑
τ∈T ′

∑
φ∈F′τ

I ′φ = (1± ε)β2
0pT pXpabsn,

for every u, v ∈ V (G) and c ∈ D1, as required.

M11: Let φ ∈ F , i ∈ Iφ, J ⊂ Iφ\{i} with |J | = r, and u ∈ V (G). Let Vu = |{v ∈ V (G) : c(uv) ∈ D2}|,
so that |Vu| = |D2|, and thus, with probability 1− o(n−ω(1)) by Lemma 2.6, |Vu| = (1± ε/2)p2n. Let
Zi,J = {v ∈ Vu : v ∈ ∩j∈J∪{i}Yj , uv ∈ Eabs

0 , c(uv) ∈ D2 \ (Cj ∪D2,j) for each j ∈ J ∪ {i}}. Note that,
for each v ∈ Vu,

P(v ∈ Zi,J) = βr+1
0 pY · β0pabs · (β0pabs)

r+1,

Thus, by Lemma 2.6 and a union bound, with high probability |Zi,J | = (1± ε)β2r+3
0 p2pY p

r+2
abs n for all

such i and J , whence we have that M11 holds.

M12: This holds with high probability similarly to M13. Let us note that, for each c ∈ C and each
φ ∈ F and distinct i, j ∈ Iφ, for each edge xy in G with colour c, P(x ∈ Yi ∩ Yj) = P(x ∈ Yφ) = pY ,
and hence P(x ∈ Yi,0 ∩ Yj,0) = β2

0pY , so that P(x, y ∈ Yi,0 ∩ Yj,0, xy ∈ Eabs
0 ) = β5

0p
2
Y pabs.

M13: Let i ∈ [n] and x ∈ V (G). With probability 1− n−ω(1)we have |D2| = (1± ε/6)p2n. Let Zφ,x
be the set of u ∈ Si \ Ri such that c(ux) ∈ D2, noting that we have with probability 1 − n−ω(1)that
|Zφ,x| = (1 ± ε/4)pS−R · |D2| = (1 ± ε/2)pS−Rp2n. Then, after choosing the remaining initial vertex
sets, choose I, and then choose the sets D2,j , j ∈ [n], the set of edges Eabs

0 , and the sets Yj,0, j ∈ [n].
Suppose x ∈ Yi (for otherwise no corresponding bound in M13 is claimed). Let Z′φ,x be the set of

u ∈ Zφ,x for which c(ux) /∈ Ci ∪D2,i, ux ∈ Eabs
0 , and, for each j ∈ Ji,u, x ∈ Yj,0 and c(ux) /∈ Cj ∪Dj .

For each u ∈ Zφ,x, we have P(u ∈ Z′φ,x) = β0pabs · β0pabs · βr0 · (β0pabs)
r = β2r+2

0 pr+2
abs . The events

{u ∈ Z′φ,x}, u ∈ Zφ,x are not independent, but, by A3, the dependence is low enough that an

application of Lemma 2.7 shows that |Z′φ,x| = (1± ε)β2r+2
0 pr+2

abs · pS−Rp2n with probability 1−n−ω(1).
Thus, using a union bound, we have that with high probability M13 holds, where we record this only
for x ∈ Yi,0 to match its application.
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M14: This follows similarly, though more simply, to M13, and we include its proof to emphasise
where the term 2r in the expression arises. Let i ∈ [n] and x ∈ V (G). With probability 1− n−ω(1)we
have that |Si \Ri| = (1± ε/3)2pS−Rn (as V (G) has 2n vertices). We can suppose, again, that x ∈ Yi.
Then, for each of the |Si \Ri| · r possibilities for (u, j) with u ∈ Si \Ri and j ∈ Ji,u, P(x ∈ Yj,0) = β0.
For each j′ ∈ [n], the choice of Yj′,0 ⊂ Yi influences whether x ∈ Yj,0 for at most 106 of the pairs
(u, j) by A3, and therefore, by Lemma 2.7, we have that with probability 1−n−ω(1)there are, in total,
(1± ε)2β0pS−Rn choices for u ∈ Si \Ri and j ∈ Ji,u with x ∈ Yj,0.

M15: This follows similarly to previous properties, using Lemma 2.7, but let us comment that that
the edge ux may have colour in D2, and this colour may then never be counting among those colours
c counted in M15. Of course, one colour is comfortably lost in the error terms used.

M16: We discuss this property because, having fixed j ∈ [n], we count certain choices for i ∈ [n] with
j ∈ Ji,u for some u (rather than, correspondingly, counting certain choices for i ∈ [n] with i ∈ Jj,u
for some u, as for M14). Let j ∈ [n] and x ∈ V (G), and choose the initial vertex partitions. Let
φ ∈ F be such that i ∈ Iφ. By Lemma 2.6, with probability 1− n−ω(1), we have that, for each i ∈ Iφ,
there are (1 ± ε/4)2pS−Rn choices of u ∈ Si \ Ri. Choose I, and note that then, by A1, there are
r|Sj \Rj | choices for (v, i, u) such that {(j, v), (i, u)} ∈ I, and thus (1± ε/4)2rpS−Rn choices for (i, u)
such that j ∈ Ji,u. Then, choose the colour partition D1 ∪D2 ∪D3. Using A3 and Lemma 2.7, with
probability 1 − n−ω(1)there are (1 ± ε/2)2rpS−Rp2n choices for (i, u) such that j ∈ Ji,u and ux has
colour in D2. As before, we can assume that x ∈ Yj . Then, choosing the further random vertex sets,
the edges in Eabs

0 and the sets Cj′ and D2,j′ , j
′ ∈ [n], for each such choice for (i, u) such that j ∈ Ji,u

and c(ux) ∈ D2, the probability that x ∈ Yj′,0 for each j′ ∈ (Ji,u ∪ {i}) \ {j}, ux is in Eabs
0 and

c(ux) /∈ Cj′ ∪D2,j′ for each j′ ∈ Yi,u ∪ {i} is βr0 · β0pabs · (β0pabs)
r+1. Using A3, A5, and Lemma 2.7,

with probability 1−n−ω(1)there are (1± ε)rβ2r+2
0 pS−Rp2p

r+2
abs n choices of i ∈ [n] and u ∈ Si \Ri such

that j ∈ Ji,u, x ∈ Yj′,0 for each j′ ∈ Ji,u ∪ {i}, ux is in Eabs
0 and c(ux) ∈ D2 \ (Cj′ ∪D2,j′) for each

j′ ∈ Yi,u ∪ {i}.
M39, M40: These properties follows similarly to our others, but note that due to their use we only

record a loose lower bound on the vertices/edge counted, using that γ
poly

� β, pY , p2, pabs, β0.

M41–M44: These properties follows similarly to our others, but we comment on them as they are
the first to use pI = 24pS−R = rpS−R, qcol = β2

1p
2
absp3 and qvx = β2

1pZ , where β0 = 1− β0. We set pI
so that we will have |I| ≈ pIn2. As each I is a set of pairs, for each i ∈ [n], |{(u, j, v) : {(i, u), (j, v)} ∈
I}| ≈ 2pIn, and, for each X ∈ {A,B} we will have, for each i ∈ [n], |{(u, j, v) : {(i, u), (j, v)} ∈ I, u ∈
X}| ≈ 2pIn. In M41–M43, we require some extra condition, where the expected number of triples
(u, j, v) satisfying this as well can be calculated as with our other properties, and shown to be likely
concentrated around this expectation using Lemma 2.7.

As an example, we will do the more complicated property M44 more carefully. Let then xy ∈ E(G)
with c(xy) ∈ D3. Let T ′ be the set of τ ∈ T with x, y ∈ Zτ , so that, by Lemma 2.6, we have with
probability 1 − n−ω(1)that |T ′| = (1 ± ε/4)p2

Zp
−1
tr . Furthermore, with probability 1 − n−ω(1)we have

that |Si \ Ri| = (1 ± ε/4)2pS−Rn for each i ∈ [n]. For each τ ∈ T ′, φ ∈ Fτ and {(i, u), (j, v)} ∈ Iτ ,
P(c(xy) /∈ Ci ∪ Cj ∪ D3,i ∪ D3,j ∧ x, y ∈ Zi,0 ∩ Zj,0) = p2

absβ
2
0 · β2

0 . Therefore, using A1, A3 and
Lemma 2.7, we have that, with probability 1− n−ω(1),

|{(i, u, j, v) : {(i, u), (j, v)} ∈ I, c(xy) ∈ D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j), x, y ∈ Zi,0 ∩ Zj,0}|

= (1± ε) · (1± ε/4)p2
Zp
−1
tr · 2pS−Rn · p2

absβ
2
0 · β2

0

= (1± ε) · 2p2
vx · pcol · pI · n2,

as required.

M46–M52, M55: As we have assumed that K1–K9 hold with Φ0 = n30, these will follow relatively
straightforwardly using Lemma 2.7. As they follow similarly from each other (and more examples are
done in detail for S17), we will pick only one example, M51 to do here in detail.

M51: Let {(i, u), (j, v)} ∈ J0 and xy ∈ E(G) with y ∼A/B u. Let L be the set of (u, v, L)-links
in G which have xy as their second edge, so that, by K4 |L| = (1 ± ε/4)n28. Let L′ be the set of
S ∈ L with V (S) \ {u, v, x, y} ⊂ Zi ∩ Zj , C(S) \ {c(ux), c(xy)} ⊂ D3 \ (Ci ∪ Cj ∪ D3,i ∪ D3,j) and
E(S) \ {ux, xy} ∈ Eabs

0 . Then, using 28,

E|L′| = (1± ε/4)n28(β2
0pZ)59(β2

0p
2
absp3)28(β0pabs)

60 = (1± ε/4)p59
vxp

28
colp

28
edge

= (1± ε/4)Φ · p−2
vx · p−2

col · p
−2
edge · n

−2.
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Now, there are 2n − 4 vertices in V (G) \ {u, v, x, y}, and whether of not each of them is in Zi ∩ Zj
affects |L′| by at most O(n27) by K9. There are n− 2 colours not in {c(ux), c(xy)}, and whether each
of these is in Zτ or not affects |L′| by at most O(n27) by K8 (summed over the edges of that colour in
G − {u, v, x, y}) and K9 (summed over the neighbours of {u, v, x, y} of that colour in G). There are
at most n2 edges in G−{u, v, x, y}, and whether each of these is in Eabs

0 or not affects |L′| by at most
O(n26) by K8. There are at most 4n edges in G with exactly one vertex in {u, v, x, y}, and whether
or not each of these is in Eabs

0 or not affects |L′| by at most O(n27) by K9.
Therefore, by Lemma 2.7, with t = (ε/4) · Φ · p−2

vx · p−2
col · p

−2
edge · n

−2, we have

P(|L′| 6= (1± ε)Φ·p−2
vx · p−2

col · p
−2
edge · n

−2)

≤ 2 exp

(
− 2t2

O(n · (n27)2 + n · (n27)2 + n2 · (n26)2 + n · (n27)2

)
≤ 2 exp

(
−Ω(Φ2 · n−55)

)
= n−ω(1),

where we have used that 1/n
poly

� pvx, pcol, pedge. Therefore, taking a union bound, we have that M51
holds with high probability.

6.3 Part B.1: Matching into Xi

In Part B.1, we will find matchings M̂i,1, i ∈ [n], satisfying the following properties.

N1 For each i ∈ [n], M̂i,1 is a rainbow matching from Ti into Xi which covers Ti and has colours in
D1 \ Ci.

N2 The matchings M̂i,1, i ∈ [n], are edge-disjoint and their edges are all in Eabs.

N3 Gabs|D1 − M̂1,1 − M̂2,1 − . . .− M̂n,1 is (4γn)-bounded.

For this, define a 4-partite 4-uniform hypergraph H1 with vertex classes

i) VT :=
⋃
i∈[n]({i} × Ti) ii) VX :=

⋃
i∈[n]({i} ×Xi,0)

iii) C1 :=
⋃
i∈[n]({i} × (D1 \ (Ci ∪D1,i)) iv) E1 := E(G|D1) ∩ Eabs

0
(30)

where, for each i ∈ [n], and each edge uv ∈ Eabs
0 with colour c ∈ D1 \ (Ci ∪ D1,i), with u ∈ Ti and

v ∈ Xi,0, we add the edge
{(i, u), (i, v), (i, c), uv} (31)

to H1. Let
δ1 = β3

0pXp1p
2
absn.

We will now show that H1 is almost δ1-regular, as follows.

Claim 18. For each v ∈ V (H1), we have dH1(v) = (1± ε)δ1.

Proof of Claim 18. We check this for the vertices in each of the 4 classes in the order at (30).
i) Let (i, u) ∈ VT , so that i ∈ [n] and u ∈ Ti. Then,

dH1((i, u)) = |{v ∈ Xi,0 : c(uv) ∈ D1 \ (Ci ∪D1,i), uv ∈ Eabs
0 }|

M1
= (1± ε)δ1.

ii) Let (i, v) ∈ VX , so that i ∈ [n] and v ∈ Xi,0. Then, as pT = β0pX ,

dH1((i, v)) = |{u ∈ Ti : c(uv) ∈ D1 \ (Ci ∪D1,i), uv ∈ Eabs
0 }|

M2
= (1± ε)δ1.

iii) Let (i, c) ∈ C1, so that i ∈ [n] and c ∈ D1 \ (Ci ∪D1,i). Then, as pT = β0pX and 2pX = pabsp1,

dH1((i, c)) = |{uv ∈ Eabs
0 : c(uv) = c, u ∈ Ti, v ∈ Xi,0}|

M3
= (1± ε)δ1

iv) Let uv ∈ E1, so that c(uv) ∈ D1 and uv ∈ Eabs
0 . Then, as pT = β0pX and 2pX = pabsp1,

dH1(uv) = |{i ∈ [n] : u ∈ Ti, v ∈ Xi,0, c(uv) ∈ D1 \ (Ci ∪D1,i)}|

+ |{i ∈ [n] : u ∈ Xi,0, v ∈ Ti, c(uv) ∈ D1 \ (Ci ∪D1,i)}|
M4
= (1± ε)δ1. �

Moreover, H1 has codegrees at most 1, as follows.

Claim 19. ∆c(H1) ≤ 1.
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Proof of Claim 19. This follows as any edge e = {(i, u), (i, v), (i, c), uv} ∈ E(H1) is uniquely deter-
mined by any two of its vertices. Indeed, any two vertices from e determines i and at least 2 of u, v
and c. Knowing u and v determines c = c(uv) while knowing c and u determines v (the neighbour of
u along a colour-c edge), and, similarly, knowing c and v determines u. Thus, any two vertices from
e determines all of i, u, v, and c, and hence e. �

We now set up the weight functions we will use in the application of Theorem 2.2 to H1. For each
i ∈ [n], v ∈ V (G), and c ∈ D1, let wi, w

T
v , wXv and wc be the indicator function for whether an edge

in E(H1) uses i, v in the vertex from VT , v in the vertex from VX , and c, respectively, i.e., for each
e = {(i′, u), (i′, v′), (i′, c′), uv′} ∈ E(H1) with u ∈ Ti and v′ ∈ Xi,0, we set

wi(e) = 1{i′=i}, wTv (e) = 1{v=u}, wXv (e) = 1{v=v′} and wc(e) = 1{c′=c}.

Furthermore, for each v ∈ V (G), c ∈ D1, and φ ∈ F , for each e = {(i′, u), (i′, v′), (i′, c′), uv′} ∈ E(H1),
let

wXv,φ(e) = 1{v′=v,i′∈Iφ} and wc,φ(e) = 1{c′=c,i′∈Iφ}.

Let W1 = {wi : i ∈ [n]}∪ {wTv : v ∈ V (G)}∪ {wXv : v ∈ V (G)}∪ {wc : c ∈ D1}∪ {wXv,φ : v ∈ V (G), φ ∈
F} ∪ {wc,φ : c ∈ C(G), φ ∈ F}.

For each i ∈ [n], as each e ∈ E(H1) with wi(e) = 1 contains exactly one vertex (i, u) with u ∈ Ti,
we have, using Claim 18, that

wi(E(H1)) =
∑
u∈Ti

dH1((i, u)) = (1± ε)δ1 · |Ti|. (32)

Similarly, for each c ∈ D1, we have

wc(E(H1)) =
∑

uv∈E1:c(uv)=c

dH1(uv) = (1± ε)δ1 · |{uv ∈ Eabs
0 : c(uv) = c}|. (33)

Furthermore, for each c ∈ D1 and φ ∈ F , we have

wc,φ(E(H1)) =
∑

i∈Iφ:(i,c)∈V (H1)

dH1((i, c)) = (1± ε)δ1 · |{i ∈ Iφ : c /∈ Ci ∪Di,1}|. (34)

For each v ∈ V (G), we have

wTv (E(H1)) =
∑

i∈[n]:v∈Ti

dH1((i, u)) = (1± ε)δ1 · |{i ∈ [n] : v ∈ Ti}|, (35)

wXv (E(H1)) =
∑

i∈[n]:v∈Xi,0

dH1((i, u)) = (1± ε)δ1 · |{i ∈ [n] : v ∈ Xi,0}|, (36)

and, for each φ ∈ F ,

wXv,φ(E(H1)) =
∑

i∈Iφ:v∈Xi,0

dH1((i, u)) = (1± ε)δ1 · |{i ∈ Iφ : v ∈ Xi,0}|. (37)

In particular, (32)–(37) imply that, for each w ∈ W1, w(E(H1)) ≥ n3/2. Therefore, by Claims 18, 19
and Theorem 2.2, we can find a matching M1 in H1 such that, for each w ∈ W1,

w(M1) = (1± γ) · δ−1
1 w(E(H1)). (38)

For each i ∈ [n], setting M̂i,1,0 = {uv : {(i, u), (i, v), (i, c(uv)), uv} ∈ M1}, we have the following
properties.

Claim 20. a) The matchings M̂i,1,0, i ∈ [n], are edge-disjoint.

b) For each i ∈ [n], M̂i,1,0 is a rainbow matching from Ti to Xi,0 with colours in D1 \ (Ci ∪D1,i).

c) For each i ∈ [n], |Ti \ V (M̂i,1,0)| ≤ 2γ|Ti| and |Xi,0 \ V (M̂i,1,0)| ≤ γn.

d) For each v ∈ V (G), |{i ∈ [n] : v ∈ Ti \ V (M̂i,1,0)}| ≤ 2γn.

e) For each v ∈ V (G) and φ ∈ F , |{i ∈ Iφ : v ∈ Xi,0 \ V (M̂i,1,0})| ≤ 2γptrpfan.

f) For each c ∈ D1 and φ ∈ F , |{i ∈ Iφ : c /∈ C(M̂i,1,0) ∪ Ci ∪D1,i}| ≤ 2γptrpfan.
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g) Setting Gabs
0 to be the graph with vertex set V (G) and edge set Eabs

0 , we have Gabs
0 |D1−M̂1,1,0−

M̂2,1,0 − . . .− M̂n,1,0 is (3γn)-bounded.

Proof. a): This follows as each edge uv ∈ E1 appears at most once in the edges of M1.

b): For each i ∈ [n], that M̂i,1,0 is rainbow follows from the fact that the vertices {i} × {c}, c ∈
D1 \ (Ci ∪ Di,1), appear at most once in the edges of the matching M1, while the other properties
follow from the choice of the edges of H1 at (31).

c): For each i ∈ [n],

|Ti ∩ V (M̂i,1,0)| = wi(M1)
(38)
= (1± γ) · δ−1

1 wi(E(H1))
(32)
= (1± 2γ)|Ti|,

so that |Ti \ M̂i,1,0| ≤ 2γ|Ti| ≤ γn. Then,

|Xi,0 \ V (M̂i,1,0)| = |Ti \ M̂i,1,0|+ |Xi,0| − |Ti|
M6

≤ γn+ (1 + ε)β0pXn− (1− ε)pTn ≤ 2γn,

where we have used M6 and that pX = (1 + β)pT = pT /β0.

d), e): For each v ∈ V (G),

|{i ∈ [n] : v ∈ Ti \ M̂i,1,0}| = |{i ∈ [n] : v ∈ Ti}| − wTv (M1)

(38)

≤ |{i ∈ [n] : v ∈ Ti}| − (1− γ) · δ−1
1 wTv (E(H1))

(35)

≤ 2γ|{i ∈ [n] : v ∈ Ti}| ≤ 2γn,

and therefore d) holds. Similarly, using instead wXv,φ, (38) and (37), we have that e) holds.

f): For each c ∈ D1 and φ ∈ F ,

|{i ∈ Iφ : c /∈ C(M̂i,1,0) ∪ Ci ∪D1,i}| = |{i ∈ Iφ : c ∈ D1 \ (Ci ∪D1,i)}| − wc,φ(M1)

M9,(38)

≤ (1 + ε)β0pabsptrpfan− (1− γ) · δ−1
1 wc,φ(E(H1))

(34)

≤ 2ptrpfaγn,

and therefore f) holds.

g): For each c ∈ D1,

|{e ∈ E(M̂1,1,0 ∪ . . . ∪ M̂n,1,0) : c(e) = e}| = wc(M1)
(38)
= (1± γ) · δ−1

1 wc(E(H1))

(33)
= (1± 2γ) · |{uv ∈ Eabs

0 : c(uv) = c}|.

Thus, the number of edges of colour c in Gabs
0 |D1 − M̂1,1,0− M̂2,1,0− . . .− M̂n,1,0 is at most 2γ · |{uv ∈

Eabs
0 : c(uv) = c}| ≤ 2γn.

Furthermore, for each v ∈ V (G), we have that

|{e ∈ E(M̂1,1,0 ∪ . . . ∪ M̂n,1,0) : v ∈ V (e)}| = wTv (M1) + wXv (M1) (39)

(38)
= (1± γ) · δ−1

1 (wTv (E(H1)v + wXv (E(H1))

(35),(36)
= (1± 2γ)|{i ∈ [n] : v ∈ Ti or v ∈ Xi,0}|. (40)

Thus, the degree of v in Gabs|D1 − M̂1,1,0 − M̂2,1,0 − . . .− M̂n,1,0 is at most

|{uv ∈ Eabs
0 :c(uv) ∈ D1}| − |{e ∈ E(M̂1,1,0 ∪ . . . ∪ M̂n,1,0) : v ∈ V (e)}|

M5,(40)

≤ (1 + ε)β0p1pabsn− (1− 2γ)|{i ∈ [n] : v ∈ Ti or v ∈ Xi,0}|
M7

≤ (1 + ε)β0p1pabsn− (1− 2γ)(1− ε)2pTn
≤ 3γβ0p1pabsn ≤ 2γn,

where we have used that 2pT = β0p1pabs. Therefore, g) holds. �
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We will now find matchings M̂i,1,1, i ∈ [n], to cover the uncovered vertices in Ti \ M̂i,1,0, using
from Claim 20 c), that these are small sets.

For this, take matchings M̂i,1,1, i ∈ [n], which maximise
∑
i∈[n] |M̂i,1,1| subject to the following

properties.

1) For each i ∈ [n], M̂i,1,1 is a rainbow matching between Ti \ V (M̂i,1,0) and Xi,1 of edges in Eabs
1

with colour in D1,i \ Ci.
2) For each i ∈ [n], and xy ∈ M̂i,1,1 with x ∈ Ti, if X ∈ {A,B} is such that x ∈ X, then xy ∈ Eabs

1,X .

3) The matchings M̂i,1,1, i ∈ [n], are edge-disjoint from each other.

We will show that the matchings M̂i,1,1, i ∈ [n], have the properties we need, as follows.

Claim 21. For each i ∈ [n], |M̂i,1,1| = |Ti| − |M̂i,1,0|.
Proof of Claim 21. Suppose to the contrary, there is some i ∈ [n] with |M̂i,1,1| 6= |Ti|−|M̂i,1,0| so that,
from 1), |M̂i,1,1| < |Ti|− |M̂i,1,0|, and there is some u ∈ Ti \V (M̂i,1,0). Suppose that u ∈ A, where the
case where u ∈ B follows similarly. By the maximality of

∑
i∈[n] |M̂i,1,1|, every neighbouring edge from

u to Xi,1 with colour in D1,i \ Ci must have its non-u vertex in V (M̂i,1,1) or its colour in C(M̂i,1,1),
or be in a matching M̂j,1,1 for some j ∈ [n] with u ∈ Tj \V (M̂j,1,0). Therefore, using Claim 20 c) and
d),

|{v ∈ Xi,1 : c(uv) ∈ D1,i \ Ci, uv ∈ Eabs
1,X}| ≤ 2|M̂i,1,1|+ |{j ∈ [n] : u ∈ Tj \ M̂i,1,0}| ≤ 4γn,

which, as γ
poly

� px, pabs, contradicts M8. �

For each i ∈ [n], let M̂i,1,1 = {uvi,u : u ∈ Ti \ V (M̂i,1,0)} and set M̂i,1 = M̂i,1,0 ∪ M̂i,1,1. We
show that M̂i,1, i ∈ [n], satisfy N1–N3. Indeed, N1 follows from Claim 20 b), Claim 21 and 1).
Furthermore, N2 follows from Claim 20 a) and 3). Finally, N3 follows from Claim 20 g) and M10.

6.4 Part B.2: Small matchings with Yi

We now embark on Part B.2, where we will find edge-disjoint rainbow matchings M̂i,2, i ∈ [n], and a
set

J ⊂ {{(i, u), (j, v)} : i, j ∈ [n], i 6= j, u, v ∈ V (G), u 6= v, u, v ∈ Yi ∩ Yj},
satisfying a range of properties later stated as R1–R15. To do this, as discussed in Section 6.1, we
will find, for each i ∈ [n] and u ∈ Si \ Ri a tuple (vi,u, ci,u,Mi,u, ωi,u), so that these tuples will have
various desirable properties, including that Mi,u is a small monochromatic matching in G with vertices
in Yi and the colour of its edges will be in D2, and uvi,u is a disjoint edge of the same colour with vi,u
also in Yi. Recalling that r = 24, this matching will have r edges. We will then divide, for each i ∈ [n]
and u ∈ Si \Ri, the edges {uvi,u ∪Mi,u} among the matchings M̂j,2, j ∈ {i} ∪ Ji,u, while taking, for
each {(i, u), (j, v)} three particular pairs {(i, u′), (j, v′)} with u′, v′ ∈ V (Mi,u) ∪ V (Mj,v) ∪ {vi,u, vj,v}
into J (see Section 6.4.7).

For each i ∈ [n] and u ∈ Si \ Ri, recall that Ji,u is the set of j for which there is some v with
{(i, u), (j, v)} ∈ I, that |Ji,u| = r, and that Yi,u,0 =

⋂
j∈Ji,u∪{i} Yj,0. For each i ∈ [n] and u ∈ Si \Ri,

let Ri,u be the set of tuples (v,M, c, ω), where

• M ∪ {uv} is a matching of r + 1 edges in Eabs
0 with colour c and ω : Ji,u →M is a bijection,

• v ∈ Yi,u,0 =
⋂
j∈Ji,u∪{i} Yj,0,

• V (M) ⊂ Yi,0,

• for each j ∈ Ji,u, V (ω(j)) ⊂ Yj,0, and

• for each j ∈ {i} ∪ Ji,u, c ∈ D2 \ (Cj ∪D2,j).

Define an auxiliary hypergraph H2 with 4 vertex classes

i) VS−R := ∪i∈[n]({i} × (Si \Ri)) ii) VY := ∪i∈[n]({i} × Yi,0)

iii) C2 := ∪i∈[n]({i} × (D2 \ (Ci ∪D2,i))) iv) E2 := E(G|D2) ∩ Eabs
0

(41)

where, for each i ∈ [n], u ∈ Si \Ri, and (v,M, c, ω) ∈ Ri,u, we add the edge

E(i,u,v,M,c,ω) := {(i, u)} ∪ ((Ji,u ∪ {i})× {c, v}) ∪
(
∪j∈Ji,u{i, j} × V (ω(j))

)
∪M ∪ {uv} (42)

to H2. Each edge, then, has 1 + (r + 1) · 2 + r · 4 + r + 1 = 7r + 4 vertices, and, hence, H2 is a
(7r + 4)-uniform hypergraph. We will now show, in Sections 6.4.1 and 6.4.2 respectively, that H2 is
almost regular with low codegrees.
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6.4.1 Vertex degrees of H2

Setting
δ2 = β7r+3

0 p2p
2r+1
Y p2r+2

abs nr+1,

we will show that H2 is almost δ2-regular, as follows.

Claim 22. For each v ∈ V (H2), we have dH2(v) = (1± 100ε) · δ2.

Proof of Claim 22. We check this for the vertices in each of the 4 classes in the order at (41).
i) Let (i, u) ∈ VS−R, so that i ∈ [n] and u ∈ Si \Ri. Then, by M11 and M12, we have

dH2((i, u)) = (1± ε) · β2r+3
0 p2pY p

r+2
abs n ·

(
(1± 2ε) · (β5

0p
2
Y pabsn

)r
=(1± 100ε) · δ2.

ii) Let (j, x) ∈ VY , so that j ∈ [n] and x ∈ Yj,0. There are four different ways (j, x) can arise in an
edge E(i,u,v,M,c,ω) for some i ∈ [n], u ∈ Si \ Ri, and (v,M, c, ω) ∈ Ri,u: a) j = i and x = v, b) j = i
and x 6= v, c) j 6= i and x = v, and d) j 6= i and x 6= v. We count these in turn.

a) j = i and x = v: Let i = j. Pick u ∈ Si \ Ri such that c(ux) ∈ D2 \ (Ci ∪ D2,i), ux ∈ Eabs
0 ,

and, for each j ∈ Ji,u, x ∈ Yj,0 and c(ux) ∈ D2 \ (Cj ∪ Dj) (with (1 ± ε)β2r+3
0 p2p

r+1
abs n choices by

M13). Then, iteratively pick r edges of colour c in Eabs
0 disjointly from within, respectively, Yi,0∩Yj′,0

for each j′ ∈ Ji,u (each time having (1 ± 2ε) · β5
0p

2
Y pabsn choices by M12). Thus, recalling certain

relationships between variables from Section 3.1, as β0pY = 121pS−R, the total number of choices is

(1± ε) · β2r+2
0 pS−Rp2p

r+2
abs n ·

(
(1± 2ε) · β5

0p
2
Y pabsn

)r
=(1± 100ε) · δ2/121.

b) j = i and x 6= v: Let i = j. Pick u ∈ Si \ Ri and j′ ∈ Ji,u such that x ∈ Yj′,0 (with
(1 ± ε)2β0pS−Rrn choices by M14). Pick c for which c ∈ D2 \ (Ci′ ∪ D2,i′) for each i′ ∈ Ji,u ∪ {i}
and such that there is a colour-c edge in Eabs

0 from u to Yi,u,0 and from x to Yi,0 ∩ Yj′,0 (with
(1 ± 2ε)β2r+6

0 p2p
2
Y p

r+3
abs n choices by M15). Then, iteratively pick r − 1 edges of colour c disjointly

from within, respectively, Yi,0 ∩ Yi′,0 for each i′ ∈ Ji,u \ {j′} (each time having (1 ± 2ε)β5
0p

2
Y pabsn

choices by M12). Thus, as β0pY = 121pS−R, the total number of choices is

(1± ε) · 2β0pS−Rrn · (1± 2ε) · β2r+6
0 p2p

2
Y p

r+3
abs n ·

(
(1± 2ε) · β5

0p
2
Y pabsn

)r−1
=(1± 100ε) · δ2 · 2r/121.

c) j 6= i and x = v: Pick i ∈ [n] and u ∈ Si \ Ri such that j ∈ Ji,u, x ∈ Yj′,0 for each
j′ ∈ Ji,u ∪ {i}, ux is in Eabs

0 and has colour, c say, in D2 \ (Cj′ ∪ D2,j′) for each j′ ∈ Yi,u ∪ {i}
(with (1± ε)rβ2r+2

0 pS−Rp2p
r+2
abs n choices by M16). Then, iteratively pick r edges of colour c in Eabs

0

disjointly from within, respectively, Yi,0 ∩ Yj′,0 for each j′ ∈ Ji,u (each time having (1± 2ε)β5
0p

2
Y pabsn

choices by M12). Thus, as β0pY = 121pS−R, the total number of choices is

(1± ε)rβ2r+2
0 pS−Rp2p

r+2
abs n ·

(
(1± 2ε)β5

0p
2
Y pabsn

)r
=(1± 100ε) · δ2 · r/121.

d) j 6= i and x 6= v: Pick i ∈ [n] and u ∈ Si \ Ri such that j ∈ Ji,u and x ∈ Yi,0 (with
(1 ± ε)2β0pS−Rrn choices by M17). Pick c for which c ∈ D2 \ (Ci′ ∪ D2,i′) for each i′ ∈ Ji,u ∪ {i}
and such that there is a colour-c edge in Eabs

0 from u to Yi,u,0 and from x to Yi,0 ∩ Yj,0 (with (1 ±
2ε)β2r+6

0 p2p
2
Y p

r+3
abs n choices by M15). Then, iteratively pick r − 1 edges of colour c disjointly from

within, respectively, Yi,0 ∩ Yi′,0 for each i′ ∈ Ji,u \ {j′} (each time having (1 ± 2ε)β5
0p

2
Y pabsn choices

by M12). Thus, as β0pY = 121pS−R, the total number of choices is

(1± ε) · 2rβ0pS−Rn · (1± 2ε) · β2r+6
0 p2p

2
Y p

r+3
abs n ·

(
(1± 2ε) · β5

0p
2
Y pabsn

)r−1
=(1± 100ε) · δ2 · 2r/121.

Therefore, recalling that r = 24, in total for ii), for each (j, x) ∈ VY we have

dH2((j, x)) = (1± 100ε) · 5r + 1

121
· δ2=(1± 100ε) · δ2.

iii) Let (j, c) ∈ C2, so that j ∈ [n] and c ∈ D2 \ (Cj ∪D2,j). There are two different ways (j, c) can
arise in an edge E(i,u,v,M,c,ω) for some i ∈ [n], u ∈ Si \ Ri, and (v,M, c, ω) ∈ Ri,u: a) j = i and b)
j 6= i. We count these in turn.

a) j = i. Pick u ∈ Si \ Ri so that c /∈ Cj′ ∪D2,j′ for each j′ ∈ Ji,u and u has a colour-c edge in
Eabs

0 to Yi,u,0 (with (1 ± ε)2β2r+2
0 pS−RpY p

r+1
abs n choices by M18). Then, iteratively pick r edges of
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colour c in Eabs
0 disjointly from within, respectively, Yi,0 ∩ Yj′,0 for each j′ ∈ Ji,u (each time having

(1± 2ε)β5
0p

2
Y pabsn choices by M12). Thus, as β0p2pabs = 50pS−R, the total number of choices is

(1± ε) · 2β2r+2
0 pS−RpY p

r+1
abs n ·

(
(1± 2ε) · β5

0p
2
Y pabsn

)r
=(1± 100ε) · δ2 · 2/50.

b) j 6= i. Pick i ∈ [n] and u ∈ Si \ Ri such that j ∈ Ji,u and c ∈ D2 \ (Cj′ ∪ D2,j′) for each
j′ ∈ Ji,u ∪ {i} and u has a colour-c edge in Eabs

0 to Yi,u,0 (with (1 ± ε)2rβ2r+2
0 pS−RpY p

r+1
abs n choices

by M19). Then, iteratively pick r edges of colour c disjointly from within, respectively, Yi,0 ∩Yi′,0 for
each i′ ∈ Ji,u (each time having (1 ± 2ε)β5

0p
2
Y pabsn choices by M12). Thus, as β0p2pabs = 50pS−R,

the total number of choices is

(1± ε) · 2rβ2r+2
0 pS−RpY p

r+1
abs n ·

(
(1± 2ε) · β5

0p
2
Y pabsn

)r
=(1± 100ε) · δ2 · 2r/50.

Therefore, in total for iii), for each (j, c) ∈ C2 we have

dH2((j, c)) = (1± 100ε) · 2r + 2

50
· δ2=(1± 100ε) · δ2.

iv) Let xy ∈ E2, so that c(xy) ∈ D2 and xy ∈ Eabs
0 . There are two different ways xy can arise in an

edge E(i,u,v,M,c,ω) for some i ∈ [n], u ∈ Si \ Ri, and (v,M, c, ω) ∈ Ri,u: a) xy = uv and b) xy ∈ M .
We count these in turn.

a) xy = uv. Pick i ∈ [n] such that x ∈ Si \ Ri, c(xy) ∈ D2 \ (Cj ∪ D2,j) for each j ∈ Ji,u ∪ {i}
and y ∈ Yi,u,0 (with (1 ± ε)β2r+2

0 pS−RpY p
r+1
abs n choices by M20). Then, iteratively pick r edges of

colour c in Eabs
0 disjointly from within, respectively, Yi,0 ∩ Yj,0 for each j ∈ Ji,u (each time having

(1± 2ε)β5
0p

2
Y pabsn choices by M12). Thus, as β0p2pabs = 50pS−R, the total number of choices is

(1± ε) · β2r+2
0 pS−RpY p

r+1
abs n ·

(
(1± ε) · β5

0p
2
Y pabsn

)r
=(1± 100ε) · δ2/50.

Counting similarly with x and y interchanged, we get another (1± 100ε) · δ2/50 choices.

b) xy ∈ M . Pick i ∈ [n], u ∈ Si \ Ri and j ∈ Ji,u such that c(xy) ∈ D2 \ (Cj′ ∪ D2,j′)
for each j′ ∈ Ji,u ∪ {i}, x, y ∈ Yi,0 ∩ Yj,0 and u has a colour-c(xy) neighbour in Eabs

0 in Yi,u,0
(with (1 ± ε)2rβ2r+7

0 pS−Rp
3
Y p

r+2
abs n

2 choices by M21). Then, iteratively pick r − 1 edges of colour
c in Eabs

0 disjointly from within, respectively, Yi,0 ∩ Yj′,0 for each j′ ∈ Ji,u \ {j} (each time having
(1± 2ε)β5

0p
2
Y pabsn choices by M12). Thus, as β0p2pabs = 50pS−R, the total number of choices is

(1± ε) · 2rβ2r+7
0 pS−Rp

3
Y p

r+2
abs n

2 ·
(
(1± 2ε) · β5

0p
2
Y pabsn

)r−1
=(1± 100ε) · δ2 · 2r/50.

Therefore, in total for iv), for each xy ∈ E2 we have

dH2(xy) = (1± 100ε) · 1 + 1 + 2r

50
· δ2=(1± 100ε) · δ2. �

6.4.2 Codegrees of H2

We will now show that the codegrees of H2 are all O(nr+0.5), where r = 24. As the vertex degrees of

H2 are (by Claim 22) all around δ2, where δ2 = β7r+3
0 p2p

2r+1
Y p2r+2

abs nr+1, and 1/n
poly

� β0, p2, pY , pabs,
these codegrees are all much smaller than the vertex degrees in H2.

Claim 23. ∆c(H2) = O(nr+0.5).

Proof of Claim 23. Let i ∈ [n], u ∈ Si \ Ri, and (v,M, c, ω) ∈ Ri,u, and consider the edge e =
E(i,u,v,M,c,ω) (using (42)), so that

e = {(i, u)} ∪ ((Ji,u ∪ {i})× {c, v}) ∪
(
∪j∈Ji,u{i, j} × V (ω(j))

)
∪M ∪ {uv}.

Let v1 and v2 be two vertices in e. We will check the codegree in cases i)–xvii) as follows.
If from v1 and v2 we do not know i or any j ∈ Ji,u, then (as v1, v2 ∈M ∪ {uv}) from v1 and v2 we

can write down a triple
i) (u,w, c) or ii) (w,w′, c)

where w,w′ ∈ V (M) are not in the same edge in M . If from v1 and v2 we know i but no j ∈ Ji,u,
then (as knowing any 2 of u, v and c determines all of them) from v1 and v2 we can write down one
of the triples

iii) (i, u, c) iv) (i, u, w) v) (i, v, w) vi) (i, c, w) vii) (i, w,w′),
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where w,w′ ∈ V (M) are not in the same edge in M . If from v1 and v2 we know i and one j ∈ Ji,u,
then from v1 and v2 we can write down one of the triples

viii) (i, j, v) ix) (i, j, c) x) (i, j, w),

where w ∈ V (M). If from v1 and v2 we do not know i and know exactly one j ∈ Ji,u, then from v1

and v2 we can write down one of the triples

xi) (j, v, c) xii) (j, v, w) xiii) (j, c, w) xiv) (j, w,w′),

where w,w′ ∈ V (M) are not in the same edge in M . Finally, if from v1 and v2 we know distinct
j, j′ ∈ Ji,u, then from v1 and v2 we can write down one of the triples

xv) (j, j′, v) xvi) (j, j′, c) xvii) (j, j′, w),

where w ∈ V (M).
We now show that, in each case i)–xvii), we have dH3(v1, v2) = O(nr+0.5). For i) and ii), we

know the colour of the edges in M ∪ {uv} and vertices from 2 different edges, so there are at most
nr−1 choices for the other edges in M ∪{uv}, and then at most n choices for i, O(1) choices for u and
O(1) choices for ω, so that dH3(v1, v2) = O(nr) = O(nr+0.5).

For iii) and vi), we know i, c and one vertex in one of the edges in M ∪ {uv}, and therefore there
are at most nr ways to choose the remaining edges of M ∪ {uv}, after which there are O(1) choices
for u and then ω, so that dH3(v1, v2) = O(nr) = O(nr+0.5). For iv), v) and vii), we know i and two
vertices in different edges of M ∪ {uv}, and therefore, after choosing c with at most n choices, there
are then at most nr−1 ways to choose the remaining edges of M ∪ {uv}, after which there are O(1)
choices for u and then ω, so that dH3(v1, v2) = O(nr) = O(nr+0.5).

For xi), we know u from v and c, and therefore from A6 have at most
√
n choices for i, after

which there are at most nr possibilities for M , so that dH3(v1, v2) = O(nr+0.5). For xii)–xiv), as j
is known, there are at most n1.5 choices for (i, u) by A4, after which we know either the colour of
the edges in M ∪ {uv} and two vertices from different edges in M ∪ {uv}, or and three vertices from
different edges in M ∪ {uv}. In either case, we have at most nr−1 choices for the edges in M ∪ {uv},
and therefore dH3(v1, v2) = O(nr+0.5).

For xv)–xvii), by A5, there are at most
√
n choices for (i, u) with j, j′ ∈ Ji,u, after which, as

either the colour of the edges in M ∪{uv} is known (from the triple directly or from uv) or a vertex in
an edge of M , there are at most nr choices for edges M ∪{uv}, and therefore dH3(v1, v2) = O(nr+0.5).

�

6.4.3 Weight functions for properties for Part B.3

Before considering some of the simpler weight functions needed to complete Part B.2, we address some
important weight functions that are needed to prove certain properties required to complete Part B.3.
In particular, these relate to properties R1-R6 which are only stated later, in Section 6.4.7, and are
important for proving the properties required of J for H3.

For R1: For each j ∈ [n] and x ∈ Zj,0, define wR1:same
j,x , wR1:other

j,x : E(M2)→ N by, for each i ∈ [n],
u ∈ Si \Ri, and (v,M, c, ω) ∈ Ri,u

• if j = i, then letting wR1:same
j,x (E(i,u,v,M,c,ω)) be the number of j′ ∈ Ji,u with x ∈ Zj′,0 such that

there is an edge from x to V (ω(j′)) in Eabs
0 with colour in D3 \ (Ci ∪ Cj′ ∪D3,i ∪D3,j′), and 0

otherwise.

• j ∈ Ji,u, then let wR1:other
j,x (E(i,u,v,M,c,ω)) be 1 if there is an edge from x to v in Eabs

0 with colour
in D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j), and 0 otherwise.

For wR1:same
j,x (E(H2)): There are (1 ± ε) · 2rβ0pS−Rn choices for u ∈ Sj \ Rj and j′ ∈ Jj,u with

x ∈ Zj′,0 by M22. After this, there are (1±ε)β2r+3
0 pY p2p

r+2
abs n choices of v ∈ Yj,u,0 with uv ∈ Eabs

0 and
c(uv) ∈ D2\(Ci′∪D2,i′) for each i′ ∈ Jj,u∪{j} by M11. After this, there are (1±ε)β8

0p
2
Y p3p

4
absn choices

for ω(j′) such that there is an edge from x to V (ω(j′)) in Eabs
0 with colour in D3\(Cj∪Cj′∪D3,j∪D3,j′)

by M26. After this, there are (1± ε)β5
0p

2
Y pabsn choices for each edge in M \ {ω(j′)} by M12.

Therefore, in total, we have

wR1:same
j,x (E(H2)) = (1± 10ε) · 2rβ0pS−Rn · β2r+3

0 pY p2p
r+2
abs n · β

8
0p

2
Y p3p

2
absn ·

(
β5

0p
2
Y pabsn

)r−1

= (1± 10ε)2(pS − pR)n · r · δ2 · β4
0 · β0p

3
abs · p3

= (1± 10ε) · 2

3
pJn · δ2 · β0 · pedge · pcol.
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For wR1:other
j,x (E(H2)): There are (1±ε) ·rβ0pS−Rn choices for i ∈ [n] and u ∈ Si \Ri with j ∈ Ji,u,

x ∈ Zi,0 and u ∼A/B x by M23. After this, there are (1 ± ε)β2r+6
0 pY p2p3p

r+5
abs n choices of v ∈ Yi,u,0

with uv ∈ Eabs
0 and c(uv) ∈ D2 \ (Ci′ ∪D2,i′) for each i′ ∈ Jj,u ∪ {j} and xv is an edge of Eabs

0 with
colour in D3 \ (Ci ∪Cj ∪D3,i ∪D3,j) by M27. After this, there are (1± ε)β5

0p
2
Y pabsn choices for each

edge in M by M12.
Therefore, in total, we have

wR1:other
j,x (E(H2)) = (1± 10ε) · 2rβ0pS−Rn · β2r+4

0 pY p2p3p
r+5
abs n ·

(
β5

0p
2
Y pabsn

)r
= (1± 10ε)(pS − pR)n · r · δ2 · β4

0 · β0p
3
abs · p3

= (1± 10ε) · 1

3
pJn · δ2 · β0 · pedge · pcol.

Letting wR1
j,x = wR1:same

j,x + wR1:other
j,x , we therefore have that

wR1
j,x (E(H2)) = (1± 10ε)pJn · δ2 · β0 · pedge · pcol. (43)

For R2: For each j ∈ [n] and x ∈ Zj,0, define wR2:same
j,x , wR2:other

j,x : E(M2)→ N by, for each i ∈ [n],
u ∈ Si \Ri, and (v,M, c, ω) ∈ Ri,u

• if j = i, then let wR1:same
j,x (E(i,u,v,M,c,ω)) be the number of j′ ∈ Ji,u for which there is an edge

from x to v in Eabs
0 with colour in D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j), and 0 otherwise.

• if j ∈ Ji,u, let wR1:other
j,x be 1 if there is an edge from x to V (ω(j)) in Eabs

0 with colour in
D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j), and 0 otherwise.

For wR2:same
j,x (E(H2)): There are (1 ± ε) · rβ0pS−Rn choices for u ∈ Sj \ Rj and j′ ∈ Jj,u with

x ∼A/B u and x ∈ Zj′,0 by M24, which is a fraction around 1/r of the possibilities in the first choice
for examining wR1:other

j,x . Then, continuing as did for wR1:other
j,x , using M27 and M12, we have, as

wR2:same
j,x takes values in {0, r}, that,

wR2:same
j,x (E(H2)) = (1± 10ε) · 1

3
pJn · δ2 · β0 · pedge · pcol.

For wR2:other
j,x (E(H2)): There are (1 ± ε) · 2rβ0pS−Rn choices for i ∈ [n] and u ∈ Si \ Ri with

j ∈ Ji,u and x ∈ Zi,0 by M25, which is around twice as many as the possibilities in the first choice
for examining wR1:same

j,x . Continuing as did for wR1:same
j,x , using M11, M26 and M12, we get

wR2:other
j,x (E(H2)) = (1± 10ε) · 2

3
pJn · δ2 · β0 · pedge · pcol.

Letting wR2
j,x = wR2:same

j,x + wR2:other
j,x , we therefore have that

wR2
j,x (E(H2)) = (1± 10ε) · pJn · δ2 · β0 · pedge · pcol. (44)

For R3: For each j ∈ [n] and c′ ∈ D3 \ (Cj ∪D3,j), define wR3:same
j,c′ , wR3:other

j,c′ : E(M2) → N by,
for each i ∈ [n], u ∈ Si \Ri, and (v,M, c, ω) ∈ Ri,u

• if j = i, then letting wR1:same
j,c (E(i,u,v,M,c,ω)) be the number of pairs (j′, w) with j′ ∈ Ji,u and

w ∈ V (ω(j′)) for which c′ /∈ Cj′ ∪D3,j′} and w has a colour-c′ edge to Zi,0 ∩ Zj′,0 in Eabs
0 , and

0 otherwise, and

• if j ∈ Ji,u, then let wR1:other
j,c′ be 1 if c′ /∈ Ci ∪ D3,i and there is a colour-c′ edge from v to

Zi,0 ∩ Zj,0 in Eabs
0 , and 0 otherwise.

For wR3:same
j,c′ (E(H2)): There are 2β0pabsr · pS−Rn choices of u ∈ Sj \ Rj and j′ ∈ Jj,u with

c′ /∈ Cj′ ∪ D3,j′ by M28. After this, there are (1 ± ε)β2r+3
0 pY p2p

r+2
abs n choices of v ∈ Yj,u,0 with

uv ∈ Eabs
0 and c(uv) ∈ D2 \ (Ci′ ∪D2,i′) for each i′ ∈ Jj,u ∪ {j} by M11. Then, by M30, there are

(1± ε)2β8
0p

2
Y pZp

2
absn choices for w ∈ Yj,0 ∩ Yj′,0 which has a colour-c′ edge in Eabs

0 to Zj,0 ∩Zj′,0 and
a colour-c(uv) edge in Eabs

0 to Yj,0 ∩ Yj′,0. As this determines the edge with colour c = c(uv) in the
matching M , we then have (1± ε)β5

0p
2
Y pabsn choices for each of the r − 1 other edges in M \ {ω(j′)}

by M12.
Therefore, in total, we have

wR3:same
j,c′ (E(H2)) = (1± 10ε) · 2β0pabsr · pS−Rn · β2r+3

0 pY p2p
r+2
abs n · 2β

8
0pY pZp

2
absn ·

(
β5

0p
2
Y pabsn

)r−1

= (1± 10ε)2(pS − pR)n · r · δ2 · β4
0p

2
abs · pZ

= (1± 10ε) · 4

3
pvx · p̂col · pedge · pJn · δ2.
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For wR3:other
j,c′ (E(H2)): There are (1 ± ε) · 2rβ0pabspS−Rn choices for i ∈ [n] and u ∈ Si \ Ri with

j ∈ Ji,u and c′ /∈ Ci∪D3,i by M29. After this, there are (1±ε)β2r+6
0 pY pZp2p

r+3
abs n choices of v ∈ Yi,u,0

with uv ∈ Eabs
0 and c(uv) ∈ D2 \ (Ci′ ∪D2,i′) for each i′ ∈ Ji,u ∪{i} and there is a colour-c′ edge from

v to Zi,0 ∩Zj,0 in Eabs
0 by M31. After this, there are (1± ε)β5

0p
2
Y pabsn choices for each edge in M by

M12.
Therefore, in total, we have

wR3:other
j,c′ (E(H2)) = (1± 10ε) · 2rβ0pabspS−Rn · β2r+6

0 pY pZp2p
r+3
abs n ·

(
β5

0p
2
Y pabsn

)r
= (1± 10ε)(pS − pR)n · r · δ2 · β4

0p
2
abs · pZ

= (1± 10ε) · 2

3
pvx · p̂col · pedge · pJn · δ2.

Letting wR3
j,c′ = 1

2
wR3:same
j,c′ + 1

2
wR3:other
j,c′ , we therefore have that

wR3
j,c′(E(H2)) = (1± 10ε) · pJn · δ2 · β0 · pedge · pcol. (45)

For R4: For each j ∈ [n] and c′ ∈ D3 \ (Cj ∪D3,j), define wR4:same
j,c′ , wR4:other

j,c′ : E(M2) → N by,
for each i ∈ [n], u ∈ Si \Ri, and (v,M, c, ω) ∈ Ri,u

• if j = i, then letting wR4:same
j,c (E(i,u,v,M,c,ω)) be the number of j′ ∈ Ji,u for which c′ /∈ Cj′ ∪D3,j′

and there is a colour-c′ edge from v to Zj,0 ∩ Zj′,0 in Eabs
0 , and 0 otherwise, and

• if j ∈ Ji,u, then letting wR4:other
j,c′ (E(i,u,v,M,c,ω)) be the number of vertices in ω(i) with a colour-c′

edge in Eabs
0 to Zi,0 ∩ Zj,0 if c′ /∈ Ci ∪D3,i, and 0 otherwise.

For wR4:same
j,c′ (E(H2)): There are 2rβ0pabspS−Rn choices of u ∈ Sj \ Rj and j′ ∈ Jj,u for which

c′ /∈ Cj′ ∪ D3,j′ by M28. After this, there are (1 ± ε)β2r+6
0 pY pZp2p

r+3
abs n choices of v ∈ Yi,u,0 with

uv ∈ Eabs
0 and c(uv) ∈ D2 \ (Ci′ ∪D2,i′) for each i′ ∈ Ji,u ∪ {i} and there is a colour-c′ edge from v

to Zj,0 ∩ Zj′,0 in Eabs
0 by M31. After this, there are (1± ε)β5

0p
2
Y pabsn choices for each edge in M by

M12.
Therefore, in total, we have

wR4:other
j,c′ (E(H2)) = (1± 10ε) · 2rβ0pabspS−Rn · β2r+6

0 pY pZp2p
r+3
abs n ·

(
β5

0p
2
Y pabsn

)r
= (1± 10ε)2(pS − pR)n · r · δ2 · β4

0p
2
abs · pZ

= (1± 10ε) · 2

3
pvx · p̂col · pedge · pJn · δ2.

For wR4:other
j,c′ (E(H2)): There are (1 ± ε) · 2rβ0pabspS−Rn choices for i ∈ [n] with j ∈ Ji,u and

c′ /∈ Ci ∪ D3,i by M29. After this, there are (1 ± ε)β2r+3
0 pY p2p

r+2
abs n choices of v ∈ Yj,u,0 with

uv ∈ Eabs
0 and c(uv) ∈ D2 \ (Ci′ ∪D2,i′) for each i′ ∈ Jj,u ∪ {j} by M11. Then, by M30, there are

(1± ε)2β8
0p

2
Y pZp

2
absn choices for w ∈ Yj,0 ∩ Yj′,0 which has a colour-c′ edge in Eabs

0 to Zj,0 ∩Zj′,0 and
a colour-c(uv) edge in Eabs

0 to Yj,0 ∩ Yj′,0. As this determines the edge with colour c = c(uv) in the
matching M , we then have (1± ε)β5

0p
2
Y pabsn choices for each of the r − 1 other edges in M \ {ω(j′)}

by M12.
Therefore, in total, we have

wR4:other
j,c′ (E(H2)) = (1± 10ε) · 4β0pabsr · pS−Rn · β2r+3

0 pY p2p
r+2
abs n · β

8
0pY pZp

2
absn ·

(
β5

0p
2
Y pabsn

)r−1

= (1± 10ε)4(pS − pR)n · r · δ2 · β4
0p

2
abs · pZ

= (1± 10ε) · 4

3
pvx · p̂col · pedge · pJn · δ2.

Letting wR4
j,c′ = 1

2
wR4:same
j,c′ + 1

2
wR4:other
j,c′ , we therefore have that

wR3
j,c′(E(H2)) = (1± 10ε)pvx · p̂col · pedge · pJn · δ2. (46)

For R5: For each xy ∈ Eabs
0 with c(xy) ∈ D3, define wR5:first

xy , wR5:match
xy : E(M2)→ N by, for each

i ∈ [n], u ∈ Si \Ri, and (v,M, c, ω) ∈ Ri,u
• if v ∈ {x, y}, y ∈ Zi,0 and c(xy) /∈ Ci ∪D3,i, then letting wR5:first

xy (E(i,u,v,M,c,ω)) be the number
of j ∈ Ji,u for which y ∈ Zj,0 and c(xy) /∈ Cj ∪D3,j , and 0 otherwise, and

• if v /∈ {x, y}, x, y ∈ Zi,0 and c(xy) /∈ Ci ∪ D3,i, then letting wR5:match
xy (E(i,u,v,M,c,ω)) be the

number of j ∈ Ji,u with x, y ∈ Zj,0 and c(xy) /∈ Cj ∪D3,j , and 0 otherwise.
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For wR5:first
xy (E(H2)): There are (1 ± ε)β2r+7

0 pZpY p2p
r+4
abs rpS−Rn

2 choices for i ∈ [n], u ∈ Si \ Ri
and j ∈ Ji,u with x ∈ Yi,u,0, ux ∈ Eabs

0 , c(ux) ∈ D2 \ (Cj′ ∪D2,j′) for each j′ ∈ Ji,u, y ∈ Zi,0 ∩ Zj,0
and c(xy) /∈ Ci ∪ Cj ∪ D3,i ∪ D3,j by M32. After this, there are (1 ± ε)β5

0p
2
Y pabsn choices for each

edge in M by M12.
Therefore, in total, counting similarly with x and y switched, we have

wR1:first
xy (E(H2)) = (1± 10ε) · 2β2r+7

0 pZpY p2p
r+4
abs rpS−Rn

2 ·
(
β5

0p
2
Y pabsn

)r
= (1± 10ε)2(pS − pR)n · r · δ2 · β4

0 · p2
abspZ

= (1± 10ε) · 2

3
p2

vx · p3β
4
0p

4
abs · pedge · pI · n2.

For wR5:match
xy (E(H2)): There are (1± ε) · rβ6

0p
2
abspY pZpS−Rn

2 choices for i ∈ [n], u ∈ Si \Ri and
j ∈ Ji,u with c(xy) /∈ (Ci ∪Cj ∪D3,i ∪D3,j), x ∈ Yi,0 ∩ Yj,0, y ∈ Zi,0 ∩Zj,0 by M33. After this, there
are (1± ε)β2r+6

0 pY p2p
r+2
abs n choices of v ∈ Yi,u,0 with uv ∈ Eabs

0 and c(uv) ∈ D2 \ (Ci′ ∪D2,i′) for each
i′ ∈ Ji,u ∪ {i} such that x has a colour-c(uv) edge in Eabs

0 to Yi,0 ∩ Yj,0 by M34. After this, there are
(1± ε)β5

0p
2
Y pabsn choices for each of the remaining r− 1 edges in M by M12. Therefore, in total, we

have

wR5:match
xy (E(H2)) = (1± 10ε) · 2rβ6

0p
2
abspY pZpS−Rn

2 · β2r+6
0 pY p2p

r+2
abs n ·

(
β5

0p
2
Y pabsn

)r−1

= (1± 10ε)(pS − pR)n · r · δ2 · β4
0 · p2

abs

= (1± 10ε) · 1

3
pJn · δ2 · β0 · pedge · β2

0 · p2
abs.

Letting wR5
xy = wR5:first

xy + wR5:match
xy , we therefore have that

wR5
xy (E(H2)) = (1± 10ε)pvx · β2

0 · p2
abs · pJ · n. (47)

For R6: For each xy ∈ Eabs
0 with c(xy) ∈ D3, define wR6:first

xy , wR6:match
xy : E(M2)→ N by, for each

i ∈ [n], u ∈ Si \Ri, and (v,M, c, ω) ∈ Ri,u
• if vx ∈ Eabs

0 , c(uv) ∈ D3 \ (Ci ∪ D3,i), x, y ∈ Zi, then letting wR6:first
xy (E(i,u,v,M,c,ω)) be the

number of j ∈ Ji,u for which x, y ∈ Zj,0 and c(xy) /∈ Cj ∪D3,j , and 0 otherwise, and

• if x, y ∈ Zi,0 and c(xy) /∈ Ci ∪ D3,i, then letting wR6:match
xy (E(i,u,v,M,c,ω)) be the number of

j ∈ Ji,u with x, y ∈ Zj,0 and c(xy) /∈ Cj ∪D3,j for which there is an edge in Eabs
0 from x to ω(j)

with colour in D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j), and 0 otherwise.

For wR6:first
xy (E(H2)): There are (1 ± ε)β6

0p
2
Zp

2
absrpS−Rn

2 choices for i ∈ [n], u ∈ Si \ Ri and
j ∈ Ji,u with x, y ∈ Zi,0 ∩ Zj,0 and c(xy) /∈ Ci ∪ Cj ∪ D3,i ∪ D3,j by M35. After this, there are
(1± ε)β2r+6

0 pY p2p3p
r+5
abs n choices of v ∈ Yi,u,0 with uv ∈ Eabs

0 and c(uv) ∈ D2 \ (Ci′ ∪D2,i′) for each
i′ ∈ Jj,u ∪ {j} and xv is an edge of Eabs

0 with colour in D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j) by M27. After
this, there are (1± ε)β5

0p
2
Y pabsn choices for each edge in M by M12.

Therefore, in total, counting similarly with x and y switched, we have

wR1:first
xy (E(H2)) = (1± 10ε) · β6

0p
2
Zp

2
absrpS−Rn

2 · β2r+6
0 pY p2p3p

r+5
abs n ·

(
β5

0p
2
Y pabsn

)r
= (1± 10ε)2(pS − pR)n · r · δ2 · β9

0 · p5
absp

2
Z · p3

= (1± 10ε) · 2

3
pvx · β2

0 · p2
abs · pJ · n.

For wR6:match
xy (E(H2)): There are (1 ± ε) · rβ6

0p
2
absp

2
ZpS−Rn

2 choices for i ∈ [n], u ∈ Si \ Ri and
j ∈ Ji,u with x, y ∈ Zi,0 ∩ Zj,0 and c(xy) /∈ (Ci ∪ Cj ∪ D3,i ∪ D3,j), by M35. After this, there are
(1 ± ε)β2r+3

0 pY p2p
r+2
abs n choices of v ∈ Yj,u,0 with uv ∈ Eabs

0 and c(uv) ∈ D2 \ (Ci′ ∪ D2,i′) for each
i′ ∈ Jj,u ∪{j} by M11. Then, by M26, there are (1± ε)β8

0p
2
Y p3p

4
absn choices for the edge ω(j). After

this, there are (1±ε)β5
0p

2
Y pabsn choices for each of the remaining r−1 edges in M by M12. Therefore,

in total, counting similarly with x and y switched, we have

wR6:match
xy (E(H2)) = (1± 10ε) · 2rβ6

0p
2
absp

2
ZpS−Rn

2 · β2r+3
0 pY p2p

r+2
abs n · β

8
0p

2
Y p3p

4
absn ·

(
β5

0p
2
Y pabsn

)r−1

= (1± 10ε)2(pS − pR)n · r · δ2 · β9
0 · p5

absp
2
Z · p3

= (1± 10ε) · 2

3
pvx · β2

0 · p2
abs · pJ · n.
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Letting wR6
xy = wR6:first

xy + wR6:match
xy , we therefore have that

wR6
xy (E(H2)) = (1± 10ε)pvx · β2

0 · p2
abs · pJ · n. (48)

Let

W2 = {wR1
j,x , w

R2
j,x : j ∈ [n], x ∈ Zj,0} ∪ {wR3

j,c , w
R4
j,c :j ∈ [n], c ∈ D3 \ (Cj ∪D3,j)}

∪ {wR5
xy , w

R6
xy : xy ∈ Eabs

0 s.t. c(xy) ∈ D3}, (49)

and note that from (43)–(48), we have that w(E(H2)) ≥
√
nδ2 for each w ∈ W2.

6.4.4 Simpler weight functions for Part B.2

We now define the weight functions that will allow us to control the edges in Eabs
0 with colour in D2

that we do no end up using in the matchings found in Part B.2. For each i ∈ [n], φ ∈ F , v ∈ V (G),
and c ∈ D2, and each i′ ∈ [n], u ∈ Si \ Ri, and (v′,M, c′, ω) ∈ Ri′,u, recalling the edge E(v′,M,c′,ω) of
H2 from (42), we define

wsame
v (E(i′,u,v′,M,c′,ω)) = 1{v=v′}, wdiff

v (E(i′,u,v′,M,c′,ω)) = 1{v∈V (M)}

wsame
v,φ (E(i′,u,v′,M,c′,ω)) = 1{v=v′,i′∈Iφ}, wc,φ(E(i′,u′,v,M,c′,ω)) = 1{c′=c,i′∈Iφ}

wsame
i (E(i′,u,v′,M,c′,ω)) = 1{i=i′}, and wdiff

i (E(i′,u,v′,M,c,ω)) = 1{i∈Ji,u},

and, if v ∈ Yi,0, we define

wcod
i,v (E(i′,u,v′,M,c′,ω)) = r · 1{i=i′} · 1{v=v′} + 1{i∈Ji,u} · 1{v∈V (M)}.

Let W ′2 = {wsame
i , wdiff

i : i ∈ [n]} ∪ {wsame
v , wdiff

v : v ∈ V (G)} ∪ {wc,φ : c ∈ D2, φ ∈ F}, and let
W ′′2 = {wcod

i,v : i ∈ [n], v ∈ Yi,0}.
For each i ∈ [n], we have, using Claim 22, that

wsame
i (E(H2)) =

∑
u∈Si\Ri

dH2((i, u)) = (1± ε)|Si \Ri|δ2
M36
= (1± 2ε) · pS−Rn · δ2. (50)

Furthermore,

wdiff
i (E(H2)) = |{(i′, u) : i ∈ Ji′,u}|·dH2((i′, u)) = (1±ε)·r ·|Si\Ri|δ2

M36
= (1±2ε)·r ·pS−Rn·δ2. (51)

For each v ∈ V (G), using the proof of Claim 22, and in particular counting part ii)a) over each
possible i ∈ [n] and i ∈ Iφ, φ ∈ F , respectively, we have

wsame
v (E(H2)) = (1± ε) · n · δ2/121, (52)

and, for each φ ∈ F ,
wsame
v,φ (E(H2)) = (1± ε) · ptrpfan · δ2/121. (53)

Furthermore, using the proof of Claim 22, and in particular counting part ii)b) over each possible
i ∈ [n], we have

wdiff
v (E(H2)) = (1± ε) · n · δ2 · 2r/121. (54)

Finally, for each c ∈ D2 and φ ∈ F , from Claim 28, and as each edge in E(H2) which uses c contains
r + 1 different pairs (i, c) for some i, we have

wc,φ(E(H2)) =
1

r + 1

∑
i∈Iφ:c∈D2\(Ci∪D2,i)

dH2((i, c))
M38
= (1± ε) · 1

r + 1
· β0pabsptrpfan · δ2. (55)

In particular, (50)–(55) imply that, for each w ∈ W ′2, w(E(H2)) ≥ n1/2 · δ2. Furthermore, for each
i ∈ [n] and v ∈ Yi,0, we have, using Claim 23, that

wcod
i,v (E(H2)) ≤

∑
u∈Si\Ri

∑
j∈Ji,u

|{e ∈ E(H2) : (i, u), (j, v) ∈ V (e)}| = O(n · r · nr+0.5) ≤ δ2 · n0.6. (56)
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6.4.5 Choice of M2 and its properties

Recalling W2, W ′2, W ′′2 from Sections 6.4.3 and 6.4.4, we have shown that w(E(H2)) ≥ n1/2 · δ2 holds
for each w ∈ W2 ∪W ′2. Therefore, by Claims 22, 23 and Theorem 2.2, we can find a matching M2 in
H2 such that, for each w ∈ W2 ∪W ′2,

w(M2) = (1± 200ε) · δ−1
2 w(E(H2)), (57)

and, for each w ∈ W ′′2 , we have4 w(M2) ≤ 2n0.6.
Let J = {(i, u) ∈ V (M2) : i ∈ [n], u ∈ Si \Ri}. For each (i, u) ∈ J , let (vi,u,Mi,u, ci,u, ωi,u) ∈ Ri,u

be the such that E(i,u,vi,u,Mi,u,ci,u,ωi,u) is the edge in H2 containing (i, u). For each (i, u) ∈ J and
j ∈ Ji,u, let xi,u,j be the vertex of ωi,u(j) with xi,u,j ∼A/B vi,u and let yi,u,j be the vertex of ωi,u(j)
with xi,u,j ∼A/B vi,u.

For each i ∈ [n], let

Fi =
(
∪u∈Si\Ri:(i,u)∈J ∪j∈Ji,u {(j, vi,u), (j, yi,u,j)}

)
∪
(
∪(j,u)∈J:i∈Jj,u(j, xj,u,i)

)
, (58)

which is a set of tuples which we will eventually add to J in a pair with (i, v) for some v ∈ V (G). For
each i ∈ [n], let

Gi =
(
∪u∈Si\Ri:(i,u)∈J ∪j∈Ji,u {(j, xi,u,j)}

)
∪
(
∪(j,u)∈J:i∈Jj,u{(j, vj,u), (j, yj,u,i)}

)
(59)

which is a set of pairs (j, v) for which we will add some pair {(i, v), (j, v′)} to J for some v′. For each
v ∈ V (G), let Kv be the multi-set(
∪(i,u)∈J:vi,u=v ∪j∈Ji,u (j, i)}

)
∪
(
∪(i,u)∈J ∪j∈Ji,u:xi,u,j=v (i, j)

)
∪
(
∪(i,u)∈J ∪j∈Ji,u:yi,u,j=v (j, i)

)
.

(60)

Claim 24. The following hold.

O1 For each i ∈ [n] and x ∈ Zi,0, there are (1± 2γ)β0 · pcol · pedge · pJ · n choices for (j, u) ∈ Gi such
that x ∈ Zj,0, c(ux) ∈ D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j) and ux ∈ Eabs

0 .

O2 For each i ∈ [n] and x ∈ Zi,0, there are (1± 2γ)β0 · pcol · pedge · pJ · n choices for (j, v) ∈ Fi for
which x ∈ Zj,0, c(xv) ∈ D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j) and xv ∈ Eabs

0 .

O3 For each i ∈ [n] and c ∈ D3 \ (Ci ∪D3,i), there are (1± 2γ)pvx · β0pabs · pedge · pJ · n choices for
(j, u) ∈ Gi for which c ∈ D3 \ (Cj ∪ D3,j) and there is a colour-c edge from u to Zi,0 ∩ Zj,0 in
Eabs

0 .

O4 For each i ∈ [n] and c ∈ D3 \ (Ci ∪D3,i), there are (1± 2γ)pvx · β0pabs · pedge · pJ · n choices for
(j, v) ∈ Fi for which c ∈ D3 \ (Cj ∪ D3,j) and there is a colour-c edge from v to Zi,0 ∩ Zj,0 in
Eabs

0 .

O5 For each xy ∈ Eabs
0 with c(xy) ∈ D3, there are (1± 2γ)pvx · β2

0 · p2
abs · pJ · n choices of (i, j) ∈ Kx

for which c(xy) ∈ D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j) and y ∈ Zi,0 ∩ Zj,0.

O6 For each xy ∈ Eabs
0 with c(xy) ∈ D3, there are (1± 2γ)p2

vx · pcol ·β2
0p

2
abs · pedge · pJ ·n2 choices for

u ∈ V (G) and (i, j) ∈ Kx for which c(ux), c(xy) ∈ D3 \ (Ci ∪Cj ∪D3,i ∪D3,j), x, y ∈ Zi,0 ∩Zj,0
and ux ∈ Eabs

0 .

O7 For each v ∈ V (G), there are (1± γ)pJn choices of (i, j) with (j, v) ∈ Gi.
O8 For each i ∈ [n], there are at most γn vertices u ∈ Si \Ri with (i, u) /∈ V (M2).

O9 For each u ∈ V (G), there are at most γn values of i ∈ [n] for which u ∈ Si\Ri but (i, u) /∈ V (M2).

O10 For each u ∈ V (G) and φ ∈ F , there are at most ptrpfaγn values of i ∈ Iφ for which u ∈ Yi,0 but
(i, u) /∈ V (M2).

O11 For each i ∈ [n], there are at most γn pairs (j, u) with u ∈ Sj \Rj , i ∈ Ji,u with (j, u) /∈ V (M2).

O12 For each i ∈ [n] and v ∈ V (G), there are at most 2rn0.6 choices for j with (j, v) ∈ Fi.
4More formally, for each such w ∈ W ′′2 we add an arbitrary function w′ with total weight n0.1 · δ2, say, to ensure that

(w + w′)((E(H2))) ≥ n0.1 before the application of Theorem 2.2 using the function w + w′, from which we only take the
upper bound for w.
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Proof of Claim 24. O1, O2: For O1, note that, for each i ∈ [n] and x ∈ Zi,0, we have

|{(j, u) ∈ Gi :x ∈ Zj,0, c(ux) ∈ D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j), ux ∈ Eabs
0 }| = wR1

i,x (M2)

(57)
= (1± γ) · δ−1

2 · wR1
i,x (E(H2))

(43)
= (1± 2γ) · β0 · pcol · pedge · pJ · n,

as claimed. Similarly, but using wR2
j,x , (57), and (44), we have that O2 holds.

O3,O4: For O3, note that, for each i ∈ [n] and c ∈ D3 \ (Ci ∪D3,i), we have

|{(j, u) ∈ Gi : c ∈ D3 \ (Cj ∪D3,j), u has a colour-c neighbour in Zi,0 ∩ Zj,0 in Eabs
0 }|

= wR3
i,c (M2)

(57)
= (1± γ) · δ−1

2 · wR3
i,c (E(H2))

(45)
= (1± 2γ) · pvx · β0pabs · pedge · pJ · n,

as claimed. Similarly, but using wR4
i,c , (57), and (46), we have that O4 holds.

O5: Note that, for each xy ∈ Eabs
0 with c(xy) ∈ D3, we have

|{(i, j) ∈ Kx : c(xy) ∈ D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j) and y ∈ Zi,0 ∩ Zj,0}|

= wR5
xy (M2)

(57)
= (1± γ) · δ−1

2 · wR5
xy (E(H2))

(47)
= (1± 2γ) · pvx · β2

0 · p2
abs · pJ · n,

as claimed.

O6: For each xy ∈ Eabs
0 with c(xy) ∈ D3, there are (1± 2γ)p2

vx · pcol · β2
0p

2
abs · pedge · pJ ·n2 choices for

u ∈ V (G) and (i, j) ∈ Kx for which c(ux), c(xy) ∈ D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j), x, y ∈ Zi,0 ∩ Zj,0 and
ux ∈ Eabs

0 .

O7: Let v ∈ V (G). Then,

|{(i, j) : (j, v)} ∈ Fi}| = r · |{(i, u) ∈ J : vi,u = v}|+ |{(i, u) ∈ J : v ∈ V (Mi,u)}|

= r · wsame
u (M2) + wdiff

u (M2)

(57),(52),(54)
= r · (1± γ) · pS−Rn · δ2 + (1± γ) · r · pS−Rn · δ2 = (1± γ)pJn,

as required.

O8, O9, O10: Let i ∈ [n]. Then,

|{u ∈ Si \Ri : (i, u) /∈ V (M2)}| = |Si \Ri| − |{u ∈ Si \Ri : (i, u) ∈ V (M2)}|
M36

≤ (1 + ε) · pS−Rn− wsame
i (M2)

(57),(50)

≤ 2γpS−Rn ≤ γn,

so that O8 holds. Similarly, O9 follows for each u ∈ V (G) using wsame
u , using M36, (57), and (52).

Furthermore, O10 follows for each u ∈ V (G) and φ ∈ F using wsame
u,φ , M37, (57), and (53).

O11: Let i ∈ [n]. Then,

|{(j, u) : u ∈ Sj \Rj , i ∈ Ji,u,(j, u) /∈ V (M2)}|
= r · |Si \Ri| − |{(j, u) : u ∈ Sj \Rj , i ∈ Ji,u, (j, u) ∈ V (M2)}|
M36

≤ r · (1 + ε) · pS−Rn− wdiff
i (M2)

(57),(51)

≤ r · 2γpS−Rn ≤ γn,

as required.

O12: For each i ∈ [n] and v ∈ V (G), we have,

|{j : (j, v) ∈ Fi}| = wcod
i,v (E(M2)) ≤ 2rn0.6,

as required. �
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6.4.6 Missing matchings

Let J̄ = {(i, u) : i ∈ [n], u ∈ Si \ Ri} \ J , where for each (i, u) ∈ J̄ we have (i, u) /∈ V (M2). We will
now find, for each (i, u) ∈ J̄ , a tuple (vi,u,Mi,u, ci,u, ωi,u) similar to the one found for each (i′, u′) ∈ J
in Section 6.4.5, except using, for example, vertices in Yi,1 instead of Yi,0. We start by choosing the
vertices vi,u and colours ci,u, for each (i, u) ∈ J̄ .

Take a maximal set J̄ ′ ⊂ J̄ for which there are vi,u and ci,u, (i, u) ∈ J̄ ′ such that the following
hold.

P1 For each (i, u) ∈ J̄ ′, vi,u ∈ ∩j∈Ji,u∪{i}Yj,1, ci,u ∈ ∩j∈Ji,u∪{i} ∩j∈Ji,u∪{i} (D2,j \ Cj), and uvi,u is

a colour-ci,u edge which is in Eabs
1,X where X ∈ {A,B} is such that u ∈ X.

P2 For each i ∈ [n], the vertices vi,u, (i, u) ∈ J̄ ′, and vj,u′ , (j, u′) ∈ J̄ ′ with i ∈ Jj,u′ are all distinct.

P3 For each i ∈ [n], the colours ci,u, (i, u) ∈ J̄ ′, and cj,u′ , (j, u′) ∈ J̄ ′ with i ∈ Jj,u′ are all distinct.

P4 The edges uvi,u, (i, u) ∈ J̄ ′, are all distinct.

P5 For each v ∈ V (G), there are at most
√
γn pairs (i, u) ∈ J̄ ′ for which v = vi,u.

P6 For each i ∈ [n] and v ∈ V (G), there are at most r ·n0.6/4 choices for (u, j) for which (i, u) ∈ J̄ ′,
i ∈ Jj,u and vj,u = v.

P7 For each c ∈ C, there are at most
√
γn (i, u) ∈ J̄ ′ with ci,u = c.

We now infer that we can find a suitable vi,u and ci,u for every (i, u) ∈ J̄ .

Claim 25. J̄ ′ = J̄ .

Proof of Claim 25. Suppose otherwise, so that, in particular, we can choose some (i, u) ∈ J̄ \ J̄ ′. Let
vi,u and ci,u, (i, u) ∈ J̄ ′, be such that P1–P7 hold. Suppose u ∈ A, where the case where u ∈ B
follows similarly. Let V forb

1 = {vi,u′ : (i, u′) ∈ J̄ ′}, V forb
2 = {v : |{(i, u) ∈ J̄ ′ : vi,u = v}| ≥ √γn/2},

V forb
3 = {v ∈ V (G) : |{(u, j) : (i, u) ∈ J̄ ′, i ∈ Jj,u, vj,u = v}| ≥ r · n0.6/8}, Cforb

1 = {vi,u′ : (i, u′) ∈ J̄ ′},
Cforb

2 = {c ∈ C : |{(i, u) ∈ J̄ ′ : ci,u = c}| ≥ √γn/2}| and Eforb
A = {u′vi′,u′ : (i′, u′) ∈ J̄ ′}.

By O8 and O11, we have that |V forb
1 |, |Cforb

1 | ≤ 2γn. Then, as, by O8, |J̄ ′| ≤ γn2, we have
|V forb

2 |, |Cforb
2 | ≤ 2

√
γn. Furthermore, the number of edges in Eforb

A containing u is, by O9, at most
γn. Therefore, by M39, there is some choice for vi,u ∈

(
∩j∈Ji,u∪{i}Yj,1

)
\ V forb such that uvi,u ∈

Eabs
1,X \ Eforb and c(uvi,u) ∈

(
∩j∈Ji,u∪{i})D3,j

)
\ (Cforb

1 ∪ Cforb
2 ). Letting ci,u = c(uvi,u), the pair

ci,u, vi,u show that J̄ ′ contradicts the maximality of J̄ . �

Let, then, vi,u and ci,u, (i, u) ∈ J̄ , be such that P1–P7 hold. For each (i, u) ∈ J̄ , we will now find
Mi,u and ωi,u. For this, let J̄ ′′ ⊂ Ji,u be a maximal set for which there are Mi,u and ωi,u, (i, u) ∈ J̄ ′′
such that the following hold.

Q1 For each (i, u) ∈ J̄ ′′, Mi,u is a colour-ci,u matching in Eabs
0 and ωi,u : Ji,u →Mi,u is a bijection.

Q2 For each (i, u) ∈ J̄ ′′, and each j ∈ Ji,u, V (ωi,u(j)) ⊂ Yi,1 ∩ Yj,1 and ωi,u(j) ∈ Eabs
1,M .

Q3 For each i ∈ [n], the sets V (Mi,u), (i, u) ∈ J̄ ′′, and V (Mj,u′), (j, u′) ∈ J̄ ′′ and i ∈ Ji,u, are all
disjoint from each other and from {vi,u : (i, u) ∈ J̄} and {vj,u′ : (j, u′) ∈ J̄ , i ∈ Jj,u′}.

Q4 The matchings Mi,u, (i, u) ∈ J̄ ′′, are all edge-disjoint.

Q5 For each v ∈ V (G), there are at most 4
√
γn pairs (i, u) ∈ J̄ ′′ for which v ∈ V (Mi,u) ∪ {vi,u}.

Q6 For each i ∈ [n] and v ∈ V (G), there are at most r · n0.6 choices for (u, j) for which (i, u) ∈ J̄ ′′,
j ∈ Ji,u and v ∈ V (Mi,u) or for which (j, u) ∈ J̄ ′′, i ∈ Jj,u and vj,u = v.

We now infer that we can find a suitable matching Mi,u and function ωi,u for each (i, u) ∈ J̄ .

Claim 26. J̄ ′′ = J̄ .

Proof of Claim 26. Suppose otherwise, so that, in particular, we can choose some (i, u) ∈ J̄ \ J̄ ′. Let
Mi′,u′ and ωi′,u′ , (i′, u′) ∈ J̄ ′′, be such that Q1–Q6 hold.

For each j ∈ Ji,u ∪ {i}, let

V forb
j = {vj,u′ : (j, u′) ∈ J̄} ∪

(
∪(j,v)∈J̄′′V (Mj,v))

)
∪
(
∪(j′,v)∈J̄′′:j∈Jj′,vV (Mj′,v)

)
,

so that, from O8 and O11, we have |V forb| ≤ (2r + 2) · 2γn). Let V forb = ∪j∈Ji,u∪{i}V
forb
j , so that

|V forb| ≤ (2r + 2)2γn.
Let W forb

0 = {v ∈ V (G) : |{(i′, u′) ∈ J̄ ′′ : v ∈ V (Mi′,u′) ∪ {vi′,u′}}| ≥ 2
√
γn} and W forb

1 =
{v ∈ V (G) : |{(u′, j) : (i, u′) ∈ J̄ ′′, j ∈ Ji,u′ , v ∈ V (Mi,u′) or (j, u′) ∈ J̄ ′′, i ∈ Jj,u′ , vj,u′ = v}| ≥
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r · n0.6/2}. From P5, and as |J̄ | ≤ γn2 by O8, we have that |W forb
0 | ≤ 4

√
γn. From P6, we have

|W forb
1 | · r · n0.6/8 ≥ 2n · 2r + 2r · n, so that |W forb

1 | ≤
√
n.

Let Eforb = {e ∈ ∪(j,u′)∈J̄′′(Mj,u′ ∪ {u′vj,u′}, : c(e) = ci,u}, so that, by P7, we have |Eforb| ≤
(r+ 1)

√
γn. Now, using M40, for each j ∈ Ji,u, let ωi,u(j) be an edge of colour c in Eabs

1,M \Eforb with
vertices in (Yi,1 ∩ Yj,1) \ (V forb ∪W forb

0 ∪W forb
1 ), so that ωi,u(j) are distinct. Let Mi,u = {ωi,u(j) :

j ∈ Ji,u}. Noting that J̄ ′′ ∪ {(i, u)} satisfies Q1–Q6 with J̄ ′′ replaced by J̄ ′′ ∪ {(i, u)} contradicts the
maximality of J̄ ′′. �

For each (i, u) ∈ J̄ and j ∈ Ji,u, let xi,u,j be the vertex of ωi,u(j) with xi,u,j ∼A/B vi,u and
let yi,u,j be the vertex of ωi,u(j) with xi,u,j ∼A/B vi,u. Note that we now have for each i ∈ [n],
vi,u,Mi,u, ci,u, ωi,u, where Mi,u = {xi,u,jyi,u,j : j ∈ Ji,u}.

6.4.7 Choice of the matchings M̂i,2, J , and their properties

For each i ∈ [n], let

M̂i,2 =
(
∪u∈Si\Ri{uvi,u}

)
∪
(
∪j∈[n],u∈Sj\Rj :i∈Ji,u{ωj,u(i)}

)
.

Let
J = ∪{(i,u),(j,v)}∈I{{(j, vi,u), (i, xi,u,j)}, {(j, yi,u,j), (i, yj,v,i)}, {(i, vj,v), (j, xj,v,i)}}. (61)

We now record the properties of M̂i,2 and J that we need.

Claim 27. The following hold.

R1 For each i ∈ [n] and x ∈ Zi,0, there are (1±4γ)β0 ·pcol ·pedge ·pJ ·n choices for {(i, u), (j, v)} ∈ J
for which x ∈ Zj,0, c(ux) ∈ D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j) and ux ∈ Eabs

0 .

R2 For each i ∈ [n] and x ∈ Zi,0, there are (1±4γ)β0 ·pcol ·pedge ·pJ ·n choices for {(i, u), (j, v)} ∈ J
for which x ∈ Zj,0, c(xv) ∈ D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j) and xv ∈ Eabs

0 .

R3 For each i ∈ [n] and c′ ∈ D3 \ (Ci ∪ D3,i), there are (1 ± 4γ)pvx · β0pabs · pedge · pJ · n choices
for {(i, u), (j, v)} ∈ J for which c′ ∈ D3 \ (Cj ∪ D3,j) and there is a colour-c′ edge from u to
Zi,0 ∩ Zj,0 in Eabs

0 .

R4 For each i ∈ [n] and c′ ∈ D3 \ (Ci ∪ D3,i), there are (1 ± 4γ)pvx · β0pabs · pedge · pJ · n choices
for {(i, u), (j, v)} ∈ J for which c′ ∈ D3 \ (Cj ∪ D3,j) and there is a colour-c′ edge from v to
Zi,0 ∩ Zj,0 in Eabs

0 .

R5 For each xy ∈ Eabs
0 with c(xy) ∈ D3, there are (1±4γ)pvx ·β2

0 ·p2
abs ·pJ ·n choices of {(i, u), (j, v)} ∈

J with u = x for which c(xy) ∈ D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j) and y ∈ Zi,0 ∩ Zj,0.

R6 For each xy ∈ Eabs
0 with c(xy) ∈ D3, there are (1 ± 4γ)p2

vx · pcol · β2
0p

2
abs · pedge · pJ · n2 choices

for {(i, u), (j, v)} ∈ J for which c(ux), c(xy) ∈ D3 \ (Ci ∪Cj ∪D3,i ∪D3,j), x, y ∈ Zi,0 ∩Zj,0 and
ux ∈ Eabs

0 .

R7 For each u ∈ V (G), there are (1± β)pJn triples (i, j, v) with {(i, u), (j, v)} ∈ J .

R8 For each i ∈ [n], there are (1± β)2pJn triples (u, j, v) with {(i, u), (j, v)} ∈ J .

R9 For each distinct i, j ∈ [n] there are at most 3
√
n pairs (u, v) with {(i, u), (j, v)} ∈ J .

R10 For each i ∈ [n] and v ∈ V (G), there are at most 3r · n0.6 pairs (j, u) with {(i, u), (j, v)} ∈ J .

R11 For each i ∈ [n] and u ∈ V (G), there is at most 1 pair (j, v) with {(i, u), (j, v)} ∈ J .

R12 For each u ∈ V (G) and φ ∈ F ,

|{i ∈ Iφ : v ∈ Yi,0 \ (∪u,j,u′:{(i,u),(j,u′)}∈I{vi,u, xi,u,j , yi,u,j , vj,u′ , xj,u′,i, yj,u′,i})}| ≤ γptrpfan.

R13 For each c ∈ D2 and φ ∈ F ,

|{i ∈ Iφ : c /∈ (C(M̂i,2) ∪ Ci ∪D2,i)}| ≤ γptrpfan.

R14 For each i ∈ [n],

|Yi,0 \ (∪u,j,u′:{(i,u),(j,u′)}∈I{vi,u, xi,u,j , yi,u,j , vj,u′ , xj,u′,i, yj,u′,i})}| ≤ γn.

R15 For each i ∈ [n], M̂i,2 is a rainbow matching with colours in D2 \ Ci.
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Proof of Claim 27. R1, R3: Let i ∈ [n] and x ∈ Zi,0. Note that if {(i, u′), (j, v′)} ∈ J , then, from
(61) there is some {(i, u), (j, v)} ∈ I with (u′, v′) ∈ {(xi,u,j , vi,u), (yj,v,i, yi,u,j), (vj,v, xj,v,i)}. If (i, u)
and (j, v) are both in J , then (j, vi,u), (j, yi,u,j), (i, xj,v,i) ∈ Gi, and thus (j, v′) ∈ Gi, while there are
at most γn vertices u ∈ Si \Ri for which (i, u) ∈ J̄ by O8. Therefore, by O1,

|{{(i, u), (j, v)} ∈J : x ∈ Zj,0, c(ux) ∈ D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j), ux ∈ Eabs
0 }|

= (1± 4γ)β0 · pcol · pedge · pJ · n+ 2γn = (1± 4γ)β0 · pcol · pedge · pJ · n,

so that R1 holds, while, by O3,

|{{(i, u), (j, v)} ∈J : c′ ∈ D3 \ (Cj ∪D3,j), ∃ a colour-c′ edge from u to Zi,0 ∩ Zj,0 in Eabs
0 }|

= (1± 4γ)pvx · β0pabs · pedge · pJ · n,

so that R3 holds.

R2, R4: Similarly, it follows that if {(i, u′), (j, v′)} ∈ J , then, if this is J due to {(i, u), (j, v)} ∈ I,
we have that if (i, u) and (j, v) are both in J , then (j, u′) ∈ Fi. Thus, by O8 and, respectively, O2
and O4, we can conclude that R2 and R4 hold.

R5: Let xy ∈ Eabs
0 with c(xy) ∈ D3. If (i, j) ∈ Kx, then for some v′ we have {(i, x), (j, v′)} ∈ J from

(60). Thus, from (61), O5 and Q5, we have that R5 holds.

R6: Let xy ∈ Eabs
0 with c(xy) ∈ D3. Similarly to R5, but using (61), O6 and Q5 (summed over all

v ∈ V (G)), we have that R6 holds.

R7: This follows from (61), O7 and Q5.

R8: Let i ∈ [n]. For each (u, j, v) with {(i, u), (j, v)} ∈ I, by (61), there are 3 triples (u′, j′, v′) with
{(i, u′), (j′, v′)} ∈ J . Therefore, by A1 and M36, we have that the number of triple (u, j, v) with
{(i, u), (j, v)} ∈ J is 3r · |Si \Ri| = 3r · (1± ε) · 2pS−Rn = (1± ε) · 2pJn, and thus R8 holds.

R9: Let i, j ∈ [n] be distinct. Then, as for each (u, v) with {(i, u), (j, v)} ∈ I there are 2 triples (u′, v′)
with {(i, u′), (j, v′)} ∈ J , we have that R9 follows from A4.

R10: Let i ∈ [n] and v ∈ V (G). Then, by O12 and Q6 we have that R10 holds.

R11: Let i ∈ [n] and u ∈ V (G), and note that if there is some (j, v) with {(i, u), (j, v)} ∈ J , then
u ∈ Yi. If u ∈ Yi,0, then there is a unique such (j, v), coming from the unique edge of M2, while if
u ∈ Yi,1, then there is a unique such (j, v) by Q3.

R12: For each u ∈ V (G) and φ ∈ F ,

|{i ∈ Iφ : v ∈ Yi,0\(∪u,j,u′:{(i,u),(j,u′)}∈I{vi,u, xi,u,j , yi,u,j , vj,u′ , xj,u′,i, yj,u′,i})}|
= |{i ∈ Iφ : v ∈ Yi,0}| − |{i ∈ Iφ : v ∈ Yi,0, (i, v) /∈ V (M2)}|
O10

≤ 2γptrpfan,

and therefore R12 holds.

R13: Let c ∈ D2 and φ ∈ F . For each i ∈ [n], if (i, c) ∈ V (M2), then M̂i,2 has an edge of colour c,
and when this occurs there are r + 1 pairs (j, c) ∈ V (M2) with different values of j. Thus,

|{i ∈ [n] : c /∈ (C(M̂i,2) ∪ Ci ∪D2,i)}| = |{i ∈ [n] : c ∈ D2 \ (Ci ∪D2,i)}| − (r + 1) · wc(M2)

M38,(57)

≤ (1± ε)β0pabsn− (1 + γ) · δ−1
2 · wc(E(H2))

(55)

≤ 2γn,

as required.

R14: For each i ∈ [n],

|Yi,0\(∪u,j,u′:{(i,u),(j,u′)}∈I{vi,u, xi,u,j , yi,u,j , vj,u′ , xj,u′,i, yj,u′,i})}|
= |Yi,0| − |{u : ∃(j, u′) s.t. {(i, u), (j, u′)} ∈ I}| − 5|{(u, j, u′) : {(i, u), (j, u′)} ∈ I}|

= |Yi,0| − (5r + 1)|Si \Ri|
M36

≤ (1 + ε)β0pY n− (1− ε)121pS−Rn ≤ 2βn,

as required.

R15: Finally, note that R15 follows from P2, P3 and Q3, and the construction of H2 and choices of
M2. �
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6.5 Part B.3: Switching paths with Zi

Recalling the set J from Part B.2, for each f = {(i, u), (j, v)} ∈ J , let Rf be the set of (u, v, L)-links
with internal vertices in Zi,0 ∩ Zj,0, colours in D3 \ (Ci ∪ Cj ∪Di,0 ∪Dj,0) and edges in Eabs

0 .
Define an auxiliary hypergraph H3 with 4 vertex classes

i) J ii) VZ := ∪i∈[n]({i} × Zi,0)

iii) C3 := ∪i∈[n]({i} × (D3 \ (Ci ∪D3,i))) iv) E3 := E(G|D3) ∩ Eabs
0

(62)

where, for each f = {(i, u), (j, v)} ∈ J and S ∈ Rf , we add the edge

{f} ∪ ({i, j} × ((V (S) \ {u, v}) ∪ C(S)) ∪ E(S).

As for each f = {(i, u), (j, v)} ∈ J and S ∈ Rf , S is a path with 31 colours, 62 edges and 61 internal
vertices, each edge of H3 has 1 + 2(61 + 31) + 62 = 247 vertices, and thus H3 is a 247-uniform
hypergraph. We will now show that H3 is almost regular (in Section 6.5.1) with low codegrees (in
Section 6.5.2).

6.5.1 Vertex degrees in H3

Recalling Φ from (28), let δ3 = Φ = p61
vx · p30

col · p62
edge · n30. We now show that H3 is almost δ3-regular.

Claim 28. For each v ∈ V (H3), we have dH3(v) = (1± 10γ)δ3.

Proof of Claim 28. We check this for vertices in each of the 4 classes in the order at (62).

i) Let f = {(i, u), (j, v)} ∈ J . Then, using M46, we have dH3(f) = (1± ε)Φ = (1± 10γ)δ3.

ii) Let (i, x) ∈ VZ so that i ∈ [n] and x ∈ Zi,0. We count the number of f = {(i, u), (j, v)} ∈ J and
S ∈ Rf for which x is an internal vertex of V (S) in cases depending on the position of x in S.

• x is the 2nd vertex of S: From R1 we can bound the number of choices for {(i, u), (j, v)} ∈ J
for which x ∈ Zi,0 ∩Zj,0, c(ux) ∈ D3 \ (Ci ∪Cj ∪D3,i ∪D3,j) and ux ∈ Eabs

0 , and thus, by M47,
the number of choices for S in this case is

(1 + 5γ) · β0 · pcol · pedge · pJ · n · (1± ε) · Φ · p−1
vx · p−1

col · p
−1
edge · n

−1 = (1± 10γ) · β0 · pJ · Φ · p−1
vx .

• x is the 62nd vertex of S: By R2, we can bound the number of choices for f = {(i, u), (j, v)} ∈ J
for which x ∈ Zi,0 ∩Zj,0, c(xv) ∈ D3 \ (Ci ∪Cj ∪D3,i ∪D3,j) and xv ∈ Eabs

0 , and thus, by M47,
the number of choices for S in this case is

(1 + 5γ) · β0 · pcol · pedge · pJ · n · (1± ε) · Φ · p−1
vx · p−1

col · p
−1
edge · n

−1 = (1± 10γ) · β0 · pJ · Φ · p−1
vx .

• x is the kth vertex of S, with 3 ≤ k ≤ 62: By M41 or M42, we can bound the number of choices
for f = {(i, u), (j, v)} ∈ J for which x ∈ Zi,0 ∩ Zj,0 and x ∼A/B u if k is odd and x 6∼A/B u if k
is even, and thus, by M48, the number of choices for S in this case is

(1 + 5γ) · 3 · β0 · pI · n · (1± ε) · Φ · p−1
vx · n−1 = (1± 10γ) · β0 · pJ · Φ · p−1

vx .

Thus, as 61β0pJ = β2
0pZ = pvx, in total we have dH3((i, v)) = (1±10γ)·61·β0 ·pJ ·Φ·p−1

vx = (1±10γ)δ3.

iii) Let (i, c) ∈ C3, so that i ∈ [n] and c ∈ D3\(Ci∪D3,i). We count the number of f = {(i, u), (j, v)} ∈
J and S ∈ Rf for which c is used as a colour by considering the following cases:

• c is the colour of the first edge of S: By R3, we can bound the number of choices for f =
{(i, u), (j, v)} ∈ J for which c ∈ D3 \ (Ci ∪Cj ∪D3,i ∪D3,j) and there is a colour-c edge from u
to Zi,0 ∩ Zj,0 in Eabs

0 , and thus, by M49, the number of choices for S in this case is

(1+5γ)·2·pvx ·β0pabs ·pedge ·pJ ·n·(1±ε)·Φ·p−1
vx ·p−1

col ·p
−1
edge ·n

−1 = (1±10γ)·2·β0pabs ·pJ ·Φ·p−1
col .

• c is the colour of the last edge of S: By R4, we can bound the number of choices for f =
{(i, u), (j, v)} ∈ J for which c ∈ D3 \ (Ci ∪Cj ∪D3,i ∪D3,j) and there is a colour-c edge from v
to Zi,0 ∩ Zj,0 in Eabs

0 , and thus, by M49, the number of choices for S in this case is

(1+5γ)·2·pvx ·β0pabs ·pedge ·pJ ·n·(1±ε)·Φ·p−1
vx ·p−1

col ·p
−1
edge ·n

−1 = (1±10γ)·2·β0pabs ·pJ ·Φ·p−1
col .
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• c is not the colour of the first or last edge of S: By M43, we can bound the number of choices
for f = {(i, u), (j, v)} ∈ J for which c ∈ D3 \ (Ci ∪ Cj ∪ D3,i ∪ D3,j), and thus, by M50, the
number of choices for S in this case is

(1 + 5γ) · 3 · 2 · β0pabs · pI · (1± ε) · Φ · p−1
col · n

−1 = (1± 10γ) · 2 · β0pabs · pJ · Φ · p−1
col .

Thus, as pcol = β2
0p

2
absp3 = 62pJ in total, we have dH3((i, c)) = (1± 10γ) · 62 · β0pabs · pJ · Φ · p−1

col =
(1± 10γ)δ3.

iv) Let xy ∈ E3, so that xy ∈ E(G|D3) ∩ Eabs
0 . We count the number of f = {(i, u), (j, v)} ∈ J and

S ∈ Rf for which xy is an edge of f by considering the following cases:

• xy is the first or last edge of S: By R5, we can bound the number of choices for f = {(i, u), (j, v)} ∈
J with u = x for which c(xy) ∈ D3 \ (Ci ∪ Cj ∪D3,i ∪D3,j) and y ∈ Zi,0 ∩ Zj,0, and thus, by
M49, the number of choices for S where xy is the first edge and u = x is

(1 + 5γ) · pvx · β2
0p

2
abs · pJ · n · (1± ε) · Φ · p−1

vx · p−1
col · p

−1
edge · n

−1 = (1± 10γ) · pJ · Φ · p−1
edge · p

−1
3 .

As a similar bound holds with x and y switched, there are (1± 10γ) · 2 · pJ ·Φ · p−1
edge · p

−1
3 choices

for S in total in this case.

• xy is the 2nd or 61st edge of S: By R6, we can bound the number of choices for f =
{(i, u), (j, v)} ∈ J for which c(ux), c(xy) ∈ D3 \ (Ci ∪ Cj ∪ D3,i ∪ D3,j), x, y ∈ Zi,0 ∩ Zj,0,
and ux ∈ Eabs

0 , and thus, by M51, the total number of choices for S in which xy is the second
vertex and xy is the second edge is at most

(1 + 5γ) · p2
vx·pcol · β2

0p
2
abs · pedge · pJ · n2 · (1± ε) · Φ · p−2

vx · p−2
col · p

−2
edge · n

−2

= (1± 10γ) · pJ · Φ · p−1
edge · p

−1
3 .

As a similar bound holds with x and y switched, in total there are (1±10γ) ·2 ·pJ ·Φ ·p−1
edge ·p

−1
3

choices for S in this case (as when xy is the 2nd edge of a (u, v, L)-link, it is the 61st edge of
that subgraph considered as a (v, u, L)-link).

• xy is the kth edge of S, for 3 ≤ k ≤ 60: By M44, we can bound the number of choices
f = {(i, u), (j, v)} ∈ J for which c(uv) ∈ D3 \ (Ci ∪Cj ∪D3,i ∪D3,j) and u, v ∈ Zi,0 ∩ Zj,0, and
thus, by M52, the number of choices for S in which xy is the kth edge is

(1 + 5γ) · 3 · 2p2
vx·pcol · pI · n2 · (1± ε) · Φ · p−2

vx · p−1
col · p

−1
edge · n

−2

= (1± 10γ) · 2pJ · Φ · p−1
edge · p

−1
3

choices for S.

As when xy is the kth edge of a (u, v, L)-link, it is the (62 − k)th edge of that subgraph considered
as a (v, u, L)-link, we have, in total, that dH3(xy) = (1± 10γ) · 62 · pJ · Φ · p−1

edge · p
−1
3 = (1± 10γ)δ3,

where we have used that p3pedge = p3β0pabs = 62pJ . �

6.5.2 Codegrees in H3

We will now show that the codegrees of H3 are all O(n29.5). As the vertex degrees of H3 are (by

Claim 28) all around δ3, where δ3 = Φ = p61
vx · p30

col · p62
edge · n30, and 1/n

poly

� pvx, pcol, pedge, these
codegrees are all much smaller than the vertex degrees in H3.

Claim 29. ∆c(H3) = O(n29.5).

Proof of Claim 29. Let f = {(i, u), (j, v)} ∈ J and S ∈ Rf , and consider the edge

e = {f} ∪ ({i, j} × ((V (S) \ {u, v}) ∪ C(S)) ∪ E(S).

Let v1 and v2 be two vertices in e.
If one of v1 or v2 is f , then note that from the other vertex we will know an internal vertex of S

(possibly by knowing an edge) or a colour of S, so therefore, by M45 (in particular K2 or K3), we
have that dH3(v1, v2) = O(n29) = O(n29.5). Assume, then, that neither v1 or v2 is f .

Note that we have one of the following cases a)–c) (up to relabelling i and j).

a) We know i and either

i) two internal vertices of S, or
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ii) two colours of S, or

iii) an internal vertex and a colour of S.

b) We know i and j and either

i) an internal vertex of S, or

ii) a colour of S.

c) We know two edges of S.

a) Knowing i, we have at most 3pJn ≤ n choices for {(i, u), (j, v)} ∈ J by R8, after which there
are O(n28) choices for a (u, v, L)-link in G in a)i) and ii) by M45 (in particular K5 or K7), and
thus dH3(v1, v2) = O(n29) in these cases. In a)iii), if colour c and internal vertex x are known, then,
similarly by R8 and M45 (in particular K6), there are at most O(n29) choices for {(i, u), (j, v)} ∈ J
and a (u, v, L)-link S in G using c and x so that neither ux or vx is a colour-c edge in S. To count the
remaining choices ux or vx is a colour-c edge in S, note that we have 2 choices for whether u or v is
the colour-c neighbour of x, after which, by R10 or R11, there are O(1) choices for {(i, u), (j, v)} ∈ J
and then, by M45 (in particular K2), O(n29) choices of a (u, v, L)-link S in G using x as an interior
vertex. Thus, we also have dH3(v1, v2) = O(n29) in a)iii),

b) Knowing i and j, we have at most 3n1/2 choices for {(i, u), (j, v)} ∈ J by R9, after which there
are O(n29) choices for a (u, v, L)-link in G in b)i) and ii) by M45 (in particular K2 or K3). Thus,
dH3(v1, v2) = O(n29.5) in this case.

c) Suppose the known edges are xy and x′y′. We count separately the possibilities for the link where
i) there are at least three internal vertices of S among these edges, or ii) where the edges lie at each
end of the link. For i), after choosing i ∈ [n] (with n choices), there are at most 3pJn ≤ n choices
for {(i, u), (j, v)} ∈ J by R8 for which u /∈ {x, y, x′, y′}, after which there are O(n27) possibilities
for a link containing xy and x′y′ by M45 (in particular K9), for O(n29) choices in total, so that
dH3(v1, v2) = O(n29). For ii), we have at most 2 choices to pick u ∈ {x, y} and v ∈ {x′, y′} with
u ∼A/B v. After choosing i ∈ [n] (with at most n choices), we have at most O(1) choices for
{(i, u), (j, v)} ∈ J by R10, and then at most O(n28) choices for a link with xy as the first edge and
x′y′ as the last edge by K5. Therefore, dH3(v1, v2) = O(n29) in this case as well. �

6.5.3 Weight functions for Part B.3 and the choice of M3

We now define the weight functions we use with our application of Theorem 2.2 to H3. For each
i ∈ [n], v ∈ V (G), c ∈ D3, φ ∈ F , and each

e = {{(i′, u′), (j′, v′)} ∪ ({i′, j′} × ((V (S) \ {u′, v′}) ∪ C(S)) ∪ E(S) ∈ E(H3), (63)

set wi(e) = 1{i∈{i′,j′}},

wlink:end
v (e) = 1{v∈{u′,v′}}, wlink:mid

v (e) = 1{v∈V (S)\{u′,v′}}, wlink:mid
v,φ (e) = 1{v∈V (S)\{u′,v′},i∈Iφ},

wc,φ(e) = 1{c∈C(S),i∈Iφ} and wc(e) = 1{c∈C(S)}.

Let W3 = {wi : i ∈ [n]} ∪ {wlink:end
v , wlink:mid

v : v ∈ V (G)} ∪ {wc : c ∈ D3} ∪ {wlink:mid
v,φ : v ∈ V (G), φ ∈

F} ∪ {wc,φ : c ∈ D3, φ ∈ F}.
For each i ∈ [n], we have, using Claim 28, that

wi(E(H3)) =
∑

(u,j,v):{(i,u),(j,v)}∈J

dH3({(i, u), (j, v)}) = |{(u, j, v) : {(i, u), (j, v)} ∈ J }| · (1± 10γ) · δ3.

(64)
For each v ∈ V (G), using Claim 28, we have

wlink:end
v (E(H3)) = |{(i, j, u) : {(i, u), (j, v)} ∈ J }| · (1± 10γ) · δ3. (65)

Furthermore, for each v ∈ V (G), as each e ∈ E(H3) corresponding to a link containing a vertex v
contains two vertices containing v (i.e., (i′, v) and (j′, v) in the notation at (63)), we have by Claim 28
that

wlink:mid
v (E(H3)) =

1

2
· |{i ∈ [n] : v ∈ Zi,0}| · (1± 10γ) · δ3, (66)

while, for each φ ∈ F ,

wlink:mid
v,φ (E(H3)) =

1

2
· |{i ∈ Iφ : v ∈ Zi,0}| · (1± 10γ) · δ3. (67)
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Finally, for each c ∈ D3, as each e ∈ E(H3) corresponding to a link using the colour c contains two
vertices containing c (i.e., (i′, c) and (j′, c) in the notation at (63)) we have by from Claim 28 that

wc(E(H3)) =
1

2
· |{i ∈ [n] : c ∈ D3 \ (Ci ∪D3,i)}| · (1± 10γ) · δ3, (68)

while, for each φ ∈ F ,

wc,φ(E(H3)) =
1

2
· |{i ∈ Iφ : c ∈ D3 \ (Ci ∪D3,i)}| · (1± 10γ) · δ3. (69)

In particular, (64)–(68) along with R8, R7, M54, and M53 imply that, for each w ∈ W3,
w(E(H3)) ≥

√
n · δ3. Therefore, by Claims 28 and 29, and Theorem 2.2, we can find a matching M3

in H3 such that, for each w ∈ W3,

w(M3) = (1± 20γ) · δ−1
3 · w(E(H3)). (70)

Now, for each f = {(i, u), (j, v)} ∈ J ∩ V (M3), let Sf be the (u, v, L)-link corresponding to the
edge containing f inM3, let Mf,i be the path of the odd edges of this link and let Mf,j be the path of
the even edges of the link, noting that these are both rainbow matchings and that C(Mf,i) = C(Mf,j).
For each i ∈ [n], let

M̂i,3,0 =
⋃

f={(i,u),(j,v)}∈J∩V (M3)

Mf,i.

Let J− = J \V (M3), the set of instructions we have not found a link for. We now show the following
properties of J− and the matchings M̂i,3,0, i ∈ [n].

Claim 30. a) The matchings M̂i,3,0, i ∈ [n], are edge-disjoint.

b) For each i ∈ [n], M̂i,3,0 is a rainbow matching with colours in D3 \ (Ci ∪ D3,i) and vertices in
Si ∪ Zi,0.

c) Setting Gabs
0 to be the graph with vertex set V (G) and edge set Eabs

0 , we have that Gabs
0 |D3 −

M̂1,3,0 −M2,3,0 − . . .− M̂n,3,0 is (3γn)-bounded.

d) For each i ∈ [n], |{(u, j, v) : {(i, u), (j, v)} ∈ J−}|≤γn.

e) For each u ∈ V (G), |{(i, j, v) : {(i, u), (j, v)} ∈ J−}|≤γn.

f) For each v ∈ V (G) and φ ∈ F , |{i ∈ Iφ : v ∈ Zi,0 \ V (M̂i,3,0)}| ≤ 2γptrpfan.

g) For each c ∈ D3 and φ ∈ F , |{i ∈ Iφ : c /∈ (C(M̂i,3,0) ∪ Ci ∪D3,i)}| ≤ γptrpfan.

h) For each i ∈ [n], |Zi,0 \ V (M̂i,3,0)| ≤ γn.

Proof of Claim 30. a): This follows as each edge in E3 appears in at most one of the edges of M3.

b): For each i ∈ [n], as each pair {(i, x)} or {(i, c)}, with x ∈ V (G) and c ∈ C, appears at most
once in the edges of M3, we have that the rainbow matchings Mf,i corresponding to the edges of
M3 involving i are vertex- and colour-disjoint. That their vertices are in Si ∪ Zi,0 and colours are in
D3 \ (Ci ∪D3,i) follows directly from the definition of the edges of M3.

c): For each c ∈ D3,

|{e ∈ E(Gabs
0 )\(∪i∈[n]M̂i,3,0) : c(e) = c)}|

= |{e ∈ E(Gabs
0 ) : c(e) = c}| − |{i ∈ [n] : (i, c) ∈ V (M3)}|

M53

≤ (1 + ε) · β0pabsn− 2 · wc(E(H3))

(68),(70)

≤ (1 + ε) · β0pabsn− (1− 20γ) · (1− 10γ) · |{i ∈ [n] : c ∈ D3 \ (Ci ∪D3,i)}|
M53

≤ (1 + ε) · β0pabsn− (1− 200γ) · (1− ε)2 · β0pabsn ≤ 3γβ0pabsn ≤ 103γn. (71)

Furthermore, for each v ∈ V (G),

|{e ∈ E(Gabs
0 |D3) \ (∪i∈[n]M̂i,3,0) : v ∈ V (e)}|

= |{e ∈ E(Gabs
0 |D3) : v ∈ V (e)}| − |{i ∈ [n] : (i, v) ∈ V (M3)}|

M54

≤ (1 + ε) · β0pabsp3n− wlink:end
v (E(H3))− 2 · wlink:mid

v (E(H3))

(65),(66),(70)

≤ (1 + ε) · β0pabsp3n− (1− 20γ) · (1− 10γ) · (|{(i, j, u) : {(i, u), (j, v)} ∈ J }|
+ |{i ∈ [n] : v ∈ Zi,0}|)

R7,M54

≤ (1 + ε) · β0pabsp3n− (1− 200γ) · (1− ε) · ((1− β)pJn+ (1− ε)pZβ0n)
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= (1 + ε) · β0pabsp3n− (1− 2γ) · (1− ε) · (1− β) · 62pJn

≤ 2β · β0pabsp3n ≤ 2βn. (72)

In combination, (71) and (72) show that c) holds.

d): For each i ∈ [n],

|{(u, j, v) : {(i, u), (j, v)} ∈ J−}| ≤ |{(u, j, v) : {(i, u), (j, v)} ∈ J }| − wi(E(M3))

(64),(70)

≤ 103γ · |{(u, j, v) : {(i, u), (j, v)} ∈ J }|
R8

≤ γn.

e): For each u ∈ V (G),

|{(i, j, v) : {(i, u), (j, v)} ∈ J−}| = |{(i, j, v) : {(i, u), (j, v)} ∈ J }| − wlink:end
v (E(M3))

(65),(70)

≤ 103γ · |{(i, j, v) : {(i, u), (j, v)} ∈ J }|
R7

≤ γn. �

f): For each v ∈ V (G) and φ ∈ F ,

|{i ∈ [n] : v ∈ Zi,0 \ V (M̂i,3,0)}| = |{i ∈ Iφ : v ∈ Zi,0, (i, v) /∈ V (M3)}|

= |{i ∈ Iφ : v ∈ Zi,0}| − 2 · wlink:mid
v,φ (E(M3))

(70),(67)

≤ 2γptrpfan.

g): For each c ∈ D3 and φ ∈ F , |{i ∈ Iφ : c /∈ (C(M̂i,3,0) ∪ Ci ∪D3,i)}| ≤ γptrpfan.

|{i ∈ Iφ : c /∈ (C(M̂i,3,0) ∪ Ci ∪D3,i)}| = |{i ∈ Iφ : c ∈ D3 \ (Ci ∪D3,i)}| − |{i ∈ Iφ : (i, c) ∈ V (M3)}|
= |{i ∈ Iφ : c ∈ D3 \ (Ci ∪D3,i)}| − 2 · wc,φ(E(M3))

(70),(69)

≤ 2γn.

h): For each i ∈ [n],

|Zi,0 \ V (M̂i,3,0)| = |{v ∈ Zi,0 : (i, v) /∈ V (M3)}| = |Zi,0| − 2 · wi(E(M3))

(70),(64)

≤ |Zi,0| − (1− 2γ) · |{(u, j, v) : {(i, u), (j, v)} ∈ J }|
= |Zi,0| − (1− 2γ) · (1 + 5r) · |Si \Ri|
M59,M36

≤ (1 + ε)2β0pZn− (1− 2γ) · 121 · 2pS−Rn ≤ 4γn,

as required.

6.5.4 Missing links and the choice of M̂i,3

For each f = {(i, u), (j, v)} ∈ J−, letR+
f be the set of (u, v, L)-links with colours in (D3,i∪D3,j)\(Ci∪

Cj), edges in Eabs
1 and internal vertices in Zi,1 ∩Zj,1, so that |R+

f | = (1± ε)Φ1 = q61
vx · q30

col · q62
edge · n30

by M55.
For each f ∈ J−, form R0

f by selecting elements of R+
f independently at random with probability

q0 = 20 log8 n/Φ1. By a simple application of Lemma 2.6 and a union bound, then, we get that with
high probability, for each f ∈ J−, |R0

f | ≥ 10 log8 n. We now show the following claim.

Claim 31. With high probability, for each f = {(i, u), (j, v)} ∈ J− and S ∈ R+
f , the following hold.

1) There are at most log2 n links f ′ ∈ J− \ {f} and S′ ∈ R0
f ′ with E(S) ∩ E(S′) 6= ∅.

2) There are at most log2 n tuples (u′, j′, v′, f ′, S′) with f ′ = {(i, u′), (j′, v′)} ∈ J− \ {f}, S′ ∈ R0
f ′

and either (V (S) ∩ V (S′)) \ ({u, v} ∩ {u′, v′}) 6= ∅ or C(S) ∩ C(S′) 6= ∅.

Proof of Claim 31. Let f = {(i, u), (j, v)} ∈ J− and S ∈ R+
f . By Claim 30 d) and e), there are at

most γn2 choices for {(i′, u′), (j′, v′)} ∈ J− \ {f} and at most 100γn choices for {(i′, u′), (j′, v′)} ∈
J− \ {f} such that {u′, v′} ∩ V (S) 6= ∅, after which there are at most 100n28 and 100n29 choices
respectively for S′ ∈ R+

f ′ with E(S)∩E(S′) 6= ∅ by M45 (and in particular K4 and K2, respectively).

Thus, there are at most 105γn30 different (f ′, S′) with f ′ ∈ J−\{f}, S′ ∈ R+
f ′ , and E(S)∩E(S′) 6=

∅. As 105γn30 < Φ1/(20 log8 n) = 1/q0 (using that γ
poly

� qvx, qcol, qedge, log−1 n), the expected number
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of such (f ′, S′) with S′ ∈ R0
f ′ is less than 1. Thus, by a simple application of Lemma 2.6, we have

that 1) holds with probability 1 − n−ω(1). Taking a union bound shows that, with high probability,
1) holds for all f = {(i, u), (j, v)} ∈ J− and S ∈ R+

f .

Now, let f = {(i, u), (j, v)} ∈ J− and S ∈ R+
f again. By Claim 30 d) there are at most γn

choices for a tuple (u′, j′, v′) such that, setting f ′ = {(i, u′), (j′, v′)}, f ′ ∈ J− \ {f}. After this, if
{u′, v′} ∩ {u, v} = ∅, then, by M45 (and in particular K2 and K3) there are at most 200n29 choices
for S′ ∈ R+

f ′ with V (S)∩V (S′) 6= ∅ or C(S)∩C(S′) 6= ∅, for at most 200γn30 choices in total. On the

other hand, by R10 and R11, there are at most 107 triples (u′, j′, v′) with {u, v} ∩ {u′, v′} 6= ∅ and,
setting f ′ = {(i, u′), (j′, v′)}, f ′ ∈ J− \{f}. Then, as u, v, u′, v′ /∈ Zi,0, by M45 (and in particular K2
and K3) there are at most 200n29 choices for S′ ∈ R+

f ′ with (V (S) ∩ V (S′)) \ ({u, v} ∩ {u′, v′}) 6= ∅
or C(S) ∩ C(S′) 6= ∅.

Thus, there are at most 200γn30 different (f ′, S′) with f ′ ∈ J− \ {f}, S′ ∈ R+
f ′ , and (V (S) ∩

V (S′)) \ ({u, v} ∩ {u′, v′}) 6= ∅ or C(S) ∩ C(S′) 6= ∅. As 105γn30 < Φ1 the expected number of such
(f ′, S′) with S′ ∈ R0

f ′ is less than 1. Therefore, similarly to as we did for 1), we can show that, with

high probability, 2) holds for all f = {(i, u), (j, v)} ∈ J− and S ∈ R+
f . �

Therefore, as they hold together with high probability, we can take a choice of R0
f , f ∈ J ′ for

which |R0
f | ≥ 10 log8 n for each f ∈ J− and, for each f ∈ J ′ and S ∈ R0

f , 1) and 2) holds. Then,
for each f ∈ J ′, form Rf by selecting elements of R0

f independently at random with probability
q1 = 1/ log2 n, and let R−f be the set of S ∈ R0

f such that the following both hold.

i) There is no f ′ ∈ J− \ {f} and S′ ∈ R0
f ′ with E(S) ∩ E(S′) 6= ∅.

ii) There is no (u′, j′, v′, f ′) with f ′ = {(i, u′), (j′, v′)} ∈ J− \ {f} for which there is an S′ ∈ R0
f ′

with (V (S) ∩ V (S′)) \ ({u, v} ∩ {u′, v′}) 6= ∅ or C(S) ∩ C(S′) 6= ∅.
Claim 32. With high probability, for each f ∈ J−, R−f 6= ∅.

Proof of Claim 32. Let f ∈ J− and Xf = |R−f |. For each S ∈ R0
f , by the properties 1) and 2) from

Claim 31, we have P(S ∈ R−) ≥ q1(1−q1)2 log2 n ≥ 1/(10 log2 n), and, hence, E|Xf | ≥ |R0
f |/(10 log2 n).

Now, for each f ′ = {(i′, u′), (j′, v′)} ∈ J− and S′ ∈ R0
f ′ , there are at most 2 log2 n choices for

S ∈ R0
f which E(S) ∩ E(S′) 6= ∅, (V (S) ∩ V (S′)) \ ({u, v} ∩ {u′, v′}) 6= ∅ or C(S) ∩ C(S′) 6= ∅. Thus,

there are at most 2 log2 n · |R0
f | tuples (f ′, S′) ∈ R0

f ′ for which the event {S′ ∈ R0
f ′} influences Xf ,

and each such event on its own can change Xf by at most 2 log2 n. Therefore, by Lemma 2.7 with
t = E|Xf | ≥ |R0

f |/(10 log2 n), we have, as |R0
f | ≥ 10 log8 n,

P(Xf = 0) ≤ 2 exp

(
−

2(|R0
f |/(10 log2 n))2

2 · 2 log2 n · |R0
f | · (2 logn)2

)
= 2 exp

(
−

|R0
f |

800 log6 n

)
= n−ω(1),

and thus, by a union bound, with high probability we have R−f 6= ∅ for each f ∈ J ′. �

For each f = {(i, u), (j, v)} ∈ J−, using Claim 32, arbitrarily pick Sf ∈ R−f , and, considering Sf as
a (u, v, L)-link, let Mf,i be the matching of the odd edges of this link and let Mf,j be the matching of
the even edges of the link, noting that these are both rainbow matchings and that C(Mf,i) = C(Mf,j).
For each i ∈ [n], let

M̂i,3,1 =
⋃

f={(i,u),(j,v)}∈J−
Mf,i.

and let M̂i,3 = M̂i,3,0 ∪ M̂i,3,1, noting that this is a rainbow matching with colours in D3 \ Ci.
For each f = {(i, u), (j, v)} ∈ J , then, we have found a (u, v, L)-link Sf , which has edges in Eabs,

colours in D3 \ (Ci ∪ Cj) and interior vertices in Zi ∩ Zj , and matchings Mf,i and Mf,j such that
Sf = Mf,i ∪Mf,j .

6.6 Proof of Lemma 3.4: properties of the absorption structure

For each i ∈ [n], let M̂i = M̂i,1 ∪ M̂i,2 ∪ M̂i,3. As, for each j ∈ [3], the matchings M̂1,j , . . . , M̂n,j

use colours in Dj and edges in Eabs
j , and are edge-disjoint, we have that M̂1, . . . , M̂n are edge-disjoint

subgraphs of G[Eabs]. We now confirm that B1–B4 hold, completing the proof of Lemma 3.4.
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B1 a): Let v ∈ V (G) and φ ∈ F . As M̂i,1 is a matching from Si \Ri into Xi covering Si \Ri, we
have

|{i ∈ Iφ : v /∈ V (M̂i) ∪Ri}| ≤ |{i ∈ Iφ : v ∈ Xi,1 ∪ Yi,1 ∪ Zi,1}|+ |{i ∈ [n] : v ∈ Xi,0 \ V (M̂i,1,0}|
+ |{i ∈ Iφ : v ∈ Yi,0 \ (∪u,j,u′:{(i,u),(j,u′)}∈I{vi,u, xi,u,j , yi,u,j , vj,u′ , xj,u′,i, yj,u′,i})}|

+ |{i ∈ Iφ : v ∈ Zi,0 \ V (M̂i,3,0)}|
≤ 4βptrpfan,

where we have used M56, Claim 20 e), R12 and Claim 30 f). Thus, B1 a) holds.

B1 b): Let c ∈ C(G), and let k ∈ [3] be such that c ∈ Dk. Then, by M57, Claim 20 f) (if k = 1),
R13 (if k = 2) and Claim 30 g) (if k = 3),

|{i ∈ Iφ : c /∈ C(M̂i) ∪ Ci}| ≤ |{i ∈ Iφ : c ∈ Dk,i}|+ |{i ∈ Iφ : c /∈ (C(M̂i,j,0) ∪ Ci ∪Dk,i)}| ≤ 2βptrpfan,

and thus B1 b) holds.

B1 c): Let v ∈ V (G). Then, using Claim 20 d) and e), R12, and Claim 30 f),∣∣∣{u : uv ∈(
⋃
i∈[n]

M̂i)
}∣∣∣ ≥ |{i ∈ [n] : v ∈ M̂i,1}|+ |{i ∈ [n] : v ∈ M̂i,2}|+ |{i ∈ [n] : v ∈ M̂i,3}|

≥ |{i ∈ [n] : v ∈ Ti ∪Xi,0}| − 4γn+ |{i ∈ [n] : v ∈ Si \Ri}|
+ |{i ∈ [n] : v ∈ Yi,0}| − γn+ |{i ∈ [n] : v ∈ Zi,0}| − γn

= n− |{i ∈ [n] : v ∈ Xi,1 ∪ Yi,1 ∪ Zi,1}| − |{i ∈ [n] : v ∈ Ri}|+ |{i ∈ [n] : v ∈ Ti}| − 105γn

≥ n− (1 + ε)(1− β0)(pX + pY + pY )n− (1 + 2ε)αpTn− 105γn

(4)
= n− (1 + ε)(1− β0)(pX + pY + pY )n− (1 + 2ε)(ppt − β(pT + pS − pR))αpTn− 105γn

≥ n− (1 + ε)β(pX + pY + pY )n− (1 + 2ε)(ppt − β(pT + pS − pR))αpTn− 105γn

≥ n− (1 + 2ε)β(pS + pX + pY + pY )n− (1 + 2ε)(ppt − β(pT − pR))αpTn− 105γn

≥ n− 1.5βn− (1 + 2ε)ppt − 105γn.

Thus, by M58, the degree of v in G[Eabs] \ (
⋃
i∈[n] M̂i) is at most 2βn.

B1 d): Let i ∈ [n]. Every vertex in Si \Ri is in an edge in M̂i,1 ⊂ M̂i, so that

|V (G) \ (Ri ∪ V (M̂i)| ≤ |Xi,0 \ V (M̂i,1,0)|
+ |Yi,0 \ (∪u,j,u′:{(i,u),(j,u′)}∈I{vi,u, xi,u,j , yi,u,j , vj,u′ , xj,u′,i, yj,u′,i})}|

+ |Zi,0 \ V (M̂i,3,0)| ≤ 4βn,

where we have used Claim 20 c), R14 and Claim 30 h). Thus, there are at most 4βn vertices in
V (G) \Ri that have degree 0 in M̂i, so that B1 d) holds.

B2: Let i ∈ [n]. We have Ti ⊂ V (M̂i,1), Ti ⊂ Si \Ri ⊂ V (M̂i,2) and, as V (M̂i,2) and V (M̂i,1) can
be seen to be disjoint, we have that B2 holds.

B3: Let i ∈ [n]. As M̂i,1 is a rainbow matching with colours in D1 \ Ci by N1, M̂i,2 is a rainbow
matching with colours in D2 \ Ci by R15, and M̂i,3 is a rainbow matching with colours in D3 \ Ci,
we have that B3 holds.

B4: Suppose there are edge-disjoint matchings M̃1, . . . , M̃n in G − M̂1 − . . . − M̂n such that B4
i)–iii) all hold. For each i ∈ [n], let R′i = Ri \ V (M̃i) = V (G) \ (V (M̂i) ∪ V (M̃i)). Then, for each
i ∈ [n], by B4 ii) and iii), as M̂i ∪ M̃i has n edges, and every vertex outside of Ti has degree 0 or 1
in M̂i ∪ M̃i and every vertex in Ti has degree 2 in M̂i ∪ M̃i, we have that |R′i| = |Ti|, while, for each
τ ∈ T and φ ∈ F , by B4 iii) we have

⋃
i∈Iφ

R′i =mult

⋃
i∈Iφ

Ti.

Then, by the property of I = ∪τ∈T Iτ from A7 in Lemma 3.3, we have that there exists C ⊆ I
satisfying the following.

a) For every i ∈ [n] and u ∈ Ti, there is exactly one (j, v) such that {(i, u), (j, v)} ∈ C.
b) For every i ∈ [n] and u ∈ R′i there is exactly one (v, j) such that {(i, v), (j, u)} ∈ C.
c) For every i ∈ [n] and u ∈ Ri \R′i there is no (v, j) such that {(i, v), (j, u)} ∈ C.
d) For every i ∈ [n] and u ∈ Si \ (Ri ∪ Ti), (i, u) is (≤ 1)-balanced in C.
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Now, for each i ∈ [n], take M̂i and, for each ∪{(i,u),(j,v)}∈C , remove the edges in

{uvi,u, xj,v,iyj,v,i} ∪M{(i,xi,u,j),(j,vi,u)},i ∪M{(i,yj,v,i),(j,yi,u,j)},i ∪M{(i,vj,v),(j,xj,v,i)},i

and add the edges

{vvj,v, xi,u,jyi,u,j} ∪M{(i,xi,u,j),(j,vi,u)},j ∪M{(i,yj,v,i),(j,yi,u,j)},j ∪M{(i,vj,v),(j,xj,v,i)},j ,

calling the final result M̂ ′i . Note that, for each ∪{(i,u),(j,v)}∈C , this operation decreases the degree of

u in M̂i by 1 and increases the degree of u by M̂j by 1, while increasing the degree of u in M̂i by 1
and decreasing the degree of u by M̂j by 1, while making no other changes in the colours or vertex
degrees of M̂i or M̂j , and only moving edges between M̂i and M̂j . By careful construction, we have
that these alterations do not interfere with each other, and, therefore, it can be seen that M̃i ∪ M̂ ′i ,
i ∈ [n], is a decomposition of G into perfect rainbow matchings. This completes the proof of B4, and
hence 3.4.

7 Part C: Covering, balancing, and the partition of the
final edges

Throughout this section, and as our last task in this paper, we will prove Lemma 3.5. We start by
giving an overview of its proof in Section 7.1 which, after recalling the key parts of the set-up, divides
the proof into 4 subparts, Parts C.1–C.4, which are then carried out in Sections 7.3–7.6 respectively
after some additional set-up in Section 7.2.

7.1 Overview of Part C

Take the set-up detailed in Sections 3.1 and 3.2, where, in particular, we have G ∼ Gcol
[n] and that

the edges of G appear in Ept ⊂ E(G) independently at random with probability ppt, while, for each
i ∈ [n], Ci ⊂ C is a random set of colours where each colour is included independently at random
with probability ppt and Ri is a random subset of V (G) such that, for each v ∈ Ri, P(v ∈ Ri) = pR.
We wish to show that, with high probability, we can do the following. Suppose we have any edge set
Ê ⊂ E(G), and any sets V̂i ⊂ V (G) and Ĉi ⊂ C(G), i ∈ [n], which satisfy C1–C9. Then, Ê can be
partitioned into matchings M̃1, . . . , M̃n such that C10–C12 hold, where in particular these properties
require that, for each i ∈ [n], M̃i is a rainbow matching with colour set Ĉi which covers all the vertices
in V̂i which are not in Ri, and so that vertices unused in Ri are balanced among each family (that is,
C12 holds).

The conditions C1–C9 variously make sure that such a partition is feasible based on edge and
colour degrees (C8 and C9) or make sure the colours, vertices, and edges involved are sufficiently
random-looking to make this task achievable. To find M̃1, . . . , M̃n, we will further split Part C into 4
subparts, as follows.

C Covering, balancing, and splitting the final edges.

C.1 Making sure the matching M̃i, i ∈ [n], will cover the vertices in V̂i \Ri and use the colours
in Ĉi \ Ci.
We find matchings M̃i,1, i ∈ [n], which cover V̂i \ Ri and use the colours in Ĉi \ Ci and
whose inclusion in M̃i will thus ensure this property for M̃i.

C.2 Balancing colours between families.

From an initial partition of the remaining edges (i.e., those not in M̃i,1, i ∈ [n]), into Ê′φ,

φ ∈ F , we adjust this to give a partition Êφ, φ ∈ F , where each family φ ∈ F has the right
number of edges of each colour in Êφ to complete the matchings M̃i, i ∈ [n], while following
the Ĉi-rainbow conditions.

C.3 Balancing vertex degrees between families.

Similarly to Part C.2, we adjust the edge partition Êφ, φ ∈ F , (without changing the number
of edges of each colour in each set in this partition) to give a partition Ê∗φ, φ ∈ F , so that,

for each vertex v, each family φ ∈ F has the right number of edges at v in Ê∗φ to complete

the matchings M̃i, i ∈ [n], in order that C12 holds.
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C.4 Partitioning the remaining edges allocated to each family φ ∈ F to complete M̃i, i ∈ Iφ.

For each family φ ∈ F , we partition the edges of Ê∗φ into M̃i,2, i ∈ Iφ, so that each M̃i,1∪M̃i,2

is a rainbow matching using exactly the colours in Ĉi (and thus C10 holds) and whose
vertices are in Ri, which then ensures that C11 holds.

Parts C.1 and C.2 will be straightforward to carry out. Essentially, having set aside some random
vertices, colours and edges for the task in the set-up in Section 7.2, the matchings M̃i,1 in Part C.1
can be found greedily, while the initial partition of edges in Part C.2 will be random and thus only
require a small adjustment, which can be made by switching some small number of edges between the
parts of the partition (relying on C9).

For Part C.3, we are fortunate in that we have already done much of the required work, in
Section 5, where we showed the likely existence of many (u, v, L)-links for each distinct u, v ∈ V (G)
with u ∼A/B v (where L is the link defined in Theorem 5.2). In the partition Êφ, φ ∈ F , each vertex
v will be in too many edges in some of these sets, and too few in some others, but in total it will be
in the right number (due to C8). Not too disimilarly to some of our easier work in Section 4, we will
be able to decompose the changes we need to make so that the problem is reduced to, for each pair of
vertices u, v with u ∼A/B v and each distinct φ, φ′ ∈ F with u, v ∈ Sφ ∩ Sφ′ , being able to swap edges

between Êφ and Êφ′ to reduce the degree of u by 1 in Êφ and increase it by 1 in Êφ′ , and reduce

the degree of v by 1 in Êφ′ and increase it by 1 in Êφ, without making any changes to the number of

edges of each colour in Êφ and Êφ′ or to any of the other vertex degrees in these sets.

Suppose we could find a (u, v, L)-link S in G such that the odd edges are in Êφ and the even edges
of S are in Êφ′ . Then, switching out the odd edges of S from Êφ for the even edges of S, and vice

versa for Êφ′ , we get exactly the change we want (cf. Figure 2). Showing the existence of many such
links is straight-forward using Theorem 5.2. We will not need to set aside any set of links to do these
alterations, and instead can show that there are sufficiently many of them, which will moreover be
sufficiently well spread out, that enough can be found edge-disjointly to make all the corrections we
require.

In Part C.4, following all of our work so far, we will finally arrive at an edge partitioning problem
where we perfectly partition a set of edges into rainbow matchings with specific colours (as for the
original problem solved by Theorem 2.1), except here the matchings in the partition will be less
restricted in their vertex sets – each M̃i,2 will have a relatively small number of edges compared to
the size of Ri. This is the key relaxation that will allow us to partition the remaining edges. For
each colour c, we will have exactly the right number of edges of colour c remaining to assign one to
each M̃i,2 for which we want an edge with colour c. The challenge is to do this so that each M̃i,2 is
a matching. We first sparsify an accompanying auxiliary graph (see Lc in Section 7.6) by forbidding
most of the possible assignments randomly. Then, we do a similar sparsification, but keep only the
assignment of an edge e to M̃i,2 if we do not forbid this, but do forbid the assignment to M̃i,2 of any
edge intersecting with e. Then, we show that it is very likely we can use the remaining non-forbidden
assignment possibilities to assign the remaining edges of colour c to the required M̃i,2, where we now
have that this will give a matching.

7.2 Set-up for Part C

For each i ∈ [n], partition Ri = Ri,1 ∪ Ri,2 by taking each v ∈ Ri and independently at random
allocating it so that P(v ∈ Ri,j) = 1/4 for each j ∈ [2]. For each i ∈ [n], similarly partition Ci =
Ci,1 ∪ Ci,2 so that the location of each c ∈ Ci is independent and such that P(v ∈ Ci,1) = pcov/ppt.
Similarly, partition Ept = E1 ∪ E2 ∪ E3 ∪ E4 so that, for each e ∈ Ept, P(e ∈ E1) = pcov/ppt,
P(e ∈ E2) = pbal,1/ppt and P(e ∈ E3) = pbal,2/ppt. Then, partition E1 = EA1 ∪ EB1 ∪ EC1 , by, for each
e ∈ E1, choosing the set for e independently and uniformly at random. Partition E2 =

⋃
φ∈F E2,φ

by, for each edge e ∈ E2, independently and uniformly at random assigning e to some E2,φ for which
V (e) ⊂ Sφ. Similarly, partition E3 =

⋃
φ∈F E3,φ and E4 =

⋃
φ∈F E4,φ.

For S18–S20 later, let

n0 = 1.01pptptrpfan, D0 = p2
Rpptptrpfan/8p

2
S , and q0 = p2

R/8p
2
S . (73)

Claim 33. With high probability, we have the following properties.

S1 For each i ∈ [n], v ∈ V (G) and X ∈ {A,B}, there are at least
p2covpRn

8
edges in EX1 between v

and Ri,1 with colour in Ci,1.
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S2 For each i ∈ [n] and c ∈ C, there are at least
pcovp

2
Rn

20
edges in EC1 with vertices in Ri,1 and

colour c.

S3 For each u ∈ V (G), |{φ ∈ F : u ∈ Sφ}| = (1± ε)pSp−1
tr p
−1
fa .

S4 For each distinct u, v ∈ V (G), |{φ ∈ F : u, v ∈ Sφ}| = (1± ε)p2
Sp
−1
tr p
−1
fa .

S5 For each distinct u, v, w ∈ V (G), |{φ ∈ F : u, v, w ∈ Sφ}| = (1± ε)p3
Sp
−1
tr p
−1
fa .

S6 For each c ∈ C and φ ∈ F , |{e ∈ E2,φ ∪ E3,φ ∪ E4,φ : c(e) = c}| = (1±√pcov)pptpfaptrn.

S7 For each c ∈ C, |{e ∈ E1 : c(e) = c}| = (1± ε)pcovn.

S8 For each v ∈ V (G) and φ ∈ F , |{e ∈ E1 : v ∈ V (e), V (e) \ {v} ⊂ Sφ}| = (1± ε)pcovpSn.

S9 For each φ ∈ F and v ∈ Sφ, |{e ∈ E2,φ ∪ E3,φ ∪ E4,φ : v ∈ V (e)}| = (1 ± √pcov)pptp
−1
S ptrpfan

and |{e ∈ E2,φ : v ∈ V (e)}| ≤ 2pbal,1p
−1
S ptrpfan.

S10 For each φ ∈ F , i ∈ Iφ and v ∈ Si,

|{e ∈ E2,φ ∪ E3,φ ∪ E4,φ : v ∈ V (e), c(e) ∈ Ci}| = (1± pcov)p2
ptp
−1
S ptrpfan.

S11 For each φ ∈ F , i ∈ Iφ and v ∈ Si, |{e ∈ E1 : v ∈ V (e) ⊂ Si, c(e) ∈ Ci}| ≤ (1± ε)pcovpptpSn.

S12 For each c ∈ C and φ ∈ F , |{i ∈ Iφ : c ∈ Ci}| = (1 ± ε)pptptrpfan and |{i ∈ Iφ : c ∈ Ci,2}| =
(1± pbal,1)pptptrpfan.

S13 For each c ∈ C and distinct φ, φ′ ∈ F , |{e ∈ E2,φ : V (e) ⊂ Sφ∩Sφ′ , c(e) = c}| ≥ pbal,1p
2
Sptrpfan/2.

S14 For each φ ∈ F and v ∈ Sφ,
∣∣|{i ∈ Iφ : v ∈ Ti}| − |{i ∈ Iφ : v ∈ Ri}|

∣∣ = (1± ε)αpT p−1
S ptrpfan.

S15 For each φ ∈ F , |Sφ| ≤ (2 + ε)pSn.

S16 For each distinct φ, φ′ ∈ F and v ∈ Sφ ∩ Sφ′ ,

|{e ∈ E3,φ : V (e) ⊂ Sφ ∩ Sφ′ , v ∈ V (e)}| ≤ 2pbal,2p
−1
S ptrpfan.

S17 For each distinct φ, φ′ ∈ F and distinct x, y ∈ Sφ ∩ Sφ′ with x ∼A/B y, letting L be the set of
(x, y, L)-links (as defined in Theorem 5.2) whose odd edges are in E3,φ and whose even edges are
in E3,φ′ , and whose vertices are in Sφ ∩ Sφ′ , we have

a |L| ≥ pbal,2(pbal,2ptrpfa)62n30,

b for each e ∈ E(G), there are at most (ptrpfa)61n28 links in L which use e, but not as the kth
edge for any k ∈ {1, 2, 61, 62},

c for each e ∈ E(G), there are at most (ptrpfa)60n28 links in L which use e as either the 2nd
or 61st edge,

d for each v ∈ V (G) \ {x, y}, there are at most (ptrpfa)62n29 links in L which use v not as a
neighbour of x or y, and

e for each v ∈ V (G) \ {x, y}, there are at most (ptrpfa)61n29 links in L which use v as a
neighbour of x or y.

S18 For each φ ∈ F , c ∈ C and I ⊂ Iφ with |I| ≤ n0/2D0, there are at least D0|I| edges e ∈ E4,φ

with colour c such that V (e) ⊂ Ri,2 for some i ∈ I.

S19 For each φ ∈ F , c ∈ C and E ⊂ {e ∈ E(G) : V (e) ⊂ Sφ, c(e) = c} with |E| ≤ n0/2D0, there are
at least D0|E| values of i ∈ Iφ such that c ∈ Ci,2 and there is some e ∈ E such that V (e) ⊂ Ri,2.

S20 For each φ ∈ F , c ∈ C, I ⊂ Iφ and E ⊂ {e ∈ E(G) : V (e) ⊂ Sφ, c(e) = c} with |I|, |E| ≥ n0/2D0,
there are at least q0|I||E| pairs i ∈ I and e ∈ E with V (e) ⊂ Ri,2.

Proof of Claim 33. To see that S1–S20 hold with high probability, we first observe that S1–S16 hold
with high probability, each by a simple application of Lemma 2.6 and a union bound. This leaves us
to show, in turn that S17–S20 hold with high probability.

S17: By Theorem 5.2, with high probability, we can assume that, setting Φ0 = n30, K1–K9 hold.

S17a: Let φ, φ′ ∈ F be distinct, let x, y ∈ Sφ ∩ Sφ′ be distinct with x ∼A/B y, and let L0 be the
set of (x, y, L)-links in G and L be the set of (x, y, L)-links whose odd edges are in E3,φ, whose even
edges are in E3,φ′ , and whose vertices are in Sφ ∩ Sφ′ . By K1 and S4, we have E|L| ≥ (1 − ε)((1 −
2ε)pbal,2ptrpfap

−2
S )62p122

S Φ0 ≥ 2pbal,2(pbal,2ptrpfa)62Φ0. Now, for each v ∈ V (G) \ {x, y}, we have by
K2 that |{H ∈ L0 : v ∈ V (H)}| ≤ 100Φ0 · n−1. For each e ∈ E(G − {x, y}), we have by K4 that
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|{H ∈ L0 : e ∈ E(H)}| ≤ 100Φ0 ·n−2. For each e ∈ E(G) with {x, y} ∩ V (e) 6= ∅, we have by K2 that
|{H ∈ L0 : e ∈ E(H)}| ≤ 4Φ0 · n−1.

Therefore, by Lemma 2.7, we have

P(|L| < pbal,2(pbal,2ptrpfa)62Φ0)

≤ 2 exp

(
− 2(pbal,2(pbal,2ptrpfa)62Φ0)2

2n · (100Φ0 · n−1)2 + n2 · (100Φ0 · n−2)2 + 2n · (4Φ0 · n−1)2

)
≤ 2 exp

(
−Ω

(
p2

bal,2(pbal,2ptrpfa)124n
))

= n−ω(1).

Thus, taking a union bound, we have that with high probability S17a always holds.

S17b: Fix e ∈ E(G− {x, y}) and 3 ≤ k ≤ 60. Let Le,k = {H ∈ L : e is the kth edge of H}, so that,
by K4, |Le,k| ≤ (1 + ε)Φ0 · n−2. Let L′e,k be the set of links in Le,k whose odd edges are in E3,φ

and whose even edges are in E3,φ′ , and whose vertices are in Sφ ∩ Sφ′ . Let Ee,k be the event that
V (e) ⊂ Sφ ∩ Sφ′ and e ∈ E3,φ if k is odd and e ∈ E3,φ′ if k is even. Then,

E(|Le,k||Ee,k) ≤ ((1 + 2ε)pbal,2ptrpfap
−2
S )61 · (1 + ε)Φ0 · n−2 ≤ (ptrpfa)61Φ0 · n−2/2.

Now, for each w ∈ V (G)\({x, y}∪V (e)), we have by K9 that |{H ∈ Le,k : v ∈ V (H)}| ≤ 2 ·108Φ0 ·
n−3. For each e′ ∈ E(G− ({x, y}∪V (e)), we have by K8 that |{H ∈ Le,k : e′ ∈ E(H)}| ≤ 104Φ0 ·n−4.
For each e′ ∈ E(G) with ({x, y} ∪ V (e)) ∩ V (e′) 6= ∅ and V (e′) 6⊂ {x, y} ∪ V (e), we have by K9 that
|{H ∈ Le,k : e′ ∈ E(H)}| ≤ 108Φ0 · n−3.

Therefore, by Lemma 2.7, we have

P(|L′e,k| < (ptrpfa)61Φ0 · n−2|Ee,k)

≤ 2 exp

(
− 2((ptrpfa)61Φ0 · n−2/2)2

2n · (2 · 108Φ0 · n−3)2 + n2 · (104Φ0 · n−4)2 + 4n · (108Φ0 · n−3)2

)
≤ 2 exp

(
−Ω

(
(ptrpfa)122n

))
= n−ω(1).

Thus, taking a union bound over all e ∈ E(G − {x, y}) and 3 ≤ k ≤ 60, we have that with high
probability S17b always holds.

S17c: Fix e ∈ E(G− {x, y}) and suppose k = 2 (where the case where k = 61) follows similarly. Let
Le,k = {H ∈ L : e is the kth edge of H}, so that, by K4, |Le,k| ≤ (1 + ε)Φ0 · n−2. Let L′e,k be the set
of links in Le,k whose odd edges are in E3,φ and whose even edges are in E3,φ′ , and whose vertices are
in Sφ ∩ Sφ′ . Let f be the edge between x and V (e), and let Ee,k be the event that V (e) ⊂ Sφ ∩ Sφ′
and f ∈ E3,φ and e ∈ E3,φ′ . (The difference here to S17b is that when f /∈ E3,φ then L′e,k is always
empty.) Then,

E(|L′e,k||Ee,k) ≤ (pbal,2ptrpfap
−2
S )60 · (1 + ε)Φ0 · n−2 ≤ (ptrpfa)60 · Φ0 · n−2/2.

Working very similarly to S17b with only the difference of pbal,2ptrpfap
−2
S in the upper bound on the

expectation, we have, by Lemma 2.7, that

P(|L′e,k| <(ptrpfa)60 · Φ0 · n−2|Ee,k)

≤ 2 exp

(
− 2((ptrpfa)60 · Φ0 · n−2/2)2

2n · (2 · 108Φ0 · n−3)2 + n2 · (104Φ0 · n−4)2 + 4n · (108Φ0 · n−3)2

)
≤ 2 exp

(
−Ω

(
(ptrpfa)120n

))
= n−ω(1).

Thus, taking a union bound over all e ∈ E(G− {x, y}), and considering also the case k = 61, we have
that with high probability S17c always holds.

S17d: Fix v ∈ V (G) \ {x, y} and 3 ≤ k ≤ 61. Let Lv,k = {H ∈ L : e is the kth vertex of H}, so
that, by K2, |Lv,k| ≤ (1 + ε)Φ0 · n−1. Let L′v,k be the set of links in Lv,k whose odd edges are in
E3,φ and whose even edges are in E3,φ′ , and whose vertices are in Sφ ∩ Sφ′ . Let Ev be the event that
v ∈ Sφ ∩ Sφ′ . Then,

E(|Le,k||Ev) ≤ (pbal,2ptrpfap
−2
S )61 · (1 + ε)Φ0 · n−1 ≤ (ptrpfa)61 · Φ0 · n−1/2. (74)

Now, for each w ∈ V (G) \ ({x, y, v}), we have by K5 that |{H ∈ Lv,k : w ∈ V (H)}| ≤ 104Φ0 ·n−2.
For each e ∈ E(G− {x, y, v}), we have by K9 that |{H ∈ Lv,k : e ∈ E(H)}| ≤ 108Φ0 · n−3. For each
e ∈ E(G) with {x, y, v} ∩ V (e) 6= ∅, we have by K5 that |{H ∈ Lv,k : e ∈ E(H)}| ≤ 104Φ0 · n−2.
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Therefore, by Lemma 2.7, we have

P(|L′v,k| <(ptrpfa)61 · Φ0 · n−1|Ev)

≤ 2 exp

(
− 2((ptrpfa)61 · Φ0 · n−1/2)2

2n · (104Φ0 · n−2)2 + n2 · (108Φ0 · n−3)2 + 3n · (104Φ0 · n−2)2

)
≤ 2 exp

(
−Ω

(
(ptrpfa)122n

))
= n−ω(1).

Thus, taking a union bound over all v ∈ V (G) \ {x, y} and 3 ≤ k ≤ 61, we have that with high
probability S17d always holds.

S17e: Here, S17e follows very similarly to S17d in the same way that S17c follows similarly to
S17b. The difference to S17d is that if v is to be a neighbour of x in the link, then, there are no
such links if xv /∈ E3,φ, so we condition on this, and therefore save a factor of (pbal,2ptrpfap

−2
S ) in the

corresponding version of (74), which we use to make a saving of ptrpfa in the bound in S17e compared
to that in S17d. Note that the difference in the two bounds in S17c and S17b is the same saving.

S18: Let φ ∈ F , c ∈ C and I ⊂ Iφ with |I| ≤ n0/2D0. For each e ∈ E4,φ with colour c such that
V (e) ⊂ Sφ, the probability that V (e) ⊂ Ri,2 is (pR/2pS)2 for each i ∈ I, and this is independent
across i ∈ I and such e. Therefore, as there is in expectation at least pptptrpfan/2 edges e ∈ E4,φ with
colour c such that V (e) ⊂ Sφ, and D0 = p2

Rpptptrpfan/8p
2
S we have by Lemma 2.6 with probability at

least 1− exp(−ω(|I| logn)) there are at least D0|I| edges e ∈ E4,φ with colour c such that V (e) ⊂ Ri,2
for some i ∈ I. Thus, by a union bound, S18 holds with high probability.

S19: Let φ ∈ F , c ∈ C, and E ⊂ {e ∈ E(G) : V (e) ⊂ Sφ, c(e) = c} with |E| ≤ n0/2D0. Then, with
high probability, we have c ∈ Ci,2 for at least 0.99pptptrpfan values of i ∈ Iφ. Then, for each i ∈ Iφ, the
probability that there is some e ∈ E with V (e) ⊂ Ri,2, is 1− (1− (pR/2pS)2)|E| ≥ 0.99|E|(pR/2pS)2.
Thus, by Lemma 2.6, with probability at least 1− exp(−ω(|E| logn)) there are at least D0|E| values
of i ∈ Iφ such that c ∈ Ci,2 and there is some e ∈ E such that V (e) ⊂ Ri,2. Thus, by a union bound,
S19 holds with high probability.

S20: Let φ ∈ F , c ∈ C, I ⊂ Iφ and E ⊂ {e ∈ E(G) : V (e) ⊂ Sφ, c(e) = c} with |I|, |E| ≥ n0/4D0.
Now, the events {V (e) ⊂ Ri,2}, e ∈ E and i ∈ I, are independent, and each occur with probability
p2
R/4p

2
S = 2q0, so the property follows by a simple application of Lemma 2.6 and a union bound. �

7.3 Part C.1: Vertex and colour covering

Assuming now the properties S1–S20, we will show we have the required property in Lemma 3.5. For
this, suppose we have any edge set Ê ⊂ E(G), and any sets V̂i ⊂ V (G) and Ĉi ⊂ C(G), i ∈ [n], which
satisfy C1–C9. By carrying out Parts C.1–C.4, we will partition Ê into matchings M̃1, . . . , M̃n such
that C10–C12 hold

For Part C.1, we will use edges from E1 to, edge-disjointly, find for each i ∈ [n] a rainbow matching
M̃i,1 using colours in Ci,1 and vertices in Ri,1 as well as every vertex in V̂i \Ri and colour in Ĉi \Ci,
as follows.

Claim 34. There are edge-disjoint rainbow matchings M̃i,1, i ∈ [n], in E1 such that,

T1 For each i ∈ [n], V̂i \Ri ⊂ V (M̃i,1) ⊂ Ri,1 ∪ (V̂i \Ri).
T2 For each i ∈ [n], Ĉi \ Ci ⊂ C(M̃i,1) ⊂ Ci,1 ∪ (Ĉi \ Ci).
T3 For each φ ∈ F and v ∈ Sφ, |{i ∈ Iφ : v ∈ V (M̃i,1)}| ≤ pbal,1ptrpfan.

Proof of Claim 34. Let M̃i,1, i ∈ [n], be a set of edge-disjoint rainbow matchings of edges of E1 =
EA1 ∪EB1 ∪EC1 such that, for each i ∈ [n], V (M̃i,1) ⊂ Ri,1 ∪ (V̂i \Ri), C(M̃i,2) ⊂ Ci,1 ∪ (Ĉi \Ci), and
each edge e of M̃i,1 either

• contains exactly one vertex in V̂i \Ri, which is in A, and e ∈ EA1 , or

• contains exactly one vertex in V̂i \Ri, which is in B, and e ∈ EB1 , or

• contains no vertices in V̂i \Ri and e ∈ EC1 ,

for each φ ∈ F and v ∈ Sφ, |{i ∈ Iφ : v ∈ V (M̃i,1) ∩ Ri}| ≤ pbal,1ptrpfan/2, and, subject to all this,
such that

∑
i∈[n] |M̃i,1| is maximised.

Suppose, first, for contradiction, that there is some i ∈ [n] such that V̂i \ Ri 6⊂ V (M̃i,1). Let
v ∈ V̂i \ (Ri ∪ V (M̃i,1)). Assume that v ∈ A, where the case where v ∈ B follows similarly.
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Let φ ∈ F be such that i ∈ Iφ. Let Z be the set of vertices w ∈ Sφ for which |{i ∈ Iφ : v ∈
V (M̃i,1) ∩Ri}| > pbal,1ptrpfan/4, and note that

|Z| ≤

∑
i∈Iφ

2|M̃i,1|
pbal,1ptrpfan/4

C3,C4

≤ 2ptrpfan · 2 · 6βn
pbal,1ptrpfan/4

≤
√
βn.

By S1, if EA1,v,i is the set of edges in EA1 between v and Ri,1 with colour in Ci,1, then |EA1,v,i| ≥
p2

covpRn/8. By C3 and C4, we have that |M̃i,1| ≤ 6βn, so at most 6βn of the edges in EA1,v,i share

their colour with M̃i,1, and at most 6βn of the edges in EA1,v,i share their vertex which is not in V̂i \Ri
with any edge in M̃i,1. Furthermore, if vx ∈ EA1,v,i is in some M̃j,1 with j 6= i, then, as v ∈ A we must

have that v ∈ V̂j \ Rj . Thus, by C5, there are at most 4βn j ∈ [n] with v ∈ V̂j \ Rj , and hence at
most 4βn edges in EA1,v,i which are in some M̃j,1 with j 6= i.

Therefore, as β
poly

� pcov, pR, there is some edge e ∈ EA1,v,i \
⋃
j∈[n] M̃j,1 whose colour is not used on

M̃i,1 and whose non-v vertex is in Ri,1 \ (V (M̃i,1)∪Z). Adding e to M̃i,1 would increase
∑
j∈[n] |M̃j,1|,

contradicting the choice of M̃j,1, j ∈ [n]. Thus, there was no such i ∈ [n] for which V̂i \Ri 6⊂ V (M̃i,1).
Suppose, instead, again for contradiction, that there is some i ∈ [n] for which Ĉi \ Ci 6⊂ C(M̃i,1).

Let c ∈ Ĉi\(Ci∪C(M̃i,1)). Let φ ∈ F be such that i ∈ Iφ and, again, let Z be the set of vertices w ∈ Sφ
for which |{i ∈ Iφ : v ∈ V (M̃i,1) ∩Ri}| > pbal,1ptrpfan/4, so that, as before, we have |Z| ≤

√
βn.

Again by C3 and C4, we have that |M̃i,1| ≤ 6βn. By C6, there are at most 2βn edges in

EC1 ∩ (∩j∈[n]M̃j,1) with colour c. However, by S2, there are at least
pcovp

2
Rn

20
edges in EC1 with colour

c and vertices in Ri,1.

Therefore, as β
poly

� pcov, pR, there is some edge e ∈ EC1 \
⋃
j∈[n] M̃j,1 with colour c and vertices in

Ri,1 which has no vertices in V (M̃i,1). Adding e to M̃i,1 would increase
∑
j∈[n] |M̃j,1|, contradicting

the choice of M̃j,1, j ∈ [n]. Thus, there was no such i ∈ [n] for which Ĉi \ Ci 6⊂ C(M̃i,1).
Thus, we have that T1 and T2 hold. For each φ ∈ F and v ∈ Sφ,

|{i ∈ Iφ : v ∈ V (M̃i,1)}| ≤ |{i ∈ Iφ : v ∈ V (M̃i,1 ∩Ri)}|+ |{i ∈ Iφ : v ∈ V̂i \Ri}|
C3

≤ pbal,1ptrpfan,

and therefore T3 holds as well. �

7.4 Part C.2: Balancing colours between families

Taking the matchings M̃i,1, i ∈ [n], from Part C.1, we now partition the rest of the edges in Ê between
the families, so that each family receives the right number of edges of each colour, as follows.

Claim 35. Ê \ E(
⋃
i∈[n] M̃i,1) can be partitioned into Êφ, φ ∈ F , so that the following hold.

U1 For each φ ∈ F , E3,φ ∪ E4,φ ⊂ Êφ.

U2 For each φ ∈ F and c ∈ C, |{e ∈ Êφ : c(e) = c}| = |{i ∈ Iφ : c ∈ Ĉi \ C(M̃i,1)}|.
U3 For each φ ∈ F , every edge in Êφ is contained within Sφ.

U4 For each φ ∈ F and v ∈ Sφ, |{e ∈ Êφ : v ∈ V (e)}| = (1± 3pbal,1)pptp
−1
S ptrpfan.

U5 For each φ ∈ F , i ∈ Iφ and v ∈ Si, |{e ∈ Êφ : v ∈ V (e), c(e) ∈ Ci}| ≤ p3/2
pt ptrpfan/2.

Proof of Claim 35. Partition Ê \ ((
⋃
φ∈F E2,φ ∪ E3,φ ∪ E4,φ) ∪ E(

⋃
i∈[n] M̃i,1)) into sets E′φ, φ ∈ F ,

by, for each e ∈ Ê \ ((
⋃
φ∈F E2,φ ∪ E3,φ ∪ E4,φ) ∪ E(

⋃
i∈[n] M̃i,1)), placing e into a set E′φ, φ ∈ F ,

independently and uniformly at random subject to V (e) ⊂ Sφ.
By S4 and Lemma 2.6, and, respectively, S6, S7, C6, C9 and S12, S8 and C7, and S11, with

high probability, we have the following properties.

U6 For each c ∈ C and φ ∈ F , |{e ∈ E′φ : c(e) = c}| ≤ 2pcovp
−2
S ptrpfan.

U7 For each φ ∈ F and v ∈ Sφ, |{e ∈ E′φ : v ∈ V (e)}| ≤ 2pcovp
−1
S ptrpfan.

U8 For each φ ∈ F , i ∈ Iφ and v ∈ Si, |{e ∈ E′φ : v ∈ V (e), c(e) ∈ Ci}| ≤ 2pcovpptp
−1
S ptrpfan.

Thus, we can assume that U6–U8 hold.
For each φ ∈ F , let E+

φ = E′φ ∪ E2,φ ∪ E3,φ ∪ E4,φ. For each φ ∈ F and c ∈ C, let

λφ,c = |{e ∈ E+
φ : c(e) = c}| − |{i ∈ Iφ : c ∈ Ĉi \ C(M̃i,1)}|, (75)
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and note that, by S6, S12, C6, and U6,

|λφ,c| ≤
∣∣|{e ∈ E2,φ ∪ E3,φ ∪ E4,φ : c(e) = c}| − |{i ∈ Iφ : c ∈ Ci}|

∣∣
+ |{i ∈ Iφ : c ∈ Ĉi \ Ci}|+ |{i ∈ Iφ : c ∈ C(M̃i,1)}|

≤ 2
√
pcovptrpfan+ 2βptrpfan+ 2pcovp

−2
S ptrpfan ≤ 3

√
pcovptrpfan. (76)

Furthermore, we have, for each c ∈ C, that∑
φ∈F

λφ,c =
∑
φ∈F

(|{e ∈ E+
φ : c(e) = c}| − |{i ∈ Iφ : c ∈ Ĉi \ C(M̃i,1)}|)

=
∣∣∣{e ∈ Ê \ ( ⋃

i∈[n]

M̃i,1

)
: c(e) = c

}∣∣∣− |{i ∈ [n] : c ∈ Ĉi \ C(M̃i,1)}|

= |{e ∈ Ê : c(e) = c}| − |{i ∈ [n] : c ∈ Ĉi}|
C9
= 0. (77)

For each c ∈ C, let F+
c = {φ ∈ F : λφ,c > 0} and F−c = {φ ∈ F : λφ,c < 0}. Using (77), take

integers λφ,φ′,c ≥ 0, φ ∈ F+
c and φ′ ∈ F−c , such that for each φ ∈ F+

c and φ′ ∈ F−c we have∑
φ′′∈F−c

λφ,φ′′,c = λφ,c and
∑

φ′′∈F+
c

λφ′′,φ′,c = −λφ′,c.

For each distinct φ, φ′ ∈ F and c ∈ C for which λφ,φ′,c is not defined, that is, when at least one of
λφ,c and λφ′,c is equal to 0, let λφ,φ′,c = 0, and note that, for each φ ∈ F and c ∈ C,∑

φ′∈F:φ′ 6=φ

λφ,φ′,c −
∑

φ′∈F:φ′ 6=φ

λφ′,φ,c = λφ,c. (78)

Let E = {(φ, φ′, c) : φ, φ′ ∈ F , φ 6= φ′, c ∈ C}. Take edge disjoint matchings Mφ,φ′,c, (φ, φ′, c) ∈ E ,
such that, for each (φ, φ′, c) ∈ E ,

i) |Mφ,φ′,c| ≤ λφ,φ′,c,
ii) V (Mφ,φ′,c) ⊂ Sφ ∩ Sφ′ ,

iii) every edge in Mφ,φ′,c is a colour-c edge in E2,φ,

iv) and, for each φ ∈ F and v ∈ Sφ, v is in at most p
3/2
pt ptrpfan/4 edges in the matchings Mφ′,φ,c,

φ′ ∈ F \ {φ} and c ∈ C,

and, subject to all this,
∑

(φ,φ′,c)∈E |Mφ,φ′,c| is maximised.

Suppose, for contradiction, that there is some (φ, φ′, c) ∈ E such that |Mφ,φ′,c| < λφ,φ′,c. Let W

be the set of vertices in at least p
3/2
pt ptrpfan/8 edges in the matchings Mφ′,φ,c, φ

′ ∈ F \ {φ} and c ∈ C,
and note that

|W | ≤
2
∑
c∈C |λφ,c|

p
3/2
pt ptrpfan/8

(76)

≤
2n · 3√pcovptrpfan

p
3/2
pt ptrpfan/8

≤ p2
bal,1p

2
Spfaptrn. (79)

As |Mφ,φ′,c| < λφ,φ′,c, every edge in E2,φ \
⋃
φ′′ 6=φMφ,φ′′,c of colour c with vertices in Sφ ∩ S′φ has a

vertex in W . However, by S13, there are at least pbal,1p
2
Spfaptrn/2 such edges in E2,φ. Thus, as

∑
φ′′∈F:φ′′ 6=φ

|Mφ,φ′′,c| ≤
∑

φ′′∈F:φ′′ 6=φ

λφ,φ′′,c
(78)

≤ |λφ,c|
(76)

≤ 3
√
pcovptrpfan,

and (79) holds, this is a contradiction as pcov

poly

� pbal,1, pS . Therefore, we have |Mφ,φ′,c| = λφ,φ′,c for
each (φ, φ′, c) ∈ E .

Now, for each φ ∈ F , let

Êφ =

(Ê′φ ∪ E2,φ ∪ E3,φ ∪ E4,φ

)
\

 ⋃
φ′∈F\{φ}

⋃
c∈C

Mφ,φ′,c

⋃ ⋃
φ′∈F\{φ}

⋃
c∈C

Mφ′,φ,c

 .
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We now show that U1–U5 hold. That U1 holds follows from iii). That U2 holds follows from iii)
and the fact that we have equality in i), so that, for each φ ∈ F and c ∈ C(G),

|{e ∈ Êφ : c(e) = c}| = |{e ∈ Ê′φ ∪ E2,φ ∪ E3,φ ∪ E4,φ : c(e) = c}| −
∑

φ′∈F\{φ}

λφ,φ′,c +
∑

φ′∈F\{φ}

λφ′,φ,c

(78)
= |{e ∈ Ê′φ ∪ E2,φ ∪ E3,φ ∪ E4,φ : c(e) = c}| − λφ,c

(75)
= |{i ∈ Iφ : c ∈ Ĉi \ C(M̃i,1)}|.

That U3 holds follows from ii), as each edge in Êφ which is not in Ê′φ ∪E2,φ ∪E3,φ ∪E4,φ is in some
matching Mφ,φ′,c. Note that U4 follows from (both parts of) S9 and U7. Finally, for each φ ∈ F ,
i ∈ Iφ and v ∈ Si, by S10, U8 and iv),

|{e ∈ Êφ : v ∈ V (e), c(e) ∈ Ci}| ≤ 2p2
ptp
−1
S ptrpfan+ 2pcovpptp

−1
S ptrpfan+ p

3/2
pt ptrpfan/4

≤ p3/2
pt ptrpfan/2

and thus U5 holds. Thus, U1–U5 hold, as required. �

7.5 Part C.3: Balancing vertex degrees between families

We now take the partition Êφ, φ ∈ F , from Claim 35 and alter it slightly to achieve the right number
of edges at each vertex in each part, as per the following claim. Having set up the changes we wish
to make at each vertex in each part (see (80)), we confirm these changes are small (see (81)) and are
balanced within each family (see (82)) and at each vertex (see (83)). The proof then takes two stages.
In stage I, we decompose the changes we wish to make into pairs of changes we will be able to make
together (in a similar approach to that in Section 4.3), before making these changes in stage II.

Claim 36. Ê \ E(
⋃
i∈[n] M̃i,1) can be partitioned into Ê∗φ, φ ∈ F , so that the following hold.

V1 For each φ ∈ F , E4,φ ⊂ Ê∗φ.

V2 For each φ ∈ F and c ∈ C, |{e ∈ Ê∗φ : c(e) = c}| = |{i ∈ Iφ : c ∈ Ĉi \ C(M̃i,1)}|.
V3 For each φ ∈ F , every edge in Ê∗φ is contained within Sφ.

V4 For each φ ∈ F and v ∈ Sφ,

|{e ∈ Ê∗φ : v ∈ V (e)}| = |{i ∈ Iφ : v ∈ V̂i \ V (M̃i,1)}| − |{i ∈ Iφ : v ∈ Ti}|.

V5 For each φ ∈ F , i ∈ Iφ and v ∈ Si, |{e ∈ Ê∗φ : v ∈ V (e), c(e) ∈ Ci}| ≤ p3/2
pt ptrpfan.

Proof of Claim 36. For each φ ∈ F and v ∈ Sφ, let

λφ,v = |{e ∈ Êφ : v ∈ V (e)}| − |{i ∈ Iφ : v ∈ V̂i \ V (M̃i,1)}|+ |{i ∈ Iφ : v ∈ Ti}| (80)

which represents the change in degree of v from Êφ to Ê∗φ we wish to make in order for V4 to hold.
Note that, by T3, U4 and S14, for each φ ∈ F and v ∈ Sφ,

|λφ,v| ≤ 2|{i ∈ Iφ : v ∈ V (M̃i,1)}|+
∣∣|{e ∈ Êφ : v ∈ V (e)}| − |{i ∈ Iφ : v ∈ Ri}|+ |{i ∈ Iφ : v ∈ Ti}|

∣∣
≤ 2pbal,1ptrpfan+ |(1± 3pbal,1)ppt − (1± ε)αpT | · p−1

S ptrpfan
(5)

≤ 10pbal,1ptrpfan, (81)

so that each of these adjustments is relatively small (compared to the degree of v in E3,φ).
Now, note that, for each φ ∈ F the adjustments λφ,v to be made at each vertex v ∈ Sφ sum to 0,

as ∑
v∈Sφ

λφ,v = 2|Êφ| −
∑
i∈Iφ

(|V̂i \ V (M̃i,1)| − |Ti|)

=2
∑
c∈C

|{e ∈ Êφ : c(e) = c}| −
∑
i∈Iφ

(|V̂i| − |V (M̃i,1)| − |Ti|)

U2
= 2

∑
c∈C

|{i ∈ Iφ : c ∈ Ĉi \ C(M̃i,1)}| −
∑
i∈Iφ

(|V̂i| − |V (M̃i,1)| − |Ti|)

= 2
∑
i∈Iφ

|Ĉi \ C(M̃i,1)| −
∑
i∈Iφ

(|V̂i| − |V (M̃i,1)| − |Ti|)

= 2
∑
i∈Iφ

|Ĉi| −
∑
i∈Iφ

(|V̂i| − |Ti|)
C2
= 0. (82)
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Furthermore, for each v ∈ V (G), the adjustments λφ,v to be made at v for each φ ∈ F sum to 0, as∑
φ∈F

λφ,v =
∣∣∣{e ∈ ⋃

φ∈F

Êφ : v ∈ V (e)
}∣∣∣−∑

φ∈F

(|{i ∈ Iφ : v ∈ V̂i \ V (M̃i,1)}| − |{i ∈ Iφ : v ∈ Ti}|)

=
∣∣∣{e ∈ ⋃

φ∈F

Êφ : v ∈ V (e)
}∣∣∣− |{i ∈ [n] : v ∈ V̂i \ V (M̃i,1)}|+ |{i ∈ [n] : v ∈ Ti}|

=
∣∣∣{e ∈ ( ⋃

φ∈F

Êφ
)
∪
( ⋃
i∈[n]

M̃i,1

)
: v ∈ V (e)

}∣∣∣− |{i ∈ [n] : v ∈ V̂i}|+ |{i ∈ [n] : v ∈ Ti}|

=
∣∣∣{e ∈ Ê : v ∈ V (e)

}∣∣∣− |{i ∈ [n] : v ∈ V̂i}|+ |{i ∈ [n] : v ∈ Ti}|
C8
= 0. (83)

We will now use (82) and (83) to show that we can decompose the changes we need to make into a
collection of directed 2-cycles, similarly to the approach in Section 4.3.

I. Decomposing the necessary changes into directed 2-cycles. For each φ ∈ F , let V +
φ = {v ∈

Sφ : λφ,v > 0} and V −φ = {v ∈ Sφ : λφ,v < 0}. Form an auxiliary directed multigraph Ψ with vertex
set V (G) whose edges have symbols (chosen from F) fixed to them (where between any two vertices
we allow multiple edges with the same attached symbol), by adding edges under the following rule.

• For each φ ∈ F , using (82), take a matching Kφ between {(v, j) : v ∈ V +
φ , j ∈ [λφ,v]} and

{(v, j) : v ∈ V −φ , j ∈ [−λφ,v]}, and, for each (v, j)(v′, j′) ∈ Kφ, add an edge e to Ψ directed from
v to v′ which has φ attached as a symbol to it. We set symb(e) = φ.

Note that, for each φ ∈ F and v ∈ Sφ, we have

|{ ~uv ∈ Ψ : u ∈ Sφ, symb( ~uv) = φ}| − |{ ~vu ∈ Ψ : u ∈ Sφ, symb( ~vu) = φ}| = λφ,u. (84)

Furthermore, for each v ∈ V (G),

d+
Ψ(v)− d−Ψ(v) =

∑
φ∈F:v∈V +

φ

λφ,v −
∑

φ∈F:v∈V +
φ

(−λφ,v) =
∑
φ∈F

λφ,v
(83)
= 0.

Therefore, E(Ψ) can be decomposed into a set of directed cycles, C say.
Subject to the stated restrictions on the choice of Kφ, φ ∈ F , and C, minimise the number of

pairs of edges from E(Ψ) which are in the same cycle in C and have the same symbol. Suppose, for
contradiction, that there is some S ∈ C which contains two edges, ~v1v2 and ~v3v4 say, which have the
same symbol, φ say. Note that, as the edges with the symbol φ are all directed from V +

φ to V −φ ,
these vertices must be distinct. Then, let j1, j2, j3 and j4 be such that ~v1v2 and ~v3v4 were added
to Ψ because (v1, j1)(v2, j2) and (v3, j4)(v4, j4) belong to Kφ. Note that removing (v1, j1)(v2, j2) and
(v3, j4)(v4, j4) from Kφ and adding (v1, j1)(v4, j4) and (v3, j4)(v2, j2) would have formed Ψ so that it
had a cycle decomposition C′ := (C \S)∪{S1, S2}, where S1 and S2 are the two disjoint directed cycles
formed from S by removing ~v1v2 and ~v3v4 and adding ~v1v4 and ~v2v3, both with symbol φ attached.
As C′ has fewer pairs of edges in the same cycle with the same symbol, this is a contradiction. Thus,
there is no cycle in C which has two edges with the same symbol.

Let r = |C|, and enumerate C as L1, . . . , Lr. For each j ∈ [r], let `j be the length of Lj and, if
`j ≥ 4, let Fj be a set of undirected pairs from V (Lj) so that the underlying graph of Lj + Fj is a
triangulation of Lj with maximum degree at most 4 (cf. Figure 4), and otherwise let Fj = ∅.

Form Ψ′ by starting with Ψ and, greedily in some arbitrary order, for each j ∈ [r] and each
{u, v} ∈ Fj , choosing φ ∈ F with u, v ∈ Sφ and adding ~uv and ~vu, both with the symbol φ attached
so that the following holds.

W1 For each φ ∈ F and v ∈ Sφ, there are ≤ √pbal,1ptrpfan edges in Ψ′ around v with symbol φ.

Note that this is possible, as, initially, for each φ ∈ F and u, v ∈ Sφ, the number of edges in Ψ′ around
u or v with the symbol φ is at most |λφ,v| ≤ 10pbal,1ptrpfan ≤

√
pbal,1ptrpfan by (81). Then, when for

j ∈ [r] and {u, v} ∈ Fj we look to select φ, the number of φ ∈ F with u, v ∈ Sφ is, by S4, at least
p2
Sp
−1
tr p
−1
fa /2. If none of these possibilities for φ can be added without violating W1, then the number

of edges of Ψ′ containing u or v must be at least

(p2
Sp
−1
tr p
−1
fa /2) · √pbal,1ptrpfan ≥ p2/3

bal,1n. (85)
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On the other hand, for each w ∈ V (G), by S3 and (81), the number of cycles in C containing w is at
most ∑

φ∈F:w∈Sφ

|λφ,w| ≤ 2pSp
−1
tr p
−1
fa · 10pbal,1ptrpfan = 20pSpbal,1n.

Therefore, the number of edges in Ψ′ around u and v with any symbol is (as, by the choice of the Fj ,
j ∈ [r], the underlying undirected graph of Lj + Fj has degree at most 4) at most

2 · 4 · 20pSpbal,1n ≤ p3/4
bal,1n, (86)

which contradicts (85). Thus, we can take Ψ′ as claimed, so that W1 holds.
Note that, similarly again to our work in Section 4.3, due to the choice of the Fj , j ∈ [r], we can

now let C′ be a directed cycle decomposition of Ψ′ into directed 2-cycles and triangles. Form Ψ′′ by
starting with Ψ′ and, for each directed triangle L ∈ C with V (L) = {x, y, z} and ~xy, ~yz, ~zy ∈ E(L),
choose a symbol φ with x, y, z ∈ Sφ and add ~yx, ~zy, ~xz, each with the symbol φ, so that the following
holds.

W2 For each φ and each w ∈ Sφ, there are ≤ √pbal,1ptrpfan edges in Ψ′′ around w with symbol φ.

Note that this is possible, as when for L ∈ C′ with V (L) = {x, y, z} and ~xy, ~yz, ~zy ∈ E(L) we look
to select φ, the number of edges in Ψ′′ around x, y or z with any symbol is (noting we are trying to
add at most the same number of edges again around each vertex to get from Ψ′ to Ψ′′), by (86), at

most 2p
3/4
bal,1n. On the other hand, by S5, there are at least p3

Sp
−1
tr p
−1
fa /2 possibilities for φ ∈ F with

x, y, z ∈ Sφ, so if no such φ ∈ F is such that ~yx, ~zy, ~xz can be added to Φ′′, each with the symbol φ,

without violating W2, then there must at least (p3
Sp
−1
tr p
−1
fa /2) · (p1/2

bal,1ptrpfan) > 2p
3/4
bal,1n edges in Ψ′′

around x, y or z with any symbol, a contradiction. Therefore, we can find Ψ′′ as claimed.
Note that Ψ′′ has a decomposition into directed 2-cycles, C′′ say. Let s = |C′′| and C′′ =

{L′1, . . . , L′s}. For each i ∈ [s], label vertices and symbols so that V (L′i) = {xi, yi} and the edges
of L′i are an edge from xi to yi with symbol φi and an edge from yi to xi with symbol φ′i. For each
φ ∈ F and v ∈ Sφ, we have

|{i ∈ [s] :φi = φ, xi = v}| − |{i ∈ [s] : φ′i = φ, yi = v}|
= |{ ~uv ∈ E(Ψ′′) : u ∈ Sφ, symb( ~uv) = φ}| − |{ ~vu ∈ E(Ψ′′) : u ∈ Sφ, symb( ~vu) = φ}|
= |{ ~uv ∈ E(Ψ′) : u ∈ Sφ, symb( ~uv) = φ}| − |{ ~vu ∈ E(Ψ′) : u ∈ Sφ, symb( ~vu) = φ}|
= |{ ~uv ∈ E(Ψ) : u ∈ Sφ, symb( ~uv) = φ}| − |{ ~vu ∈ E(Ψ) : u ∈ Sφ, symb( ~vu) = φ}|
(84)
= λφ,v. (87)

II. Making the necessary changes using (u, v, L)-links. Now, take a maximal set I ⊂ [s] for
which there are edge-disjoint paths Pi, i ∈ I, in G satisfying the following conditions.

X1 For each i ∈ I, Pi is an xi, yi-path of length 62 with odd edges in E3,φi and even edges in E3,φ′i
.

X2 For each i ∈ I, the odd edges of Pi have the same colour (with multiplicity) as the even edges of
Pi.

X3 For each φ ∈ F and v ∈ Sφ, there are at most 1
8
p

1/4
bal,1ptrpfan values of i ∈ I with φ ∈ {φi, φ′i} for

which v is an internal vertex of Pi.

Suppose, for a contradiction, that I 6= [s]. Take some i ∈ [s] \ I. Let Pi, i ∈ I, be a set of
edge-disjoint paths in G satisfying X1–X3. We will show that there is an (xi, yi, L)-link (with L as
defined in Theorem 5.2) whose edges alternate between E3,φi and E3,φ′i

, which are edge-disjoint from
the paths Pj , j ∈ I, (noting that we only need to actively avoid those paths with edges in E3,φ∪E3,φ′i

),
and whose interior vertices are not in many interior vertices of paths in Pj , j ∈ I.

Let then Eforb be the set of edges in E3,φi ∪E3,φ′i
which are in some path Pj , j ∈ I, and which do

not contain xi or yi. Let V forb be the set of vertices which are neighbours of xi or yi in some edge
in E3,φi ∪ E3,φ′i

which appears in some path Pj , j ∈ I. Let W forb be the set of vertices v for which

there are at least 1
16
p

1/4
bal,1ptrpfan values of j ∈ I with {φi, φ′i} ∩ {φj , φ′j} 6= ∅ for which v is an internal

vertex of Pj .
From S17b and c, we can see that we should take particular care in counting the number of edges

we have used which could be the 2nd or 61st edge of the link, as the corresponding bound we have is
larger by a factor of (ptrpfa)−1. However, any such edge contains a neighbour of {xi, yi} using an edge
of E3,φi ∪E3,φ′i

, so the number of edges here, as we will see, will be limited by X3. For this, let F forb
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be the set of edges in E3,φi ∪ E3,φ′i
which are in some path Pj , j ∈ I, and which contain a neighbour

of xi or yi in E3,φi ∪ E3,φ′i
.

We will now find an (xi, yi, L)-link whose edges alternate between E3,φi and E3,φ′i
which do not

use any vertices in W forb as interior vertices, or a vertex in V forb as a neighbour of xi or yi, or any
edge in Eforb ∪ F forb. First, note that

|Eforb| ≤ 62 · |{ ~uv ∈ E(Ψ′′) : symb( ~uv) ∈ {φi, φ′i}}|
S15,W2

≤ 62 · 3pSn ·
√
pbal,1ptrpfan

≤ p1/5
bal,1ptrpfan

2. (88)

Now, by S16, there are at most 8pptptrpfan vertices in Sφ ∩ Sφ′ which are a neighbour of xi or yi in
E3,φ or E3,φ′ . Thus, using X3 andW2,

|F forb| ≤ 8ptrpfan ·
(

4 · 1

8
p

1/4
bal,1ptrpfan+ 2 · √pbal,1ptrpfan

)
≤ p1/5

bal,1(ptrpfan)2. (89)

Then, note that

|V forb|
X3,W2

≤ 4 · 1

8
p

1/4
bal,1ptrpfan+ 2 · √pbal,1ptrpfan ≤ p1/5

bal,1ptrpfan. (90)

Finally, note that

|W forb| ≤ 61 · |{ ~uv ∈ E(Ψ′′) : symb( ~uv) ∈ {φi, φ′i}}|
1
16
p

1/4
bal,1ptrpfan

S15,W2

≤
61 · 3pSn ·

√
pbal,1ptrpfan

1
16
p

1/4
bal,1ptrpfan

≤ p1/5
bal,1n. (91)

Let L be the set of (xi, yi, L)-links with odd edges in E3,φi and even edges in E3,φ′i
and whose

vertices are in Sφ ∩ Sφ′ Then, using S17b–e, the number of links in L which either

i) for some 3 ≤ k ≤ 60, contain an edge of Eforb as their kth edge, or

ii) contain a vertex of W forb as an internal vertex, or

iii) use an edge from F forb as its 2nd or 61st edge, or

iv) use a vertex of V forb as its 2nd or 62nd vertex,

is at most

100(ptrpfa)60n28 · ((ptrpfa) · |Eforb|+ |F forb|+ (ptrpfa)2n · |W forb|+ (ptrpfa)n · |V forb|)
(88)–(91)

≤ 400p
1/5
bal,1(ptrpfa)62n30.

However, by S17a, |L| ≥ p63
bal,2(ptrpfa)62n30. Thus, there is some (xi, yi, L)-link with odd edges in

F3,φi and even edges in F3,φ′i
which uses no edge in Eforb or vertex in W forb (noting that if it has an

edge of Eforb as its 2nd or 61st edge, then this edge is in F forb, and if it has an edge of Eforb as its
first or last edge then it contains a vertex of V forb as its 2nd or 62nd vertex).

Let Pi be the path of such a link. Then, we have that X1 and X2 hold for Pi from the properties
of an (xi, yi, L)-link. Furthermore, as Pi has no edge in Eforb or vertex in V forb it has no edge in
common with any E(Pj) with j ∈ I and {φi, φ′i} ∩ {φj , φ′j} 6= ∅, and therefore, by X1, no edge in
common with any E(Pj), j ∈ I. Finally, as V (Pi) contains no vertex in W forb, we have that X3 holds
with I replaced by I ∪ {i}. Therefore, the set I ∪ {i} contradicts the choice of I, as shown by Pj ,
j ∈ I ∪ {i}.

Thus, we have that I = [s]. Take edge-disjoint paths Pi, i ∈ [s], in G, then, satisfying X1–X3.
For each φ ∈ F , let

Ê∗φ =

Êφ \
 ⋃
i∈[s]:φ∈{φi,φ′i}

E(Pi)

 ∪
 ⋃
i∈[s]:φ∈{φi,φ′i}

E(Pi) \ E3,φ

 .

We will show that Ê∗φ, φ ∈ F , satisfy V1–V5. Firstly, as for any φ ∈ F and i ∈ [s] with φ ∈ {φi, φ′i}
we have E(Pi) ∩ Ê′φ ⊂ E3,φ, we have that V1 holds due to U1. Next, for each φ ∈ F , for each i ∈ [s]
with φ ∈ {φi, φ′i}, we have that E(Pi)\E3,φi has the same colours (with multiplicity) as E(Pi)∩E3,φi ,
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and therefore each colour appears the same number of times in Ê∗φ as in Êφ. Thus, V2 follows from
U2. Furthermore, we have that V3 follows from U3 as, for each φ ∈ F , for every i ∈ [s], if φ ∈ {φi, φ′i}
then Pi has all its vertices in Sφ.

For each φ ∈ F and v ∈ V (G), we have

|{e ∈ Ê∗φ : v ∈ V (e)}| = |{e ∈ Êφ : v ∈ V (e)}| − |{i ∈ [s] : φi = φ, xi = v}|+ |{i ∈ [s] : φ′i = φ, yi = v}|
(87)
= |{e ∈ Êφ : v ∈ V (e)}| − λφ,v

(80)
= |{i ∈ Iφ : v ∈ V̂i \ V (M̃i,1)}| − |{i ∈ Iφ : v ∈ Ti}|

and thus V4 holds. Finally, for each φ ∈ F , i ∈ Iφ and v ∈ Si, we have

|{e ∈ Ê∗φ : v ∈ V (e), c(e) ∈ Ci}| ≤ |{e ∈ Êφ : v ∈ V (e), c(e) ∈ Ci}|+ |{i ∈ [s] : φ ∈ {φi, φ′i}, v ∈ V (Pi)}|
U5,X3

≤ 1

2
p

3/2
pt ptrpfan+

1

8
p

1/4
bal,1ptrpfan ≤ p3/2

pt ptrpfan,

so therefore V5 holds. �

7.6 Part C.4: Partitioning the final edges

Consider the partition of Ê \ (
⋃
i∈[n] M̃i,1) into Ê∗φ, φ ∈ F , satisfying V1–V5. It is now sufficient to,

for each φ ∈ F , partition Êφ into matchings M̃i,2, i ∈ Iφ, such that, for each i ∈ Iφ, V (M̃i,2) ⊂ Ri,2
and C(M̃i,2) = Ĉi \ C(M̃i,1). Indeed, then, setting M̂i = M̃i,1 ∪ M̃i,2 for each i ∈ [n], we have that
C10–C12 hold, where C12 follows from V4. Thus, for the rest of the proof, to simplify the notation
slightly, we will fix a family φ ∈ F and omit φ from the subscripts.

Fix, then, φ ∈ F . For each c ∈ C, we wish to assign one each of the edges of colour c in Ê∗φ to

the M̃i,2 for which c ∈ Ĉi \ C(M̃i,1), doing this in such a way that the assigned edge for M̃i,2 has its
vertices in Ri,2 and that M̃i,2 is a matching. If possible, this will use exactly all of the colour-c edges
in Ê∗φ, due to V2.

For each c ∈ C, let Ec be the edges in Ê∗φ with colour c and let Ic = {i ∈ Iφ : c ∈ Ĉi \ C(M̃i,1)}.
By V2, we have |Ec| = |Ic|. For each c ∈ C, let Lc be the bipartite graph with vertex classes Ec and
Ic and edge set {ei : e ∈ Ec, i ∈ Ic, V (e) ⊂ Ri,2}. If we can find a perfect matching Mc in Lc for each
c ∈ C, such that no two edges matched to the same i ∈ Iφ in any Lc share any vertices, then we will
be able to use Mc, c ∈ C, to assign the edges in Ê∗φ. We will now first sparsify the edges of Lc to get
L′c, for each c ∈ C, by deleting edges independently at random. (For each i ∈ Iφ this will reduce the
overlap between the edges we are still considering for M̃i,2.) Then, we will further sparsify L′c to get
L′′c in such a way that if any such perfect matchings Mc, c ∈ C, can be found in L′c then they will
automatically have the additional property we wish to have.

Recalling from (73) that n0 = 1.01pptptrpfan, D0 = p2
Rpptptrpfan/8p

2
S and q0 = p2

R/8p
2
S , we will

use S18–S20. Note that q0n0 = 1.01D0. By S12, C6 and T2, we have |Ic| = (1± 2pbal,1)pptptrpfan,

so that 0.98n0 ≤ |Ic| = |Ec| ≤ n0. Let ∆0 = p
3/2
pt ptrpfan and µ = 10/(

√
pT∆0), so that

µ∆0 =
10
√
pT

= ω(log3 n),
D0

∆0
≥ p−1/3

pt = ω(p−10
T log3 n), (92)

and

µD0 =
10D0

∆0
√
pT

=
10p2

R

8p2
S

√
pptpT

≥ 1

p
1/3
pt

= ω(p−2
T log3 n), (93)

For each c ∈ C, form L′c by taking Lc and keeping each edge independently at random with probability
µ. The following then holds.

Claim 37. With high probability, we have the following properties.

Y1 For each c ∈ C and I ⊂ Ic with 1 ≤ |I| ≤ n0(log2 n)/µD0, |NL′c(I)| ≥ µD0|I|/30 log2 n.

Y2 For each c ∈ C and E ⊂ Ec with 1 ≤ |E| ≤ n0(log2 n)/µD0, |NL′c(E)| ≥ µD0|E|/30 log2 n.

Y3 For each c ∈ C, and any sets I ⊂ Ic and E ⊂ Ec with |Ic|, |Ec| ≥ n0 log2 n/4µD0, eL′c(I, E) ≥
µq0|I||E|/2.

Y4 For each c ∈ C, i ∈ Ic and w ∈ Ri,2,

|{z ∈ Ri,2 : wz ∈ Ê∗φ, c(wz) ∈ Ci, i(wz) ∈ E(L′c(wz))}| ≤ 2µ∆0.
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Proof of Claim 37. Y1: Let c ∈ C and I ⊂ Ic with 1 ≤ |I| ≤ n0/2D0. Then, we have |NLc(I, E4,φ)| ≥
D0|I| by S18. Letting Xc,I = |NL′c(I, E4,φ)|, we have EXc,I ≥ µD0|I|. Thus, by Lemma 2.6, we have
that P(Xc,I < µD0|I|/2) = exp(−ω(|I| logn)). Therefore, by a union bound, with high probability,
for every c ∈ C and I ⊂ Ic with 1 ≤ |I| ≤ n0/2D0, we have |NL′c(I)| ≥ µD0|I|/2 ≥ µD0|I|/30 log2 n.

Suppose then c ∈ C and I ⊂ Ic with n0 log2 n/2D0 ≤ |I| ≤ n0/µD0. Let ` = q0|I|/2 ≤ q0n0/µD0,
so that ` ≤ 1.01 log2 n/µ. Let E be the set of e ∈ Ec with at least ` neighbours in Lc in I. Then,

eLc(I, Ec \ E) ≤ ` · |Ec \ E| < q0|I| · |Ec \ E|

so that, by S20, we must have |Ec \ E| < n0/2D0, and, hence, |E| ≥ 0.98n0 − n0/2D0 ≥ 0.97n0. For
each e ∈ E, setting `′ = `/ log2 n and using that `′ ≤ 1.01/µ,

P(e ∈ NL′c(I)) ≥ µ`′(1− µ)`
′
≥ µ`′

2e
≥ µq0|I|

4e log2 n
≥ µD0|I|

20n0 log2 n
.

so that, letting Xc,I = |NL′c(I, E4,φ)|, EXc,I ≥ µD0|I||E|/20n0 ≥ µD0|I|/25 log2 n. Therefore, by

Lemma 2.6, we have that P(|NL′′c (I)| < µD0|I|/30 log2 n) = exp(−ω(|I| logn)). Thus, using a union
bound, this completes the proof that Y2 holds with high probability.

Y2 holds with high probability similarly to Y1, using S20, and S19 in place of S18, and {i ∈ Iφ :
c ∈ Ci,2} in place of E4,φ.

Y3: Let c ∈ C, I ⊂ Ic and E ⊂ Ec satisfy |I|, |E| ≥ n0(log2 n)/4µD0. Then, by S20, there
are at least q0|I||E| edges between Ic and Ec in Lc. Letting XI,E = eL′c(Ic, Ec), we have that
EXI,E ≥ µq0|I||E|, so that, by Lemma 2.6, there are fewer than µq0|I||E|/2 edges between I and E
in L′c with probability at most

exp

(
−µq0|I||E|

12

)
≤ exp

(
−µq0 · (n0(log2 n)/4µD0) ·max{|I|, |E|}

12

)
= exp(−ω(max{|I|, |E|} logn)).

Thus, by a union bound, with high probability Y3 holds.
Y4: Let c ∈ C, i ∈ Ic and w ∈ Ri,2. By V5, we have

|{z ∈ Ri,2 : wz ∈ Ê∗φ, c(wz) ∈ Ci, i(wz) ∈ E(Lc(wz))}| ≤ p3/2
pt ptrpfan = ∆0.

Therefore, E|{z ∈ Ri,2 : wz ∈ Ê∗φ, c(wz) ∈ Ci, i(wz) ∈ E(L′c)}| ≤ µ∆0. Thus, Y4 holds with high
probability by Lemma 2.6 and a union bound. �

Thus, by Claim 37, we can assume that Y1–Y4 hold. Now, let

η = 1/4µ∆0
(92)
=
√
pT /40 and D1 =

η3µD0

103 log2 n
=

η2D0

4 · 103∆0 log2 n
, (94)

so that, by (92), D1 = ω(η−2p−1
T log3 n). For each c ∈ C, i ∈ Iφ and e ∈ Ec with ie ∈ E(Lc), let xie be

a Bernoulli random variable with probability η. For each c ∈ C, let L′′c be the subgraph of L′c of edges
ie for which xie = 1 and, for each c′ ∈ C \ {c} and f ∈ Ec′ with V (f) ∩ V (e) 6= ∅ and if ∈ E(L′c), we
have xif = 0.

Claim 38. With high probability, we have the following properties.

Z1 For each c ∈ C and I ⊂ Ic with 1 ≤ |I| ≤ n0/2D1, |NL′′c (I)| ≥ D1|I|.
Z2 For each c ∈ C and E ⊂ Ec with 1 ≤ |E| ≤ n0/2D1, |NL′′c (E)| ≥ D1|E|.
Z3 For each c ∈ C, and any sets I ⊂ Ic and E ⊂ Ec with |I|, |E| ≥ n0/4D1, there is an edge between

I and E in L′′c .

Proof of Claim 38. Let c ∈ C, i ∈ Ic and e ∈ Ec with ie ∈ E(Lc). Let Fi,e be the set of edges f 6= e
for which V (f) ∩ V (e) 6= ∅ and if ∈ E(L′c(f)). Then, we have

|Fi,e| ≤
∑

w∈V (e)

|{z ∈ Ri,2 : wz ∈ Ê∗φ, c(wz) ∈ Ci, if ∈ E(L′c(f))}|
Y4

≤ 4µ∆0, (95)

and, hence,
P(e ∈ E(L′′c )) ≥ η(1− η)|Fi,e| ≥ η(1− η)4µ∆0 ≥ η/2e. (96)

Z1 if |I| ≤ n0(log2 n)/µD0: Let c ∈ C and I ⊂ Ic with 1 ≤ |I| ≤ n0(log2 n)/µD0. Then, we
have |NL′c(I)| ≥ µD0|I|/30 log2 n by Y1. Letting Xc,I = |NL′′c (I)|, we have that Xc,I is 2-Lipschitz
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and affected by at most |NL′c(I)| · 4µ∆0 random variables xie by Y4, and EXc,I ≥ |NL′c(I)| · η/2e ≥
ηµD0|I|/60e log2 n ≥ 2D1|I|. Thus, by Lemma 2.7, we have that

P(Xc,I < D1|I|) ≤ 2 exp

(
−

2(|NL′c(I)| · η/4e)2

4 · |NL′c(I)| · 4µ∆0

)
= 2 exp

(
−Ω

(
η2|NL′c(I)|

µ∆0

))

= 2 exp

(
−Ω

(
η2µD0|I|
µ∆0 log2 n

))
(94)
= 2 exp

(
−Ω

(
pTD0|I|
∆0 log2 n

))
(92)
= exp(−ω(|I| logn)). (97)

Therefore, by a union bound, with high probability, for every c ∈ C and I ⊂ Ic with 1 ≤ |I| ≤
n0(log2 n)/µD0, we have |NL′c(I)| ≥ D1|I|.

Z1 if |I| > n0(log2 n)/µD0: Let c ∈ C and I ⊂ Ic with n0(log2 n)/µD0 < |I| ≤ n0/2D1. Let
` = bµq0|I|/4c and note that

η`
(94)

≥ µq0|I|
32µ∆0

= Ω

(
|I|D0

n0∆0

)
(94)
= ω

(
D1|I| logn

n0

)
. (98)

Let E be a maximal set of e ∈ Ec for which |NL′c(e) ∩ I| ≥ `, and let L′c,I ⊂ L′c contain exactly
` edges from each vertex in E into I. Suppose, for contradiction, that |Ec \ E| > n0/10. Then,
eL′c(I, Ec\E) < `·|Ec\E| ≤ µq0|I||Ec\E|/4, which contradicts Y3. Thus, |E| ≥ |Ec|−n0/10 ≥ 0.8n0.

For each e ∈ E, using (98), we have P(e ∈ NL′′c ∩L′c,I (I, E)) ≥ 1−(1−η/2e)` ≥ min{0.99, 3D1|I|/n0}.
Thus, letting XI,E = |NL′′c ∩L′c,I (I, E)|, we then have that EXI,E ≥ min{0.75n0, 2D1|I|} = Ω(D1|I|).
As XI,E is 2-Lipschitz and affected by at most |E| · ` · 4µ∆0 = O(n0 · µq0|I| ·

√
pT ) random variables

xie by Y4, by Lemma 2.7, we have that

P(XI,E < D1|I|) ≤ exp

(
−Ω

(
(D1|I|)2

n0 · µq0|I| ·
√
pT

))
= exp

(
−Ω

(
D2

1|I|
µD0 ·

√
pT

))
= exp

(
−Ω

(
η2D1|I|√
pT log2 n

))
= exp(−ω(|I| logn)).

Therefore, by a union bound, with high probability, Z1 holds if |I| > n0(log2 n)/µD0.
Z2: That Z2 hold with high probability follows similarly, again splitting into cases depending on

whether |E| ≤ n0(log2 n)/µD0 or not.
Z3: Let c ∈ C, I ⊂ Ic and E ⊂ Ec satisfy |I|, |E| ≥ n0/4D1. Let N = eL′c(I, E). As log2 n/4µD0 ≤

n0/4D1, by Y3 we have N ≥ µq0|I||E|/2. By (96), we have EXI,E ≥ ηN/2e. As XI,E is 2-Lipschitz
and affected by at most N · ·4µ∆0 = O(N/η) random variables xie by Y4 and (94), by Lemma 2.7,
we have that

P(XI,E > 0) ≤ exp

(
−Ω

(
(ηN)2

N · η−1

))
= exp

(
−Ω

(
η3N

))
= exp

(
−Ω

(
η3µq0|I||E|

))
= exp

(
−Ω

(
η3µq0 max{|I|, |E|} · n0/D1

)) (94)
= exp

(
−Ω

(
q0 log2 nmax{|I|, |E|} · n0/D0

))
= exp(−ω(max{|I|, |E|} logn)).

Therefore, by a union bound, with high probability, Z3 holds. �

Thus, by Claim 38, we can assume that Z1–Z3 hold, using which we show the following claim.

Claim 39. For each c ∈ C, L′c has a perfect matching.

Proof of Claim 39. Fix c ∈ C. If I ⊂ Ic with |I| ≤ n0/2D1, then, by Z1, |NL′′c (I)| ≥ D1|I| ≥ |I|.
Suppose, then, that I ⊂ Ic with n0/4D1 ≤ |I| ≤ |Ic|/2. Then, by Z3, we must have |Ec \NL′′c (I)| <
n0/4D1, and, hence

|NL′′c (I)| ≥ |Ec| − n0/4D1 = |Ic| − n0/4D1 ≥ |Ic|/2 ≥ |I|.

Thus, for any I ⊂ Ic with |I| ≤ |Ic|/2, we have |NL′′c (I)| ≥ |I|. Similarly, by Z2 and Z3, we have
that |NL′′c (E)| ≥ |E| for any E ⊂ Ec with |E| ≤ |Ec|/2 = |Ic|/2. Then, for any I ⊂ Ic with |I| > |Ic|/2,
if |NL′′c (I)| < |I|, then we have that |Ec \NL′′c (I)| ≤ |Ic|/2, and thus |Ic \ I| ≥ |NL′′c (Ec \NL′′c (I))| ≥
|Ec \NL′′c (I)|, so that

|NL′′c (I)| = |Ec| − |Ec \NL′′c (I)| ≥ |Ec| − |Ic \ I| = |I|.

Therefore, Hall’s matching condition holds, and thus there is a perfect matching in L′′c . �
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By Claim 39, we can choose bijective functions ψc : Ic → Ec, c ∈ C, such that, for each c ∈ C and
i ∈ Ic, iψc(i) ∈ E(L′′c ). For each i ∈ Iφ, let M̃i,2 = {ψc(i) : c ∈ Ĉi \ C(M̃i,1)}. Observe that each of
these subgraphs is a matching. Indeed, if i ∈ Iφ and e, f ∈ Ec with ie, if ∈ M̃i,2 ⊂ E(L′′c ) and e 6= f ,
then we have xie = xif = 1. For any edge f ′ ∈ Ec intersecting e with if ∈ E(L′c), we have xif ′ = 0,
and thus e and f do not intersect, so that M̃i,2 is a matching. Moreover, by construction, M̃i,2 is
rainbow with colour set (Ĉi \ C(M̃i,1)).

For each i ∈ [n], let M̃i = M̃i,1 ∪ M̃i,2. We will show that C10–C12 hold, thus completing the
proof of Lemma 3.5. First, for each i ∈ [n], as M̃i,1 and M̃i,2 are rainbow matchings with vertex sets
in (V̂i \Ri)∪Ri,1 and Ri,2 and colour sets C(M̃i,1) and Ĉi \C(M̃i,1) respectively, we have that M̃i is
a rainbow matching with colour set Ĉi (and thus C10 holds) and V (M̃i) ⊂ V̂i. Thus, by the property
from T1, we have that C11 holds.

Finally, for C12, letting φ ∈ F and v ∈ Sφ, we wish to show that

|{i ∈ Iφ : v ∈ Ri \ V (M̃i)}| = |{i ∈ Iφ : v ∈ Ti}|. (99)

Let, then, φ ∈ F and v ∈ Sφ. First, note that, by T1,

|{i ∈ Iφ : v ∈ Ri \ V (M̃i)}| = |{i ∈ Iφ : v ∈ V̂i}| − |{i ∈ Iφ : v ∈ V (M̃i)}|. (100)

Now, for each φ ∈ F and v ∈ Sφ,

|{i ∈ Iφ : v ∈ V (M̃i)}| =
∣∣∣{e ∈ ⋃

i∈Iφ

M̃i : v ∈ V (e)
}∣∣∣ =

∣∣∣{e ∈ (Ê∗φ ∪ ( ⋃
i∈Iφ

M̃i,1

))
: v ∈ V (e)

}∣∣∣
V4
= |{i ∈ Iφ : v ∈ V̂i}| − |{i ∈ Iφ : v ∈ Ti}|.

In combination with (100), this implies that (99) holds, as required. This completes the proof of
Lemma 3.5.
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