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Abstract

In 1989, Rota conjectured that, given any n bases B1, . . . , Bn of a vector space of dimension n, or
more generally a matroid of rank n, it is possible to rearrange these into n disjoint transversal bases.
Here, a transversal basis is a basis consisting of exactly one element from each of the original bases
B1, . . . , Bn. Two natural approaches to this conjecture are, to ask in this setting a) how many disjoint
transversal bases can we find and b) how few transversal bases do we need to cover all the elements
of B1, . . . , Bn? In this paper, we give asymptotically-tight answers to both of these questions.

For a), we show that there are always (1− o(1))n disjoint transversal bases, improving a result of
Bucić, Kwan, Pokrovskiy, and Sudakov that (1/2− o(1))n disjoint transversal bases always exist. For
b), we show that B1 ∪ · · · ∪ Bn can be covered by (1 + o(1))n transversal bases, improving a result
of Aharoni and Berger using instead 2n transversal bases, and a subsequent result of the Polymath
project on Rota’s basis conjecture using 2n− 2 transversal bases.

1 Introduction

Rota’s basis conjecture is a famous conjecture concerning the rearrangeability of bases in a vector space
or matroid. Rota posed it in 1989 (see [13, Conjecture 4]), both in the special case of vector spaces, and
for general matroids (see Section 2 for the definition and the basic properties of a matroid). Given any
n bases B1, . . . , Bn of an n-dimensional vector space (or, more generally, in a matroid of rank n), the
conjecture states that the elements in each of the bases B1, . . . , Bn can be ordered in such a way that
the first elements of B1, . . . , Bn together form a basis, the second elements of B1, . . . , Bn together form a
basis, and so on. In other words, the (multi-)set, B1 ∪ · · · ∪ Bn can be decomposed into n disjoint bases
each consisting of exactly one element from each of the original bases B1, . . . , Bn. Saying that such a basis
containing exactly one element from each of B1, . . . , Bn is a transversal basis, Rota’s basis conjecture can
be restated as follows.

Conjecture 1.1 (Rota’s Basis Conjecture). Any collection of n disjoint bases in a rank-n matroid can be
decomposed into n transversal bases.

Aside from its intriguingly simple statement, an appealing aspect of this conjecture is that it has
many unexpected connections. In particular, Huang and Rota [13] discovered a surprising link to the
Alon–Tarsi conjecture [3] on the number of odd and even Latin squares of order n (as discussed further
below). Additionally, Conjecture 1.1 for graphic matroids can be phrased as a question about rainbow
spanning trees in a multi-graph (namely, given a multi-graph on n+1 vertices with n spanning trees in n
different colours, does there always exist a decomposition of the coloured edge set into rainbow spanning
trees?). Here, a rainbow subgraph is one with at most one edge of each colour. Studying the existence
of rainbow subgraphs in graphs with various properties, and applications thereof, is more generally a
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very active research direction, as can be seen in the recent surveys (on related but different topics) by
Pokrovskiy [17], Sudakov [21], and the current first author [14].

Despite a great deal of attention, including as the subject of the 12th Polymath project [19] in 2017,
Conjecture 1.1 remains widely open, even for the case of vector spaces (i.e., representable matroids). The
conjecture has only been confirmed in some very special cases, including for ‘paving matroids’ by Geelen
and Humphries [10], for ‘strongly base orderable matroids’ by Wild [22], and for matroids of rank at most
4 by Cheung [6]. The link to the Alon–Tarsi conjecture, discovered by Huang and Rota [13] (and later
simplified by Onn [15]), reduces Rota’s basis conjecture for real-representable matroids of rank n, for
even n, to the Alon–Tarsi conjecture for Latin squares of order n. The Alon–Tarsi conjecture was proved
when n− 1 is prime by Drisko [8] and when n+ 1 is prime by Glynn [12], thus together giving a proof of
Conjecture 1.1 for real-representable matroids of rank n when n− 1 or n+ 1 is an odd prime.

In addition to these special cases, there is some further evidence towards Conjecture 1.1. In 2006,
Aharoni and Berger [1] proved that the natural fractional relaxation of Conjecture 1.1 holds. More recently,
the current second author [20] showed that the conjecture holds with high probability for representable
matroids over finite fields if the n bases are chosen independently and uniformly at random.

There are two natural directions for working towards Conjecture 1.1 in full, as was highlighted by
Pokrovskiy [18], and which are the focus of this paper. The first of these is the packing problem in this
setting: given n bases in a rank-n matroid, how many disjoint transversal bases can we find? The second
is the covering problem in this setting: given n bases in a rank-n matroid, how many transversal bases do
we need to cover all of the elements of these bases? As discussed in Section 1.1 below, in this paper we
give asymptotically-tight answers to both of these questions, thus solving Problems 4.2 and 4.3 in [18].

That one transversal basis can be found in the setting of Conjecture 1.1 is an easy consequence of
the matroid augmentation property, which can be used to greedily select one element from each basis
step by step, while maintaining that the selected elements form an independent set. However, already,
the existence of two disjoint transversal bases is not immediate. In 2007, Geelen and Webb [11] gave the
first packing result towards Conjecture 1.1, by showing that there are always Ω(

√
n) disjoint transversal

bases in this setting. Geelen and Dong [7] later introduced a beautiful probabilistic argument to show
that there are always Ω(n/ log n) disjoint transversal bases. Finally, in 2020, Bucić, Kwan, Pokrovskiy,
and Sudakov [5] made an important breakthrough by showing there is always a linear number of disjoint
transversal bases, as follows.

Theorem 1.2 ([5]). For any ε > 0, the following holds whenever n is sufficiently large with respect to ε.
Any collection of n bases of a rank-n matroid has at least (1/2− ε)n disjoint transversal bases.

Theorem 1.2 shows that, given bases B1, . . . , Bn in a rank-n matroid, there is a family of disjoint
transversal bases using almost one half of the elements in B1 ∪ · · · ∪ Bn. Pokrovskiy [18] subsequently
showed that if instead of disjoint transversal bases one forms a family of n disjoint rainbow independent
sets, then almost all of the elements can be covered, as follows. Here, a rainbow independent set is an
independent set containing at most one element from each of the given bases.

Theorem 1.3 ([18]). For any ε > 0, the following holds whenever n is sufficiently large with respect to
ε. Any collection of n bases of a rank-n matroid has at least (1− ε)n disjoint rainbow independent sets of
size at least (1− ε)n each.

We remark that, with a simple greedy argument, one can deduce from Theorem 1.3 that in the same
setting one can also find n disjoint rainbow independent sets, each of size at least (1 − ε)n (this was
observed by Kwan, see [18, Section 4]). However, there does not seem to be a simple argument in order
to increase the size of the rainbow independent sets in Theorem 1.3.

In the second direction, concerning covering results towards Conjecture 1.1, neither Theorem 1.2 nor
Theorem 1.3 imply a strong covering result. Indeed, even if we can find (1 − o(1))n disjoint transversal
bases in some matroid, it may still be the case that an additional n transversal bases are needed in order
to cover the remaining o(n2) elements (it is easy to construct examples for this).

Using topological tools, Aharoni and Berger [1, Assertion 8.11] showed in 2006 that 2n transversal
bases are sufficient to cover all of the elements in the bases in the setting of Conjecture 1.1, as follows (in
fact, they proved a more general result [1, Theorem 8.9], see also the discussion just before Theorem 6.6).

Theorem 1.4 ([1]). Any collection of n bases of a rank-n matroid can be covered by 2n transversal bases.
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The Polymath 12 project [19] later improved this bound slightly, showing that 2n−2 transversal bases
are already sufficient.

1.1 Our results

In this paper, we give asymptotically-tight bounds for both the packing and the covering problem in the
setting of Rota’s basis conjecture, as follows, thus improving Theorems 1.2 to 1.4 above.

Theorem 1.5 (Asymptotic Packing Theorem). For any ε > 0, the following holds whenever n is suffi-
ciently large with respect to ε. Any collection of n bases of a rank-n matroid has at least (1− ε)n disjoint
transversal bases.

Theorem 1.6 (Asymptotic Covering Theorem). For any ε > 0, the following holds whenever n is suffi-
ciently large with respect to ε. Any collection of n bases of a rank-n matroid can be covered by at most
(1 + ε)n transversal bases.

To prove Theorem 1.5 and 1.6, we modify and extend the methods of [5] and [18], while introducing
new randomised approaches to extend families of rainbow independent sets to transversal bases, careful
notions of ‘density’ within subsets of the matroid, and intricate techniques to modify and improve families
of disjoint rainbow independent sets. Outlines of our proofs can be found in Section 3.

As discussed by Bucić, Kwan, Pokrovskiy, and Sudakov [5], and by Pokrovskiy [18], a plausible path to
a proof of Conjecture 1.1 might be to combine an approximate form of the conjecture with the absorption
method. Conjecture 1.1 seems to be a particularly complex setting for the use of absorption, but, if the
absorption method can be applied, then the two asymptotic forms of Conjecture 1.1 shown here will very
likely be helpful.

2 Preliminaries

We begin by recalling the definition and some basic properties of matroids (for more details see, for
example, the textbook [16]). A matroid M is given by a finite set M and a collection I of subsets of M
satisfying the following three conditions:

• ∅ ∈ I.

• For any set S ∈ I, and any subset S′ ⊆ S, we also have S′ ∈ I.

• For any sets S, T ∈ I with |S| < |T |, there exists an element t ∈ T \ S with S ∪ {t} ∈ I.

The last condition above is often referred to as the augmentation property. The set M is called the ground
set of the matroid and the members of I are called the independent sets in the matroid M. Common
examples of matroids are given by considering linearly independent sets in vector spaces, or acyclic subsets
of the edges of a graph. Given a matroid M with ground set M , the rank of any subset S ⊆M is defined
by

rk(S) := max{|S′| : S′ independent, S′ ⊆ S}.

In other words, the rank of S is the size of the largest independent subset of S. Clearly, we have rk(S) ≤ |S|
(with equality if and only if S itself is independent), and furthermore rk(S) ≤ rk(T ) whenever S ⊆ T .

The rank of the matroid is the rank of its ground set, i.e., the maximum size of an independent set in
the matroid. A maximum size independent set is called a basis of the matroid.

Given a matroid M with ground set M , the span of a subset S ⊆M is defined as

span(S) = {x ∈M : rk(S ∪ {x}) = rk(S)}.

In other words, span(S) is the set consisting of all elements whose addition to S does not increase the
rank. Note that for any basis B of M we have span(B) =M . Some authors use the name closure instead
of span. Also note that this concept of span agrees with the linear-algebraic span in matroids obtained
from vector spaces (by taking the vector space as the ground set and linearly independent sets as the
independent sets of the matroid).
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It is not hard to see that S ⊆ span(S) and rk(span(S)) = rk(S) for every subset S ⊆ M (see [16,
Lemma 1.4.2]). One can also show that span(span(S)) = span(S) and span(S) ⊆ span(T ) for any subsets
S ⊆ T ⊆ M (see [16, Lemma 1.4.3]). Finally, for any subsets S ⊆ T ⊆ M with rk(S) = rk(T ), we must
have span(S) = span(T ). Indeed, if there was an element x ∈ span(T ) \ span(S), then we would have
rk(T ∪ {x}) ≥ rk(S ∪ {x}) > rk(S) = rk(T ), a contradiction.

In this paper, we are concerned with rainbow independent sets in coloured matroids. A coloured
matroid is simply a matroid in which every element is assigned a colour. A set is called a rainbow set if all
of its elements have distinct colours. Thus, a rainbow independent set is a set which is independent and
consists of elements of distinct colours (this may be interpreted as a set in the intersection of the underlying
matroid with the partition matroid given by the colouring, but this perspective is not important in our
paper). Furthermore, a rainbow basis is a basis of the matroid whose elements have distinct colours.

Using the augmentation property above repeatedly, one can show that, for any independent sets S and
T in a matroid, one can find an independent set S∗ with S ⊆ S∗ ⊆ S∪T and |S∗| ≥ |T |. This last condition
can equivalently be stated as |(S ∪ T ) \ S∗| ≤ |(S ∪ T ) \ T |, or again equivalently as |T \ S∗| ≤ |S \ T |.
The following lemma proves a similar statement for rainbow independent sets in coloured matroids.

Lemma 2.1. Let S and T be rainbow independent sets in a coloured matroid. Then there exists a rainbow
independent set S∗ with S ⊆ S∗ ⊆ S ∪ T and |T \ S∗| ≤ 2 · |S \ T |.

We give the simple proof of this lemma in Section 8, in which we collect the proofs of various statements
about matroids used in this paper.

In the settings of Theorems 1.5 and 1.6, we are given a matroid M of rank n and bases B1, . . . , Bn.
We may assume that the bases B1, . . . , Bn are disjoint, by “duplicating” elements appearing in more than
one of these bases. More formally, if an element x appears in the bases Bi(1), . . . , Bi(k) (with k ≥ 2),
we define a matroid M′ where we replace x by k different elements x1, . . . , xk in the ground set, and we
replace x by xj in each of the bases Bi(j) (for j = 1, . . . , k). In this new matroid M′ a set is independent
if it contains at most one of the elements x1, . . . , xk and it corresponds to an independent set in M when
identifying x1, . . . , xk with x. Repeating this operation for all elements appearing in more than one of the
bases B1, . . . , Bn, we can ensure that the bases B1, . . . , Bn are disjoint.

Thus, in the settings of Theorems 1.5 and 1.6, we may consider a matroid of rank n with disjoint bases
B1, . . . , Bn. We may furthermore restrict the ground set of the matroid to be B1 ∪ · · · ∪Bn (note that all
elements outside B1 ∪ · · · ∪Bn are irrelevant to the conclusions of Theorems 1.5 and 1.6). Now, having a
matroid with ground set B1 ∪ · · · ∪Bn and disjoint bases B1, . . . , Bn, we can naturally define a colouring:
We simply say that an element x ∈ B1 ∪ · · · ∪ Bn has colour i if x ∈ Bi. We denote the colour of any
element x ∈ B1 ∪ · · · ∪Bn by c(x) (note that then we have x ∈ Bc(x)). A transversal basis is now simply
a rainbow basis.

We close this section by introducing some notational conventions, and stating two more matroid theory
lemmas which we will use throughout this paper. For a family T of disjoint rainbow independent sets in
a coloured matroid, we write E(T ) =

⋃
T∈T T for the set of matroid elements covered by the sets in T .

For a subset S of a matroid and an element x ∈ S, we write S − x for the set S \ {x} obtained when
removing x from S (we will not use the notation S−x for S \ {x} = S if x ̸∈ S). Similarly, for an element
y of the matroid, we write S + y for the set obtained from S when adding y. In the case, where y is
already contained in S, we interpret S + y as a multi-set. Note that, in this case, the set S + y cannot be
independent (since it contains the element y twice).

The following statement is a slight strengthening of Lemma 2.7 in [5] and, as noted there, also follows
from a result of Brualdi [4]. We include a proof in Section 8.

Lemma 2.2. Let S be an independent set in some matroid and let B be a basis of the matroid. Then,
there is an injection ϕ : S → B such that, for each x ∈ S, the set S − x + ϕ(x) is independent, and, for
each b ∈ B \ ϕ(S), the set S + b is independent.

Recall that here S − x + ϕ(x) and S + b are to be interpreted as multi-sets (namely, obtained from
S − x = S \ {x} when adding ϕ(x), and from S when adding b, respectively). That these sets are
independent automatically means that they cannot contain an element twice, meaning that ϕ(x) ̸∈ S − x
and b ̸∈ S.

Our final lemma in this section is the following, and is also proved in Section 8.
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Lemma 2.3. For any independent sets S and T in a matroid, at least one of the following statements
holds.

(a) There is some x ∈ S such that the set T + x is independent.

(b) There is an injection ϕ : S → T such that, for each x ∈ S, the set T − ϕ(x) + x is independent and
span(T − ϕ(x) + x) = span(T ).

Again, in (a), the set T + x is to be interpreted as a multi-set. So if (a) holds, this automatically
means that T + x cannot contain an element twice, and so we have x ̸∈ T . Similarly, if (b) holds, this
automatically means that x ̸∈ T − ϕ(x) for every x ∈ S.

Our notation follows general convention. In particular, for a positive integer n, we write [n] = {1, . . . , n}
as usual. For a bipartite graph with vertex classes X and Y , by slight abuse of notation, we interpret its
edges to be pairs of the form (x, y) with x ∈ X and y ∈ Y , meaning that its edge set can be interpreted
as a subset of X × Y .

3 Proof outlines

In this section, we give outlines of the proofs of our main results in Theorems 1.5 and 1.6, and state several
key lemmas used in these proofs. The proof of Theorem 1.6 can be found in Section 6, using the results
in Section 4. The proof of Theorem 1.5 can be found in Section 7, using the results in Section 5 (which,
in turn, build on some of the results in Section 4).

3.1 Covering theorem

As discussed in the previous section, in the setting of our covering theorem (Theorem 1.6), we can consider
a coloured matroid of rank n, where the colour classes are bases B1, . . . , Bn. We then need to show that
their union B1 ∪ · · · ∪ Bn can be covered by (1 + ε)n rainbow bases. This is equivalent to showing that
B1∪· · ·∪Bn can be decomposed into (1+ε)n rainbow independent sets (indeed, given such a decomposition
into rainbow independent sets, it is not hard to extend these rainbow independent sets to rainbow bases
greedily using the augmentation property of the matroid).

Therefore, our goal is to find a family of (1+ ε)n disjoint rainbow independent sets whose union is the
entire ground set B1 ∪ · · · ∪ Bn. Instead of finding such a family directly, for some λ < ε (which we will
later choose as λ = ε/3), we aim to find a family T of (1+λ)n disjoint rainbow independent sets such that
the set of leftover elements not covered by T can also be decomposed into few (namely, at most (ε− λ)n)
rainbow independent sets. As discussed in the previous section, we denote the set of elements covered by
T as E(T ) =

⋃
T∈T T . Now, letting U = (B1∪· · ·∪Bn)\E(T ) be the set of uncovered elements, we want

to decompose U into few rainbow independent sets. In order to have any hope for such a decomposition,
we need U to be sufficiently small (namely, we need |U | ≤ (ε−λ)n2 if U is to be decomposed into at most
(ε− λ)n rainbow independent sets).

It follows from Pokrovskiy’s result [18] stated as Theorem 1.3 that it is possible to find a family T of
⌊(1 + λ)n⌋ disjoint rainbow independent sets such that the set U = (B1 ∪ · · · ∪ Bn) \ E(T ) of uncovered
elements is rather small. However, instead of Theorem 1.3, we need the following stronger statement, in
which the set U of uncovered elements is small for every family T of ⌊(1+λ)n⌋ disjoint rainbow independent
sets such that E(T ) is inclusion-wise maximal. Here, E(T ) being inclusion-wise maximal means that there
does not exist a family S of ⌊(1 + λ)n⌋ disjoint rainbow independent sets with E(T ) ⫋ E(S).

Lemma 3.1. For any λ, ν > 0 the following holds for any sufficiently large n (sufficiently large with
respect to λ and ν) and any coloured rank-n matroid with colour classes B1, . . . , Bn, such that each of the
sets Bi for i = 1, . . . , n is a basis. Let T be a family of ⌊(1 + λ)n⌋ disjoint rainbow independent sets such
that E(T ) is inclusion-wise maximal. Then we have |E(T )| ≥ (1− ν)n2.

This lemma is proved in Section 4, and is one of the key ingredients for the proof of Theorem 1.6. It also
directly implies Theorem 1.3, as we will show at the end of Section 4 (so Section 4 gives a self-contained
proof of Theorem 1.3 which is somewhat simpler than the original proof in [18]). The proof of Lemma 3.1
uses a similar approach as in [18], but with some crucial differences, enabling us to obtain the stronger
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statement in Lemma 3.1, which we need for the proof of Theorem 1.6. Some arguments from the proof of
Lemma 3.1 will also later be used in the proof of Theorem 1.5.

The conclusion |E(T )| ≥ (1 − ν)n2 of Lemma 3.1 means that |U | = n2 − |E(T )| ≤ νn2. Of course,
just knowing that U has size at most νn2 is not enough to decompose U into few rainbow independent
sets. To ensure the existence of such a decomposition, we will need two clearly necessary conditions: that
U can be decomposed into few rainbow sets and that U can be decomposed into few independent sets. It
was shown by Aharoni and Berger [1] in 2006 that these two conditions are actually sufficient for a set U
to be decomposable into (almost as) few rainbow independent sets (see Theorem 6.6 for a restatement of
their result). In particular, their result implies that, if U can be decomposed both into λn rainbow sets
and into λn independent sets, then U can be decomposed in at most 2λn rainbow independent sets. If we
can achieve this, then, together with the at most (1 + λ)n rainbow independent sets in the family T , this
would give a decomposition of B1 ∪ · · · ∪Bn into at most (1 + 3λ)n rainbow independent sets (so, taking
λ = ε/3, this gives the desired conclusion).

The first condition, demanding that U is decomposable into λn rainbow sets, is equivalent to requiring
that every colour appears in U at most λn times. On its own, ensuring this would not require significantly
more effort than proving Lemma 3.1. Much more difficult will be the second condition about decomposing
U into independent sets. A classical theorem of Edmonds [9] implies that U can be decomposed into
at most λn independent sets if and only if |U ′| ≤ ⌊λn⌋ · rk(U ′) for all subsets U ′ ⊆ U . This is clearly
necessary, as every independent subset of U can contain at most rk(U ′) elements from U ′.

Effectively, then, we need to make sure that U does not have any “dense spots” U ′ with |U ′| >
⌊λn⌋ · rk(U ′). However, it turns out that keeping track of all subsets U ′ ⊆ U with |U ′| > ⌊λn⌋ · rk(U ′)
is very difficult. In order to overcome this, we work with a different notion of “dense spots”. We call
these dense spots deadlocks, and introduce this notion in the first part of Section 6. Crucially, the ⌊λn⌋-
deadlock of U has a non-empty intersection with every subset U ′ ⊆ U such that |U ′| > ⌊λn⌋ · rk(U ′) (this
intersection can be viewed as the “dense part” of U ′ that causes U ′ to be dense overall). Thus, if the
⌊λn⌋-deadlock of U is empty, then there cannot be any subsets U ′ ⊆ U with |U ′| > ⌊λn⌋ · rk(U ′), and we
will therefore be able to decompose U into ⌊λn⌋ independent sets. Our goal is thus to find a family T of
⌊(1 + λ)n⌋ disjoint rainbow independent sets such that U = (B1 ∪ · · · ∪Bn) \E(T ) contains every colour
at most λn times and such that the ⌊λn⌋-deadlock of U is empty.

Using Lemma 3.1, we can find a family T of ⌊(1 + λ)n⌋ disjoint rainbow independent sets such that
U = (B1∪· · ·∪Bn)\E(T ) satisfies |U | ≤ νn2. Later, we will denote the ⌊λn⌋-deadlock of U by D⌊λn⌋(U),
but in this sketch we will simply call it D(U). This deadlock will have the property that removing any
element e in D(U) from U will reduce the size of D(U), a good thing as we wish to reduce D(U) to the
empty set. But in order to remove e from U , we need to add it to some T ∈ T , and there will likely1

be no such T for which T + e is a rainbow independent set. So, we will need to pick some T ∈ T and,
when adding e to T , in order to still have a rainbow independent set, we need to remove one or two other
elements from T (perhaps one element to maintain rainbowness and perhaps one element to maintain
independence). In other words, we replace T ∈ T by (T + e) \F , where F is a set of at most two elements
of T (see part a) of Figure 1). But then the elements in F get added to the uncovered set U , and, while
removing e from U decreases the size of the deadlock D(U), adding the elements in F to U may increase
the size of D(U) again! Therefore, we will have to choose the element e ∈ U , the set T ∈ T , and the
elements in F very carefully.

Utilising the meticulous definition for our notion of deadlock, it turns out that the right condition for
this is to ensure that F is disjoint from the span of the deadlock D′(U) defined by a slightly different
parameter (namely, to be precise, the (⌊λn⌋−2)-deadlock of U). This parameter choice will mean that we
have D(U) ⊆ D′(U). However, in order to be able to choose e, T and F such that F is disjoint from the
span of the deadlock D′(U), we also want D′(U) not to be too much larger than D(U) (more, precisely,
we want the rank of D′(U) not to be too much larger than the rank of D(U)).

To ensure this, instead of two deadlocks, we will consider a sequence of deadlocks with gradually
decreasing parameters. These deadlocks will be nested, and increasing in size, and thus we will be able
to choose a consecutive pair of deadlocks in this sequence where the rank does not grow too much. We
can then decrease the size of the smaller of these two deadlocks via a switching operation as described
above, replacing some T ∈ T by (T + e) \F for some element e ∈ U (and some set F ⊆ T of size |F | ≤ 2).

1If we choose T as in Lemma 3.1 such that E(T ) is inclusion-wise maximal, then definitely there will be no such T .
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Figure 1: a) Given a family T , and its set of uncovered elements U , in order to make the deadlock D(U)
smaller, we look for some e ∈ D(U), a set T ∈ T , and a subset F ⊆ T of size |F | ≤ 2 so that (T + e) \ F
is a rainbow independent set. We then replace T ∈ T by (T + e) \ F . To ensure the size of the deadlock
D(U) decreases, we make sure that F is disjoint from the span of the slightly larger deadlock D′(U).

b) Where a colour c appears too often in U , we look for an element e ∈ U with colour c, a set T ∈ T and
f ∈ T so that c does not appear on T and T + e − f is an independent set. We then replace T ∈ T by
T + e− f . To maintain the property that D(U) = ∅, we ensure that f /∈ span(D′(U)). We also make sure
that c(f) does not appear that often on U .

Repeating this, we will ultimately be able to decrease the size of the ⌊λn⌋-deadlock D(U), and with even
more repetitions we obtain D(U) = ∅.

For clarity, and for a better organisation of the proof, we do not write the proof via a sequence of
many such switching steps. Instead, we choose the initial family T of rainbow independent sets via a
certain minimisation, lexicographically minimising the sizes of the relevant sequence of deadlocks. This
minimisation will also be chosen in such a way that E(T ) is automatically inclusion-wise maximal. Hence,
Lemma 3.1 implies that the set U of uncovered elements has size |U | ≤ νn2. This is crucial for our
arguments in order to find suitable elements e ∈ U , T ∈ T and F ⊆ T for our desired switching operation
replacing T by (T +e)\F . Note that this operation can actually increase the size of U (namely, it replaces
U by (U −e)∪F for some set F of size |F | ≤ 2), so during a long sequence of such switching steps the size
of U could a priori grow by a lot. This is why it is very important for us that the conclusion of Lemma 3.1
holds for every family T such that E(T ) is inclusion-wise maximal. It would not suffice to just find some
initial family T such that |U | ≤ νn2.

Having found a family T of ⌊(1+λ)n⌋ disjoint rainbow independent sets with D(U) = ∅ for the set U of
uncovered elements (and having completed a lot of background work to achieve this), the remaining task
is to modify the family T such that U does not contain too many elements of any one colour. Suppose
we have a colour c that appears at least λn times on U . Picking a set T ∈ T without an element of
colour c, we would like to find an element e ∈ U of colour c and an element f ∈ T such that T + e − f
is an independent set (it will automatically be rainbow by the choice of T ). Our goal is then to replace
T by T + e− f (see part b) of Figure 1), because then the set U of uncovered elements gets replaced by
U − e+ f , which reduces the number of times that colour c appears in U . However, in order to maintain
the condition D(U) = ∅, for some deadlock D′(U) with a slightly different parameter, we need to ensure
that f /∈ span(D′(U)) (similarly to the discussion above). We also want to make sure that the colour
of f does not appear too often in U (because the number of appearances of that colour increases when
replacing U by U − e+ f). Since the rank of D′(U) will be fairly small, and only few colours appear very
often on U (both of these properties are due to the fact that again |U | will be small by Lemma 3.1), and
the elements in U of colour c have rank at least λn, it will be possible to choose elements e and f with the
desired properties. Then, upon replacing T by T + e− f we can reduce the number of times that colour
c appears in U (while maintaining D(U) = ∅ and not increasing the number of appearances of any other
colour beyond λn).

Again, for clarity and a better proof organisation, we actually choose the family T via a certain
minimisation (this time minimising

∑n
c=1 |U ∩ Bc|2), subject to the constraint that D(U) = ∅. We then

show that this family T must have the property that every colour appears at most λn times in U , because
otherwise we could improve T when replacing T by T + e− f as above.

All in all, this yields the desired family T of ⌊(1+λ)n⌋ disjoint rainbow independent sets, such for the
set U of uncovered elements the ⌊λn⌋-deadlock is empty, and such that U contains every colour at most
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λn times. As discussed above, this is sufficient to prove Theorem 1.6.
The detailed proof of Theorem 1.6, as well as our definition of deadlocks and some lemmas about them,

can be found in Section 6.

3.2 Packing theorem

As discussed in the previous section, in the setting of our packing theorem (Theorem 1.5), we can again
consider a coloured matroid of rank n, where the colour classes are bases B1, . . . , Bn. This time, we need
to show that we can we can find at least (1 − ε)n disjoint rainbow bases in B1 ∪ · · · ∪ Bn. Our basic
strategy to prove Theorem 1.5 is first to reserve a random subset R ⊆ B1 ∪ · · · ∪Bn (the ‘reservoir’), then
to form a family T of ⌈(1− ε)n⌉ disjoint rainbow independent sets of large total size in the complement of
R, and finally to turn T into a family of disjoint rainbow bases with a procedure using the elements in R.

This strategy relies on two key lemmas, stated below. The first of these lemmas is somewhat similar to
Lemma 3.1 and Pokrovskiy’s result [18] stated as Theorem 1.3. It gives a family T of ⌈(1− ε)n⌉ disjoint
rainbow independent sets of large total size, but with the very important constraint that T avoids our
reservoir R ⊆ B1 ∪ · · · ∪Bn of randomly chosen elements.

Lemma 3.2. For any 0 < ε < η < 1 and ν > 0 the following holds for any sufficiently large n (sufficiently
large with respect to ε, η and ν) and any coloured rank-n matroid with colour classes B1, . . . , Bn, such
that each of the sets Bi for i = 1, . . . , n is a basis. Let R ⊆ B1 ∪ · · · ∪ Bn be a set of elements drawn
independently at random with probability η. Then, with high probability (more precisely, with probability
tending to 1 as n→ ∞ with ε, η and ν fixed), there is a family T of ⌊(1−ε)n⌋ disjoint rainbow independent
sets in (B1 ∪ · · · ∪Bn) \R such that |E(T )| ≥ (1− η − ν)n2.

The proof of Lemma 3.2 can be found in Section 5. It is similar to the proof of Lemma 3.1 in Section 4
and uses some of the results from that section. However, in the setting of Lemma 3.2, we need to be
more careful as we must avoid using elements from the set R. Moreover, it is crucial that in Lemma 3.2
we find a family consisting of only ⌊(1 − ε)n⌋ rainbow independent sets, as opposed to the ⌊(1 + λ)n⌋
rainbow independent sets in Lemma 3.1. Indeed, the fact that the family consist of fewer sets means that
the average size of these sets is larger, and so fewer alterations are needed in order to turn these sets into
rainbow bases.

Our second key lemma for the proof of Theorem 1.5, stated next, is used in order to turn the family T
obtained from the previous lemma into a family of disjoint rainbow bases. Roughly speaking, this lemma
states that for any family S of ⌈(1−ε)n⌉ disjoint rainbow independent sets of total size |E(S)| < ⌈(1−ε)n⌉·n
which does not contain too many elements from R, we can find a family S ′ of ⌈(1− ε)n⌉ disjoint rainbow
independent sets of strictly larger total size which contains not too many more elements from R. Applying
this lemma repeatedly, we can keep increasing the total size of the family until we arrive at such a family
of total size ⌈(1− ε)n⌉ ·n, i.e., a family of ⌈(1− ε)n⌉ disjoint rainbow bases. This proves Theorem 1.5 (the
details of the deduction of Theorem 1.5 from the two key lemmas stated here can be found at the start of
Section 7).

Lemma 3.3. For any 0 < ε < 1/10, there exist σ = σ(ε) > 0 and L = L(ε) > 0, such that for any η with
ε ≤ η < 1, any sufficiently large n (sufficiently large with respect to ε and η), and any coloured rank-n
matroid with colour classes B1, . . . , Bn with the property that each of the sets Bi for i = 1, . . . , n is a basis,
the following holds with high probability (more precisely, with probability tending to 1 as n→ ∞ with ε and
η fixed) for a random subset R ⊆ B1∪· · ·∪Bn obtained by drawing elements independently at random with
probability η. For any family S of ⌈(1− ε)n⌉ rainbow independent sets with 3

4n
2 ≤ |E(S)| < ⌈(1− ε)n⌉ · n

and |E(S)∩R| ≤ σn2, there is a family S ′ of ⌈(1−ε)n⌉ rainbow independent sets such that |E(S ′)| > |E(S)|
and

|E(S ′) ∩R| ≤ |E(S) ∩R|+ L · ln
( n2

⌈(1− ε)n⌉ · n− |E(S)|

)
. (1)

The term ⌈(1 − ε)n⌉ · n − |E(S)| in the denominator here counts the number of elements missing in
S compared to a family of ⌈(1− ε)n⌉ rainbow bases. The proof of Lemma 3.3 can be found in Section 7,
but we give an outline of the proof here. To prove the lemma we will use some ‘cascade-like’ switching
operations. In order for this to work, we may first have to alter the family S to get a family T of ⌈(1−ε)n⌉
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rainbow independent sets of the same total size |E(T )| = |E(S)|, before starting these operations. For
the purposes of this proof outline, we can assume that T = S, and we comment on the more technical
alteration to S later, just before the proof of Lemma 3.3 in Section 7.

Now, we have a family T of ⌈(1 − ε)n⌉ disjoint rainbow independent sets, not all of which are bases,
such that E(T ) does not contain too many elements from the random reservoir R that we reserved before.
As before, we write U = (B1 ∪ · · · ∪ Bn) \ E(T ) for the set of elements not covered by T . Let us choose
a set T1 ∈ T which is not a basis, and a colour c not appearing on T . From the matroid augmentation
property applied to T1 and the basis Bc in colour c, we know that there is an element e of colour c for
which T1+e is an independent set (and also automatically rainbow). If e ∈ U then in the family T we can
simply replace T1 by T1 + e in order to obtain the desired family S ′ in Lemma 3.3. However, we should
anticipate that there is some T2 ∈ T \{T} with e ∈ T2. Then we could move e from S to T to increase the
size of T , but overall we would not change the total size of T . However, moving e from T2 to T1 will mean
that T2 gets replaced by T2 − e, which is no longer a basis. So we can perhaps find some e′ ̸= e which we
can add to T2 − e. We wish to do this iteratively, making some cascade of changes, until the number of
elements we can move is so large that one of them must be in U , at which point the corresponding cascade
of changes will make an improvement to T . However, it turns out that one cannot hope to succeed simply
by moving elements between the different sets in T until one finds an element in U that can be added to
a set in T without violating rainbowness and independence. Instead, some more complicated switching
operations are needed at every step, where in addition to moving elements between different sets T ∈ T ,
we also modify the sets T ∈ T by exchanging certain elements for other elements in U . The cascade of
switches we use is motivated by the proof of Theorem 1.2 by Bucić, Kwan, Pokrovskiy, and Sudakov [5],
but crucially different in order to obtain our asymptotically-tight improvement.

To sketch our approach, let us focus on just one step of our switching cascade (as shown in Figure 2).
That is, suppose we have found some sets T1, . . . , Tr ∈ T (for some small r) and some T ∈ T \{T1, . . . , Tr}
and e ∈ T such that e can be moved from T to some modified version of T1, . . . , Tr, while maintaining
|E(T )|. Now, T − e is certainly missing some colour, c say. There are at least εn elements x ∈ U with
colour c (recalling that |T | = ⌈(1−ε)n⌉, and every set in T contains at most one element of colour c), and
only few of them were used in one of the previous modifications to T1, . . . , Tr to allow e to be incorporated.
For each of the not-yet-used elements x ∈ U of colour c, we consider the set T − e+ x. This set is always
rainbow, but might not be independent anymore, so we now choose some x′ ∈ T−e such that T−e+x−x′
is independent. Essentially, this means that in the set T − e we exchange the element x′ ∈ T − e against
the element x ∈ U . The different choices for x form an independent set, and therefore this will yield many
different pairs (x, x′) with distinct elements x′ ∈ T (which have many different colours).

For each of these possible pairs (x, x′), we now repeat this procedure for T − e + x − x′ instead of
T − e. Namely, the colour of x′ is missing on T − e + x − x′, so we can find some elements q ∈ U with
c(q) = c(x′) and q′ ∈ T − e such that T − e + x − x′ + q − q′ is a rainbow independent set (i.e., such
that we can exchange q′ against q in the rainbow independent set T − e + x − x′). However, this time,
as there are many different colours appearing among the possible elements x′ obtained in the previous
step, we also have a lot more possibilities for the element q. In fact, it will suffice to restrain ourselves
to choose q from the set R ∩ U . Using the randomness of R, it is not hard to show that we have a
large span of the elements in R whose colours appear on the possible elements x′ in the previous step
(and in fact, this span is even robustly large when deleting a small number of elements from R). By
our assumption that E(T ) does not contain many elements of R, most of the elements of R are in U ,
and so we can show that there are many potential choices for q ∈ R ∩ U and these choices have a large
span. This is the crucial part of our argument, and allows us to show that we will have a huge number
of possibilities for q′ ∈ T − e (namely, almost all elements of T − e will appear as a possible choice for
q′ for some appropriately chosen x, x′, and q). Then we also have many different options for finding an
element e′ such that T − e+ x− x′ + q − q′ + e′ is a rainbow independent set. Most of these elements e′

will be contained in some set in T \ {T1, . . . , Tr, T}. By the pigeonhole principle, we will find some new
set T ′ ∈ T \ {T1, . . . , Tr, T} containing a relatively large number of such elements e′. This means that,
starting with just one element e ∈ T that we moved out of T (incorporating e into T1, . . . , Tr via some
small modifications), we now found a set T ′ containing several different possible elements e′ that can be
incorporated into T1, . . . , Tr, T via some small modifications. Iterating this, like a cascade, at every step
we obtain an increase in the number of possible elements that can be incorporated into the previous sets.
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T1 Tr Te

x′

q

q′
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e′. . .

R ∩ U

T

Figure 2: Given an element e ∈ T which is (T1, . . . , Tr)-absorbable, we find an element e′ which is
(T1, . . . , Tr, T )-absorbable (in fact, we find many such elements). The implicit cascade structure found by
our proof is depicted in grey but the critical point is that a small number of alterations to T1, . . . , Tr can
be made using elements from U to allow e to be incorporated. To incorporate e′ into T − e, we first swap
certain elements x, q ∈ U against elements x′, q′ ∈ T − e so that in the end T − e+ x− x′ + q − q′ + e′ is
a rainbow independent set.

This number will keep increasing (in fact, it will increase exponentially), until at some point we must find
an element in U that can be incorporated into the family T (after some small modifications), meaning
that we found a family S ′ improving T , as desired in Lemma 3.3.

To avoid cumbersome notation, we do not wish to remember all of the individual switching steps that
are used in this (potentially rather long) cascade. Instead, we will say that an element e is (T1, . . . , Tr)-
absorbable if we can make some small alterations to T1, . . . , Tr in order to incorporate e, and then we
just count the number of (T1, . . . , Tr)-absorbable elements at every step. Slightly more formally (see
Definition 7.4 for the precise definition), e is (T1, . . . , Tr)-absorbable if there are rainbow independent sets
T ′
1, . . . , T

′
r that can be obtained from T1, . . . , Tr via small alterations (where T ′

1, . . . , T
′
r need to be disjoint

from all sets in T \ {T1, . . . , Tr} apart from potentially containing the element e) such that in total the
size |T ′

1| + · · · + |T ′
r| increases compared to |T1| + · · · + |Tr|. While, formally, we do not demand that e

is contained in one of the sets T ′
1, . . . , T

′
r, this will automatically follow unless we found an element in

U to incorporate into T1, . . . , Tr (after some small modifications) to increase their size (in which case we
have already found the desired family S ′ improving T ). At every step, it is essential that we only make
‘small’ alterations, because we need to iterate this argument, and because we need to bound the number
of additional elements in R used by the family S ′ compared to the initial families T and S in order to
satisfy (1). For this reasons, it is also important to bound the total number of steps in the above cascade.
In fact, the further away the initial families S and T are from a family of ⌈(1−ε)n⌉ disjoint rainbow bases,
the fewer steps we need in the cascade (and therefore fewer additional elements from R are needed). In
the proof sketch above, this is because we will be able to start the cascade with some set T1 ∈ T which is
further away from a basis, so that already at the next step there will be more possibilities for elements to
incorporate into T1 (after the usual small modifications) and thus will need to iterate our argument less.

4 Inclusion-wise maximal families are large: proof of Lemma 3.1

Given a family T of disjoint rainbow independent sets in a matroid coloured with colours 1, . . . , n, the
colour-availability graph A(T ) is the bipartite graph with vertex classes T and [n] and edges (T, c) with
T ∈ T and c ∈ [n] exactly when c is a colour that does not appear on T . In other words, the colour-
availability graph is the auxiliary graph recording which colours are missing, i.e., still available, on which
of the rainbow independent sets in T . Note that for any T ∈ T we have degA(T )(T ) = n − |T | and for
any colour c ∈ [n], if Bc is the set of elements of colour c, then we have degA(T )(c) = |T | − |E(T )∩Bc| ≥
|T | − |Bc|.

For our arguments, we need to consider edges (T, c) in the colour-availability graph A(T ) of a family
T of disjoint rainbow independent sets such that degA(T )(c) can be bounded in terms of degA(T )(T ). The
following graph-theoretic lemma enables us to find many such edges.

Lemma 4.1. Let 0 < α < β and δ > 0. Let G be a bipartite graph with vertex classes X and Y and edge
set E(G) ⊆ X × Y . Assume that |X| ≤ α · |Y | and that every vertex y ∈ Y has degree degG(y) ≥ δ · |X|.
Then, there are at least (δ(β − α)/β) · |X| · |Y | edges (x, y) ∈ E(G) with degG(y) ≤ β · degG(x).
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Proof. Assign each edge (x, y) ∈ E(G) with x ∈ X and y ∈ Y the weight w(x, y) = 1/degG(y), and call
the edge (x, y) good if degG(y) ≤ β · degG(x), and bad otherwise. We count the weight on the edges from
each side of the partition. Firstly,∑

(x,y)∈E(G)

w(x, y) =
∑
y∈Y

∑
x∈NG(y)

1

degG(y)
=

∑
y∈Y

1 = |Y |. (2)

Secondly, letting egd(G) be the number of good edges in G, we have∑
(x,y)∈E(G)

w(x, y) =
∑

(x,y)∈E(G)
xy good

1

degG(y)
+

∑
(x,y)∈E(G)

xy bad

1

degG(y)

≤
∑

(x,y)∈E(G)
xy good

1

δ|X|
+

∑
(x,y)∈E(G)

xy bad

1

β · degG(x)

≤ egd(G)

δ|X|
+

∑
x∈X

∑
y∈NG(x)

1

β · degG(x)
=
egd(G)

δ|X|
+

|X|
β

≤ egd(G)

δ|X|
+
α|Y |
β

.

Combining this with (2), and rearranging, we indeed obtain

egd(G) ≥ δ|X| ·
(
1− α

β

)
· |Y | = δ(β − α)

β
· |X| · |Y |.

Instead of using Lemma 4.1 directly, we will use the following corollary. The set E in this corollary
will simply be obtained by taking the set of edges satisfying the property in Lemma 4.1.

Corollary 4.2. For any α, µ, δ, σ, λ > 0 with σ + λ ≥ α > σ, there is some ρ > 0 such that the following
holds. Let G be a bipartite graph with vertex classes X and Y and edge set E(G) ⊆ X × Y , such that
|X| ≤ α · |Y |. Suppose that degG(y) ≥ δ · |X| for every vertex y ∈ Y and degG(x) ≤ (1− µ) · |Y | for every
vertex x ∈ X. Then, there is a set E ⊆ E(G) such that

σ ·
∑

(x,y)∈E

degG(x) ≥ ρ · |X| · |Y |2 +
∑

(x,y)∈E

(
degG(y)− λ · |Y |

)
.

Proof. Note that (α− σ)(1−µ) < α− σ ≤ λ, so we can choose β > α such that (β− σ)(1−µ) < λ. Now,
let us define ρ = (δ(β − α)/β) · (λ− (β − σ)(1− µ)) > 0. By Lemma 4.1, we can find a set E ⊆ E(G) of
size |E| ≥ (δ(β − α)/β) · |X| · |Y | such that degG(y) ≤ β · degG(x) for each (x, y) ∈ E. Now, noting that
β > α > σ, and thus (β − σ)degG(x) ≤ (β − σ) · (1− µ)|Y | for each x ∈ X, we have

σ ·
∑

(x,y)∈E

degG(x)−
∑

(x,y)∈E

(
degG(y)− λ · |Y |

)
=

∑
(x,y)∈E

(
σ · degG(x)− degG(y) + λ · |Y |

)
≥

∑
(x,y)∈E

(
σ · degG(x)− β · degG(x) + λ · |Y |

)
≥

∑
(x,y)∈E

(
λ · |Y | − (β − σ) · (1− µ) · |Y |

)
= |E| · (λ− (β − σ)(1− µ)) · |Y |

≥ δ(β − α)

β
(λ− (β − σ)(1− µ)) · |X| · |Y |2 = ρ · |X| · |Y |2.

Rearranging yields the desired inequality.

The following definition, due to Pokrovskiy [18] will also play an important role in our proofs.
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Definition 4.3. Given a family T of disjoint rainbow independent sets in a coloured matroid, and a
positive integer ℓ, the ℓ-reduction T ′ of T is defined as follows. We consider all elements x ∈ E(T ) with
the property that there exist ℓ different sets T ∈ T such that T +x is a rainbow independent set. Now, let
T ′ be the family of disjoint rainbow independent sets obtained from T by deleting all elements x ∈ E(T )
with this property from their respective rainbow independent sets in T .

Recall that T + x is to be interpreted as a multi-set here. Hence, T + x being a rainbow independent
set in particular means x ̸∈ T . Intuitively, for every element e ∈ E(T ) with the property in the definition
above, there is plenty of flexibility to move e to different member of T without violating rainbowness
or independence. This intuition is formalised by the following lemma, also due to Pokrovskiy [18] (this
lemma is essentially a special case of [18, Lemma 11]). For the reader’s convenience we include a simple
proof of this lemma here.

Lemma 4.4. Fix integers r ≥ 0 and ℓ > 3r. Consider a family T = {T1, . . . , Tm} of disjoint rainbow
independent sets in a coloured matroid, and define families T (0), . . . , T (r) of disjoint rainbow independent
sets by setting T (0) = T and taking T (i) to be the ℓ-reduction of the family T (i−1) for i = 1, . . . , r. Suppose
that there is an element e ̸∈ E(T ) of the matroid such that T + e is a rainbow independent set for some
T ∈ T (i) for some index i ∈ {0, . . . , r}. Then there exists a family S = {S1, . . . , Sm} of disjoint rainbow
independent sets with E(S) = E(T ) + e, such that

∑m
j=1 |Sj \ Tj | ≤ 3r.

Proof. We prove the lemma by induction on r. In the case r = 0, by assumption T + e is a rainbow
independent set for some T ∈ T (0) = T . Then we can take S to be the family obtained from T by
replacing T with T + e (i.e., by adding e to the set T ).

So let us now assume that r ≥ 1 and that we already proved the statement in the lemma for r−1. First
note that T (1) is the ℓ-reduction of the family T (0) = T . This means that, letting T (1) = {T ′

1, . . . , T
′
m},

for j = 1, . . . ,m we have T ′
j ⊆ Tj , and for every element x ∈ E(T ) \ E(T (1)) there are ℓ different indices

j ∈ [m] such that Tj + x is a rainbow independent set.
By assumption, there exist i ∈ {0, . . . , r} and T ∈ T (i) such that T + e is a rainbow independent

set. If i ≤ r − 1, the desired statement already follows from the induction hypothesis for r − 1, so let
us assume that i = r. By applying the induction hypothesis to the family T (1) = {T ′

1, . . . , T
′
m} we find

a family S ′ = {S′
1, . . . , S

′
m} of disjoint rainbow independent sets with E(S ′) = E(T (1)) + e, such that∑m

j=1 |S′
j \ T ′

j | ≤ 3r−1.
Now, we can extend S ′ to a family S∗ = {S∗

1 , . . . , S
∗
m} of disjoint rainbow independent sets such that

for j = 1, . . . ,m we have S′
j ⊆ S∗

j ⊆ S′
j ∪ (Tj \ T ′

j) and |Tj \ (T ′
j ∪ S∗

j )| ≤ 2 · |S′
j \ T ′

j |. Indeed, for each
j = 1, . . . ,m let us add the elements of S′

j \ T ′
j to the rainbow independent set (S′

j ∩ T ′
j) ∪ (Tj \ T ′

j),
reinstating independence and resolving colouring conflicts by deleting at most 2 · |S′

j \T ′
j | elements chosen

from Tj \ T ′
j (formally this follows from Lemma 2.1 applied to the rainbow independent sets S′

j and
(S′

j ∩ T ′
j) ∪ (Tj \ T ′

j)). Then we have

m∑
j=1

|S∗
j \ Tj | =

m∑
j=1

|S′
j \ Tj | ≤

m∑
j=1

|S′
j \ T ′

j | ≤ 3r−1. (3)

Furthermore, note that E(T (1)) + e = E(S ′) ⊆ E(S∗) ⊆ E(T ) + e and therefore

|E(T ) \ E(S∗)| = |E(T ) \ (E(T (1)) ∪ E(S∗))| ≤
m∑
j=1

|Tj \ (T ′
j ∪ S∗

j )| ≤ 2

m∑
j=1

|S′
j \ T ′

j | ≤ 2 · 3r−1.

Defining X = E(T ) \ E(S∗), let X = {x1, . . . , xz}, and note that then z = |X| ≤ 2 · 3r−1. We will now
show that we can distribute the elements in X among the sets in S∗ while maintaining rainbowness and
independence.

Claim 4.5. For each h ∈ [z], S∗
j + xh is a rainbow independent set for at least z indices j ∈ [m].

Using this claim, we can complete the proof easily. Indeed, by Claim 4.5, we can greedily choose
distinct indices j(1), . . . , j(z) ∈ [m] such that S∗

j(h) + xh is a rainbow independent set for each h ∈ [z].

Then, letting Sj(h) = S∗
j(h) + xj(h) for each h ∈ [z], and Sj = S∗

j for each j ∈ [m] \ {j(1), . . . , j(z)}, the
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family S = {S1, . . . , Sm} of disjoint rainbow independent sets satisfies E(S) = E(S∗)∪X = E(T ) + e (as
e ∈ E(S ′) ⊆ E(S∗)). By (3), we furthermore have

∑m
j=1 |Sj \Tj | ≤ |X|+

∑m
j=1 |S∗

j \Tj | ≤ 2 ·3r−1+3r−1 =
3r, as desired. Thus, it only remains to prove Claim 4.5.

Proof of Claim 4.5. Let h ∈ [z]. As E(T (1)) + e ⊆ E(S∗), we have that X ⊆ E(T ) \ E(T (1)) and,
hence, that Tj + xh is a rainbow independent set for at least ℓ values of j ∈ [m] by the definition of
T (1). From (3), we can observe that S∗

j ⊆ Tj for all but at most 3r−1 indices j ∈ [m]. Thus, for at least

ℓ−3r−1 ≥ 2 ·3r−1 ≥ z indices j ∈ [m] we have that S∗
j +xh ⊆ Tj+xh and Tj+xh (and hence S∗

j +xh) is a
rainbow independent set. This completes the proof of the claim and hence the lemma. ⊡

We will deduce Lemma 3.1 from Lemma 4.4 and the following lemma. The statement of this lemma has
some similarities to the statement of [18, Lemma 10] due to Pokrovskiy, but there are several important
differences between the two statements. These differences are crucial in order to obtain the stronger
statement in Lemma 3.1 compared to Theorem 1.3 from [18].

Lemma 4.6. For any µ > 0 and 0 < λ < 1 there exists γ = γ(λ, µ) > 0 such that for any positive integer
ℓ and any sufficiently large n (sufficiently large with respect to λ, µ and ℓ) the following holds. Consider
a coloured rank-n matroid with colour classes B1, . . . , Bn, such that each of the sets Bi for i = 1, . . . , n is
a basis, and let T be a family of ⌊(1 + λ)n⌋ disjoint rainbow independent sets. Then, at least one of the
following three statements holds.

(i) There is some T ∈ T of size |T | ≤ µn.

(ii) There is some T ∈ T and some colour c ∈ [n] such that there are strictly more than degA(T )(c)−⌊λn⌋
elements e ∈ Bc \ E(T ) such that T + e is a rainbow independent set.

(iii) The ℓ-reduction T ′ of the family T satisfies |E(T ′)| ≤ |E(T )| − γn2.

Proof. Let ρ > 0 be such that the statement in Corollary 4.2 holds with α = 1 + λ and δ = λ/4 and
σ = 1 (as well as the given values of λ and µ), noting that 1 + λ ≥ α > 1. Now, let γ = ρ/3 > 0, let
ℓ be a positive integer, and assume that n is sufficiently large with respect to all the other parameters.
Consider a coloured matroid and a family T of disjoint rainbow independent sets as in the assumptions
of the lemma, and let us assume for a contradiction that none of (i), (ii), or (iii) holds.

Recall the definition of the colour-availability graph A(T ) from the beginning of this section, and note
that for every colour c ∈ [n] we have

degA(T )(c) = |T | − |E(T ) ∩Bc| ≥ |T | − n = ⌊(1 + λ)n⌋ − n = ⌊λn⌋ ≥ λ

2
· n ≥ λ

4
· |T |

(using that n is sufficiently large). Furthermore, for each T ∈ T , as (i) does not hold and thus |T | > µn,
we have degA(T )(T ) = n − |T | < (1 − µ)n. Thus, by the property of ρ from its choice via Corollary 4.2,
applied with G = A(T ), X = T and Y = [n], there is some set E ⊆ E(A(T )) such that∑

(T,c)∈E

degA(T )(T ) ≥ ρ · ⌊(1 + λ)n⌋ · n2 +
∑

(T,c)∈E

(degA(T )(c)− λn)

≥ ρn3 − |E|+
∑

(T,c)∈E

(degA(T )(c)− ⌊λn⌋)

≥ 2γn3 +
∑

(T,c)∈E

|{e ∈ Bc \ E(T ) : T + e rainbow independent}|, (4)

where in the last step we have used that (ii) does not hold (and that ρn3−|E| ≥ 3γn3−(1+λ)n2 ≥ 2γn3).
Now, for each e ∈ E(T ′), by Definition 4.3 there are at most ℓ different sets T ∈ T such that T + e is
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a rainbow independent set. Thus,∑
(T,c)∈E

|{e ∈ Bc ∩ E(T ) : T + e rainbow independent}| ≤
∑
T∈T

|{e ∈ E(T ) : T + e rainbow independent}|

=
∑

e∈E(T )

|{T ∈ T : T + e rainbow independent}|

≤ |E(T ′)| · ℓ+ |E(T ) \ E(T ′)| · |T |
≤ n2 · ℓ+ γn2 · (1 + λ)n < 2γn3,

where we have used that (iii) does not hold and therefore |E(T ) \ E(T ′)| = |E(T )| − |E(T ′)| ≤ γn2.
Combining this with (4) yields∑

(T,c)∈E

degA(T )(T ) >
∑

(T,c)∈E

|{e ∈ Bc : T + e rainbow independent}|. (5)

On the other hand, for each pair (T, c) ∈ E, there is an edge in A(T ) between T and c, so the colour c
does not appear on T . Furthermore, as Bc is an independent set, there are at least |Bc| − |T | = n− |T | =
degA(T )(T ) different elements e ∈ Bc such that T + e is independent. For all of these elements e, the set
T + e is then a rainbow independent set. Therefore we have∑

(T,c)∈E

|{e ∈ Bc : T + e rainbow independent}| ≥
∑

(T,c)∈E

degA(T )(T ),

a contradiction to (5).

Finally here, let us combine Lemmas 4.4 and 4.6 to prove Lemma 3.1.

Proof of Lemma 3.1. Let µ = ν/2 and let γ > 0 be chosen as in Lemma 4.6 for λ and µ. Fix an integer
r > 1/γ and let ℓ = 3r + 1. We may assume that n is sufficiently large with respect to λ, γ, r and
ℓ. Suppose, then, that T is a family of ⌊(1 + λ)n⌋ disjoint rainbow independent sets such that E(T ) is
inclusion-wise maximal and assume for contradiction that |E(T )| < (1− ν)n2.

Let U = (B1 ∪ · · · ∪ Bn) \ E(T ) be the set of elements of B1 ∪ · · · ∪ Bn not covered by T , so that
|U | = n2 − |E(T )| > νn2. Now, let us define families T (0), . . . , T (r) of disjoint rainbow independent sets
as in Lemma 4.4 by setting T (0) = T and taking T (i) to be the ℓ-reduction of the family T (i−1) for
i = 1, . . . , r.

If there is some element e ∈ U = (B1 ∪ · · · ∪ Bn) \ E(T ), index i ∈ {0, . . . , r}, and T ∈ T (i) such
that T + e is a rainbow independent set, then, by Lemma 4.4 there is a family S of ⌊(1 + λ)n⌋ disjoint
rainbow independent sets with E(S) = E(T ) ∪ {e}, which contradicts the inclusion-wise maximality of
E(T ). Thus, we have the observation that there is no element e ∈ U = (B1 ∪ · · · ∪Bn) \ E(T ) such that
T + e is a rainbow independent set for some T ∈ T (i) for some index i ∈ {0, . . . , r}.

For each i = 0, . . . , r−1, let us now apply Lemma 4.6 to the family T (i). Then, for each i = 0, . . . , r−1,
one of the three statements (i) to (iii) in Lemma 4.6 holds. We will now show that (i), and afterwards
(ii), cannot hold for any index i ∈ {0, . . . , r − 1}, before using that (iii) holds for every i = 0, . . . , r − 1 to
reach our final contradiction.

If for some index i ∈ {0, . . . , r − 1} statement (i) holds, then there is a set T ∈ T (i) with |T | ≤ µn =
νn/2. If for some colour c not appearing on T we had |U ∩ Bc| > |T |, then we could find an element
e ∈ U ∩ Bc such that T + e is independent. But then T + e would be a rainbow independent set, which
is a contradiction to our observation above. Therefore, for every colour c not appearing on T we have
|U ∩ Bc| ≤ |T |. For the |T | colours c appearing on T , we clearly have |U ∩ Bc| ≤ n, and so in total we
obtain

|U | =
n∑

c=1

|U ∩Bc| ≤ n · |T |+ |T | · n = |T | · 2n ≤ νn2,

contradicting |U | > νn2. Thus, (i) cannot hold for any index i ∈ {0, . . . , r − 1}.
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If for some index i ∈ {0, . . . , r − 1} statement (ii) holds, then there is a set T ∈ T (i) and some
colour c ∈ [n] such that there are strictly more than degA(T (i))(c)− ⌊λn⌋ elements e ∈ Bc \ E(T (i)) such
that T + e is a rainbow independent set. By our above observation we must have e ∈ E(T ) and hence
e ∈ Bc ∩ (E(T ) \ E(T (i))) for all of these elements e, and consequently

|(Bc ∩ E(T )) \ (Bc ∩ E(T (i)))| = |Bc ∩ (E(T ) \ E(T (i)))| > degA(T (i))(c)− ⌊λn⌋. (6)

On the other hand, degA(T (i))(c) = |T | − |Bc ∩ E(T (i))| = ⌊(1 + λ)n⌋ − |Bc ∩ E(T (i))|, and therefore

degA(T (i))(c)− ⌊λn⌋ = ⌊(1 + λ)n⌋ − |Bc ∩ E(T (i))| − ⌊λn⌋ = n− |Bc ∩ E(T (i))|

≥ |Bc ∩ E(T )| − |Bc ∩ E(T (i))| = |(Bc ∩ E(T )) \ (Bc ∩ E(T (i)))|.

This contradicts (6), and thus (ii) does not hold for any index i ∈ {0, . . . , r − 1}.
Thus, (iii) must hold for all i = 0, . . . , r− 1. But this means that |E(T (i+1))| ≤ |E(T (i))| − γn2 for all

i = 0, . . . , r − 1. Hence |E(T (r))| ≤ |E(T (0))| − r · γn2 = |E(T )| − r · γn2 ≤ n2 − r · γn2 < 0 (recalling
that r > 1/γ), which is again a contradiction. This finishes the proof of Lemma 3.1.

We end this section by showing how Theorem 1.3 can be deduced from Lemma 3.1.

Proof of Theorem 1.3. Let λ = ε2/2 and ν = ε2/2, and let n be sufficiently large such that the statement
in Lemma 3.1 holds. Let us choose a family T of ⌊(1 + λ)n⌋ disjoint rainbow independent sets such that
E(T ) is inclusion-maximal among all such families. By Lemma 3.1 we have |E(T )| ≥ (1 − ν)n2. Let m
be the number of sets T ∈ T with size at least (1− ε)n. Then, the m largest sets T ∈ T each have size at
most |T | ≤ n, and the remaining ⌊(1+λ)n⌋−m ≤ (1+λ)n−m sets T ∈ T each have size |T | < (1− ε)n,
so the total size |E(T )| of the family T satisfies

(1− ν)n2 ≤ |E(T )| ≤ m ·n+((1+λ)n−m) · (1− ε)n = (1+λ)(1− ε)n2 +m · εn ≤ (1− ε+λ)n2 +m · εn.

This implies m ≥ (ε− λ− ν)n2/(εn) = (ε− ε2)n/ε = (1− ε)n, meaning that T contains at least (1− ε)n
sets T ∈ T of size |T | ≥ (1 − ε)n, each of which is rainbow and independent, so the conclusion of the
theorem holds.

5 Large families avoiding a random set: proof of Lemma 3.2

The proof of Lemma 3.2 is similar to the proof of Lemma 3.1 in the previous section, and will in particular
also rely on Corollary 4.2 and Lemma 4.4. First, we show that with high probability the random set
R ⊆ B1 ∪ · · · ∪ Bn in Lemma 3.2 has the properties in the following two lemmas. The property (♦) in
the first lemma estimates how often each colour appears in R, and the property (⋆) in the second lemma
states, roughly speaking, that, for every independent set T and any set C ⊆ [n], there are many ways to
extend T to a larger independent set by adding an element in

⋃
c∈C Bc \R.

Lemma 5.1. For any 0 < η < 1 and γ > 0, the following holds for any coloured rank-n matroid with
colour classes B1, . . . , Bn of size n. Let R ⊆ B1 ∪ · · · ∪ Bn be a set of elements drawn independently at
random with probability η. Then, with high probability (more precisely, with probability tending to 1 as
n→ ∞ with η and γ fixed), the following holds.

(♦) For every colour c ∈ [n], we have (η − γ)n ≤ |Bc ∩R| ≤ (η + γ)n.

Proof. For each colour c ∈ [n], note that |Bc ∩ R| is a sum of n independent Bernoulli random variables
and E[|Bc ∩R|] = ηn. Thus, by a Chernoff bound (see e.g. [2, Theorem A.1.4]) we have

¶[||Bc ∩R| − ηn| > γn] ≤ 2 · e−2(γn)2/n = 2 · e−2γ2n.

Taking a union bound over all c ∈ [n] shows that with probability at least 1− n · 2 · e−2γ2n = 1− o(1) we
indeed have (η − γ)n ≤ |Bc ∩R| ≤ (η + γ)n for all c ∈ [n].
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Lemma 5.2. For any 0 < η < 1 and γ > 0, the following holds for any coloured rank-n matroid with
colour classes B1, . . . , Bn, such that each of the sets Bi for i = 1, . . . , n is a basis. Let R ⊆ B1 ∪ · · · ∪Bn

be a set of elements drawn independently at random with probability η. Then, with high probability (more
precisely, with probability tending to 1 as n→ ∞ with η and γ fixed), the following holds.

(⋆) For every independent set T ⊆ B1 ∪ · · · ∪ Bn, and every colour subset C ⊆ [n], there are at least
(1− η) · (n− |T |) · |C| − γn2 elements e ∈

⋃
c∈C Bc \R such that T + e is independent.

Proof. For each independent set T ⊆ B1 ∪ · · · ∪ Bn and each colour subset C ⊆ [n], there are at least
(n − |T |) · |C| elements e ∈

⋃
c∈C Bc such that T + e is independent (since there are at least n − |T |

such elements in every colour c ∈ C); say the set of those elements e is ET,C . Now, property (⋆) holds
for T and C precisely when |ET,C \ R| ≥ (1 − η)(n − |T |)|C| − γn2. Note that we have E[|ET,C \ R|] =
(1− η)|ET,C | ≥ (1− η)(n− |T |)|C|. Thus, observing that |ET,C \R| is a sum of |ET,C | ≤ n2 independent
Bernoulli random variables, by a Chernoff bound (see e.g. [2, Theorem A.1.4]) we have

¶
[
|ET,C \R| ≤ (1−η)(n−|T |)|C|−γn2

]
≤ ¶

[
|ET,C \R| ≤ E[|ET,C \R|]−γn2

]
≤ e−2(γn2)2/n2

= e−2γ2n2

.

for each independent set T ⊆ B1 ∪ · · · ∪ Bn and each colour subset C ⊆ [n]. Note there are at most∑n
t=0

(
n2

t

)
≤ (n2)n = n2n independent sets T ⊆ B1 ∪ · · · ∪ Bn and only 2n colour subsets C ⊆ [n]. Thus,

the probability that property (⋆) fails for some choice of T and C is at most n2n · 2n · e−2γ2n2

= o(1), as
required.

The following lemma is the analogue of Lemma 4.6 needed in the proof of Lemma 3.2.

Lemma 5.3. For any 0 < ε < η < 1 and any µ > 0 there exists γ = γ(ε, η, µ) > 0 such that for any
positive integer ℓ and any sufficiently large n (sufficiently large with respect to ε, η, µ and ℓ) the following
holds. Consider a coloured rank-n matroid with colour classes B1, . . . , Bn, such that each of the sets Bi

for i = 1, . . . , n is a basis, and let R ⊆ B1 ∪ · · · ∪Bn satisfy properties (♦) and (⋆) above. Finally, let T
be a family of ⌊(1 − ε)n⌋ disjoint rainbow independent sets in (B1 ∪ · · · ∪ Bn) \ R. Then at least one of
the following three statements holds.

(i) There is some T ∈ T of size |T | ≤ µn.

(ii) For some T ∈ T and some colour c ∈ [n] there are strictly more than degA(T )(c)− |Bc ∩R|+ ⌈εn⌉
elements e ∈ Bc \ (E(T ) ∪R) such that T + e is a rainbow independent set.

(iii) The ℓ-reduction T ′ of the family T satisfies |E(T ′)| ≤ |E(T )| − γn2.

Note that if this statement holds for some value of γ = γ(ε, η, µ) > 0, it automatically also holds for
all smaller positive values of γ (indeed, the assumptions (♦) and (⋆) get harder to satisfy for smaller γ
and the conclusion in (iii) gets easier to satisfy for smaller γ).

The proof of the lemma is very similar to the proof of Lemma 4.6 in the previous section (but it
requires some adaptations to incorporate the set R).

Proof of Lemma 5.3. Let ρ > 0 be such that the statement in Corollary 4.2 holds with α = 1 − ε,
δ = (η−ε)/2, σ = 1−η and λ = η−ε (as well as the given value of µ), noting that (1−η)+(η−ε) ≥ α > 1−η.
Now, let γ = min(ρ(1− ε)/4, (η − ε)/4) > 0, let ℓ be a positive integer, and assume that n is sufficiently
large with respect to all the other parameters. Let us consider a coloured matroid and a family T of
disjoint rainbow independent sets as in the assumptions of the lemma, and assume for a contradiction
that none of (i), (ii), or (iii) holds.

Recall the definition of the colour-availability graph A(T ) from the beginning of Section 4, and note
that for every colour c ∈ [n] we have

degA(T )(c) = |T |−|E(T )∩Bc| ≥ ⌊(1−ε)n⌋−|Bc\R| ≥ (1−ε−γ)n−(1−η+γ)n = (η−ε−2γ)·n ≥ η − ε

2
·|T |,
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using that |Bc \R| = n− |Bc ∩R| ≤ (1− η+ γ)n by (♦) and that n is sufficiently large. Furthermore, for
each T ∈ T , as (i) does not hold and thus |T | > µn, we have degA(T )(T ) = n− |T | < (1− µ)n. Thus, by
the statement in Corollary 4.2, there is some set E ⊆ E(A(T )) such that

(1− η) ·
∑

(T,c)∈E

degA(T )(T ) ≥ ρ · ⌊(1− ε)n⌋ · n2 +
∑

(T,c)∈E

(degA(T )(c)− (η − ε)n)

≥ ρ(1− ε)n3 − n2 − |E| · (1 + γn) +
∑

(T,c)∈E

(degA(T )(c)− (η − γ)n+ ⌈εn⌉)

≥ ρ(1− ε)n3 − 2γn3 +
∑

(T,c)∈E

(degA(T )(c)− |Bc ∩R|+ ⌈εn⌉)

≥ 2γn3 +
∑

(T,c)∈E

|{e ∈ Bc \ (E(T ) ∪R) : T + e rainbow independent}|, (7)

where in the third step we used that that |Bc ∩ R| ≥ (η − γ)n by (♦) and in the last step that (ii) does
not hold (and that ρ(1− ε) ≥ 4γ).

Now, for each e ∈ E(T ′), there are at most ℓ different sets T ∈ T such that T + e is a rainbow
independent set. Thus,∑
(T,c)∈E

|{e ∈ Bc ∩ E(T ) : T + e rainbow independent}| ≤
∑
T∈T

|{e ∈ E(T ) : T + e rainbow independent}|

=
∑

e∈E(T )

|{T ∈ T : T + e rainbow independent}|

≤ |E(T ′)| · ℓ+ |E(T ) \ E(T ′)| · |T |
≤ n2 · ℓ+ γn2 · (1− ε)n < γn3,

where we have used that (iii) does not hold and therefore |E(T ) \ E(T ′)| = |E(T )| − |E(T ′)| ≤ γn2.
Combining this with (7) yields

(1−η)·
∑

(T,c)∈E

(n−|T |) = (1−η)·
∑

(T,c)∈E

degA(T )(T ) > γn3+
∑

(T,c)∈E

|{e ∈ Bc\R : T+e rainbow independent}|. (8)

On the other hand, for each T ∈ T , let C(T ) ⊆ [n] be the set of colours c ∈ [n] with (T, c) ∈ E.
Then, for every c ∈ C(T ), there is an edge in A(T ) between T and c, so the colour c does not appear
on T . Furthermore, for each T ∈ T , by (⋆) there are at least (1 − η) · (n − |T |) · |C(T )| − γn2 elements
e ∈

⋃
c∈C(T )Bc \ R such that T + e is independent. For all of these elements e, the set T + e is then a

rainbow independent set. Therefore, for each T ∈ T , we have∑
c∈C(T )

|{e ∈ Bc \R : T + e rainbow independent}| ≥ (1− η) · (n− |T |) · |C(T )| − γn2.

Summing this up for all T ∈ T , we obtain∑
(T,c)∈E

|{e ∈ Bc \R : T + e rainbow independent}| ≥
∑
T∈T

(
(1− η) · (n− |T |) · |C(T )| − γn2

)
,

> (1− η) ·
∑

(T,c)∈E

(n− |T |)− γn3,

which contradicts (8).

Again, we can combine Lemmas 4.4 and 5.3 to prove Lemma 3.2.

Proof of Lemma 3.2. Let µ = ν/3 and let γ > 0 be chosen as in Lemma 5.3. We may assume without
loss of generality that γ < ν/3 (since making γ smaller will not violate the statement in Lemma 5.3). Fix
an integer r > 1/γ and let ℓ = 3r + 1. We may assume that n is sufficiently large with respect to ε, η, γ,
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r and ℓ. Take, then, any coloured rank-n matroid with colour classes B1, . . . , Bn, such that each of the
sets Bi for i = 1, . . . , n is a basis, and let R ⊆ B1 ∪ · · · ∪Bn be a set of elements drawn independently at
random with probability η.

By Lemmas 5.1 and 5.2, with high probability the random set R ⊆ B1∪ · · ·∪Bn satisfies (♦) and (⋆).
Thus, it suffices to prove that whenever these properties are satisfied, there exists a family T of ⌊(1− ε)n⌋
disjoint rainbow independent sets in (B1 ∪ · · · ∪Bn) \R of total size |E(T )| ≥ (1− η − ν)n2.

Let us assume then that (♦) and (⋆) hold, and let T be a family of ⌊(1 − ε)n⌋ disjoint rainbow
independent sets in (B1∪· · ·∪Bn)\R maximising |E(T )|. Let us suppose for contradiction that |E(T )| <
(1− η− ν)n2. Then the set U = (B1 ∪ · · · ∪Bn) \E(T ) of elements of B1 ∪ · · · ∪Bn not covered by T has
size |U | = n2 − |E(T )| > (η + ν)n2 and therefore

|U \R| = |U | − |R| > (η + ν)n2 −
n∑

c=1

|Bc ∩R|
(♦)

≥ (η + ν)n2 − n · (η + γ)n > (2ν/3)n2.

Now, we again define families T (0), . . . , T (r) of disjoint rainbow independent sets as in Lemma 4.4 by
setting T (0) = T and taking T (i) to be the ℓ-reduction of the family T (i−1) for i = 1, . . . , r. We observe
that there cannot be an element e ∈ U \ R = (B1 ∪ · · · ∪ Bn) \ (E(T ) ∪ R) such that T + e is a rainbow
independent set for some T ∈ T (i) for some index i ∈ {0, . . . , r} (since otherwise by Lemma 4.4 we would
contradict the maximality of |E(T )|). Now, for each i = 0, . . . , r − 1, we apply Lemma 5.3 to the family
T (i), and conclude that one of the three statements (i) to (iii) holds.

If for some index i ∈ {0, . . . , r − 1} statement (i) holds, then there is a set T ∈ T (i) with |T | ≤ µn =
νn/3. For every colour c not appearing on T we must have |(U \R) ∩Bc| ≤ |T | (otherwise we could find
an element e ∈ (U \R)∩Bc such that T +e is a rainbow independent set). For the |T | colours c appearing
on T , we have |(U \R) ∩Bc| ≤ n, and so we can conclude

|U \R| =
n∑

c=1

|(U \R) ∩Bc| ≤ n · |T |+ |T | · n = |T | · 2n ≤ (2ν/3)n2.

Since this contradicts |U \R| > (2ν/3)n2, statement (i) cannot hold for any index i ∈ {0, . . . , r − 1}.
If for some index i ∈ {0, . . . , r − 1} statement (ii) holds, then there is a set T ∈ T (i) and some colour

c ∈ [n] such that there are strictly more than degA(T (i))(c)−|Bc∩R|+⌈εn⌉ elements e ∈ Bc\(E(T (i))∪R)
such that T + e is a rainbow independent set. By our above observation we have e ∈ E(T ) and hence
e ∈ Bc ∩ (E(T ) \ E(T (i))) for all of these elements e, so

|Bc ∩ (E(T ) \ E(T (i)))| = |(Bc ∩ E(T )) \ (Bc ∩ E(T (i)))| > degA(T (i))(c)− |Bc ∩R|+ ⌈εn⌉. (9)

On the other hand, degA(T (i))(c) = |T | − |Bc ∩ E(T (i))| = ⌊(1− ε)n⌋ − |Bc ∩ E(T (i))|, and therefore

degA(T (i))(c)− |Bc ∩R|+ ⌈εn⌉ = ⌊(1− ε)n⌋ − |Bc ∩ E(T (i))| − |Bc ∩R|+ ⌈εn⌉

= n− |Bc ∩R| − |Bc ∩ E(T (i))| = |Bc \R| − |Bc ∩ E(T (i))|
≥ |Bc ∩ E(T )| − |Bc ∩ E(T (i))| = |(Bc ∩ E(T )) \ (Bc ∩ E(T (i)))|.

This contradiction to (9) shows that (ii) does not hold for any index i ∈ {0, . . . , r − 1}.
Thus, (iii) holds for all i = 0, . . . , r − 1, so |E(T (i+1))| ≤ |E(T (i))| − γn2 for all i = 0, . . . , r − 1. This

implies |E(T (r))| ≤ |E(T (0))| − r · γn2 ≤ n2 − r · γn2 < 0 (as r > 1/γ), again a contradiction.

6 Covering: proof of Theorem 1.6

In addition to Lemma 3.1, the second key for proving Theorem 1.6 is to find a suitable notion of “dense
spots” in the set of uncovered elements to make the approach outlined in Section 3 work. Our notion will
be introduced in Definition 6.3 below. In order to make this definition, we first need some preparations.

Definition 6.1. For a positive integer k, a subset S of a matroid is called k-overcrowded if for every
subset S′ ⊆ S we have

|S \ S′| ≥ k · (rk(S)− rk(S′)).
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Note that for any k-overcrowded S, the set S is automatically also k′-overcrowded for any positive
integer k′ < k. It turns out that the union of two k-overcrowded subsets S1 and S2 of some matroid is
automatically also k-overcrowded.

Lemma 6.2. Let k be a positive integer, and consider k-overcrowded subsets S1 and S2 of some matroid.
Then their union S1 ∪ S2 is also k-overcrowded.

The proof of this lemma is fairly simple and can be found in Section 8, in which we collect the proofs
of various simple matroid lemmas needed in this paper. Lemma 6.2 now enables us to make the following
definition.

Definition 6.3. For a positive integer k, and a subset U of a matroid, let the k-deadlock Dk(U) of U be
the unique inclusion-wise maximal k-overcrowded subset of U .

Note that Dk(U) ⊆ U , that the k-deadlock Dk(U) is k-overcrowded, and that for every k-overcrowded
set S ⊆ U we have S ⊆ Dk(U). Furthermore note that for any subset U ′ ⊆ U we have Dk(U

′) ⊆ Dk(U)
and for any positive integer k′ < k we have Dk(U) ⊆ Dk′(U)

By our next lemma, the k-deadlock of a set U in a matroid can detect whether there exists a subset
S ⊆ U with |S| > k · rk(S). This is important, because the existence of such a subset S is equivalent to
U not being decomposable into k independent sets (see also the discussion below).

Lemma 6.4. Let k be a positive integer, and let U be a subset of some matroid. If there exists a set
S ⊆ U with |S| > k · rk(S), then S has a non-empty k-overcrowded subset, and so in particular we have
Dk(U) ̸= ∅ for the k-deadlock of U .

Proof. Let S∗ ⊆ S be a minimal subset of S with the property that |S∗| > k · rk(S∗) (such a subset exists,
since S itself has this property). Clearly, S∗ must be non-empty. Now, for any subset S′ ⫋ S∗ we have
|S′| ≤ k · rk(S′) and hence

|S∗ \ S′| = |S∗| − |S′| ≥ k · rk(S∗)− k · rk(S′) = k · (rk(S∗)− rk(S′)).

Noting that this inequality also holds for S′ = S∗, we can conclude that S∗ is k-overcrowded. The second
part of the conclusion follows by noting that S∗ ⊆ Dk(U) (since Dk(U) contains all k-overcrowded subsets
of S ⊆ U).

Due to the classical theorem of Edmonds [9] that a matroid can be decomposed into k independent sets
if and only if |S| ≤ k · rk(S) for all subsets of the matroid, we obtain the following corollary of Lemma 6.4.

Corollary 6.5. Let k be a positive integer, and let U be a subset of some matroid. If Dk(U) = ∅, then U
can be decomposed into k independent sets.

Proof. If Dk(U) = ∅, then by Lemma 6.4 we have |S| ≤ k ·rk(S) for all subsets S ⊆ U . Thus, by Edmonds’
matroid decomposition theorem [9], U can be decomposed into k independent sets.

Aharoni and Berger [1, Theorem 8.9] proved that in order to decompose a coloured matroid into few
rainbow independent sets it is sufficient to assume that the underlying (uncoloured) matroid is decom-
posable into few independent sets and that every colour appears only few times. In fact, they actually
proved a more general result for the intersection of two arbitrary matroids, but we state their result only
in the special case relevant to us (where one of the two matroids is a partition matroid described by the
colouring).

Theorem 6.6 ([1]). Let k be a positive integer, and U a subset of a coloured matroid, such that U can
be decomposed into k independent sets and such that every colour appears at most k times in U . Then U
can be decomposed into 2k rainbow independent sets.

We remark that this directly implies the result of Aharoni and Berger [1] stated as Theorem 1.4 in the
introduction.

By combining Corollary 6.5 and Theorem 6.6, we see that a set U in a coloured matroid can always be
decomposed into 2k rainbow independent sets if Dk(U) = ∅ and every colour appears at most k times in
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U . Our approach for proving Theorem 1.6 is to find a family T of ⌊(1+λ)n⌋ disjoint rainbow independent
sets (for some suitable parameter λ), such that the set of uncovered elements U = (B1 ∪ · · · ∪Bn) \E(T )
satisfies these two conditions, and then to decompose U into few additional rainbow independent sets. In
order to ensure these conditions for U , i.e. to ensure that Dk(U) = ∅ and that every colour appears only
few times in U , we use switching arguments which exchange certain elements in a set T ∈ T by other
elements. It is crucial to keep track of how Dk(U) changes during these switching processes. The following
lemma allows us to control this.

Lemma 6.7. Consider positive integers k′ < k and disjoint subsets U and U ′ of some matroid such that
|U ′| ≤ k − k′. If U ′ ∩ span(Dk′(U)) = ∅, then we have Dk(U) = Dk(U ∪ U ′).

We postpone the proof of Lemma 6.7 to Section 8. Our next result shows that, in the setting relevant
for Theorem 1.6, we can find a family of ⌊(1+λ)n⌋ rainbow independent sets so that the set of uncovered
elements has an empty ⌊λn⌋-deadlock, as long as n is sufficiently large with respect to λ > 0.

Lemma 6.8. For any 0 < λ < 1 the following holds for any sufficiently large n (sufficiently large with
respect to λ). In any coloured rank-n matroid with colour classes B1, . . . , Bn, such that each of the sets Bi

for i = 1, . . . , n is a basis, there is a family T of ⌊(1 + λ)n⌋ disjoint rainbow independent sets such that,
setting U = (B1 ∪ · · · ∪Bn) \ E(T ), we have D⌊λn⌋(U) = ∅.

Proof. Let ν = λ2/10, and recall that we are assuming that n is sufficiently large with respect to λ (in
particular, large enough that the statement in Lemma 3.1 holds for λ and ν = λ2/10). Let z be the
unique positive integer with λn − 4 < z ≤ λn which is divisible by 4. Since z ≤ ⌊λn⌋, we then have
D⌊λn⌋(U) ⊆ Dz(U) for any subset U of the matroid. Thus, it suffices to find a family T of ⌊(1 + λ)n⌋
disjoint rainbow independent sets such that we have Dz(U) = ∅ for U = (B1 ∪ · · · ∪Bn) \ E(T ).

To this end, let us choose a family T of ⌊(1 + λ)n⌋ disjoint rainbow independent sets such that, when
denoting the set of uncovered elements by U = (B1 ∪ · · · ∪Bn) \ E(T ), the (z/4 + 2)-tuple(

|Dz(U)|, |Dz−2(U)|, |Dz−4(U)|, . . . , |Dz/2(U)|, |U |
)
∈ Z(z/4)+2 (10)

is lexicographically minimised (this means that among all families of ⌊(1+λ)n⌋ disjoint rainbow indepen-
dent sets, we choose T such that size of the z-deadlock |Dz(U)| of U is minimised, and among all such
choices such that |Dz−2(U)| is minimised, and so on).

Then, in particular, the set E(T ) is inclusion-wise maximal among all families T of ⌊(1+λ)n⌋ disjoint
rainbow independent sets. Indeed, if there was a family T ∗ of ⌊(1+λ)n⌋ disjoint rainbow independent sets
with E(T ) ⫋ E(T ∗), then for its set of uncovered elements U∗ = (B1 ∪ · · · ∪Bn) \ E(T ∗) we would have
U∗ ⫋ U . This means that |Dk(U

∗)| ≤ |Dk(U)| for all positive integers k, and furthermore |U∗| < |U |,
contradicting our choice of T to lexicographically minimise (10). Thus, E(T ) is indeed inclusion-wise
maximal among all families T of ⌊(1 + λ)n⌋ disjoint rainbow independent sets.

Consequently, by Lemma 3.1, we have |E(T )| ≥ (1− ν)n2 and hence

|U | = n2 − |E(T )| ≤ νn2 = λ2n2/10.

Let us assume for contradiction that Dz(U) ̸= ∅, then we have rk(Dz(U)) ≥ 1 (as each element of
B1∪· · ·∪Bn forms an independent set by itself). Defining rk = rk(Dk(U)) for k ∈ {z, z−2, z−4, . . . , z/2},
we then have 1 ≤ rz ≤ rz−2 ≤ rz−4 ≤ · · · ≤ rz/2 ≤ n. Since (1+λ/10)z/4 ≥ (1+λ/10)λn/4−1 > n (by our
assumption that n is sufficiently large with respect to λ), there is an index j ∈ {z/2 + 2, z/2 + 4, . . . , z}
such that rj−2 ≤ (1 + λ/10)rj . Note that, as Dj(U) is j-overcrowded, by the condition in Definition 6.1
with S = Dj(U) and S′ = ∅ we have |Dj(U)| ≥ j · rk(Dj(U)), and, hence

rj = rk(Dj(U)) ≤ |Dj(U)|
j

≤ |U |
j

≤ λ2n2/10

z/2 + 2
≤ λ2n2/10

λn/2
=
λn

5
. (11)

Now, let S = spanDj−2(U), and note that then rk(S) = rk(Dj−2(U)) = rj−2 and

|S| =
n∑

c=1

|Bc ∩ S| ≤
n∑

c=1

rk(S) = rj−2 · n, (12)

20



using that each of the sets B1, . . . , Bn is independent. Furthermore, let W ⊆ Dj(U) ⊆ U be a maximal
independent set in Dj(U), so that |W | = rk(Dj(U)) = rj .

As discussed in the proof outline in Section 3.1, our goal is to move some element e ∈W ⊆ Dj(U) ⊆ U
into one of the sets T ∈ T , while removing up to two other elements from T in order to maintain
rainbowness and independence. However, we need to ensure that these removed elements do not lie in
S = spanDj−2(U). The following claim will allow us to find an element e ∈W and a set T ∈ T such that
this is possible.

Claim 6.9. There is some e ∈W and T ∈ T such that (T ∩ S) + e is a rainbow independent set.

Proof. We need to show that there is a pair (e, T ) ∈W ×T such that e ̸∈ span(T ∩S) and the colour c(e)
does not appear on T ∩ S. Note that in total there are |W | · |T | = rj · ⌊(1 + λ)n⌋ pairs (e, T ) ∈ W × T .
Our proof proceeds via a counting argument, bounding above the number of pairs (e, T ) ∈ W × T with
e ∈ span(T ∩ S), as well as the number of pairs (e, T ) ∈W × T such that c(e) appears on T ∩ S.

First, the number of pairs (e, T ) ∈W × T with e ∈ span(T ∩ S) can be bounded above by

∑
T∈T

|W ∩ span(T ∩ S)| ≤
∑
T∈T

rk(span(T ∩ S)) =
∑
T∈T

rk(T ∩ S) ≤
∑
T∈T

|T ∩ S| ≤ |S|
(12)

≤ rj−2 · n,

where in the first step we used that W is an independent set.
Furthermore, there are at most |W | ·rj−2 = rj ·rj−2 pairs (e, T ) ∈W ×T such that the colour c(e) of e

appears on T ∩S. Indeed, for each element e ∈W , we have |S∩Bc(e)| ≤ rk(S) = rj−2 (recalling that Bc(e)

is an independent set) and therefore there can be at most rj−2 different sets T ∈ T with T ∩S ∩Bc(e) ̸= ∅
(meaning that T ∩ S contains an element of Bc(e), i.e., an element of colour c(e)).

Thus, the number of pairs (e, T ) ∈ W × T with e ̸∈ span(T ∩ S) such that c(e) does not appear on
T ∩ S is at least

rj · ⌊(1 + λ)n⌋ − rj−2 · n− rj · rj−2 = rj · ⌊(1 + λ)n⌋ − rj−2 · (n+ rj)

(11)

≥ rj · (1 + λ/2)n− rj−2 · (n+ λn/5)

≥ rj · (1 + λ/2)n− (1 + λ/10)rj · (1 + λ/5)n > 0. ⊡

As in the claim, let e ∈ W and T ∈ T be chosen such that (T ∩ S) + e is a rainbow independent set.
Now, we can form a rainbow independent set T ∗ of the form T ∗ = (T + e) \ F for some set F ⊆ T \ S of
size |F | ≤ 2, by adding the element e to the rainbow independent set T and reinstating independence and
resolving colouring conflicts by deleting a set F ⊆ T \ S consisting of at most two elements (it suffices to
delete one element to ensure independence and one element to resolve a potential colouring conflict with
e, more formally this follows from Lemma 2.1 applied to the rainbow independent sets (T ∩S)+ e and T ).

Now, let T ∗ be the family of ⌊(1 + λ)n⌋ disjoint rainbow independent sets obtained from T when
replacing T ∈ T by T ∗ = (T + e) \ F . Then we have E(T ∗) = (E(T ) \ F ) + e and the set U∗ =
(B1 ∪ · · · ∪Bn) \ E(T ∗) of elements not covered by T ∗ can be described as U∗ = (U ∪ F )− e.

Now, for any integer k ≥ j we have

Dk(U
∗) = Dk((U ∪ F )− e) ⊆ Dk(U ∪ F ) = Dk(U),

where in the last step we used Lemma 6.7, recalling that F ⊆ T \ S = T \ span(Dj−2(U)) and |F | ≤ 2 ≤
k − (j − 2). Furthermore, for k = j we have

Dj(U
∗) = Dj((U ∪ F )− e) ⫋ Dj(U ∪ F ) = Dj(U),

where the strict inclusion in the second step follows from the fact that e ∈ Dj(U) ⊆ Dj(U ∪ F ), but
e ̸∈ Dj((U ∪ F ) − e) as e ̸∈ (U ∪ F ) − e. This shows that for all positive integers k ≥ j we have
|Dk(U

∗)| ≤ |Dk(U)|, and for k = j we even have |Dk(U
∗)| < |Dk(U)|. This contradicts our choice of

T to lexicographically minimise (10), recalling that j ∈ {z, z − 2, z − 4, . . . , z/2 + 2}. Thus, we have
Dz(U) = ∅. □

Using Lemmas 3.1 and 6.8, we can now prove Theorem 1.6.
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Proof of Theorem 1.6. We may assume that 0 < ε < 1. Let λ = ε/3 and ν = λ2/4 = ε2/36, and recall
that we are assuming that n is sufficiently large with respect to ε (in particular, large enough such that
the statement in Lemma 3.1 holds for λ = ε/3 and ν = ε2/36, and the statement in Lemma 6.8 holds for
λ = ε/3).

Consider a rank-n matroid with n given bases B1, . . . , Bn (we may assume that B1, . . . , Bn are disjoint
by introducing additional copies of any element that appears in more than one of these bases). By
restricting the matroid to the set B1∪· · ·∪Bn, and colouring each of the bases B1, . . . , Bn with a different
colour, we obtain a coloured matroid. Using Lemma 6.8, let T be a family of ⌊(1 + λ)n⌋ disjoint rainbow
independent sets such that, when denoting the set of uncovered elements by U = (B1 ∪ · · · ∪Bn) \E(T ),
we have D⌊λn⌋(U) = ∅ and, subject to this,

∑n
c=1 |Bc ∩ U |2 is minimised.

Now, similarly as in the proof of Lemma 6.8, the set E(T ) is inclusion-wise maximal among all
families T of ⌊(1 + λ)n⌋ disjoint rainbow independent sets (indeed, if there was such a family T ∗ with
E(T ) ⫋ E(T ∗), then for its set of uncovered elements U∗ = (B1 ∪ · · · ∪ Bn) \ E(T ∗) we would have
U∗ ⫋ U and therefore D⌊λn⌋(U

∗) ⊆ D⌊λn⌋(U) = ∅ and
∑n

c=1 |Bc∩U∗|2 <
∑n

c=1 |Bc∩U |2). Consequently,
by Lemma 3.1, we have |E(T )| ≥ (1− ν)n2 and hence

|U | = n2 − |E(T )| ≤ νn2 = λ2n2/4.

In particular, there can be at most λn/2 different colours c ∈ {1, . . . , n} with |Bc ∩ U | ≥ λn/2.
Furthermore, as the set D⌊λn⌋−1(U) ⊆ U is (⌊λn⌋− 1)-overcrowded, it follows from Definition 6.1 that

(similarly to (11) in the proof of Lemma 6.8)

rk(D⌊λn⌋−1(U)) ≤ νn2

⌊λn⌋ − 1
≤ λ2n2/4

λn/2
=
λn

2
.

Claim 6.10. For every colour c = 1, . . . , n, we have |Bc ∩ U | ≤ λn.

Proof. Assume, for contradiction, that there is some colour c′ ∈ [n] with |Bc′ ∩ U | > λn. Let T ∈ T be
a set on which colour c′ does not appear, and apply Lemma 2.3 to the independent sets S = Bc′ ∩ U =
Bc′ \E(T ) and T . If there was an element x ∈ Bc′ \E(T ) as in (a) in Lemma 2.3, then T + x would be a
rainbow independent set, and so one could obtain a family S of ⌊(1+λ)n⌋ rainbow independent sets with
E(S) = E(T ) + x from the family T simply by adding x to the set T ∈ T . This would contradict E(T )
being inclusion-wise maximal, and so (b) in Lemma 2.3 must hold. This means that there is an injection
ϕ : Bc′ ∩ U → T such that for every element x ∈ Bc′ ∩ U , the set T − ϕ(x) + x is a rainbow independent
set.

We claim that there must be an element x ∈ Bc′∩U with ϕ(x) ̸∈ span(D⌊λn⌋−1(U)) and |Bc(ϕ(x))∩U | <
λn/2. Indeed, since T is an independent set, we have |T ∩ span(D⌊λn⌋−1(U))| ≤ rk(span(D⌊λn⌋−1(U))) =
rk(D⌊λn⌋−1(U)) ≤ λn/2, so there are at most λn/2 elements x ∈ Bc′ ∩ U with ϕ(x) ∈ span(D⌊λn⌋−1(U)).
Furthermore, recalling that there are at most λn/2 colours c ∈ [n] with |Bc∩U | ≥ λn/2, there are at most
λn/2 elements x ∈ Bc′ ∩ U with |Bc(ϕ(x)) ∩ U | ≥ λn/2. Thus, since |Bc′ ∩ U | > λn, there must indeed be
an element x ∈ Bc′ ∩ U with ϕ(x) ̸∈ span(D⌊λn⌋−1(U)) and |Bc(ϕ(x)) ∩ U | < λn/2.

Now, let us consider the family T ∗ of ⌊(1 + λ)n⌋ rainbow independent sets obtained from T when
replacing T ∈ T by T − ϕ(x) + x. Note that for the set U∗ = (B1 ∪ · · · ∪ Bn) \ E(T ∗) we then have
U∗ = U−x+ϕ(x). In particular, we obtain Bc′∩U∗ = (Bc′∩U)−x and Bc(ϕ(x))∩U∗ = (Bc(ϕ(x))∩U)+ϕ(x)
(and Bc ∩ U∗ = Bc ∩ U for all other colours c).

Using ϕ(x) ̸∈ span(D⌊λn⌋−1(U)), Lemma 6.7 applied to U ′ = {ϕ(x)}, U , k = ⌊λn⌋ and k′ = ⌊λn⌋ − 1
yields

D⌊λn⌋(U
∗) = D⌊λn⌋(U − x+ ϕ(x)) ⊆ D⌊λn⌋(U ∪ {ϕ(x)}) = D⌊λn⌋(U) = ∅.

Furthermore, we have

n∑
c=1

|Bc ∩ U |2 −
n∑

c=1

|Bc ∩ U∗|2 = |Bc′ ∩ U |2 − |Bc′ ∩ U∗|2 − |Bc(ϕ(x)) ∩ U∗|2 + |Bc(ϕ(x)) ∩ U |2

= |Bc′ ∩ U |2 − (|Bc′ ∩ U | − 1)2 − (|Bc(ϕ(x)) ∩ U |+ 1)2 + |Bc(ϕ(x)) ∩ U |2 > 0,

using |Bc(ϕ(x))∩U | < λn/2 < λn−1 < |Bc′ ∩U |−1 and the general inequality a2+b2 > (a−1)2+(b+1)2

for all real numbers a, b with a − b > 1. In other words, we obtain
∑n

c=1 |Bc ∩ U∗|2 <
∑n

c=1 |Bc ∩ U |2,
contradicting our choice of T . ⊡
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Now, as D⌊λn⌋(U) = ∅, by Corollary 6.5, the set U can be decomposed into ⌊λn⌋ independent sets.
Furthermore, by Claim 6.10, every colour appears at most ⌊λn⌋ times in U . Thus, by Theorem 6.6, the set
U = (B1 ∪ · · · ∪Bn) \E(T ) can be decomposed into 2 · ⌊λn⌋ = 2 · ⌊εn/3⌋ ≤ (2ε/3)n rainbow independent
sets. Together with the ⌊(1 + λ)n⌋ ≤ (1 + ε/3)n rainbow independent sets in the family T , this forms a
decomposition of B1 ∪ · · · ∪ Bn into at most (1 + ε)n rainbow independent sets. Each of these rainbow
independent sets can greedily be extended to a rainbow basis. Thus, we obtain a covering of B1 ∪ · · · ∪Bn

by at most (1 + ε)n rainbow bases (i.e., transversal bases). □

7 Packing: proof of Lemma 3.3 and Theorem 1.5

Let us start this section by showing how Theorem 1.5 can be deduced from Lemmas 3.2 and 3.3. The rest
of this section will then be devoted to proving Lemma 3.3 (recall that we already proved Lemma 3.2 in
Section 5).

Proof of Theorem 1.5. We may assume without loss of generality that ε < 1/10. Given 0 < ε < 1/10,
let σ = σ(ε) > 0 and L = L(ε) > 0 be as in Lemma 3.3. Now, choose 0 < ν < 1/20 such that
3ν · (ln(1/ν)+1) < σ/L, define η = ε+ ν, and assume that n is sufficiently large with respect to the other
parameters.

Consider a rank-n matroid and n bases B1, . . . , Bn of it (we may assume that B1, . . . , Bn are disjoint by
introducing additional copies of any element that appears in more than one of these bases). By restricting
the matroid to the set B1 ∪ · · · ∪ Bn, and colouring each of the bases B1, . . . , Bn with a different colour,
we obtain a coloured matroid. Our goal is to show that there is a family of ⌈(1 − ε)n⌉ disjoint rainbow
bases in B1 ∪ · · · ∪Bn.

Now, let R ⊆ B1 ∪ · · · ∪ Bn be a set of elements drawn independently at random with probability η,
then R satisfies the statements in Lemmas 3.2 and 3.3 with high probability. In particular, we can fix an
outcome of R satisfying both of these statements.

By the statement in Lemma 3.2, we can find a family T of ⌈(1 − ε)n⌉ disjoint rainbow independent
sets in (B1 ∪ · · · ∪ Bn) \ R such that |E(T )| ≥ (1 − η − ν)n2 > 3

4n
2 (note that a priori the statement in

Lemma 3.2 gives such a family T consisting of ⌊(1− ε)n⌋ sets, but in case ⌊(1− ε)n⌋ ≠ ⌈(1− ε)n⌉, we can
add a copy of the empty set to the family T , or partition one of the sets T ∈ T into two subsets).

Let m = ⌈(1 − ε)n⌉ · n be the number of elements that a family of ⌈(1 − ε)n⌉ disjoint rainbow bases
would have. By our assumption that n is sufficiently large, we have m ≤ (1 − ε + ν)n2 and therefore
m − |E(T )| ≤ (1 − ε + ν)n2 − (1 − η − ν)n2 = (η − ε + 2ν)n2 = 3νn2. Furthermore, note that for every
family S of ⌈(1− ε)n⌉ disjoint rainbow independent sets we have |E(S)| ≤ ⌈(1− ε)n⌉ · n = m.

Now, let S be a family of ⌈(1 − ε)n⌉ disjoint rainbow independent sets in B1 ∪ · · · ∪ Bn maximising
|E(S)| subject to the constraint

|E(S) ∩R| ≤
|E(S)|−1∑
i=|E(T )|

L · ln
( n2

m− i

)
.

The family T satisfies this constraint (as |E(T ) ∩ R| = 0), so S is well-defined and we have |E(S)| ≥
|E(T )| > 3

4n
2.

If |E(S)| = m, then S must be a family of ⌈(1 − ε)n⌉ disjoint rainbow bases, finishing the proof of
Theorem 1.5. Assume, then, for contradiction that |E(S)| < m. Note that then we have

|E(S) ∩R| ≤
|E(S)|−1∑
i=|E(T )|

L · ln
( n2

m− i

)
= L ·

m−|E(T )|∑
j=m−|E(S)|+1

ln
(n2
j

)
≤ L ·

⌊3νn2⌋∑
j=2

ln
(n2
j

)
≤ L · σn

2

L
= σn2,

using that

⌊3νn2⌋∑
j=2

ln
(n2
j

)
≤

∫ 3νn2

1

ln
(n2
x

)
dx =

[
x ln

(n2
x

)
+ x

]3νn2

x=1
≤ 3ν ln(1/ν) · n2 + 3νn2 ≤ σn2

L
.
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Thus, we can apply Lemma 3.3 to the family S (also recalling that 3
4n

2 < |E(S)| < m = ⌈(1 − ε)n⌉ · n),
and conclude that there is a family S ′ of ⌈(1 − ε)n⌉ disjoint rainbow independent sets in B1 ∪ · · · ∪ Bn

with |E(S ′)| > |E(S)| and

|E(S ′) ∩R| ≤ |E(S) ∩R|+ L · ln
( n2

⌈(1− ε)n⌉ · n− |E(S)|

)
= |E(S) ∩R|+ L · ln

( n2

m− |E(S)|

)
≤

|E(S)|−1∑
i=|E(T )|

L · ln
( n2

m− i

)
+ L · ln

( n2

m− |E(S)|

)
≤

|E(S′)|−1∑
i=|E(T )|

L · ln
( n2

m− i

)
.

This contradicts our choice of the family S.

It remains to prove Lemma 3.3. The following lemma characterises a property of the random set R
needed in the proof (as we will show later, the statement in Lemma 3.3 holds for any subsetR ⊆ B1∪· · ·∪Bn

satisfying property (♠) in the lemma below with γ chosen sufficiently small with respect to ε).

Lemma 7.1. For any 0 < η < 1 and γ > 0, the following holds for any coloured rank-n matroid with
colour classes B1, . . . , Bn, such that each of the sets Bi for i = 1, . . . , n is a basis. Let R ⊆ B1 ∪ · · · ∪Bn

be a set of elements drawn independently at random with probability η. Then, with high probability (more
precisely, with probability tending to 1 as n→ ∞ with η and γ fixed), the following holds.

(♠) For every independent set T ⊆ B1 ∪ · · · ∪ Bn, and every colour subset C ⊆ [n], there are at least
η · (n− |T |) · |C| − γn2 elements e ∈

⋃
c∈C(Bc ∩R) such that T + e is independent.

Proof. The proof is completely analogous to the proof of Lemma 5.2. Alternatively, the lemma here can
be deduced directly from the statement of Lemma 5.2 applied to the random set (B1 ∪ · · · ∪ Bn) \ R (in
which elements are drawn with probability 1− η).

The relevance of property (♠) is actually that it implies property (▲) in the following lemma. Roughly
speaking, this property states that, for any reasonably large colour subset C ⊆ [n], the union

⋃
c∈C(Bc∩R)

has large rank, even after deleting up to γn2 elements from R.

Lemma 7.2. For 0 < η < 1 and γ, ε′ > 0 with (ε′)2η > 2γ, consider a coloured rank-n matroid with
colour classes B1, . . . , Bn and a subset R ⊆ B1 ∪ · · · ∪Bn satisfying (♠) above. Then the following holds.

(▲) For any subset Q ⊆ R of size |Q| ≥ |R| − γn2 and any colour subset C ⊆ [n] of size |C| ≥ ε′n we
have rk(

⋃
c∈C(Bc ∩Q)) ≥ (1− ε′)n.

Proof. Suppose for contradiction that | rk(
⋃

c∈C(Bc∩Q))| < (1−ε′)n, and let T be a maximal independent
subset of

⋃
c∈C(Bc ∩ Q). Then |T | = | rk(

⋃
c∈C(Bc ∩ Q))| < (1 − ε′)n, and so by (♠) there are at least

η ·(n−|T |) · |C|−γn2 ≥ η ·ε′n ·ε′n−γn2 > γn2 elements e ∈
⋃

c∈C(Bc∩R) such that T +e is independent.
By the maximality of T , for each of these elements e, we have e ̸∈

⋃
c∈C(Bc ∩ Q). Thus, there are more

than γn2 elements in
⋃

c∈C(Bc∩R)\
⋃

c∈C(Bc∩Q) ⊆ R\Q, and we must have |R\Q| > γn2, contradicting
our assumptions on Q.

We also need the following lemma, stating that if we can make two different switches to an independent
set, then we can also combine these switches in certain ways.

Lemma 7.3. Let T be an independent set in a matroid and let x, x′, q, q′ be elements of the matroid with
x, q ̸∈ T and x′, q′ ∈ T , such that T − x′ + x and T − q′ + q are independent sets with span(T − x′ + x) =
span(T − q′ + q) = span(T ). Then at least one of the following statements holds.

(a) The set T − q′ + x is independent with span(T − q′ + x) = span(T ).

(b) We have x′ ̸= q′, and the set T−x′−q′+x+q is independent with span(T−x′−q′+x+q) = span(T ).
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Proof. If x′ = q′, then T − q′ + x = T − x′ + x and so (a) holds by assumption. So let us assume that
x′ ̸= q′. Now, note that x ∈ span(T − x′ + x) = span(T ), and q ∈ span(T − q′ + q) = span(T ), so we can
conclude that span(T − q′ + x) ⊆ span(T ) and span(T − x′ − q′ + x + q) ⊆ span(T ). Since we also have
|T − q′ + x| = |T − x′ − q′ + x+ q| = |T |, it suffices to show that the set T − q′ + x is independent or the
set T − x′ − q′ + x+ q is independent.

Note that the set T − x′ − q′ + x ⊆ T − x′ + x is independent and has size |T − x′ − q′ + x| = |T | − 1,
which is strictly smaller than the size |T − q′ + q| = |T | of the independent set T − q′ + q. Thus, there
exists an element e ∈ (T −q′+q)\ (T −x′−q′+x) = {q, x′} such that T −x′−q′+x+e is an independent
set. If e = q, this means T − x′ − q′ + x + q is independent, and if e = x′, this means that T − q′ + x is
independent.

The following definition is crucial for our proof of Lemma 3.3. Roughly speaking, for distinct members
T1, . . . , Tr of some family T of rainbow independent sets, it describes the situation that an element e
outside T1 ∪ · · · ∪ Tr can be absorbed into T1, . . . , Tr, by slightly modifying the sets T1, . . . , Tr in such a
way that the total size |T1|+· · ·+|Tr| increases (but without touching any elements in E(T )\(T1∪· · ·∪Tr)
except e). See also the outline in Section 3.2 for the motivation behind this definition. Our definition here
is inspired by the notion of cascade-addability in [5, Definition 2.8]. However, our notion of absorbability
here is more flexible, and this additional flexibility is crucial in our proof of Lemma 3.3 (the switching
operations considered for cascade-addability in [5, Definition 2.8] are not strong enough for our purposes).

Definition 7.4. Consider a family of disjoint rainbow independent sets T in a coloured matroid, and let
U be the set of matroid elements outside of E(T ) (i.e., the uncovered set). For distinct T1, . . . , Tr ∈ T ,
we say that an element e of the matroid with e ̸∈ T1 ∪ · · · ∪ Tr is (T1, . . . , Tr)-absorbable with respect to T
if there are disjoint rainbow independent sets T ′

1, . . . , T
′
r ⊆ U ∪ T1 ∪ · · · ∪ Tr ∪ {e} such that |T ′

i \ Ti| ≤ 3
for i = 1, . . . r, and |T ′

1|+ · · ·+ |T ′
r| ≥ |T1|+ · · ·+ |Tr|+ 1.

Furthermore, for a set Tr+1 ∈ T \ {T1, . . . , Tr}, let us denote by mT (T1, . . . , Tr, Tr+1) the number of
elements e ∈ Tr+1 such that e is (T1, . . . , Tr)-absorbable with respect to T .

Note that in Definition 7.4 we do not demand that e ∈ T ′
1 ∪ · · · ∪ T ′

r. However, in the setting of the
proof of Lemma 3.3 we will automatically have that e ∈ T ′

1 ∪ · · · ∪ T ′
r. Indeed, if we have e ̸∈ T ′

1 ∪ · · · ∪ T ′
r,

then we can obtain a family of disjoint rainbow independent sets from T with strictly larger total size,
simply replacing T1, . . . , Tr by T ′

1, . . . , T
′
r. In our proof of Lemma 3.3, this would trivially give the desired

family S ′. So we may assume that e ∈ T ′
1 ∪ · · · ∪ T ′

r (then T ′
1, . . . , T

′
r are not disjoint from the sets in

T \ {T1, . . . , Tr}), which motivates the word “absorbable”.
The following lemma states that under certain assumptions for a given T ∈ T we can find many (T )-

absorbable elements (i.e. many elements satisfying the condition in Definition 7.4 for r = 1 and T1 = T ).

Lemma 7.5. Let γ > 0 and ε′ > 0. Consider a family T of at most (1− ε′)n rainbow independent sets in
a coloured rank-n matroid with colour classes B1, . . . , Bn, such that each of the sets Bi for i = 1, . . . , n is
a basis, and let U = (B1 ∪ · · · ∪Bn) \E(T ). Let R ⊆ B1 ∪ · · · ∪Bn be a subset satisfying (▲), and assume
that |E(T ) ∩ R| ≤ γn2. Let T ∈ T have size |T | < n, and assume that there is no rainbow independent
set S ⊆ U ∪ T with |S| > |T | and |S \ T | ≤ 2.

Then there is a set of colours C ⊆ [n] of size |C| ≥ (1− ε′)n, such that the following condition holds:
For every colour c ∈ C, every element in Bc \ span(T ) is (T )-absorbable with respect to T .

In other words, the condition on the set C here states that every element e such that T+e is independent
and e has a colour in C must be (T )-absorbable with respect to T . The proof of this lemma relies on
switching arguments like in the proof outline in Section 3.2 (see also Figure 2).

Proof of Lemma 7.5. Since |T | < n, we can fix a colour c∗ ∈ [n] not appearing on T . Note that we have
Bc∗ ∩ E(T ) ≤ |T | ≤ (1− ε′)n and therefore |Bc∗ ∩ U | ≥ ε′n.

Let us now apply Lemma 2.3 to the independent sets Bc∗ ∩ U and T . If option (a) there holds, there
would be an element x ∈ Bc∗ ∩ U such that T + x is independent. But then T + x ⊆ U ∪ T is a rainbow
independent set with |T +x| > |T | and |(T +x)\T | < 2. This would be a contradiction to our assumption.

Thus, we must have option (b) in Lemma 2.3, so there is an injection ϕ∗ : Bc∗ ∩ U → T such that,
for each x ∈ Bc∗ ∩ U , the set T − ϕ∗(x) + x is independent and span(T − ϕ∗(x) + x) = span(T ). Note
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that the set T − ϕ∗(x) + x is also rainbow, since the colour c∗ of x does not appear on T , and we have
T − ϕ∗(x) + x ⊆ U ∪ T .

Now, let C∗ ⊆ [n] be the set of colours appearing on the elements in the image of ϕ∗, i.e., the elements
ϕ∗(x) for x ∈ Bc∗ ∩ U . Then |C∗| = |Bc∗ ∩ U | ≥ ε′n. Furthermore, taking Q = R ∩ U , note that
|Q| = |R| − |E(T )∩R| ≥ |R| − γn2. Thus, by (▲) we have rk(

⋃
c∈C∗(Bc ∩Q)) ≥ (1− ε′)n. So we can find

an independent set Q∗ ⊆
⋃

c∈C∗(Bc ∩Q) of size |Q∗| ≥ (1− ε′)n. By definition of C∗, for every element
q ∈ Q∗ there exists an element x ∈ Bc∗ ∩U such that ϕ∗(x) has the same colour as q. Note that then the
set T − ϕ∗(x) + x+ q is rainbow.

Now, let us again apply Lemma 2.3, this time to the independent sets Q∗ and T . If option (a)
holds, there is some q ∈ Q∗ ⊆ Q ⊆ U such that the set T + q is independent. This means that q ̸∈
span(T ) = span(T − ϕ∗(x) + x), where x ∈ Bc∗ ∩U is such that ϕ∗(x) has the same colour as q. But then
T − ϕ∗(x) + x+ q ⊆ U ∪ T is a rainbow independent set of size |T |+1 with |(T − ϕ∗(x) + x+ q) \ T | ≤ 2.
This again contradicts our assumption.

Thus, again option (b) in Lemma 2.3 must hold. So we obtain an injection ϕ′ : Q∗ → T such that, for
each q ∈ Q∗, the set T − ϕ′(q) + q is independent and span(T − ϕ′(q) + q) = span(T ). Finally, let C ⊆ [n]
be the set of colours appearing on the image ϕ′(Q∗) ⊆ T . Then we indeed have |C| = |ϕ′(Q∗)| = |Q∗| ≥
(1− ε′)n.

It remains to show that, for each c ∈ C, every element in Bc \ span(T ) is (T )-absorbable with respect
to T . So let c ∈ C, then there exists an element q ∈ Q∗ ⊆ U such that its image ϕ′(q) has colour
c. Let x ∈ Bc∗ ∩ U be such that ϕ∗(x) has the same colour as q. Recall that T − ϕ∗(x) + x is an
independent set with span(T − ϕ∗(x) + x) = span(T ), and that T − ϕ′(q) + q is an independent set with
span(T − ϕ′(q) + q) = span(T ). Thus, by Lemma 7.3, we have that T − ϕ′(q) + x is an independent
set with span(T − ϕ′(q) + x) = span(T ), or that T − ϕ∗(x) − ϕ′(q) + x + q is an independent set with
span(T − ϕ∗(x)− ϕ′(q) + x+ q) = span(T ). Noting that both of these sets are rainbow, in either case we
find a rainbow independent set T ′ ⊆ U ∪ T of size |T ′| = |T | with span(T ′) = span(T ) and |T ′ \ T | ≤ 2,
such that the colour c = c(ϕ′(q)) does not appear on T ′. Now, for each e ∈ Bc \ span(T ), note that T ′ + e
is a rainbow independent set (since e ̸∈ span(T ) = span(T ′) and the colour c of e does not appear on T ′).
So e is (T )-absorbable with respect to T , since we can take T ′

1 = T ′ + e in Definition 7.4.

Finally, we are ready to prove Lemma 3.3. As outlined in Section 3.2, the proof strategy is to find a
cascade of sets T1, . . . , Trmax ∈ T such that the number mT (T1, . . . , Tr, Tr+1) of (T1, . . . , Tr)-absorbable
elements in Tr+1 grows exponentially with r. Here, T is either identical to the original family S given
in Lemma 3.3, or T is a family of ⌈(1 − ε)n⌉ rainbow independent sets of the same total size |E(T )| =
|E(S)| as S, where |E(T ) ∩ R| is not much larger than |E(S) ∩ R|, and which contains sets T1, T2 ∈
T such that mT (T1, T2) is very large (i.e., such that T2 contains a lot of (T1)–absorbable elements).
Finding such T1, T2 ∈ T with very large mT (T1, T2) is very helpful for starting our cascade with growing
mT (T1, . . . , Tr, Tr+1). If no family T with these conditions containing such T1, T2 ∈ T exists, then we
simply take T = S. Then at every step, we will have a set Tr+1 ∈ T = S containing many (T1, . . . , Tr)-
absorbable elements. As outlined in Section 3.2, we can then make some small modifications to Tr+1 to
incorporate many different possible new elements, in order to show that there are many (T1, . . . , Tr, Tr+1)-
absorbable elements. However, if most of these possible new elements to be added to Tr+1 (after small
modifications) lie in T1 ∪ · · · ∪ Tr, they are by definition not (T1, . . . , Tr, Tr+1)-absorbable, so this would
be problematic. In the case where we take T = S, this cannot happen because otherwise one of the sets
T1, . . . , Tr would contain many (T ′

r+1)-absorbable elements (where T ′
r+1 denotes the modified version of

Tr+1), and this would allow us to choose T differently.

Proof of Lemma 3.3. Let 0 < ε < 1/10, and note that then 1+ε/4 ≥ eε/8 (since the inequality 1+2x ≥ ex

holds for all x ∈ [0, 1]). Define σ = ε3/20 and L = 107/ε5. As in the statement of Lemma 3.3, let
ε ≤ η < 1, assume that n is large with respect to ε and η, and consider a coloured rank-n matroid where
the colour classes B1, . . . , Bn are bases. Given Lemma 7.1, it suffices to prove that the desired conclusion
in Lemma 3.3 holds for every subset R ⊆ B1∪ · · ·∪Bn satisfying (♠) with γ = 2σ = ε3/10. Now, defining
ε′ = ε/2, note that (ε′)2η ≥ ε3/4 > 2γ, and so (▲) holds by Lemma 7.2.

Finally, as in the statement of Lemma 3.3, let S be a family of ⌈(1−ε)n⌉ rainbow independent sets with
3
4n

2 ≤ |E(S)| < ⌈(1− ε)n⌉ · n and |E(S) ∩R| ≤ σn2. Let s = ⌈(1− ε)n⌉ · n− |E(S)| ≥ 1, and assume for
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contradiction that there is no family S ′ of ⌈(1− ε)n⌉ rainbow independent sets such that |E(S ′)| > |E(S)|
and |E(S ′) ∩R| ≤ |E(S) ∩R|+ L · ln(n2/s).

Let T be a family of ⌈(1 − ε)n⌉ rainbow independent sets with |E(T )| = |E(S)| and |E(T ) ∩ R| ≤
|E(S) ∩ R|+ (L/2) · ln(n2/s) such that there are distinct T1, T2 ∈ T with mT (T1, T2) ≥ ε4n/105, if such
a family T exists. In this case, also define rmin = 2. If no such family exists, then define instead T = S
and rmin = 1, and choose T1 ∈ T = S such that n − |T1| is maximal. Note that

∑
T∈S(n − |T |) =

⌈(1− ε)n⌉ · n− |E(S)| = s, so in this case we have n− |T1| ≥ s/n > 0.
Note that in either case we have |E(T )| = |E(S)| and |E(T )∩R| ≤ |E(S)∩R|+ (L/2) · ln(n2/s). Let

U = (B1 ∪ · · · ∪ Bn) \ E(T ) and rmax = ⌈(L/8) · ln(n2/s)⌉ + 2. Note that s ≤ n2 − |E(S)| ≤ n2/4, and
hence ln(n2/s) ≥ ln(4) > 1 and rmax − 2 ≥ L/8 > 106/ε5.

Now, for any rmin ≤ r < rmax, let us recursively define Tr+1 ∈ T \{T1, . . . , Tr} to be the set maximising
mT (T1, . . . , Tr, Tr+1). Our goal is to show that mT (T1, . . . , Tr, Tr+1) must grow very quickly with r,
contradicting the fact that we have mT (T1, . . . , Tr, Tr+1) ≤ |Tr+1| ≤ n for all rmin ≤ r < rmax.

More specifically, we claim that for any rmin ≤ r < rmax we have

mT (T1, . . . , Tr, Tr+1) ≥
(
1 +

ε

4

)
·
(
mT (T1, . . . , Tr−1, Tr) + n− |Tr|

)
. (13)

(where in the case rmin = 1 we define mT (T1) = 0). Noting that mT (T1, . . . , Trmax−1, Trmax) ≤ |Trmax | ≤ n,
this is sufficient to get a contradiction. Indeed, in the case rmin = 2, (13) implies

mT (T1, . . . , Trmax
) ≥

(
1 +

ε

4

)rmax−2

·mT (T1, T2) ≥ (eε/8)10
6/ε5 · ε

4n

105
> e10

5/ε4 · ε
4n

105
>

105

ε4
· ε

4n

105
= n,

and in the case rmin = 1, (13) implies

mT (T1, . . . , Trmax) ≥
(
1 +

ε

4

)rmax−1

· (n− |T1|) ≥ (eε/8)(10
6/ε5)·ln(n2/s) · s

n
>
n2

s
· s
n
= n.

Thus, it suffices to prove (13).
We show (13) by induction on r. So, for the rest of this proof, take some r ∈ {rmin, . . . , rmax − 1} and

assume (13) holds for all smaller values of r in {rmin, . . . , rmax − 1}. Then, if r ≥ 2, we in particular have

mT (T1, . . . , Tr) ≥
(
1 +

ε

4

)
·mT (T1, . . . , Tr−1) ≥ · · · ≥

(
1 +

ε

4

)r−2

mT (T1, T2).

So in the case rmin = 2, we conclude mT (T1, . . . , Tr) ≥ mT (T1, T2) ≥ ε4n/105, and in the case rmin = 1
we conclude mT (T1, . . . , Tr) ≥ (1 + ε/4)r−2mT (T1, T2) ≥ (1 + ε/4)r−1(n− |T1|) ≥ (1 + ε/4)r−1 if r ≥ 2.

In order to show (13), we will show that there are many elements e′ ∈ E(T ) \ (T1 ∪ · · · ∪ Tr) which
are (T1, . . . , Tr)-absorbable with respect to T . In the special case r = 1, this is shown by the following
relatively easy claim (in contrast, in the case r ≥ 2, this is only shown in Claim 7.9 and requires significantly
more arguments).

Claim 7.6. If r = 1, then there are at least (1 − ε/2)n · (n − |T1|) elements e′ ∈ E(T ) \ T1 which are
(T1)-absorbable with respect to T .

Proof. Recall that |E(T )∩R| ≤ |E(S)∩R|+(L/2)·ln(n2/s) and |E(S)∩R| ≤ σn2, so |E(T )∩R| ≤ 2σn2 =
γn2. Furthermore, note that |T1| < n (since r = 1 implies rmin = 1) and that there cannot be a rainbow
independent set S ⊆ U ∪ T1 with |S| > |T1| and |S \ T1| ≤ 3 (since otherwise taking S ′ to be the family
obtained from T when replacing T1 ∈ T by S would contradict our assumption). Therefore, for any element
e′ which is (T1)-absorbable with respect to T , we must have e ∈ E(T ) \ T1. Furthermore, by Lemma 7.5
there is a set of colours C ⊆ [n] of size |C| ≥ (1 − ε′)n = (1 − ε/2)n, such that, for each colour c ∈ C,
every element in Bc \ span(T1) is (T1)-absorbable with respect to T . Note that, for every colour c ∈ C,
we have |Bc ∩ span(T1)| ≤ rk(span(T1)) = |T1| and hence |Bc \ span(T1)| = n− |Bc ∩ span(T1)| ≥ n− |T1|.
Thus in total there are at least |C| · (n− |T1|) ≥ (1− ε/2)n · (n− |T1|) elements e′ ∈ E(T ) \ T1 which are
(T1)-absorbable with respect to T . ⊡
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Our goal is to show that also in the case r ≥ 2 there are many (T1, . . . , Tr)-absorbable elements.
Let E∗ ⊆ Tr be the set of elements e ∈ Tr which are (T1, . . . , Tr−1)-absorbable with respect to T ,

and note that |E∗| = mT (T1, . . . , Tr). For each e ∈ E∗, we can find a collection of disjoint rainbow

independent sets T
(e)
1 , . . . , T

(e)
r−1 ⊆ U ∪T1 ∪ · · · ∪Tr−1 ∪{e} such that |T (e)

i \Ti| ≤ 3 for i = 1, . . . r− 1, and

|T (e)
1 |+ · · ·+ |T (e)

r−1| ≥ |T1|+ · · ·+ |Tr−1|+ 1. Define T (e) to be the family of ⌈(1− ε)n⌉ disjoint rainbow

independent sets obtained from T when replacing T1, . . . , Tr by T
(e)
1 , . . . , T

(e)
r−1, Tr − e. Note that

|E(T (e))| − |E(T )| = |T (e)
1 |+ . . . ,+|T (e)

r−1|+ (|Tr| − 1)− (|T1|+ · · ·+ |Tr|) ≥ 0

and

|E(T (e)) ∩R| ≤ |E(T ) ∩R|+
r−1∑
i=1

|T (e)
i \ Ti| ≤ |E(T ) ∩R|+ 3r ≤ |E(T ) ∩R|+ (L/2) · ln(n2/s)− 3

(as 3r ≤ 3rmax ≤ (3/8)L · ln(n2/s) + 9 ≤ (L/2) · ln(n2/s) − 3). Thus, we in particular have |E(T (e))| ≥
|E(T )| = |E(S)| and |E(T (e)) ∩R| ≤ |E(S) ∩R|+ L · ln(n2/s)− 3 for all e ∈ E∗.

For each e ∈ E∗, let U (e) = (B1 ∪ · · · ∪ Bn) \ E(T (e)) be the set of elements uncovered by T (e),
and note that U (e) ⊆ U ∪ T1 ∪ · · · ∪ Tr. Recalling that |E(S) ∩ R| ≤ σn2, we can also observe that
|E(T (e)) ∩ R| ≤ 2σn2 = γn2. Furthermore |Tr − e| < n, and there cannot be a rainbow independent set
S ⊆ U (e) ∪ (Tr − e) with |S| > |Tr − e| and |S \ (Tr − e)| ≤ 2 (since otherwise taking S ′ to be the family
obtained from T (e) when replacing Tr − e ∈ T (e) by S would yield a contradiction to our assumption).
Thus, by Lemma 7.5, there is a set of colours C(e) ⊆ [n] of size |C(e)| ≥ (1 − ε′)n, such that, for each
colour c ∈ C(e), every element in Bc \ span(Tr − e) is (Tr − e)-absorbable with respect to T (e).

The following claim shows, roughly speaking, that in order to get many (T1, . . . , Tr)-absorbable el-
ements, it suffices to find many elements which are (Tr − e)-absorbable with respect to T (e) for some
e ∈ E∗.

Claim 7.7. Let e ∈ E∗, and let e′ be (Tr−e)-absorbable with respect to T (e). Then, unless e′ ∈ T
(e)
1 ∪· · ·∪

T
(e)
r−1, the element e′ is (T1, . . . , Tr)-absorbable with respect to T and we have e′ ∈ E(T ) \ (T1 ∪ · · · ∪ Tr).

Proof. By assumption, there exists a rainbow independent set T ′
r ⊆ U (e)∪(Tr−e)∪{e′} with |T ′

r\(Tr−e)| ≤
3 and |T ′

r| ≥ |Tr − e|+1 = |Tr|. We claim that e′ ̸∈ U (e). Indeed, if e′ ∈ U (e), then the family S ′ obtained
from T (e) when replacing Tr−e ∈ T (e) by T ′

r would be a family of ⌈(1−ε)n⌉ disjoint rainbow independent
sets with |E(S ′)| > |E(T (e))| ≥ |E(S)| and

|E(S ′) ∩R| ≤ |E(T (e)) ∩R|+ 3 ≤ |E(S) ∩R|+ L · ln(n2/s)

(noting that |E(S ′) ∩R| − |E(T (e)) ∩R| = |T ′
r ∩R| − |(Tr − e) ∩R| ≤ |T ′

r \ (Tr − e)| ≤ 3). This would be
a contradiction to our assumption in the beginning that no such family S ′ exists.

So indeed e′ ̸∈ U (e), which means that e′ ∈ E(T (e)) = T
(e)
1 ∪· · ·∪T (e)

r−1∪ (Tr− e)∪E(T \{T1, . . . , Tr}).
Since e′ is (Tr − e)-absorbable, we have e′ ̸∈ Tr − e (see Definition 7.4). Thus, unless e′ ∈ T

(e)
1 ∪ · · · ∪T (e)

r−1,
we therefore have e′ ∈ E(T \ {T1, . . . , Tr}) = E(T ) \ (T1 ∪ · · · ∪ Tr).

It remains to show that e′ is (T1, . . . , Tr)-absorbable with respect to T if e′ ̸∈ T
(e)
1 ∪ · · · ∪ T (e)

r−1. To

this end, note that T
(e)
1 , . . . , T

(e)
r−1, T

′
r ⊆ U ∪ U (e) ∪ T1 ∪ · · · ∪ Tr ∪ {e′} = U ∪ T1 ∪ · · · ∪ Tr ∪ {e′} are

disjoint rainbow independent sets with |T (e)
1 | + · · · + |T (e)

r−1| + |T ′
r| ≥ |T1| + · · · + |Tr−1| + 1 + |Tr| and

|T ′
r \ Tr| ≤ |T ′

r \ (Tr − e)| ≤ 3 (as well as |T (e)
i \ Ti| ≤ 3 for i = 1, . . . r − 1). Thus, by Definition 7.4, the

element e′ is (T1, . . . , Tr)-absorbable with respect to T if e′ ̸∈ T
(e)
1 ∪ · · · ∪ T (e)

r−1. ⊡

Note that we obtain the conclusion in Claim 7.7 only for (Tr − e)-absorbable elements e′ with e′ ̸∈
T

(e)
1 ∪ · · · ∪ T (e)

r−1. Our next claim gives an upper bound for the number of (Tr − e)-absorbable elements e′

with e′ ∈ T
(e)
1 ∪ · · · ∪ T (e)

r−1 if rmin = 1.

Claim 7.8. Let e ∈ E∗, and assume that rmin = 1. Then, for every i = 1, . . . , r − 1, there are at most

ε4n/105 elements e′ ∈ T
(e)
i which are (Tr − e)-absorbable with respect to T (e).
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Proof. Suppose for contradiction that for some i ∈ {1, . . . , r − 1} there are more than ε4n/105 elements

e′ ∈ T
(e)
i which are (Tr−e)-absorbable with respect to T (e). This means thatmT (e)(Tr−e, T (e)

i ) > ε4n/105.
Now, recall that T (e) is a family of ⌈(1−ε)n⌉ disjoint rainbow independent sets with |E(T (e))| ≥ |E(S)|

and |E(T (e)) ∩R| ≤ |E(T ) ∩R|+ (L/2) · ln(n2/s) = |E(S) ∩R|+ (L/2) · ln(n2/s) (where in the last step
we used that T = S by our assumption rmin = 1).

Thus, if |E(T (e))| > |E(S)|, this contradicts our assumption that there is no family S ′ of ⌈(1 − ε)n⌉
disjoint rainbow independent sets with |E(S ′)| > |E(S)| and |E(S ′) ∩R| ≤ |E(S) ∩R|+ L · ln(n2/s). On
the other hand, if |E(T (e))| = |E(S)|, we obtain a contradiction to rmin = 1 and our choice of T (since
we should have taken T to be T (e), making rmin = 2). ⊡

Combining the two previous claims, we can now give the following lower bound for the number of
(T1, . . . , Tr)-absorbable elements.

Claim 7.9. There are at least (1−3ε/4)n · (mT (T1, . . . , Tr)+n−|Tr|) elements e′ ∈ E(T )\ (T1∪· · ·∪Tr)
which are (T1, . . . , Tr)-absorbable with respect to T .

Proof. In the case r = 1, the desired statement follows from Claim 7.6 (recalling that mT (T1) = 0). So
let us assume that r ≥ 2, which in particular implies |E∗| = mT (T1, . . . , Tr) ≥ 1.

Now let E′ be the set of elements e′ ∈ B1∪· · ·∪Bn for which there is some e ∈ E∗ so that e′ is (Tr−e)-
absorbable with respect to T (e). Furthermore, let E′′ be the set of elements e′ ∈ B1∪· · ·∪Bn for which there

is some e ∈ E∗ so that e′ is (Tr − e)-absorbable with respect to T (e) and e′ ∈ T
(e)
1 ∪ · · · ∪ T (e)

r−1. Note that
E′′ ⊆ E′. By Claim 7.7, every element e′ ∈ E′\E′′ is (T1, . . . , Tr)-absorbable with respect to T and satisfies
e′ ∈ E(T )\(T1∪· · ·∪Tr). Thus it suffices to prove that |E′ \E′′| ≥ (1−3ε/4) ·(mT (T1, . . . , Tr)+n−|Tr|).

Let us now show a lower bound for |E′| (afterwards, we use Claim 7.8 to show an upper bound for
|E′′|). For every colour c ∈ [n], let us apply Lemma 2.2 to the independent set Tr and the basis Bc, to
find an injection ϕc : Tr → Bc such that, for each e ∈ Tr, the set Tr − e + ϕc(e) is independent, and for
each b ∈ Bc \ ϕc(Tr), the set Tr + b is independent (and hence also the set Tr − e+ b for each e ∈ Tr). So,
for any c ∈ [n] we have ϕc(e) ∈ Bc \ span(Tr − e) and Bc \ ϕc(Tr) ⊆ Bc \ span(Tr − e) for all e ∈ Tr (and
in particular for all e ∈ E∗).

Recall that for every e ∈ E∗ there is a set of colours C(e) ⊆ [n] of size |C(e)| ≥ (1 − ε′)n, such that
for each colour c ∈ C(e) every element in Bc \ span(Tr − e) is (Tr − e)-absorbable with respect to T (e).
This means that Bc \ span(Tr − e) ⊆ E′ for every e ∈ E∗ and c ∈ C(e), and hence ϕc(e) ∈ E′ and
Bc \ ϕc(Tr) ⊆ E′. Therefore, since |C(e)| ≥ (1 − ε′)n for all e ∈ E∗ and each map ϕc : Tr → Bc is an
injection, we can find |E∗| · (1 − ε′)n distinct elements of the form ϕc(e) in E

′. In addition, when fixing
an arbitrary element e∗ ∈ E∗ (recalling that |E∗| ≥ 1), we have Bc \ϕc(Tr) ⊆ E′ for the at least (1− ε′)n
colours c ∈ C(e∗) (and |Bc \ ϕc(Tr)| = n − |Tr|). This gives at least (1 − ε′)n · (n − |Tr|) elements in E′

which do not lie in ϕ1(Tr) ∪ · · · ∪ ϕn(Tr). Thus, we can conclude that

|E′| ≥ |E∗| · (1− ε′)n+ (1− ε′)n · (n− |Tr|) = (1− ε′)n · (|E∗|+ n− |Tr|).

Next, we claim that |E′′| ≤ (εn/4) · |E∗|. If |E∗| ≥ 8r/ε, this automatically holds as

E′′ ⊆
⋃

e∈E∗

(T
(e)
1 ∪ · · · ∪ T (e)

r−1) ⊆ (T1 ∪ · · · ∪ Tr−1) ∪
⋃

e∈E∗

r−1⋃
i=1

(T
(e)
1 \ Ti),

and therefore

|E′′| ≤ |T1∪· · ·∪Tr−1|+
∑
e∈E∗

r−1∑
i=1

|T (e)
1 \Ti| ≤ (r−1) ·n+ |E∗| · (r−1) ·3 ≤ εn

8
· |E∗|+ εn

8
· |E∗| = εn

4
· |E∗|

by our assumption |E∗| ≥ 8r/ε and by r ≤ rmax ≤ L · ln(n2) ≤ εn/24. So in particular this automatically
holds if rmin = 2 (since then |E∗| = mT (T1, . . . , Tr) ≥ ε4n/105 ≥ (8/ε)L ln(n2) ≥ 8rmax/ε ≥ 8r/ε). It
also automatically holds if rmin = 1 and r ≥ 104/ε3 (since then |E∗| ≥ mT (T1, . . . , Tr) ≥ (1 + ε/4)r−1 ≥
e(ε/8)(r−1) ≥ (eεr/20)2 ≥ (1 + εr/20)2 ≥ ε2r2/400 ≥ 8r/ε). Finally, if rmin = 1 and r ≤ 104/ε3, observe
that, by Claim 7.8 for each e ∈ E∗ and each i = 1, . . . , r − 1, there are at most ε4n/105 elements
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e′ ∈ T
(e)
i that are (Tr − e)-absorbable with respect to T (e). Thus, by the definition of E′′, we have

|E′′| ≤ |E∗| · (r − 1) · ε4n/105 ≤ (εn/4) · |E∗|. Thus, we have shown |E′′| ≤ (εn/4) · |E∗| in any case.
All in all, we can conclude (recalling that ε′ = ε/2 and |E∗| = mT (T1, . . . , Tr))

|E′ \ E′′| = |E′| − |E′′| ≥ (1− ε′)n · (|E∗|+ n− |Tr|)− (εn/4) · |E∗|

≥ (1− 3ε/4)n · (|E∗|+ n− |Tr|) = (1− 3ε/4)n ·
(
mT (T1, . . . , Tr) + n− |Tr|

)
.⊡

By Claim 7.9, at least (1 − 3ε/4)n · (mT (T1, . . . , Tr) + n − |Tr|) elements e′ ∈ E(T ) \ (T1 ∪ · · · ∪ Tr)
=

⋃
T∈T \{T1,...,Tr} T are (T1, . . . , Tr)-absorbable with respect to T . In particular, there exists some T ∈

T \ {T1, . . . , Tr} containing at least

(1− 3ε/4)n

|T | − r
·
(
mT (T1, . . . , Tr) + n− |Tr|

)
≥ (1 + ε/4) ·

(
mT (T1, . . . , Tr) + n− |Tr|

)
(T1, . . . , Tr)-absorbable elements with respect to T (here, we used that |T |−r = ⌈(1−ε)n⌉−r ≤ (1−ε)n and
(1+ ε/4)(1− ε) ≤ 1− 3ε/4). This means that mT (T1, . . . , Tr, T ) ≥ (1+ ε/4) · (mT (T1, . . . , Tr)+n− |Tr|).
Recalling that mT (T1, . . . , Tr, Tr+1) ≥ mT (T1, . . . , Tr, T ) by the choice of Tr+1, this implies (13), as
desired. □

8 Proofs of simple matroid lemmas

This section contains the proofs of several simple lemmas concerning matroids, rainbow independent sets
and deadlocks, which we omitted in the previous sections. We start by proving Lemma 2.1.

Proof of Lemma 2.1. First, we can find an independent set S′ with S ⊆ S′ ⊆ S ∪ T of size |S′| ≥
|T | by starting with the independent set S and adding elements from the independent set T using the
augmentation property (adding elements from T one at a time until |S′| ≥ |T |). Note that then we have
|T \ S′| = |T ∪ S′| − |S′| = |T ∪ S| − |S′| ≤ |T ∪ S| − |T | = |S \ T |. Every colour appears at most twice in
S′, since each of the sets S and T is rainbow. Furthermore, if a colour appears twice in S′, then it must
appear once in S \T ⊆ S′ (and once in S′ \S). So there are at most |S \T | colours appearing twice in S′,
and for each of them we can delete an element of S′ \ S to remove the colouring conflict. This way, we
obtain a rainbow independent set S∗ with S ⊆ S∗ ⊆ S′ ⊆ S ∪ T and |S′ \ S∗| ≤ |S \ T |. Note that then
we have |T \ S∗| ≤ |T \ S′|+ |S′ \ S∗| ≤ 2 · |S \ T |.

Next, we will prove Lemmas 2.2 and 2.3. We will deduce both of these lemmas from the following
statement due to Brualdi [4] (for the reader’s convenience we also include a proof here).

Lemma 8.1 ([4]). Let B and B′ be bases of some matroid. Then, there is a bijection ψ : B → B′ such
that, for each x ∈ B, the set B′ − ψ(x) + x is independent.

Proof. For each x ∈ B, let Sx ⊆ B′ be the set of all x′ ∈ B′ such that B′ − x′ + x is independent. We
claim that Sx+x cannot be an independent set. Indeed, if Sx+x was an independent set for some x ∈ B,
then we could find an independent set T with Sx + x ⊆ T ⊆ (Sx + x) ∪B′ = B′ + x of size |T | = |B′| via
the augmentation property by successively adding elements from B′. But then the independent set T is
of the form B′ − x′ + x for some x′ ̸∈ Sx, which is a contradiction to the definition of Sx.

So indeed, for each x ∈ B, the set Sx + x is not independent. Thus we have x ∈ span(Sx) for every
x ∈ B. Then, for any subset X ⊆ B, we have X ⊆ span(

⋃
x∈X Sx) and hence |

⋃
x∈X Sx| ≥ rk(

⋃
x∈X Sx) =

rk(span(
⋃

x∈X Sx)) ≥ rk(X) = |X|. Thus, by Hall’s Theorem, we can find a bijection ψ : B → B′ with
ψ(x) ∈ Sx for all x ∈ B. By the definition of Sx, this means that B′ − ψ(x) + x is an independent set for
each x ∈ B.

Using Lemma 8.1, it is not hard to deduce Lemmas 2.2 and 2.3.

Proof of Lemma 2.2. Let B′ be a basis of the matroid with S ⊆ B′. Apply Lemma 8.1 to find a bijection
ψ : B → B′ such that B′ − ψ(x) + x is an independent set for every x ∈ B. Letting ϕ : B′ → B be the
inverse map of ψ, the set B′−x+ϕ(x) is independent for every x ∈ B′. In particular, this means that for
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every x ∈ S, the set S−x+ϕ(x) is independent. Furthermore, for each b ∈ B \ϕ(S), the set B′ −x+ b is
independent for some x ∈ B′ \ S (namely, the element x with ϕ(x) = b). Thus, the set S + b ⊆ B′ − x+ b
is also independent. Finally, note that restricting ϕ to S gives an injection from S into B.

Proof of Lemma 2.3. Let B and B′ be bases of the matroid with S ⊆ B and T ⊆ B′. By Lemma 8.1,
there is a bijection ψ : B → B′ such that B′ − ψ(x) + x is an independent set for every x ∈ B. If there
is some x ∈ S ⊆ B with ψ(x) ̸∈ T , then this means that T + x ⊆ B′ − ψ(x) + x is an independent set,
and thus (a) holds. So let us assume that ψ(x) ∈ T for all x ∈ S. Then, by restricting ψ to S, we get an
injection ϕ : S → T such that B′ − ϕ(x) + x, and hence also T − ϕ(x) + x, is an independent set for every
x ∈ S.

Furthermore, we may assume that x ∈ span(T ) for every x ∈ S. Indeed, if there is some x ∈ S
with x ̸∈ span(T ), then T + x is an independent set and (a) holds again. So, for any x ∈ S we may
assume that x ∈ span(T ), which implies T ∪ {x} ⊆ span(T ) and hence span(T ∪ {x}) = span(T ) (since
span(T ) ⊆ span(T ∪ {x}) ⊆ span(span(T )) = span(T ) by the basic matroid rules in Section 2). Thus,

span(T − ϕ(x) + x) ⊆ span(T ∪ {x}) = span(T ),

and together with rk(T−ϕ(x)+x) = |T−ϕ(x)+x| = |T | = rk(T ), this implies span(T−ϕ(x)+x) = span(T ).
Thus, (b) holds.

It remains to prove Lemmas 6.2 and 6.7. To do so, we first need some preparation. First, the following
well-known lemma states that the rank function in a matroid is submodular (see for example [16, Lemma
1.3.1]). Again, we include a short proof for completeness.

Lemma 8.2. For any subsets A and B of a matroid, we have rk(A ∩B) + rk(A ∪B) ≤ rk(A) + rk(B).

Proof. Let S ⊆ A ∩ B be a maximal independent subset of A ∩ B, then |S| = rk(A ∩ B). Let us now
extend S to a maximal independent subset SA of A, then S ⊆ SA ⊆ A and |SA| = rk(A). Similarly,
let us extend S to a maximal independent subset SB of B, then S ⊆ SB ⊆ B and |SB | = rk(B). Now,
SA ∪ SB = S ∪ (SA \ S) ∪ (SB \ S) is a set of size

|S|+|SA\S|+|SB \S| = rk(A∩B)+(rk(A)−rk(A∩B))+(rk(B)−rk(A∩B)) = rk(A)+rk(B)−rk(A∪B).

Thus, as A ∪B ⊆ span(SA) ∪ span(SB) ⊆ span(SA ∪ SB), we have

rk(A ∪B) ≤ rk(span(SA ∪ SB)) = rk(SA ∪ SB) ≤ |SA ∪ SB | = rk(A) + rk(B)− rk(A ∪B),

and rearranging yields the desired inequality.

Next, we prove Lemma 6.2.

Proof of Lemma 6.2. Let S′ ⊆ S1 ∪ S2, then we have

|(S1 ∪ S2) \ S′| = |S1 \ (S′ ∩ S1)|+ |S2 \ ((S′ ∪ S1) ∩ S2)|
≥ k · (rk(S1)− rk(S′ ∩ S1)) + k · (rk(S2)− rk((S′ ∪ S1) ∩ S2))

≥ k · (rk(S1)− rk(S′ ∩ S1)) + k · (rk((S′ ∪ S1) ∪ S2)− rk(S′ ∪ S1))

= k · (rk(S1 ∪ S2) + rk(S1)− rk(S′ ∩ S1)− rk(S′ ∪ S1))

≥ k · (rk(S1 ∪ S2)− rk(S′)),

where in the third step we used Lemma 8.2 (the submodularity of the rank function) for A = S2 and
B = S′ ∪ S1 and in the last step we used it for A = S1 and B = S′. Thus, S1 ∪ S2 is k-overcrowded.

Our last remaining task is to prove Lemma 6.7.
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Proof of Lemma 6.7. Let D = Dk(U ∪U ′), so that D ⊆ U ∪U ′ is k-overcrowded and we wish to show that
Dk(U) = D. First, we show thatD\U ′ is k′-overcrowded. For this, let S′ ⊆ D\U ′. If rk (S′) = rk (D \ U ′),
then |(D \ U ′) \ S′| ≥ k′ · (rk (D \ U ′) − rk (S′)) trivially holds. So assume rk (S′) < rk (D \ U ′), then
rk (S′) ≤ rk (D \ U ′)− 1 ≤ rk (D)− 1. As D is k-overcrowded and S′ ⊆ D, we have (using |U ′| ≤ k − k′)

|(D\U ′)\S′| ≥ |D\S′|−|U ′| ≥ k(rk (D)−rk (S′))−(k−k′) ≥ k′(rk (D)−rk (S′)) ≥ k′(rk (D \ U ′)−rk (S′)).

Therefore, D \ U ′ is indeed k′-overcrowded.
Since D \ U ′ ⊆ (U ∪ U ′) \ U ′ = U , this implies D \ U ′ ⊆ Dk′(U) and hence D \ (Dk′(U) ∩D) ⊆ U ′.

Thus, we obtain (again using that D is k-overcrowded)

k > k − k′ ≥ |U ′| ≥ |D \ (Dk′(U) ∩D)| ≥ k ·
(
rk(D)− rk(Dk′(U) ∩D)

)
.

This implies rk(D)− rk(Dk′(U)∩D) < 1, meaning that rk(D) = rk(Dk′(U)∩D) and therefore span(D) =
span(Dk′(U) ∩ D). In particular, we obtain D ⊆ span(Dk′(U) ∩ D) ⊆ span(Dk′(U)). Recalling that
U ′ ∩ span (Dk′(U)) = ∅, this implies D ∩ U ′ = ∅ and hence D ⊆ U . So we can conclude that D ⊆ Dk(U),
as D is k-overcrowded. Since we also have Dk(U) ⊆ Dk(U ∪ U ′) = D, we obtain Dk(U ∪ U ′) = D =
Dk(U).
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