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ABSTRACT. A sequence si, 2, ..., S of elements of a group G is called a valid ordering if the partial products
$1,8182,...,81 -+ 8k are all distinct. A long-standing problem in combinatorial group theory asks whether, for
a given group G, every subset S C G\ {id} admits a valid ordering; the instance of the additive group Fj, is the
content of a well-known 1971 conjecture of Graham. Most partial progress to date has concerned the edge cases
where either S or G\ S is quite small. Our main result is an essentially complete resolution of the problem
for G = FJ: we show that there is an absolute constant C' > 0 such that every subset S C FZ \ {0} of size at
least C' admits a valid ordering. Our proof combines techniques from additive and probabilistic combinatorics,
including the Freiman—Ruzsa theorem and the absorption method.

Along the way, we also solve the general problem for moderately large subsets: there is a constant ¢ > 0 such
that for every group G (not necessarily abelian), every subset S C G'\ {id} of size at least |G| ~¢ admits a valid
ordering. Previous work in this direction concerned only sets of size at least (1 — o(1))|G|. A main ingredient
in our proof is a structural result, similar in spirit to the Arithmetic Regularity Lemma, showing that every
Cayley graph can be efficiently decomposed into mildly quasirandom components.

1. INTRODUCTION

1.1. The main problem. A sequence g1, go, ..., g, of elements of a (multiplicative) group G is a valid ordering
if the partial products

91, 9192, 919293, ---5 g1 "Gn
are all distinct. Which subsets of groups admit valid orderings? Variants of this natural problem have been
studied in many different cases over the years.

The first question in this direction appeared in 1961, when Gordon [17], motivated by constructions of complete
Latin squares, asked for which finite groups the entire group has a valid ordering. Gordon gave a complete
characterization in the abelian case: A finite (additive), nontrivial abelian group G admits a valid ordering
if and only if > gec 9 # 0, this being the obvious necessary condition for the existence of such an ordering.
In 1974, Ringel [40] posed the closely related problem of characterising the groups G whose elements can be
ordered as ¢i,...,¢gy, in such a way that g1 = ¢g192 - g, = id but otherwise all partial products are distinct.
The motivation for this question came from Ringel’s solution [41] of the Heawood map colouring conjecture.

The nonabelian case of Gordon’s problem is more subtle, since there are some small nonabelian groups (such as
S3) that for no apparent reason fail to have valid orderings. In 1981, Keedwell [29] posed the bold conjecture
that every sufficiently large nonabelian group has a valid ordering. Miiyesser and Pokrovskiy [36] recently
proved Keedwell’s conjecture as a consequence of their more general probabilistic analogue of the Hall-Paige
Conjecture [11, 25] concerning the existence of transversals in multiplication tables. This work also shows that
large groups have an ordering, in the sense that Ringel asked for, if and only if the product of all group elements
(in any order) is an element of the commutator subgroup'.

In this paper we will be concerned not only with the case when an entire group G admits a valid ordering but
with the more general question of when an arbitrary subset S of a given group G admits a valid ordering. Notice
that when S contains the identity element, every possible valid ordering of S must start with the identity, since
otherwise two consecutive partial products would be equal. Thus, if G is abelian and > ges9 =70, then there
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cannot be a valid ordering of S. In order to avoid this obstruction, we restrict our attention to subsets S not
containing the identity, and the following is our central question.

Question 1.1. For which groups G does every subset S C G \ {id} admit a valid ordering?

It seems feasible that the answer to this question is affirmative for every finite group G. At a first glance,
finding valid orderings for smaller subsets S might seem like an easier task, since there is more space to place
the partial products without creating collisions. However, the potential obstructions for small S are at least
as rich as for Gordon’s setting S = G \ {id}, since a small set S may itself be a subgroup of G, or could be a
complicated conglomeration of approximate subgroups and random-like sets. In the graph-theoretic formulation
of these problems, which we will describe below, Gordon’s setting corresponds to the complete graph case (in
particular, a directed variant of a well-known conjecture of Andersen [2]), whereas Question 1.1 corresponds to
a sparse analogue. Such sparse analogues in extremal graph theory tend to be harder and less well understood
than their dense counterparts.

The simplest instance of Question 1.1 is when G = F,, for a prime p. This problem was first posed by
Graham [19] in 1971 and later reiterated in an open problems book of Erdés and Graham [12].

Conjecture 1.2 (Graham). Let p be prime. Then every subset of F, \ {0} admits a valid ordering.

Most previous work towards Conjecture 1.2 has concerned the edge cases where either S or F,, \ S is very large.
The best result for small sets S is due to Bedert and Kravitz [4], who showed that every set S C F, \ {0} of
size at most e8P has a valid ordering. For very large sets S, the aforementioned result of Miiyesser and
Pokrovskiy [36] establishes Conjecture 1.2 for all sets S C F,,\ {0} of size at least (1 —o(1))p (and indeed proves

an analogous result for all finite groups; see Theorem 7.1). The intermediate regime remains open.

Various groups of authors (see, e.g., [1, 10, 26]) have considered instances of Question 1.1 other than G = F,.
In particular, Alspach [8] conjectured an affirmative answer to Question 1.1 for all finite abelian groups G,
and Alspach and Liversidge [1] confirmed this for subsets of size up to 11. For extensions of this problem to a
nonabelian setting, see [9, 37] and the dynamic survey of Ollis [38].

In a different direction, Buci¢, Frederickson, Miiyesser, Pokrovskiy, and Yepremyan [5] have recently provided
an affirmative answer to an “approximate” relaxation of Question 1.1. They showed that every finite subset S
of any group G has an ordering in which all but o(|S]) partial products are distinct.

1.2. Main results. Despite the partial progress discussed above, there is no infinite class of groups G for which
we have a complete understanding of Question 1.1. Our main result remedies this situation for the family of
groups F7.

Theorem 1.3. There is an absolute constant C' such that for alln € N, every set S CF3 \ {0} of size at least
C has a valid ordering.

We remark that our methods allow us to obtain the same result for the class of finite abelian groups of exponent
at most K for any K. For example, with the same method, for p fixed and n — oo, we can conclude that any
subset of )} \ {0} of size at least C'= C(p) has a valid ordering. For clarity of exposition, we describe only the
2-torsion case in this paper.

One can view Theorem 1.3 as resolving the “finite-field model” version of Conjecture 1.2. The study of additive
combinatorial problems over finite-field models is a well-established topic in its own right; see the decennial
surveys by Green [20], Wolf [45], and Peluse [39]. One of the key structural advantages of high-dimensional
vector-spaces over finite fields is their rich subgroup structure. Perhaps more unexpectedly, another key advan-
tage —crucial for our purposes— is that any moderately dense S C Fy contains an abundance of small subsets
whose elements sum to 0. This is surprising given that 0-sum subsets are precisely what we need to avoid in
valid orderings. We refer the interested reader to Section 2 for a high-level overview of our proof strategy.

Although F3 has its advantages, the simplest setting for Question 1.1 turns out to be Z, where a simple inductive
argument produces a valid ordering of any finite subset of Z \ {0} (see [30]). This fact plays a key role in the
work of Bedert and Kravitz [4], who resolve Conjecture 1.2 for subsets S of quasipolynomial size by leveraging
the fact that F,, looks locally like Z. Unfortunately, there is no such “lifting” trick in the finite-field model.

Our proof of Theorem 1.3 treats the “sparse S” and “dense S” regimes separately. Our argument for the
sparse case makes use of the specific structure of %, but our argument for the dense case applies to general
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(even nonabelian) groups. In particular, we are able to provide an affirmative answer to Question 1.1 if one
restricts attention to subsets S of size at least |G|'~¢; this significantly improves on the result of Miiyesser and
Pokrovskiy [36], which treats only subsets S of size (1 — o(1))|G|.

Theorem 1.4. There is an absolute constant ¢ > 0 such that for any finite (possibly nonabelian) group G,
every subset S C G\ {id} of size at least |G|*~¢ admits a valid ordering.

1.3. Connections to designs. Let us say a few words about the relation between Question 1.1 and the
theory of combinatorial designs. Gordon was initially interested in groups with valid orderings because their
multiplication tables can be used to construct complete Latin squares. A Latin square, also called a quasigroup,
is a group without the axiom of associativity; equivalently, a Latin square is an n by n grid filled with the
symbols {1,2,...,n} in such a way that each symbol appears exactly once in each row and in each column. A
Latin square is called complete if for each pair of distinct symbols (¢, j), the symbol j appears immediately after
the symbol i in exactly one row and in exactly one column. The additional degree of symmetry in complete
Latin squares gives them practical uses in the design of experiments (see, e.g., [3]), and they have applications
to the study of graph decompositions (see [38]). We point an interested reader to a wonderful book [28] on the
topic with a plethora of further connections and applications.

1.4. A weak nonabelian arithmetic regularity lemma. The proofs of Theorems 1.3 and 1.4 use a combi-
nation of the absorption method and various tools from additive combinatorics. We will give a more detailed
overview in the following section, but for now we will highlight one key intermediate result which may be of
independent interest. Recall that for a subset X of a group G, the right Cayley graph of G with respect to
X, denoted Cay(X), is the directed graph with vertex set G where there is a directed edge from g to ga for
each g € G and = € X. The adjacency matriz of a directed graph I' = (V, E) is the |V| x |V| matrix Mp
with rows and columns indexed by V', where the (u,v)-entry equals 1 if (u,v) is a directed edge and equals 0
otherwise. Note that Mr is not necessarily symmetric, so it may have complex eigenvalues. When every vertex
of I" has out-degree d, the adjacency matrix Mr always has d as a trivial eigenvalue (and in fact d is the largest
eigenvalue in absolute value).

Theorem 1.5. Let o € (0,1] and € € (0,1/2). Let G be a finite (not necessarily abelian) group, and let S C G
be a subset with density o = |S|/|G|. Then there is a subgroup H of G such that:

(1) ISNH| = (1-¢)|S|;
(2) all non-trivial eigenvalues of the adjacency matriz of Cay (SN H) have real part at most (1—n)|SNH|,
where 1 := €02 /1000.

Condition (2) asserts that Cay;(S N H) has a positive spectral gap, which turns out to be a natural mild
expansion condition for our purposes. In particular, this spectral condition allows us to lower bound the
number of edges across any cut of Cay (S N H). We say that an 7-sparse cut in a finite directed graph T is a
partition X; LI X5 of the vertex set of I" such that there are fewer than n|X;|-|X2| (directed) edges from X; to
X2. We will see below (Lemma 4.5) that (2) implies the purely combinatorial condition that Cay (S N H) has
no no-sparse cut.

In a sense, Theorem 1.5 is analogous to the more familiar Arithmetic Regularity Lemma (ARL) of Green [21]
(see also [23]). Roughly speaking, the ARL offers a more refined decomposition where (2) is strengthened by
replacing (1 — n)|S| with 7|S|. This stronger condition allows one to count occurrences of additive patterns
such as 3-term arithmetic progressions. Theorem 1.5 is unfortunately unable to count such delicate “local”
substructures, but in the context of Question 1.1 the mild quasirandomness condition (2) already provides
sufficiently strong information, and we shall see that it has several further redeeming qualities.

One advantage of our weak ARL is that it can handle nonabelian groups. Although there has been some prior
interest in nonabelian analogues of the ARL (e.g., model-theoretic approaches [6] can be used to give structure
theorems for sets with bounded VC-dimension), our weak ARL is the first such result that applies to arbitrary
subsets S. We further note that the decomposition of Cayy (S N H) provided by Theorem 1.5 is particularly
simple, in that it allows us to partition the vertex set GG into the cosets of a subgroup H so that each of the
induced graphs Cay,;(S N H) is isomorphic to the mildly quasirandom Cayley graph Cay (S N H). The
fact that these structured components are cosets makes the application in the context of Question 1.1 very
convenient. It is known on the other hand that if one wants to find such a decomposition where each component
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is “strongly quasirandom” as in Green’s ARL, then already in the abelian setting one has to work with more
complicated components than subgroups, such as Bohr sets.

Another advantage of our Theorem 1.5 lies in the quantitative aspect. The polynomial dependence of 1 on o is
ultimately the source of the polynomial improvement in Theorem 1.4. By contrast, it is well-established that
tower-type dependences are essential to the usual versions of regularity lemmas [21, 27]. Even for the weak
graph regularity lemma of Frieze and Kannan [16], exponential dependencies are required [7]. Therefore, usual
versions of regularity lemmas give useful information only about dense subsets, even in the simplest case of
Cayley graphs over F§. In contrast, our Theorem 1.5 gives information about polynomially sparse sets S. Note
also that the index of H in G is O(1/0) by condition (1), so our decomposition of G into H-cosets (with each
Cay, (S N H) mildly quasirandom) uses only O(1/0) pieces.

We also mention that Theorem 1.5 is closely related to a purely graph-theoretical result of Kiihn, Lo, Osthus,
and Staden [32] (see also [24, 33]) that provides a similar structural decomposition for dense d-regular graphs.
More precisely, these authors show that any regular graph of density ¢ can be decomposed into clusters in
such a way that there are very few edges between different clusters, and there are no f(o)-sparse cuts within
any single cluster; we refer the reader to [24] for further details. Our Theorem 1.5 is a more specialised result
because it pertains only to Cayley graphs, but it has the dual advantages of giving group-theoretic information
about the clusters, and of enjoying polynomial bounds (as contrasted with the exponential bounds in [32]).

We anticipate that Theorem 1.5 will find further applications in the study of Cayley graphs. For example, in
upcoming work, Bedert, Dragani¢, Miyesser, and Pavez-Signé apply Theorem 1.5 to the well-known conjecture
of Lovész asserting that every (connected) Cayley graph is Hamiltonian.

1.5. Organization of the paper. In Section 2 we give a high-level overview of our main ideas. The results
in this section are only for expository purposes and are not used in the remainder of the paper. Section 3
contains notation and other preliminaries. We then turn to our weak nonabelian regularity lemma in Section 4,
which is split into one subsection for the special case of F5 and one subsection for the case of general finite
groups. In Section 5 we prove a very flexible asymptotic result for the dense setting under the assumption
of a certain expansion condition (as guaranteed by the natural output of Section 4). In Section 6 we prove
our absorption lemmas. This section is divided into Section 6.1, where we show how to build our absorbing
structure, and Section 6.2, where we show how this structure lets us absorb a small set of leftover colours. In
Section 7 we establish our main result over F§ (Theorem 1.3) in the dense case. In Section 8 we complete
the proof of Theorem 1.3 by analysing the sparse case. This section is split into Section 8.1, where we deal
with the “structured” case, and Section 8.2, where we deal with the “random-like” case. In Section 9 we prove
Theorem 1.4, which provides an affirmative answer to Question 1.1 for polynomial-density subsets of general
groups. Finally, we make some concluding remarks in Section 10.

We remark that the arguments about F5 in Sections 4.1 and 7 are not strictly speaking necessary since they
are subsumed by the more general results in Sections 4.2 and 9. We include the analysis of these special
cases separately because several of the arguments simplify, leading to a more direct and streamlined proof of
Theorem 1.3. This case also provides an opportunity to build intuition for the more technical general results
that follow.

Acknowledgements. We are grateful to Mira Tartarotti and Julia Wolf for remarks concerning arithmetic
regularity lemmas, and we thank Zach Hunter for helpful comments on a draft of this paper. The first author
gratefully acknowledges financial support from the EPSRC. The second and fifth authors were supported by the
National Science Foundation under Grant No. DMS-1928930 during their Spring 2025 residence at the Simons
Laufer Mathematical Sciences Institute in Berkeley, California. The third author was supported in part by the
NSF Graduate Research Fellowship Program under grant DGE-203965.

2. OVERVIEW

Our arguments combine several ideas from different parts of combinatorics, including inverse problems and
Fourier analysis from additive combinatorics, absorption from probabilistic combinatorics, and robust expansion
from extremal combinatorics. In the interest of making our proofs accessible to a wide audience, we will first give
a high-level overview of the main ideas in a simplified context. This purely expository section is not logically
necessary for the rest of the paper.
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It is useful to recast the main problem in the language of finding rainbow paths in Cayley graphs. In general, a
rainbow subgraph of an edge-coloured graph is a subgraph all of whose edges have different colours; see [5, 34, 43]
for more context on the rich study of rainbow subgraphs from a graph-theoretic perspective. We can view the
Cayley graph Cay(.S) (recall the definition from above) as an edge-coloured digraph with colour set S, where
the directed edge from g to gz has the colour z for each g € G and x € S.

Observation 2.1. Let S be a finite subset of a group G. Then, S has a valid ordering if and only if Cay,(S)
has a directed rainbow path with |S| — 1 edges.

Proof. 1If s1,...,8|g is a valid ordering of S, then
S§1 — 8182 — - - —>8182~'-S‘S|

is a directed rainbow path in Cay(S) with |S| — 1 edges. Conversely, any directed rainbow path in Cay(S)
with |S| — 1 edges is of the form

9Sq(1) 7 9So(1)Sa(2) 7 " T So(1)Sa(2) """ Sa(|S))

for some permutation o of [[S]] and g € G, and then s,(1), $5(2), - - -, So(|5)) s a valid ordering of S. O

Therefore, our goal is to find a rainbow path of length |S| —1 in Cay(5). We use a “99% — 100% framework”,
more commonly known in the world of probabilistic combinatorics as the “absorption method” since its codi-
fication by Ro6dl, Rucinski, and Szemerédi [42] in 2008 (though its origins can be traced back farther to [13]).
The rough idea is that we first find a rainbow path of length 0.99]S| and then upgrade this partial rainbow path
to a rainbow path of length |S| — 1.2 We carry out this upgrade using a certain “absorbing structure” that we
set aside before finding the 99% rainbow path. We treat these two steps in the following two subsections.

2.1. 99%-results. In this subsection we will describe how to find a rainbow path of length 0.99|S| in Caygn (5).
Such an approximate result was already established recently in [5, Theorem 1.5], but this result is not robust
enough for our framework to be able to convert it into a 100% result. The approach we use in the present paper
for the 99% part is significantly different and in particular more robust in several ways. A key advantage of our
new methods is that we can establish the existence of rainbow paths of length 0.99|S| in random subgraphs of
Cay]Fg(S ), and this flexibility is crucial for the second step of our 99% — 100% framework.

A central idea is the dichotomy between structure and randomness from additive combinatorics. We will decom-
pose our given subset S C F¥ into a “structured” part and a “random-like” part. We measure structure/ran-
domness according to the doubling constant |S + S|/|S|, where we have written S + S := {z +y: z,y € S}.
Small doubling corresponds to structure; and its opposite is “everywhere-expansion”, in the following sense.

Definition 2.2 (Everywhere-expansion). Let v, K > 0. A subset E C F} is (v, K)-everywhere-expanding if
every subset E' C E of size v|E| satisfies |E’ + E'| > K|E'|.

To obtain our decomposition of S, we iteratively remove subsets of size at least «|S| and doubling at most K as
long as such subsets exist; the remainder is then guaranteed to be (v, K)-everywhere-expanding. The following
lemma codifies the outcome of this procedure.

Proposition 2.3. Let K > a > v > 0. We can decompose any subset S CFy as S =S5 USyU---US, UE,
where

(1) |S;| = ~|S| and |S; + S;| < K|S;| for all i;

(2) E is (v/a, K/a)-everywhere-expanding set of size aS].

Here, one should think of the S;’s as the structured pieces of S and of E as the random-like piece. Two extreme
possible outcomes of the above lemma are £ = () and £ = S. In the former case S completely decomposes
into structured pieces, while in the latter case all of S is random-like; these two cases naturally require different
treatments. Our analysis of the general case splits into two cases depending on the size of F.

We start by illustrating how to solve the 99% problem when the random-like part E is all of S. For this we will
need the following standard additive-combinatorial tool (see [44, Lemma 2.6]).

Lemma 2.4 (Ruzsa triangle inequality). For subsets V, S of an abelian group, we have |V + S|?> > |V|-]S+S|.

20¢ course, the constants 0.01 and 0.99 serve schematic purposes and should not be taken too literally.
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We can now establish a 99%-result for the model case of an everywhere-expanding set S. This case per se does
not figure in our main argument, but it serves as an excellent illustration of the ideas involved. The strategy
is that we will build a long rainbow path two vertices at a time, and at each step we will make sure that we
have enough options to continue extending the path at the subsequent step. Extending two vertices at a time
instead of one vertex at a time is what allows us to make use of the everywhere-expanding hypothesis (which
guarantees that sumsets of large subsets of S grow).

Proposition 2.5. Let 0 < v < 1/10 and K > 0 satisfy K > 10/y*. Suppose that S C F3 \ {0} is a (v, K)-
everywhere-expanding set of size |S| > 2/~. Then, Cayg, (S) has a rainbow path of length (1 — 2v)|S|.
Proof. For eacht=0,1,2,...,(1/2 —v)|S|, we will build a rainbow path
P =(vg = vy — - — vgy)
in Cang(S) such that vo; has at most v|.S| neighbours in P, i.e.,
|(var + S) N {wo, ..., vae } < 4|5

For t = 0, we can take vy to be any element of ;. Suppose that we have already constructed P; and we want to
extend it to Piy1. Since vg; has at most v|S| neighbours in P;, among the |\S|— 2t > 27|S| colours not appearing
in Py, there is a set S” C S consisting of 2v|S| — |S| = 7| S| colours such that

(1) (voe +8") N{vo, ..., v} = 0;

let S consist of some 7|S| of the remaining colours not appearing in P;. The Ruzsa triangle inequality and the
(v, K)-everywhere-expanding hypothesis give

(2) oz + 8"+ 8" = VIS 187 + 5" = /415 - KA[S] = VK -1[S].
We will obtain the path P;y; by setting

R / R / 1
V41 =Vt + 8, Vogy2: =Vt +S +5

for suitable s’ € §’, s” € S”. Our definitions of the sets S’, S” guarantee that P;,1 is a rainbow walk; we show
that we can choose s, s” so that this walk is in fact a path. Note that ve;y; is disjoint from P; by (1) for all
choices of s' € S'. We must check that ve; 2 does not lie on P; and that vetqo has at most v|S| neighbours in
Pt U {U2t+1}.

Say that a vertex v € FJ is bad if it either lies on P; or has at least (7/2)]S| neighbours in P;. Since there are
at most |S| vertices on P, and each is incident to |S| edges, the number of bad vertices is at most

@+ 1)+ 250 161 018 < VE 4181,

(v/2)1S]
So by (2), we can choose s’ € S’, s € 5" so that vgiyo is not bad. It follows that voryo has at most
(v/2)]S] + 1 < 4|S| neighbours in P, U {vaty1, 2142}, as desired. O

This proof has a fair bit of flexibility. For example, we had plenty of viable choices, say, at least %\/E ~|S]
choices, for ve;yo at each step. Now, if P’ is a fixed rainbow path of length 1000 (say) with colours not
appearing in P;, then we can append a translate of P’ to one of our viable choices for vy in such a way that
we still get a path, and that the final vertex of the resulting long rainbow path has few neighbours on the new
path itself. In other words, at the cost of using two colours from the given everywhere-expanding set, we can
incorporate 1000 arbitrary colours into our rainbow path. A careful implementation of this idea leads to the
following proposition ensuring a 99% rainbow path in Cang(S) whenever the unstructured piece of S has size
at least 0.01|S]| (see Theorem 8.10 for more details).

Proposition 2.6. Let S C F%, and suppose that there is a (0.001, 10%°)-everywhere-expanding subset E C S of
size at least 0.01|S|. Then Caygy (S) has a rainbow path of length 0.99]S].

In order to show that Cay, (S) has a rainbow path of length 0.99|S| for all choices of S, it remains only to
handle the case where at least 99% of S is structured, in the sense of Proposition 2.3. To this end, suppose that
at least 99% of S can be expressed as the union of sets Si,...,S; each with size at least 7|S| and doubling at
most K. Notice that ¢ < 1/ is bounded. Provided that we can (somewhat flexibly) find a 99% rainbow path
in each Cay]Fg (S;) individually, we will be able to concatenate translates of these paths using ideas similar to
those sketched above (see Lemma 8.6 for more details).
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With this in mind, let us turn our attention to the 99% problem for a single structured piece. Our analysis
of this case starts with the celebrated Freiman—Ruzsa Theorem, which provides a description of sets of small
doubling. Green and Tao [22] proved a strong result of this type in Fy, and we will use the following slight
improvement later formulated in [14].

Theorem 2.7. Let K > 1. If S C F} satisfies |S + S| < K|S|, then there is a subspace H of Fy such that
S C H and |H| < 22K19|.

The recently proven Polynomial Freiman-Ruzsa Conjecture over 3 [18] provides the additional information
that any subset S C Fy of doubling at most K can be covered by K O) translates of a “small” subspace of
F7. Using this result in place of Theorem 2.7 would improve the quantitative dependencies among the various
parameters in our proof, but such an improvement would be inconsequential for the final result Theorem 1.3.
Hence, we prefer to work with the conceptually simpler Theorem 2.7 despite its quantitative inefficiency.

Theorem 2.7 effectively reduces the structured case to the case of dense subsets of subspaces of F3, which, of
course, are isomorphic to F5* for m < n. Such a reduction is useful because it gives us access to so-called “robust
expansion” tools, as in the work of Lo, Kiihn, Osthus, and Staden [32] mentioned above, which generally apply
only in the setting of dense graphs. We will return to this theme in Section 5; in the meantime we refer the
reader to [5, Sections 4 and 5] and [24, 32] for more context.

Once we reduce to the dense case, we can apply a result from [5] (based on robust expansion tools) to obtain a
99% path in each CayF; (S;). This is not sufficient, however: For other parts of our argument (concatenating the
paths for different S;’s and carrying out the later absorption step), we need additional flexibility in prescribing
where within Cay]F;(Si) the 99% path lives. It is here that Theorem 1.5 comes to the rescue by allowing us to
pass from the Cayley graph of a dense set to a robust expander whose vertex set corresponds to a subgroup of
F3.

We will prove Theorem 1.5 in full generality in Section 4. The proof of Theorem 1.3 requires only the special
case of Cayley graphs on 3, where the following slightly stronger result holds.

Lemma 2.8. Let e € (0,1/2) and write N =2". Let S C F} have size |S| > oN. Then, there is a subspace H
of F§ satisfying

(1) ISNH| = (1=¢)[S];
(2) Cayy (SN H) has no ec/2-sparse cuts.

The proof of Theorem 1.5 simplifies considerably in the special setting of F5, and we include a separate proof
of this case in Section 4 since it is all that is needed for the proof of Theorem 1.3.

In particular, the reader who wishes only to see a proof of Theorem 1.3 need not bother with our nonabelian
Fourier-analytic arguments for general groups.

Lemma 2.8 tells us that by sacrificing a tiny proportion of the structured set S, we may assume that S generates
a Cayley graph with good expansion properties within the subspace generated by S. This subspace property
will later prove useful since we will be able to “jump” among cosets when linking up translates of various paths;
see Lemma 5.7 below.

2.2. 99% to 100%-results. In this subsection we will discuss how to upgrade a 99% result to a 100% result.
The main framework has three steps:

Step 1. Build a flexible “absorbing” structure within Cay(.5).
Step 2. Run the 99% strategy to obtain a rainbow path using 99% of the colours in S.
Step 3. Use the absorbing structure to integrate the remaining 1% of colours of S into the rainbow path.

Let us break this down step by step.

Step 1. The main idea for building our flexible structure is exploiting popular sums. For simplicity, consider
the case where the group G is abelian. Suppose S C G contains elements a, b, ¢ summing to 0, and let d be
some other element of S. Then, for any v € G we can build a path from v to v + d either directly as v — v +d
(using only the colour d) or as

v > v+a - v+a+d - v+a+d+b - v+a+d+b+c=v+d
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(using the colours a, b, ¢, d). See Figure 1. We note that for the latter case, some mild conditions on a, b, ¢, d are
required in order for this to be an actual path rather than a walk. Thus, if we have a rainbow path containing
an edge of colour d, and the above alternative route does not intersect the path elsewhere, then we may choose
whether or not to add the colours a, b, ¢ in addition to d.

We will see in Section 6 that with some minor caveats (including using 6-tuples instead of triples), we can
find not only a single quadruple (a, b, ¢,d) as above but rather many disjoint such quadruples (a;, b;, ¢;, d;) for
1 <4 < [5]/10 (say) with a; +b; +¢; = 0. This is possible in F} because 0 is a “popular sum” for any sufficiently
large subset S C Fy. In Lemma 6.6, we will see how to string together the gadgets from the previous paragraph
to obtain a long rainbow absorbing path in which for each 4, there is a shortcut that avoids precisely a;, b;, ;.
(When we refer to an absorbing path, we mean the path that takes the long route through each gadget.) Thus
we may choose, independently for each i, whether or not to take the colours a;, b;, ¢; out of our rainbow path.
See Figure 2. The benefit of this manoeuvre is that we may later flexibly use the freed-up triples ay, b;, ¢;
elsewhere, and below in Step 3 we will see how this flexibility will turn out to be very useful.

For nonabelian groups G, our absorbing structure is more delicate because we cannot rely on an abundance of
small subsets of .S with the same product. We will instead use a variant of the so-called “distributive absorption”
strategy, first introduced in [35]. We defer further explanation to Section 9.

v OO0

v+d
FI1GURE 1. Two paths from v to v+ FIGURE 2. An absorbing path of gadgets. The path
d, one using only the colour d, and indicated in purple shows a subpath that uses some
the other using the colours a, b, ¢, d. triples of colours a;, b;, ¢;, but not others.

Step 2. We take the last vertex of the absorbing path from Step 1 and use it as the first vertex for a 99%
rainbow path as described in the previous subsection. See Figure 3. (More precisely, the 99% path will use
99% of the colours not already used in the absorbing path.) We need to ensure that the absorbing path is
vertex-disjoint from the 99% path. In the everywhere-expanding case from the previous subsection, this is not
too difficult since we always have enough choices to avoid an absorbing path fixed from the outset. In the
structured case, however, we do not have such freedom, so instead we will build the absorbing path and the
99% path in disjoint random subsets of G; this introduces several technical difficulties that we will gloss over

1O

FIGURE 3. An absorbing path connected to a 99% path (drawn dashed).

for now.

Step 3. We have now built a rainbow path P that uses 99% of the colours of S and contains a long absorbing
path. The heart of the matter is using the flexibility of our absorbing path to integrate the remaining 1% of the
colours. Let £ denote the set of “leftover” colours not yet used. The key insight is that we can iteratively reduce
the size of £ by “activating” an absorbing gadget a;, b;, ¢;, d; and using the freed-up colours a;, b;, ¢; elsewhere.

As long as |L£]| > 3, choose some three elements ¢4, {2, 3 € L. Consider all of the 4-edge extensions of P using
the colours a;, 01, 2, {3 in this order, for ¢ ranging over the indices of the absorbing gadgets that have not yet
been activated. See Figure 4. This figure is a bit misleading since the 4-edge paths may intersect one another
or earlier parts of P, but let us suppose for the moment that we can find some 4-edge path, corresponding to
the index ip, which does not intersect P. Then, we modify P as follows: we “activate” the gadget indexed by
io and free up the colours a;,, b;,, c;, by taking the shortcut along the colour d;,; and we extend P by adding
the length-4 path with index ¢o. We then update the leftover set £ by removing ¢1, {2, ¢3 and adding b;,, ¢;,. In
total, we have succeeded in reducing the size of £ by 1.

We have omitted two important technical points from this discussion. The first point concerns ensuring that
we can always find a length-4 path that does not intersect other parts of our structure. How we ensure this
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by la U3
. N . 072_1‘52.53.
Tk by by U3
Qe L] Ll

FIGURE 4. Various options for extending our long rainbow path by a 4-edge path. To append
one of the 4-edge paths, we activate the corresponding gadget.

depends on whether or not S has an everywhere-expanding part. If S does have an everywhere-expanding part,
then we can use this expansion to make our candidate length-4 extensions “spread out”. We will show that in
the remaining case of structured S, we can carry out Steps 1, 2, and 3 in disjoint random vertex subsets of
Cays(9), effectively avoiding this issue altogether. The second point is that our iterative procedure terminates
once |L| drops below 3. Saturating the remaining 2 colours is a delicate matter that we will discuss later in the

paper.
3. NOTATION AND PREREQUISITES

Given a set X, a p-random subset of X is obtained by sampling each element of X with probability p, indepen-
dently of all other elements.

We will need the following basic concentration bound.

Lemma 3.1 (Chernoff’s inequality). Let X be a sum of independent Bernoulli random variables with E(X) = p.
Then, for everyt > 0,

o P(X < pu—1) < exp(—12/(2u));
o P(X > pu+t) < exp(—t2/(2u+1)).

The digraphs we consider are loopless, and for each pair (u,v) of distinct vertices, we allow at most one edge
from u to v, which we denote by (u,v). We do, however, allow both edges (u,v) and (v, «) to appear in the same
digraph. If G is a (possibly edge-coloured) digraph, then for U,V C V(G), we write eq(U, V) to denote the
number of edges (u,v) with w € U and v € V. As special cases, for a vertex v € V(G), we denote the out-degree
of v by degf;(v) := eq({v}, V(G)) and the in-degree of v by degg (v) := eq(V(G), {v}). We denote the minimum
out-degree and in-degree of G' by §(G) and 6~ (G), respectively, and we write §*(G) := min{6*(G),6~(G)}

for the minimum semi-degree of G.

Nonabelian Fourier analysis. We shall make use of some nonabelian Fourier analysis for finite groups in
order to prove the regularity result in Theorem 1.5; we record all the basic properties that we need here. Again,
we mention that to prove Lemma 2.8, it suffices to use Fourier analysis over F5. The reader who wishes to
focus on this result may skip ahead to the end of this section, where we separately state the basic properties of
Fourier analysis over F5.

Let G be a finite (possibly nonabelian) group. We use the following standard notation:

e |G]: the order of G,

e G: the set of irreducible complex representations of G,

e pc G: a representation p : G — GL(V,), which means that p is a group homomorphism from G to
GL(V,),

e d, = dimV, is the degree of the representation p, and note that Zpeé d?) =|G]|.

We will write triv for the trivial irreducible representation. For a vector v € V,, we will write ||UH%/p = (v,v)v,
where we take (-,-)y, to be a Hermitian inner product in each of the vector spaces V,, for each irreducible
representation p. By Weyl’s unitary trick, we can and will always assume that each of the representations p is
unitary with respect to (-,-)y,, meaning that all the matrices p(g),g € G are unitary so that (p(g)v, p(g)v)v, =

(v,v)y, for all v € V, and g € G. Recall also that a matrix A is said to be unitary if it satisfies A=A

For a function f : G — C, the Fourier transform of f at p € G is given by
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Fo) =3 f(@) pla) € Choxde,

zeG
We shall exclusively consider Fourier transforms 17(p), p € G of indicator functions of sets T C G in this paper.
We note that the eigenvalues of the Fourier coefficient matrices 17(p),p € G are precisely the eigenvalues of
the adjacency matrix of the directed graph Cay(T). In fact, each of the d, eigenvalues of 17(p) appears with

multiplicity d, as an eigenvalue of the adjacency matrix of Cayq(T') (which has |G| = 3 4 d? eigenvalues

in total). The value of the function f at y € G can be recovered from its Fourier transform via the inversion
formula

1 iy *
W)= Zad T (Flo) - ply)")

—T
where p(z)* = p(x) denotes the conjugate transpose of p(x), and where Tr is the trace. Parseval’s identity
states that for f : G — C we have

S ()2 = ﬁ S d, - 173
pea

zeG

where || - || is the Frobenius norm [|A|[% = 32, ; |A4i;[* = Tr(AA*).

We shall also make use of the following important property for the Fourier transform of the convolution of two
functions f,g : G — C, which is defined as (f * g)(z) = >_, ¢ f(y)g(y~tx). The Fourier transform of the

convolution satisfies m(p) = f(p) -g(p).

An important observation is that, for sets X, Y, T C G, the number of solutions (z,y,t) € X XY x T to zyt = id
can be written using convolutions as 1x * 1y * 17(id), and hence the formula for the Fourier transform of a

convolution and Fourier inversion allow us to express this count as ﬁ Zp cgdp-Tr (TX(p)iy(p)iT(p) . Let us

state one more elementary fact, namely that the Fourier transform of the indicator function of the whole group

G is given by
N |G|, if p = triv
la(p) = {

(0)a,xaq,, ifpe G is non-trivial,
where (0)g,xd4, denotes the d, by d, zero matrix. These are all the properties that we require in this paper, for
a more extensive overview of the basics of nonabelian Fourier analysis, we refer the reader to [15].

Fourier analysis over F}. For the convenience of the reader who wants a streamlined proof of Theorem
1.3, we briefly discuss the results above in the specialised setting where G = Fy. The dual group G = Fy of
characters on Iy is isomorphic to [y, with each character v € G being of the form

ve:Fy >Rz (—1)<§’m>

for a & € F%, where ({,z) = Y1 | &u; is the standard dot product over F5. For a function f : Fy — C, its
Fourier transform is
) =Y flay().
T€Fy

We have the inversion formula f(z) = ﬁ > ee f(7)y(@), and Parseval’s formula states that

S (@) = ﬁ ST

LEEF; ’YEé
For f,g : F} — C, their convolution f * g is defined as (f * g)(z) = ZyE]F;‘ f(y)g(z + y), and the Fourier
transform of a convolution satisfies f/@(y) = A(fy)ﬁ('y). Finally, we note that the Fourier transform of the

indicator function of the whole group G = F¥% is given by

Ia(y) = |G|, if v =0 is the trivial character
V0, ity e\ {on
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4. A WEAK NONABELIAN REGULARITY LEMMA FOR FINDING EXPANDER CAYLEY SUBGRAPHS

The goal of this section is to prove the nonabelian regularity lemma Theorem 1.5, which says that given a subset
S of a finite group G, we can find a subgroup H of G such that H contains most of S and Cayy(H N S) is
mildly quasirandom. We restate Theorem 1.5 now for the reader’s convenience.

Theorem 1.5. Let o € (0,1] and € € (0,1/2). Let G be a finite (not necessarily abelian) group, and let S C G
be a subset with density o = |S|/|G|. Then there is a subgroup H of G such that:

(1) |ISNH| > (1-¢)[S[;
(2) all non-trivial eigenvalues of the adjacency matriz of Cay (SN H) have real part at most (1—n)|SNH]|,
where 1 := €02 /1000.

Let us digress and make a few remarks. First, the quadratic dependence of 77 on ¢ is optimal, as illustrated
by the case where S is an arithmetic progression in [F,. Second, our arguments can be modified to produce a
subgroup H and an element x € G such that |[S N (z71H)| > (1 — ¢)|S|, and all non-trivial eigenvalues of the
adjacency matrix of Cayg(H N (x5)) have absolute value (rather than real part) at most (1 —n)|(xS) N H|.
Third, another minor variation of the proof shows that there is a subgroup H such that [S N H| > (1 —¢)|S|,
and all non-trivial eigenvalues of the adjacency matrix of Cay (S N H) have real part at most (1 — n)|S N H|,

where 7 := ﬁﬁ%al and ¢ := [SN H|/|H| is the density of S within H (rather than the density o of S within

G).

Recall from Section 3 that the spectrum of the adjacency matrix of Cay(.S) is precisely the union of the spectra
of the Fourier coefficient matrices 1g(p) for p € G. Thus, the second condition in Theorem 1.5 can be formulated
in terms of SN H C H having a spectral gap bounded away from 0, in the sense of Definition 4.3 below. The
connection between spectral gaps, quasirandomness, and edge-expansion is by now a standard theme in spectral
graph theory; see, e.g., the survey [31]. Our formulation of this connection, encapsulated in Lemma 4.5 below,
relies on the notion of an n-sparse cut (as defined in the introduction following the statement of Theorem 1.5)
and leads to the following corollary of Theorem 1.5 that will be convenient for our later applications.

Corollary 4.1. Let o € (0,1] and € € (0,1/2). Let G be a finite group (not necessarily abelian), and let S C G
be a subset with density o = |S|/|G|. Then there is a subgroup H of G such that

(1) [SNH| > (1-¢)S|;
(2) Cayy (SN H) has no eo3/1000-sparse cuts.

We remind the reader that Cay (S N H) has no n-sparse cuts if for every partition H = X; U X5 we have
#{(1’1,1'2) € X1 X X2 : 561_1132 € S} > 77|X1||X2|

Our proof of Theorem 1.5 uses nonabelian Fourier analysis. As a warm-up, we will start by proving Theorem 1.5
for the group F3, where the argument simplifies considerably due to the nature of the Fourier transform on
F%. This simplified argument also yields a somewhat better (in fact, optimal) quantitative dependence of the
sparse-cut parameter on the density o. We remark that only this special case is necessary for the proof of
Theorem 1.3, so the reader who is interested only in that result may safely skip our treatment of the general
case of Theorem 1.5.

4.1. The F} case. Here is Lemma 2.8 restated for the reader’s convenience.

Lemma 2.8. Let e € (0,1/2) and write N =2". Let S C Fy have size |S| > oN. Then, there is a subspace H
of F§ satisfying

(1) |[SNH| > (1—¢)|S];
(2) Cayy (SN H) has no ec/2-sparse cuts.

Before proving this lemma, we will need the following auxiliary result which states that the Cayley graph of
a subset 7" C FJ has no sparse cuts provided that it has a spectral gap. As we discussed at the start of this
section, results of this flavour are well-known.
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Lemma 4.2. Let T C H = F5 have a spectral gap
max 1r(y) < (1-p)[T],
yEH:v#0

then Cay g (T') has no Bt-sparse cuts, where T = |T|/|H]|.

Proof of Lemma 4.2. Let H = X; U X5 be a partition of H = F¥, so that our goal is to show that #{(z1,z2) €
X1 x Xo 21+ a9 € T} 2 B7|X1]|X2|. By the formula for the Fourier transform of a convolution and Fourier
inversion, we can write

1 R R .
#{(z1,22) € X x Xo 1wy + 22 €T} = 1x, * 1x, * 17(0) = ] > ix, (MNix(Mir().

Since the contribution from the trivial character v = 0 to the right hand side is | X1 || X2||T|/|H| = 7| X1|| X2l,
it suffices to show that

3 % Yo i Mix,(ir() < (1= )X |||

~EH:4#0
as this would show precisely that #{(x1,22) € X; X Xo : 1 + a9 € T} > B7|X;||X2|. Note that as X;, X5
partition H, we have that

N N N |H|, ify=0
1x, +1x, =1y =

0, otherwise.
So 1x,(7) = —1x,(7) at all non-zero characters . Hence,
-1 A A A 1 A A
Il > ik, (Mix,(Nir(y) = T S ik, ()Pir(y).
yEH:4#0 ~EH:~#0

Now we simply invoke the spectral gap assumption to bound this by

=BT 5 vo_ P
Sl )P = - i (1] - )

Y#0
= (1= B)r|Xa|| Xz
where we used Parseval to calculate ﬁ 220 1x,(? = |X1|=1x,(0)%/|H| = |X1|—|X1]>/|H| = | X1|| X2|/|H]|
as | Xo| = |H| — | X1] since X1, X5 partition H. This establishes (3) and hence completes the proof. O

It is now a simple matter to prove our result over F5 due to the nature of the Fourier transform in this group.
Namely, the characters v € Fy are precisely those functions of the form ¢ : x € Fy — (—=1){®& for some vector
& € Fy, where (x,€) = Z;lzl x;€; is the standard dot product in Fy. Hence, if we write

(Mt ={zeFy:q(x) =1} ={reFy: (r,6) =0}
for the codimension one subspace defined by v, then for any subset " C Fy, the Fourier transform of T" at v is
simply given by

Ir(y) =) y(z) = Y (D)% =T () =T 0 (o + (1)),

zeT zeT
where xo + (7)* is the non-trivial coset of (y)* in F%. In particular, if 7' has no spectral gap (in the sense of
Lemma 4.2), one immediately sees that most of 7" is contained in the proper subspace (y)* of F%.

Proof of Lemma 2.8. Let € € (0,1/2) be given. Let S C F} and we define ¢ = |S|/N and § = e0/2. We

proceed by a basic density increment argument, starting with Sy = S and Hy = Fy. We will iteratively
construct subgroups H; < H;_; and sets S; := S;_; N H; satisfying for all j that:

€
(4) Sl 2 (1= 57151

Suppose now that we have constructed H; < Hj_1 < --- < Hyp and S; = SN H;, for ¢ < j, satisfying (4). Then
we certainly have

(5) 19512 18I [T = 555) = (1 = 9IS,
=0

So item (1) from the conclusion of Lemma 2.8 is satisfied for all S;. If there is no d-sparse cut in Cayy (5;),

then item (2) is also satisfied and we are done. Else, by Lemma 4.2 there is a non-trivial character v € H j
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satisfying

) \H,| 5
. > —0—= | > - .
15’, (7) = <1 0 |SJ| |SJ| > (1 2j—1g |S]|

since we noted that S; has size at least (1 —¢)|S| > [S|/2 as € < 1/2, and hence S; has density at least
2/=1g in H; because H; is a subgroup of Hy of codimension j (note that at each stage i we find H; which
is a proper subgroup of H;_1). Now define H;11 = (y) which is a subspace of H; of codimension 1. As
1s,(v) =1S; N Hjt1| — |S; N (non-trivial coset of Hj41)|, we get from the bound on the Fourier coefficient at
from above that Sj41 = S; N H; 1 has size

0 €
1Sj41] = (1 - 2]-0> 1551 = (1 - ﬁ) 1551,

as 0 = €0 /2. Hence, we have shown that if Cayy (S;) has a d-sparse cut, then we can continue and find a
proper subgroup Hji; < H; such that the set Sj;1 = SN Hj; still satisfies (4).

Observe that the process must trivially halt after a finite number of steps, since there is no infinite chain of
subgroups H; in the finite group F}. In fact, since each S; has density at least 2~'o in Hj, the process
terminates after O(log1/0) steps. The final set S; in this process then has the property that Cay H, (S;) has no
d-sparse cuts, and moreover it satisfies (5), so H; and S; = S N H; are the desired sets from the conclusion of
the lemma. (Il

4.2. The general case. Next, we prove the result in Theorem 1.5 in full generality, i.e. for a general finite
group. We emphasise again that this general result is needed to establish Theorem 1.4, but that it is not
required for our resolution of the rearrangement problem over F} (Theorem 1.3). We begin by defining the
correct notion, at least for our application, of a spectral gap for subsets of a general (not necessarily abelian)
group. Note that for a subset T" of a nonabelian group G, its Fourier coefficients 1T(p) are matrices, rather than
scalars as is the case when G is abelian (such as G = F} in the previous subsection).

Definition 4.3 (Spectral gap). Let H be a finite possibly nonabelian group, and let T C H. We say that T
has a (B-spectral gap if for every non-trivial irreducible representation p € H and every unit vector v € V, the
following holds:

R (1r(p)v,v)v, < (1= H)T].

Remark 4.4. We note that this definition of the spectral gap is equivalent to the condition that all eigenvalues
of the matrices 17(p) have real part at most (1 — §)|T, for all non-trivial irreducible representations p. In
particular, recalling from Section 3 that the adjacency matrix of the directed graph Cay (T') has precisely the
same eigenvalues as the matrices 17(p) as p ranges over H, we further note T has a -spectral gap if and only
if all non-trivial eigenvalues of the adjacency matrix of Cay g (T) have real part at most (1 — 8)|T|.

Intuitively speaking, T  has no (or only a small) spectral gap if there is some non-trivial irreducible representation
p and some vector v such that i7(p)v ~ |T|v. We also remark that 17(p) = > ier P(t) is a sum of |T'| unitary
matrices, and hence we always have the trivial bound R (iT(p)v,wVp < HiT(p)vva < |T| for unit vectors v.
The following lemma generalises Lemma 4.2, showing that if a subset T" of a finite group H has a spectral gap,
then Cayy (T) has no sparse cut. In particular, it immediately shows that Corollary 4.1 follows from Theorem
1.5.

Lemma 4.5. Let H be a finite group, and suppose that T C H has a B-spectral gap in the sense of Definition
4.3:

sup sup R (Ir(p)v,v)y, < (1-B)[T].
pEﬁ:p;ﬁtriV veV,
lvllv,=1

Then Cay i (T) has no B1-sparse cuts, where T = |T|/|H]|.

Proof of Lemma 4.5. Let H = X; U X5 be a partition of H, so that our goal is to show that #{(z1,22) €
X; X Xo : 27 g € T} > B7]X1]|X2|. By the formula for the Fourier transform of a convolution and Fourier
inversion, we can write

- . 1 A N = T
#{(z1,m2) € Xy x Xy w'wp € T} = 1x, * Iy x Iy 1 (idw) = 1H]| Z dp Tr (1X1 (P)1r(p)lx,(p) > )
e
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where we used that all irreducible representations are unitary to note that 1,-1(p) = waex, P(T2)™h =
2

N — T
Y esex, P(@2) = 1x,(p) . Since the contribution from the trivial representation to the right hand side is
| X1||X2||T|/|H| = 7|X1||X2]|, and by using that the trace is invariant under cyclic shifts, it suffices to show that

-1 — 7T, N
(6) R Il Z dp Tr(lx,(p) 1x,(p)lr(p)) < (1= B)7|X1||Xa],
pEH:pFtriv

as plugging this into the first equation would show precisely that #{(z1,22) € X1 x X3 : J;l_lxg eT} >
B7|X1]|X2]. Note that as X, Xo partition H, we have that

. . N |H|, if p=triv
1y, +1x, =1y =

0, otherwise.
So 1x,(p) = —1x,(p) at all non-trivial representations p. Hence,
—1 —T, A 1 —T, A
(7) %@ Y. 4T 1x()irl) = Il Y. dRT(Ix(p) 1x,(0)ir(p)).
pEH:p#triv pEH:p#triv

T,
The matrix 1x,(p) 1x,(p) is conjugate symmetric (so self-adjoint with respect to (-,-)v,) and positive semi-

definite, so there is an orthonormal basis of vectors v, vg,...,vg, of V, which are eigenvectors, and with real
~ = T
non-negative eigenvalues A1, Ao, ..., A\g, = 0 whose sum is equal to Tr(1x, (p)lx,(p) ). By noting that for any

(p
linear map A : V, — V, and any orthonormal basis w; we have that Tr(A) = >, (Aw;, w;)v,, we get for any
non-trivial irreducible representation p that

R Tr(ix, (p)TiXI (P)ir(p) =R (ix,(p) 1x, (p)ir(p)vs,v))v,

= T,
where we used that 1x,(p) lx,(p) is self-adjoint in the second line. The spectral gap assumption states that
for any unit vector v we have an upper bound R (17(p)v,v)y, < (1 — B)|T]|. Using this spectral gap bound in
the equation above, we get the following upper bound for every non-trivial irreducible representation p:

dﬂ
R T, (7) L, (o) (p) < (1= A)ITI YA

~

— (- BT Te(x, () 1, (),

p AN
as Tr(1x,(p) 1lx,(p)) = Z;lp:l Aj. Finally, we can plug these trace bounds in the right hand side of (7) and
bound this by

(1 _ﬂ)|T‘ T, B |X1|2
T;Jdp Tr(1x,(p) 1x,(p)) = (1 =BT (|X1| ] )

= (1= 8)7|X1]| Xz|

T, o
where we used Parseval to calculate %ﬂzp;ﬁtriv d, Tr(1x,(7) 1x,(p)) = |X1| — Ix, (triv)?/|H| = |X1| —
|X1|?/|H| = |X1||X2|/|H| as |X2| = |H| — |X1| since X, Xy partition H. This establishes (6) and hence
completes the proof of the lemma. (I

Recall that over F§, a lemma of the type that we just proved could immediately be combined with a density
increment argument to conclude Lemma 2.8, basically because a subset T' of F having no spectral gap is
trivially equivalent to most of T being contained in a proper subgroup. Such a statement is more delicate in
general groups, and in fact only true in a weaker sense. The next auxiliary lemma is a result of this type that
is true in general groups. It states that if a set 7" C G has no [-spectral gap for some [ which is sufficiently
small in terms of the density of T" in GG, then one can again conclude that most of T lies in a proper subgroup.
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Lemma 4.6. Let H be a finite group, and suppose that T' C H is a subset for which there exists a non-trivial
irreducible representation p and a unit vector v € V, such that

R(ir(p)v,v) = (1 - B)IT].
Let 7 = |T|/|H| and assume that 3 < 72/1000 (say). Then there is a proper subgroup H' of H which contains
at least |T N H'| > (1 —508/72)|T| of the elements of T.

Proof. Suppose that there exists a non-trivial irreducible representation p and a unit vector v € V,, such that
R 17r(p)v, v)v, = (1—B)|T|. Throughout this proof, p will be fixed and hence we will simply write [|-[| and (-, -)
for ||-|lv,, (-, -)v,. We will consider the Bohr sets

B(n) :=={h € H : [p(h)v —v[| < n}

for n € [0, 2] (these sets also depend on v, but we consider v to be fixed in this proof). Recall that f (p(t)v,v) < 1
for any t € T, as p(t) is unitary. From the assumption that ® (17 (p)v,v) > (1 — 3)|T| we thus deduce that the
set
T i ={t €T :R{p(t)v,v) > 1—mp}
satisfies
1=8)T| <R{r(p ZéR v, v) < Tl + (1 —mB)|T\ Tin| = |T| — mB|T \ Tri|
teT
and hence has size |T,,| > (1 — 1/m)|T|. T, is not (necessarily) a Bohr set, but we show that it is efficiently

contained in a Bohr set. Since v and hence p(t)v are unit vectors, we have for ¢t € T,,, i.e. for ¢ satisfying
R{p(t)v,v) = (1 —mp), that ||p(t)v — v||? = 2 — 2R{p(t)v,v) < 2mB. We conclude that the set

T .= TN B(/2mB) ={t € T : ||p(t)v —v|| < /2mj3}
contains T}, and thus has size |T("™| > (1 — 1/m)|T|. In other words, we have shown that 7™ contains ‘most’
of T and is contained in a Bohr set B(v/2mf) of rather short width.

We make the following basic observation about the Bohr sets B(n): if x € B( ) then 2B(n') C B(n+1n'). The
proof of this is simply observing that if ||p(z)v — v|| < 7 and ||p(y)v — v|| < 7/, then

lo(zy)v = ol =[lp(x)p(y)v - v]|

= llp(@)p(y)v — p(x)v + p(z)v — 0|l

< v = ol + llp(@)o — vl <n+7,
by the triangle inequality and as p(z) is unitary.
We now choose m = 72/(503) and we will write n := 7/5, so we have shown that 7™ := T'n B(v/2mp) =
T N B(n) contains at least (1 — 1/m)|T| > (1 — 508/72)|T| elements of T. In particular, as we are assuming
that 8 < 72/1000, we certainly have that [70™)| > 0.9|T|. Note also that 7™ satisfies the size requirement
from the conclusion of the lemma, so to complete the proof of this lemma, it only remains to show that 7°(")

is contained in a proper subgroup of H. It thus suffices to show that B(7n) is contained in a proper subgroup,
and to do this we will establish the following claim.

Claim 4.7. There exists some integer k < 4/7 such that B(kn)\ B((k — 1)n) = 0, where n = 7/5.

First let us see how, assuming this claim, we can easily deduce the desired conclusion that B(7/5) = B(n)
is contained in a proper subgroup of H. Indeed, we have the basic fact that zB((k — 1)n) C B(kn) for any
z € B(n), and hence the claim that B(kn)\ B((k—1)n) = 0 implies that B(n)- X C X where X = B((k—1)n).
Iterating this, we see that B(n)? - X C X for all j and as X = B((k —1)n) clearly contains the identity element,
X must therefore contain the subgroup generated by B(n). Finally, to see that this subgroup is proper we may
simply note that X is not the whole of H since

X = B((k— 1)n) C B(kn) C B((4/7)7/5) C B(4/5) = {h € H : ||p(h)v — ]| < 4/5}

cannot contain the whole of H: recall the orthogonality relation ), p(h) = 0 which holds as p is a non-trivial
irreducible representation, so ), . p(h)v = 0 and hence

Gl = |[IGlv =Y plg)v <§|B(4/5)|+2|G\B(4/5)I

geG
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which shows that |G\ B(4/5)| > |G|/10.

It only remains to prove the claim. Suppose for a contradiction that it is not true, then for each integer j < 4/7
we can find an element h; € B(jn) \ B((j — 1)n). Consider the elements hi, ha, ..., k3,11 with indices which
are 1 (mod 3) up to 4/7. We claim that the sets h1 B(n), haB(n), ..., hsr+1B(n) are pairwise disjoint subsets of
H. Indeed, pick = € hg;+1B(n) and y € hgj11B(n) for some ¢ > j. So x = hz; 4120 for some zg € B(n). Then
we calculate

lp(x)o — vl = [[p(y)v — o]l
1(p(hzit1)v = v) + p(hsiyr) (p(zo)v — V)l = (35 + 2)n,

where we used that y € hs;11B(n) C B((3j+2)n). Hence, using that p(hs;+1) is unitary (so distance preserving)
and that zo € B(n), we get

o(@)v = p(y)vll = [[p(hsit1)v — vl = [[p(zo)v — v = (35 + 2)n
> 3in— (35 +3)n

lp(x)v = py)ol| =
>

where the strictness in the final inequality holds as hs;+1 € B((3i + 1)n) \ B(3in). As i > j this implies that
x # y so that indeed the sets hs;11B(n), hs;j+1B(n) are disjoint as we claimed. Finally, we note that this gives
us the required contradiction since we showed above that 7™ C B(7/5) = B(n) and that T(™ contains at
least (1 —508/7%)|T| > 0.9|T| = 0.97|H| elements, by the assumption of the lemma that 3 < 72/1000. Hence
the sets hgj1B(7/5) for 1 < 3j + 1 < 4/7 would give us 4/(37) disjoints sets of size at least 0.97|H| inside H.
This is of course absurd, and we deduce that there must be some j < 4/7 for which B(jn) \ B((j — 1)n) = 0,
proving the claim. |

We can now prove Theorem 1.5 by repeatedly applying Lemma 4.6.

Proof. Let € € (0,1/2) be given. Let S C G and we define 0 = |S|/|G| and n = €02/1000. We proceed by
a density increment argument, starting with Sop = S and Hy = G. We will iteratively construct subgroups
H; < H;_; and sets S; := S;_1 N H; satisfying for all j that:

(8) 1541 = (1= 577 ) IS5l

Suppose now that we have constructed H; < Hj_1 < --- < Hp and S; = SN H;, for ¢ < j, satisfying (8). Then
we certainly have

(9) i1 2 18I T] (1 - 575) = A= 2)ISl.
=0

So item (1) is satisfied for all S;. Hence, either item (2) is also satisfied in which case the desired conclusion
from Theorem 1.5 holds, or the adjacency matrix of Cay H, (S;) has a non-trivial eigenvalue with real part at
least (1 —n)|S;], where n = £62/1000. Following the remark after Definition 4.3, this is equivalent to S; C H;
having no n-spectral gap meaning that there are a non-trivial irreducible representation p € H ; and a unit
vector v € V), satisfying
R (1s, (p)v,v)v, = (1 —n)|S;].

By (9), we have that S; has size at least (1 — ¢)|S| > |S]/2 as ¢ < 1/2, and hence S; has density at least
27~1o in |H;| because H; is a subgroup of Hy of index at least 27 (note that at each stage i we find H; which
is a proper subgroup of H,;_1). In particular, as n = £6%/1000, we see that n < (|S;|/|H;|)?/1000 so that the
assumption of Lemma 4.6 is satisfied. This lemma concludes that there is a proper subgroup H;;, < H; such
that Sj41 =S N H;;1 has size at least

50 50
. > - —_— | > - — >
'SJ“'—(l ! (Sj|/|Hj|>2>Sf'—<1 ! 4]‘102)'53—( g 5

as 1 = £02/1000. Hence, we have shown that if Cay 1, (S;) does not satisfy condition (2), then we can continue
and find a proper subgroup H;,1 < Hj such that S; 11 = SN Hj4q still satisfies (8).

Observe that the process must trivially halt after a finite number of steps, since there is no infinite chain of
subgroups H; in the finite group G. The final set S; in this process then has the property that Cayy, (S5)
satisfies condition (2), and moreover it satisfies (9), so H; and S; = S N H; are the desired sets from the
conclusion of Theorem 1.5. (]
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5. A FLEXIBLE 99% RESULT

The main result of this section is Lemma 5.7, a flexible asymptotic statement about finding rainbow paths in
dense robust expander digraphs. This Lemma 5.7 will play a crucial role at several stages in the remainder of
the paper.

As we mentioned in the introduction, it is shown in [5] that if Cay(S) is a robust expander, then it contains
a rainbow path of length (1 — 0(1))|S|. This result is insufficient for our applications because we will need to
obtain the same conclusion even if we restrict to random vertex subsets of Cay(S) and forbid a small number
of colours from S. Due to this additional flexibility requirement, our proof of Lemma 5.7 diverges significantly
from the approach in [5].

5.1. Tools. In this section we introduce some notation and previous results.

We start with the following lemma ([36, Lemma 3.8]), which combines Thomason’s jumbledness criterion with
the Rodl nibble. The power of the lemma is that the set C’ can be chosen completely arbitrarily after the
random sets A, B’ are revealed. We say that a tripartite 3-uniform hypergraph is (v, p, n)-typical if each partite
set has (14 )n vertices; each vertex has degree (1 & +)pn; and for each pair of vertices u, v in the same partite
set, there are (14 )p?n vertices w in each other partite set such that (u,w,x), (v,w,y) are edges for some x,y
in the third partite set. A hypergraph is linear if through every two vertices there exists at most one edge.

Lemma 5.1 ([36], Lemma 3.8). Let H = (A, B,C) be a (0,1,n)-typical tripartite linear hypergraph, and let
p>n"1/60 Let A’ C A and B' C B be (not necessarily independent) p-random subsets. Then with probability
at least 1 —n=2, the following holds: For any C' C C of size (1 £n=2)pn, there is a matching covering all but
2n'=1/590 yertices in A’ U B U C'.

We will always use the above lemma in the form of the following corollary, which picks out the special case of
the multiplication hypergraph of a group G (which is always (0, 1, n)-typical).

Corollary 5.2. Let G be a group on n elements, and let p > n=1/%0 Let A, B C G be disjoint p-random
subsets. Then with probability at least 1 —n=2, the following holds: For any C C G of size (1 £n=%%)pn, there

is a rainbow matching in Cays(C) from A to B covering all but 2n1—1/500
1-1/500

vertices in AU B and using all but

at most 2n colours from C.

We next introduce the notion of robust expansion (following [33]). As we will see shortly, robust expansion is
implied® by the absence of sparse cuts. We will use robust expansion only through our invocation of Lemma 5.5
below (from [5]); the notion will not otherwise figure in the paper.

Definition 5.3 (Robust expansion). Let G be a directed graph on n vertices. For U C V(G) and v > 0, the
v-robust out-neighbourhood of U in G is the set

RN:G(U) ={veV(G): [N~ (v)NnU| > vn}.
We say that G is a robust (v, 7)-out-ezpander if every U C V(G) with mn < |U| < (1 — 7)n satisfies
\RNIG(U) \U| > vn.
Similarly, the v-robust in-neighbourhood of U in G is the set
RN, o(U) :={v e V(G): |NT(v)nU| > vn},
and we say that G is a robust (v, 7)-in-expander if every U C V(G) with mn < |U| < (1 — 7)n satisfies
RN, (U)\U| = vn.
We say that an undirected graph G is a robust (v, T)-expander if the directed graph obtained by replacing each

edge with two directed edges (one in each direction) is a robust (v, 7)-out-expander (or, equivalently, a robust
(v, T)-in-expander).

The following elementary proposition shows that a graph with no sparse cuts, as in the definition following
Theorem 1.5, is a robust expander. After quoting Lemma 5.5 from [5], we will work with only the no-sparse-
cuts property in the rest of this paper.

3The two notions are in fact equivalent up to a constant factor loss in parameters.
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Proposition 5.4. Let 0 <7 <1/2 and 0 < { < 1. Then any digraph H with no (-sparse cuts is a ({7/8,7)-
robust-out-expander.

Proof. Set n := |H|. Let U be any subset of V(H) of size Tn < |U| < (1—7)n Since UL(H \U) is not a (-sparse
cut, there must be at least (7(1 — 7)n? edges from U to H \ U. The (7/8-non-robust out-neighbourhood of
U can pick up at most ((7/8)n? of these edges, so the (7/8-robust out-neighbourhood of U has size at least

(1 —=7)—=¢7/8)n > (¢T/8)n. |

In a sufficiently dense robust expander, one can find short paths connecting any two given vertices, and one
can moreover guarantee that all vertices and edge-colours in the connecting path come from specified random
subsets. The following lemma makes this precise (here we we state only one of the several properties in the
lemma from [5]). The proof consists of elementary applications of Chernoff’s bound and an application of the
definition of robust expansion.

Lemma 5.5 ([5], Lemma 4.3). Let v,7,p <1 be positive constants. Let G be a properly edge-coloured directed
graph on n wvertices, where p*v®n > 144logn. Suppose that G is a robust (v, T)-out-expander, with 6*(G) >
(v+71)n. Let Vo CV(G),Co C C(G) be independent p-random subsets. Then with probability at least 1 —5/n,
the following holds:

For any distinct vertices u,v € V(G), and for any vertex subset Vi C Vi and colour subset C; C Cy with
Vi, |C1| < (pPv/100)n, there exists a rainbow directed path of length at most v=1 4+ 1 from u to v in G whose
internal vertices lie in Vo \ V1 and whose colours lie in Co \ Cy.

Iterative applications of this lemma yield the following corollary.

Corollary 5.6. Let 0 < v,7,p < 1. Let G be a properly edge-coloured directed graph on n wvertices, where
pv2n > 1441ogn. Suppose that G is a robust (v, T)-out-expander with §*(G) > (v+7)n. Let Vo CV,Co C C(Q)
be independent p-random subsets. Then with probability at least 1 — 5/n, the following holds:

For any collection (v;,w;);ck of k < %n disjoint pairs of vertices, we can find a rainbow collection of vertex-
disjoint paths Py, ..., Py (meaning that the union of the P;’s is rainbow), where each P; goes from v; to w;, and

the vertices of the P;’s lie in Vi and use colours from Cy.

Proof. With probability 1 — 5/n, the conclusion of Lemma 5.5 holds for Vp, Cy. We construct the paths P; one
at a time. Suppose we have already constructed P, ..., P, for some ¢ < k. Let V; denote the union of the
internal vertices in Py, ..., Py, and let C; denote the set of colours in Py, ..., P,. Notice that

Gl V] < (v +2)0 < (™1 +2)k < (pv/100)n.

Then Lemma 5.5 with this choice of V7, C produces the desired path Pyy; from vgqq to wyis. O

5.2. The 99% lemma. We have nearly arrived at the main lemma, which establishes a very flexible asymptotic
result in the dense setting. This lemma allows us to find a rainbow path of length (1 — 0(1))|S| inside a (large)
random vertex subset of Cay]F; (S) with high probability. We can in fact guarantee a bit more: For S contained
in a random 5" C S, we want to find a rainbow path in Cayg, (S\ Sr) of length (1 —o(1))|S\ Sr[; our lemma
guarantees that with high probability, the restriction of Cang (S'\ SF) to our random vertex set contains such
a path for all eligible choices of Sy simultaneously. This flexibility will be useful later in the argument, for
instance when we want our 99% path to avoid the absorbing structure that we set aside initially.

The statement of our lemma involves many different parameters, objects, and quantifiers. To help the reader
get their bearing, we gloss over some of the characters involved. The main thrust of the lemma is that a nicely
expanding Cayley graph with a generating set S of size at least 8n'~1/9%00 has a rainbow path which uses all
but a few colours from S. For our later applications, we will need to be able to impose further restrictions on
this long rainbow path:

e If M is a randomly sampled vertex subset, then with high probability for any two vertices u,v we can
require the long rainbow path to start at u, end at v, and have all of its internal vertices lying in M.

e We require the path to avoid a small (adversarially-chosen) deterministic vertex set .J.

e We also require the colour set of the path to avoid an adversarially-chosen subset Sr of a randomly
sampled subsets S’ C S.

e Our path should use all but a small fraction of the colours in S\ Sp.
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We now give the formal statement of our flexible 99% lemma.
Lemma 5.7. Let G be an N-element group. Let SN—1/9500 < ¢ e q < 1.

e Let S C G have |S| > eN, and suppose that Cay(S) has no (-sparse cuts.
o Let J C G have |J| <27 28¢3u3e2(2N.

o Let M C G be a qg-random subset of G, with ¢ > (1 + p)|S|/N.

o Let S C S be a ¢'-random subset of S, with ¢/ <1 — pugq/4.

Then with probability at least 1 —7/N, the following holds for every choice of Sp C S’ and every pair of distinct
vertices u,v € G: There exists a rainbow path from u to v in Cayo(S\ Sr), using all but at most pgN colours
of S\ Sk, such that all of the internal vertices of the path lie in M \ J.

Proof. Let H := Cay(S) and set 7 := %5. Due to Proposition 5.4, the no (-sparse cuts hypothesis implies that
H is a (v, T)-robust out-expander for v := (7/8.

Since |J| < ¢g/32-N < ({7/16- N, the graph H \ J is still a (v/2, 7)-robust out-expander with minimum degree
at least |S] — |J| > IeN. Note that Ze > (7/16 4+ 7, so H \ J satisfies the minimum-degree requirement of
Corollary 5.6.

Let t := % We now randomly partition G (the vertex set of H) into sets R, My,..., M; and a junk set
by placing each vertex into R with probability p := ug/4, into each M; with probability p := (¢ — p)/t, and into
the junk set otherwise (independently for each vertex). Hence R C G is a p-random subset, each M; C G is a
p-random subset, and
M:=RUMU...UM; CG

is a g-random subset of G; of course the sets R, Mj,..., M; are all disjoint. (We discard the junk set.) Our
choice of t guarantees that

P> 2% > Budc2e? /2% > N—1/600
We can now describe the plan for the proof, depicted schematically in Figure 5. We will use Corollary 5.2 to
obtain an almost-complete rainbow matching between M; and M, for each ¢ (using a fresh set of colours for
each new pair); this produces a large rainbow path forest with few components. We will then use Corollary 5.6
to find rainbow paths in R (depicted in gray in Figure 5) linking together the components of the path forest;
this step will use colours from a reserved random set C,.

My Mo M " .
f ._;__L—}‘\
..... _<
..... PATE hlia
| Rl I
..... 0 REPELE
RS

FIGURE 5. An illustration of the argument in Lemma 5.7.

In order to carry out this strategy, we need to upper-bound the probability of failure in our applications of

Corollaries 5.2 and 5.6 to various random sets. Let us start with the latter. Let Cr C S be a T L q,—random

subset, and define Cy := Cg \ S’, which is a p-random subset of S. Now Corollary 5.6 applied to H \ J tells us
that with probability at least 1 —5/(N —|J|), the following property holds: We can link any collection of up to
P/ P

300 219
disjoint pairs of vertices with a rainbow path forest such that the paths use colours only from C% and all of
their internal vertices lie in R\ J. Note that the final hypothesis of Corollary 5.6 is satisfied since the right-hand
side of (10) is much larger than log N.

(10) (N =1J]) = N
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The second desirable property is that for each 1 <1i <t — 1 and every subset C C G of pN colours, the graph
Cay(C) contains a rainbow matching between M; and M;,; covering all but at most 2N*~1/590 vertices of
M; U M., and using all but at most 2N1~1/590 colours of C. This happens for each fixed i with probability
at least 1 — 1/N? by Corollary 5.2 applied to the whole of Cay(G) (which is (0, 1, n)-typical) since M;, M; 1
are both p-random subsets with p > N—1/600,
application of Corollary 5.2.

Notice that independence of M;, M; 1 is not required for the

By a union bound we can ensure that with probability at least 1 — 7/N, the properties from the previous two
paragraphs simultaneously hold, and we have |Cy| < 2pN and |M;| < 2pN for all ¢ (using Chernoff bounds).
We will now establish the conclusion of the lemma under the assumption that this is the case.

Using the second property, we can find a rainbow matching between M; and M, using at least pN — 2N1—1/500
colours from S\ (Sp U C%). We then remove these newly-used colours from consideration and use the second
property to obtain a rainbow matching between M, and My using at least pN — 2N1=1/500 ¢olours, and so on.
We continue until there are fewer than pN unused colours of S\ (Sr U C}y) remaining; this happens after at
most t — 1 steps because otherwise we would have used up

(t —1)(pN — 2N1=V/590) > 4pN — pN — 2 NI=V50 = N (g — 5 — p — 2t N~H/590) > (1 — 11/2)gN > ||
colours, which is impossible. (The last inequality uses the hypothesis on the size of ¢.)

Consider the union of the matchings constructed in the previous paragraph, and throw out all edges incident
to J U {u,v} The remainder is a rainbow (directed) path forest using all but at most

pN + |Cx| + |J] +2 < pN + 2pN + ugN/4 + 2 < ugN
colours of S\ Sp. Since each matching left at most 2V 1-1/500 yneovered vertices on each side of (M;, Miyq),
the total number of degree-1 vertices in this path forest is at most
929 Pudce?

Q2p3(2e2 . N1/500 T N+ds<

1534—252

N: 219

-N.

4 3,322
4pN +t-2N17H/50 L9744 < Tq'N+ %

Fix an ordering Py, ..., P, of the paths in our path forest, where m < ﬁ32412962 - N. By the linking-up property
guaranteed above, we can find vertex-disjoint paths in R\ J using colours in C; that connect u to the initial
vertex of P, connect the final vertex of P; to the initial vertex of P;y; for each 1 <i < m — 1, and connect the
final vertex of P,, to v. Putting everything together produces the desired long rainbow path. O

6. THE ABSORPTION (99% — 100%) LEMMAS

In this section we prove several lemmas which will allow us to run the absorption argument. We start with the
simplest one, in part to illustrate an argument which, in a somewhat more complicated form, will appear in
several later lemmas.

Lemma 6.1. Let 0 < p <1, and let G be a finite group. Suppose J C E C G\ {id} satisfy
|E|p? > max(40].J|,96 log |G|).

Let A be a p-random subset of G. Then with high probability, we can find, for each verter v € G, a rainbow
path in Cay,(E) that starts at u, has all other vertices in A, and contains all of the colours in J.

Proof. Set N :=|G|. For each vertex v € G and colour j € J, let E, ; be the event that there are at least 5|.J]
paths of the form

v,vg,vg]
with g € E'\ {j} and vg,vgj € A, and these paths are vertex-disjoint except on v.

We will show that these events are very likely. Fix some v € G,j € J. There are at least |E| — 2 candidate
paths v, vg,vgj in Cay,(E) (since we may have to exclude g = j~! to guarantee vgj # v), and each such path
intersects at most two other paths (since vg = vg’j implies that g = ¢’j). Thus we can greedily find a collection
at least (|E|—2)/3 disjoint such paths. Each path in this collection survives in A with probability p?, and these
events are independent. Hence the number of surviving paths dominates Bin(|E|/4,p?), and a Chernoff bound
tells us that at least |E|p?/8 > 5|J]| of them survive with probability at least 1 — exp(—|E|p?/32) > 1 — 1/N3.
Thus P[E, ;] > 1 —1/N3. By a union bound, we conclude that with probability at least 1 — 1/N all of the
events I, ; simultaneously occur.
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Suppose we are in such an outcome. We can find our desired path by starting at u and repeatedly adding a
length-2 path containing an arbitrary hitherto-unused element of J. Indeed, since we have at least 5|.J| candidate
extensions at each step, we can ensure that the colour g is hitherto unused (there are at most 2|J| — 2 colours
already used) and that the two new vertices do not intersect the part of the path (of length at most 2|.J| — 2)
that we have already built. O

In the remainder of this section, we shall work specifically over Fy since our absorbing structures for general
groups have a very different form.

6.1. Building an absorbing path. In this section we describe our absorbing path and show how to find it
robustly. By an ordered subset of Iy we mean a subset F' C F§ together with an ordering on its elements. We
write f; for the i-th element of F'; and we write (F') for the subspace generated by F'.

Definition 6.2 (Gadget). Let S C Fy. An ordered subset F' C S is a gadget in S if |F| < 6, the elements of F'
sum to 0, and no proper subset of I’ is 0-sum. A family F of gadgets in S is flexible if the following all hold:

F1 The elements of F are pairwise disjoint.
F2 The sets of partial sums {f1, fi + f2,..., fi +... + fip|=1} for F' € F are all disjoint.
F3 For any distinct Fy, Fy € F, we have |[(Fy) N (F2)| < 2.

Equivalently, F is a gadget if and only |F| < 6 and starting at any vertex v and following the edges of the
colours of F' (in order) produces a rainbow cycle. Removing the last edge of such a rainbow cycle produces a
rainbow path starting from v associated to the gadget F. If F is a flexible family of gadgets, then for each
vertex v, the rainbow paths from v associated to the gadgets in F are vertex-disjoint except for v. (This fact
uses only F1 and F2. The role of F3 will become clear later; at a high level, it ensures that different gadgets
do not interact too much.) The union of these paths is a rainbow tree which we will refer to as an out-spider of
F. An in-spider of F is an out-spider of the gadget obtained from F by reversing the ordering of each gadget.

For example, if v is a vertex and F' = { f1, fo, f3, fa} is a gadget in a flexible family F, then the path v,v+ f1,v+
fi+ fo,v+ f1+ fo+ f3 forms a leg of the out-spider of F and v, v+ fg, v+ fa+ f3, v+ fa+ f3+ f2 forms a leg of an
in-spider of F. Notice that an out-spider and an in-spider with the same starting vertex v have the same vertex
set, since for any gadget F' we have {f1, fi+fz, ..., fi+...+fip=1} = {fot+ . fipp s+ fato o A fip, -5 fie}
due to the 0-sum assumption. See Figure 6 for an illustration.

[ ] @@

[ ] @ o—>—@

® L am—
v+fotfatfa v+ fstfa v+ fa v+ fi v+fi+tfo v+fi+fotfs

FIGURE 6. An out-spider and an in-spider of a flexible family F. The figure is misleading
in representing the out-spider and in-spider on different vertex sets. The bottom two legs
correspond to the gadget F' = {f1, fa, f3, fa}.

Our absorbing structure will allow us to choose, for each gadget F' € F, either to leave all of the colours of F'
in the absorbing structure or to free them all up for use embedding other colours elsewhere. In an idealised
scenario (which provides good intuition), each F' would consist of a single colour, and then | J F would represent
a set of flexible colours which we may absorb into our absorbing structure at the very end of the argument if
they ended up being unneeded elsewhere. Since of course there are no non-trivial 0-sum single elements, we
must package our flexible colours in short tuples (of size at most six), as encoded by our gadgets.

We can find a large flexible family in any reasonably large subset of 5, essentially by the pigeonhole principle.
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Lemma 6.3. Let0 < e < 1. If E C F} has size |E| > eN'/2, where N := 2", then E contains a flexible family
with at least |£%|E|/2*| gadgets.

Proof. We may assume that |E| > 249 /2 as otherwise the statement is trivial. Let us take F to be a maximal
flexible family of gadgets in E. Towards a contradiction, let us assume that |F| < €2|E|/2%°. Define the set
B := Jpcr(F) of blocked vertices. Note that each ' € F is a 0-sum set of size at most 6, so [(F)| < 32 and
hence |B| < 32|F| < £%|E|/32.

Now consider triples {ej, e3,e3} C F of linearly independent elements such that {(eq, es,e3) N B = {0}. We have
at least (1—¢2/32)|E|—1 > 2= /3| E| such choices for e; # 0 (ensuring e; ¢ B), then (1—¢2/16)|E|—2 > 2-/3|E|
choices for ey ¢ (e1) (ensuring ez, e1 +ep ¢ B) and (1—¢2/8)|E|—4 > 27 1/3|E| choices for e3 ¢ (e, e3) (ensuring
the remaining four subsums are not in B). Since we counted each triple 6 times, there are at least |E|®/12 many
such triples. Fix an ordering of the elements of F5, and let s; denote the number of triples summing to the i-th
element of F3. Then sy+...+sy > |E[?/12, and (by convexity) there are at least (%) +...+ (%)) > |E|°®/(512N)
6-tuples (e1, ea, €3, €4, €5,¢6) such that e; + ex + e3 = eq + €5 + g and (e1, €2, €3), (€4, €5, €6) are disjoint from
B\ {0}; let us call such 6-tuples good.

Since dim((ey, e, €3, €4, €5, €6) < 5, there are at most 32° good 6-tuples with a given span. Thus we can find a
subcollection of at least |E[%/(237 N) good 6-tuples spanning pairwise distinct subspaces. We will be done if we
can show that some such good 6-tuple F' = (e, ez, es, €4, €5, €6) satisfies [(F') N (F)| < 2 for all F € F, since
then we can add a suitable 0-sum subset of F’ to F, contradicting the maximality of F.

There are at most 322 - | F| pairs of distinct nonzero elements (a,b) such that a,b € (F) for some F € F. Each
such pair (a,b) is contained in at most 1+ |E| + (“;3') + (‘El) < |E|? subspaces of the form (F') as F’ ranges
over our subcollection of good 6-tuples (since any such subspace can be obtained as the span of a, b and at most
3 elements of F). When we range over the pairs (a,b), there are at most

32% - |F| - |E|> < 2|B[*/2* < |B|°/(2*N)

such subspaces in total. In particular, we can choose a good tuple F’ = (e1,es, e3,e4,€5,€6) for which there
are no such pairs (a,b); this means that |(e1, ez, e3,e4,€5,¢6) N (F)| < 2 for every F € F. Now let F” be a
minimal 0-sum subset of {e1, e, €3, 4, €5, €6} and fix an ordering of F” which first traverses the elements from
{e1,€2,e3} and only afterwards traverses the elements from {ey, e5,e6}; then F” is a new gadget which can be
added to F, giving the desired contradiction.

Let us check more explicitly that 7 U {F"} is a flexible family. F1 holds as we chose each e; ¢ |Jpc#(F). We
chose F’ to satisty [(F') N (F)| < 2 for all F € F; a fortiori the same holds with F’ replaced by F”, so F3
holds. It remains to verify F2. Write "' = {e;,,...,e;, }. Each partial sum e;, +---+¢€; =¢€;. ., + -+ e
is in either (e, eq,e3) or (e4, €5, eg) according to whether or not i, < 3; either way, the sum is by construction
not in B. (I

To gain intuition on a first read-through, the reader may wish to think of the properties F1-F3 in the definition
of a flexible family as saying that (F)) N (F’) = {0} for distinct F, F’ € F. This stronger property implies all of
F1-F3. There is, however, one instance where we wish to find such a family but we will not be able to ensure
this stronger zero-intersection property.

The following easy proposition allows us to obtain a short rainbow path from a gadget and an arbitrary element
not in the gadget. This will come in handy in several places.

Proposition 6.4. Let F be a gadget, and let x ¢ F be any nonzero element. Then we can order the elements of
F in such a way that x is not equal to any contiguous subsum of F. In particular, inserting x into this ordering
of F in any position except for the first or the last produces a valid ordering of F U {x}.

Proof. If x ¢ (F), then any ordering of F' will do, so suppose that € (F). Since F is a gadget, it has no
nontrivial zero subsums. Thus there is a nonempty subset 7' C F', unique up to complementation, such that
r= f=> f
feT fEF\T
Our task is to show that the elements of F' can be ordered in such a way that neither the elements of T', nor
the elements of F'\ T appear as a contiguous subsequence. Since z ¢ F, we know that |T|,|F'\ T| > 2. We can
build our desired ordering by taking all but one of the elements of T', then one element of F'\ T, then the last
element of T', then the remaining elements of F'\ T (in any way). a
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The next step is incorporating a flexible family of gadgets into an absorbing path in Cay]Fg (S).

Definition 6.5 (Absorbing path). We say a rainbow path P in CayF;(S) is F-absorbing for a flexible family
F of gadgets in S if there exists an injective function ¢ : F — S\ |JF such that for each F' € F we can find a
subpath of P using precisely the colours in F'U ¢(F'). We say the colours of P not in |JF are the fized colours
of P.

In an F-absorbing path P, for each F' € F we can delete the subpath of P consisting of the edges with colours
F Uc¢(F). Doing so leaves two subpaths of P, which we can join using a single edge of colour ¢(F') (since F is
zero-sum). We will denote the resulting subpath by P — F'; see Figure 2 for an illustration.

The following lemma will let us find an absorbing path inside a random vertex subset while avoiding a small
set of forbidden vertices.

Lemma 6.6. Let p € (0,1], let F be a flexible family of gadgets in E C FY, and let U C FY be a subset of
size |U| < |F|. Suppose p®|E| > 212|F| > 2'3n. Let R be a p-random subset of F5. Then with high probability,
we can find, for each u € F3, an F-absorbing rainbow path in Caygy (E) of length at most 8|F| that starts at
u € FY and has all other vertices in R\ U.

Proof. Fix N = 2™, First we add a fixed, unique colour cp € E \ |JF to each gadget F € F and construct a
rainbow path Pr that starts at 0 and uses the colours {cr} U F (which is possible by Proposition 6.4). Write
Pp, for the translate of Pr starting at the vertex y € G. Let

X:=E\ {J ({er}UPp)
FeF
be the set of unused colours from E, and notice that that | X| > |E|—7|F| > | E|/2. For each vertex v € Fy and
gadget F' € F, we define E, p to be the event that we can find a collection of at least 10|F| elements z € X
whose corresponding paths Pr .4, are all vertex-disjoint and contained in R.

We will show that these events are (very) likely. Fix some v € F§, F € F. We will find many paths Pr 1,
which are disjoint and do not contain v. There are |X| paths in total. Of these, at most |Pr| + 1 contain v,
since the position of v in a translate of Pr determines the translate. Fach path Pp, . can intersect at most
(|Pr|+1)? other such paths, since again the translate of the other path is determined by the relative positions of
the intersection point in the two paths. Thus there is a family of | X |/100 vertex-disjoint paths Pp ., avoiding
v. Bach such path is contained in R with probability p/*#I*1, and these events are independent. Hence the
number of surviving paths dominates Bin(|X|/100, p!’#I+1), and by a Chernoff bound at least

| X [pl PP 1200 > |E[p® /400 > 10| F|

survive with probability at least 1 — exp(—|X|[p!"7I+1/800) > 1 — 1/N? (using |E|p® > 2'2|F| > 2'3n). Thus
P[E, r] > 1—1/N?, and by a union bound we conclude that with probability at least 1 — 1/N all of the events
E, r occur.

Suppose we are in such an outcome. We find our F-absorbing path by incorporating gadgets F' one at a time,
as in the proof of Lemma 6.1. We start our path P at the vertex u and iteratively add on paths of the form
Pp 34y, where v is the current endpoint of P. At each step, we identify a hitherto-unincorporated gadget F'
and consider the 10|F| paths Pp 5, identified in the previous paragraph. Of these, at least 9|F| correspond to
values of x that have not yet been used. Since |P| < 8|F|, there are more than |F| paths P ,, that remain
disjoint from P. Finally, since |U| < |F|, we can choose a path Pg ., that is also disjoint from U (notice that
each element of U eliminates at most one choice of x since the paths Pp ,, are vertex disjoint); we choose one
such path and concatenate P with it. O

6.2. The absorbing lemma. In this subsection we establish a lemma which will eventually allow us to “absorb”
any small subset of colours using the flexibility provided by an absorbing path. We also need the ability to work
within a random vertex subset and guarantee that we avoid a given small subset of forbidden vertices.

Lemma 6.7. Let p € (0,1], let F be a flexible family of at least 212p~"n gadgets in S C F3 \ {0}, let U C F%
be a set of size |U| < |F|/128. Let T C F% be a p-random set. Then with high probability, the following holds
for every L C S of size |L| < |F|p”/2'2 and every vertex v € F%: There exist a subfamily of gadgets F' C F
and a rainbow path in Cay]Fg (LUUper F) that starts at v, is otherwise contained in T\ U, and uses all except
possibly one colour from LU Jpcr F.
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Proof. Consider a pair of distinct colours a,b € S. Our first goal is to construct a subfamily F, ;, C F consisting
of at least |F|/64 gadgets F' € F (possibly not inheriting the original orderings {fi, f2,..., fir|}) such that
extending each leg of the F, p-out-spider starting at 0 by the edge of colour a and then the edge of colour b
produces a family of vertex-disjoint paths (except for the shared initial vertex 0).

For each F' € F, consider the walk Pr that starts at 0 and then follows the edges of colours f1,..., fir|—1,0a,b
(recall that F' = {fi,..., fir|}). Note that Pr is a bona fide path as long as a,a +b ¢ (F). We claim that each
path Pp can intersect at most 11 other paths Pg: at vertices other than 0. Indeed, Pr can intersect P only
LS 1+ S fi+ -+ flp 1 } Intersects the set

{fit+fiit o Hfita it +fita+rb:1<i<|F|-13U{fi+ -+ fip-1 +b}.

Property F2 in the definition of flexibility ensures that f; + --- 4 f; can never appear in {f1, f1 + f5,..., f1 +
-+ flp/ 1 }. This leaves us with at most 2(|F| — 1) +1 < 2(5) + 1 = 11 possible collisions.

It follows that if we can find a collection of |F|/3 gadgets F' € F for which Pr is a path (as opposed to just a
walk), then we can find the desired subfamily F, ; consisting of at least |F|/36 gadgets F' whose corresponding
paths Pp are vertex-disjoint (except for 0).

Suppose instead that for some = € {a,a + b} there are at least |F|/3 gadgets F' € F with z € (F). As the sets
F € F are disjoint by property F1 of flexibility, there is at most one such F' which contains z; let us remove
it from consideration (if it exists). For each remaining F' we have z € (F) \ F'; Proposition 6.4 provides an
ordering of the elements of F' such that x is not equal to any contiguous subsum of F'.

The walk Pr with respect to this ordering of F' is a bona fide path. The spans of any two such F’s intersect
precisely in (z) by F'3, so there are no collisions among the sets {f1, f1 + fa,..., fi+---+ fip|—1}. We can thus
repeat the above argument from the second paragraph of the proof in order to find the desired family F, .

Let £ := |F|p”/2'2. For each vertex u € F} \ U and two colours a,b € S, let E, .5 be the event that we can
find a collection of at least 10¢ gadgets F' € Fqp for which the translate of Pr starting at u is contained in T
(except possibly u) and does not intersect U. By the above considerations, there are at least |F|/128 such paths
which avoid U. The number of surviving such paths in R dominates Bin(|F|/128,p"). By Chernoff’s bound, at
least | F|p”/28 > 10¢ of these paths survive (i.e., B, 4 occurs) with probability at least 1 — exp(—|F|p”/210) >
1 —1/N*. A union bound over u,a,b ensures that with probability at least 1 — 1/N all of the events E, 4
occur.

Suppose we are in such an outcome. We will construct a sequence of subsets L = Lg, L1, ..., L,, and a sequence
of directed rainbow paths Py C P; C --- C P, starting at v such that for each 0 < i < m < |L| — 1, we have
|L;] < |L;—1| — 1, and the path P; is contained in 7'\ U, has size |P;| < |Pi—1]| + 7 , and contains L \ L;. The
path P, will satisfy the conclusion of the lemma. Suppose we have already done this for some i < |L| — 1.
Then |L;| > 2. Pick some distinct a,b € L;. By the above considerations, we can find 10¢ — 2 > 10|L| — 2
vertex-disjoint rainbow paths, each of which uses edges with colours a, b and all but one of the elements of some
F € F, and starts at the endpoint of P; and has all other vertices in 7'\ U. One of these paths uses a new F,
does not use any of the already used colours and is vertex-disjoint from P; since 2i 4+ |P;| < 9i+ 1 < 9|L|. Now
append this path to P; to obtain P;;;. To obtain L;; from L;, remove a,b, N L; and add the unused element
of F. O

7. PROOF OF THE DENSE CASE FOR [}

In this section we prove Graham’s conjecture over F5 in the dense case, namely, the case where the size of the
set S is linear in N := 2". The results of Section 9 show that any subset S C G \ {0} of size |S| > |G| ¢, in
any finite group G, admits a valid ordering, so those results subsume the results in this section. We include
a short proof of the weaker result here to demonstrate the implementation of the tools from the previous two
sections, which we will also need for the sparse case of F5. We also note that the simpler results in this section
already suffice for proving Theorem 1.3 using only the basic absorption argument (similar in spirit to one used
in [13]), rather than the distributive absorption tools that we will need for the general dense case in Section 9.

The following theorem handles the extremely dense case. It is convenient to isolate this regime since in the
dense-but-not-extremely-dense case our absorption arguments will make essential use of the resulting extra
vertex space. The result that we need is contained in [36]; see Appendix A for more details.
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Theorem 7.1 ([36]). Let v > 0. Then for all sufficiently large N the following holds: For every group G of
order N, every subset S C G\ {id} with |S| > N — N'=7 has a valid ordering.

For the rest of this section, assume that S C Fj \ {0} has linear size in N = 2". The case |S| > 3N, which
requires a separate treatment due to tighter space constraints, will serve as a simple illustration of our strategy.
The main idea is that we first set aside an absorbing path, then find a rainbow path using nearly all of the
remaining colours of S, and finally use some of the gadgets from the absorbing path to integrate the remaining
few colours of S. To prevent unwanted collisions among the rainbow paths produced in these three steps, we
carry out each step in its own random vertex subset.

Theorem 7.2. Let n be sufficiently large, and set N :=2". If S C F3 \ {0} is a subset of size |S| > 3N, then
Caypn (S) has a rainbow path of length |S| — 1.

Proof. Set y:= 271 If |S| > N — N'=7/32 then we are done by Theorem 7.1. It remains to consider the case
|S| < N — N1=7/32 Set p:= N—1/16/2,

Let E be a %—random subset of S. Partition F} into three sets R U M U T by independently assigning each
vertex to R, M, T with probabilities p, 1 — 2p, p, respectively.

We apply Lemma 5.7 with S = S, J =0, M = M, S’ = E and parameters
e=3/4, q=1-2p, ¢ =1/4, (=1/8, u=N".

The graph Cayg, (S) has no 1-sparse cuts since |S| > 2N, and the other hypotheses of the lemma are easy to

check (|J|=0,1—-2p=¢> (1 +u)(1 = N~/32) and ¢’ <1 — pg/4). Thus with high probability we have:

P1 For any Sp C F and any two vertices u,v € Fy, we can find a rainbow path from u to v in Cayg, (S\ Sr),
using all but at most ug colours from S\ Sg, such that all of the internal vertices of the path lie in M.

By a Chernoff bound we have |E| > N/8 with high probability. In any such outcome, Lemma 6.3 (with e = 1)
lets us find a flexible family F of gadgets in E of size Np®/21® (since this is at most |E|/2%°); fix such a flexible
family for each outcome. Lemma 6.6 with F = F, E = E,U = (), R = R (note that |F| < |E[p®/2'?) guarantees
that with high probability we have:

P2 There is an F-absorbing rainbow path in Cay]F; (E) starting from any given vertex and otherwise
contained in R.

Lemma 6.7 with F = F,S = S,U = (),T = T (note that |F| > 2'2p~"log N) shows that with high probability
we have:

P3 For any L C S of size |L| < |F|p7/2'? and any vertex v € F%, there is some F' C F such that
Caypn (L UUpez F) has a rainbow path that starts at v, is otherwise contained in 7', and uses all
except possibly one the colours from LU |Jpe 7 F.

From now on consider an outcome for E, M, R,T where conclusions P1-P3 hold.

Fix some distinct vertices u,v € M. P2 provides an F-absorbing rainbow path P4 starting at u, otherwise
contained in R, and using only colours from E; write Sp for the the set of colours from E appearing in Pg.
Now P1 allows us to find a rainbow path Pj; from u to v which is contained in M and saturates all but some
set L of up to ugN colours from S\ Sg. Note that |L| < ugN < N1=7 < Np'5 /227 = | F|p” /2!2. Now Pa U Py
is a rainbow path using precisely the colours in S\ L. Next, as |L| < |F|p”/2!2, by P3 we can find a subfamily
of gadgets 7' C F and a rainbow path Pr starting at v and otherwise contained in T which uses all except
possibly one colour of L UJpcr F. Now we use the F-absorbing properties of P4 to remove |Jpc 7 F and
pass to a shorter path P/, using only a subset of the vertices of P4 (see the illustrations in Section 2.2). Finally,
P, U Pp; U Py is a rainbow path using all but one colour from S, as desired. O

We now turn to the main argument for the dense regime. In the very-dense setting of Theorem 7.2, the Cayley
graph Cang (S) was automatically a robust expander. In the merely-dense regime, we have to use our regularity
lemma to locate a robustly expanding part of Cay]FS (S); this requires setting aside a few colours of S that lie
outside of the subspace H from Lemma 2.8, and re-integrating these colours causes some additional technical
complications. Also, to avoid the case where S N H is too dense in H for Lemma 5.7 to apply, we artificially
remove a few of these colours and re-integrate them separately, as with the colours in S\ H.
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Theorem 7.3. Let € € (0,1/16), and let n be sufficiently large in terms of €. Set N := 2™. Then for any
S CFy of size [S| = eN, the graph Caygn (S) has a rainbow path of length |S| — 1.

A R M T
FEL\H [ T L LR MWM
g v P]M
H gm
® ONAAASNAAAANAANAAANS
Py u PR w Py * Pr

FIGURE 7. Illustration of the rainbow path constructed in the proof of Theorem 7.3. The dashed line indicates
that the path Pj, does not intersect R. Colours indicate the different segments of the path, which of course
are all rainbow with disjoint colour sets (except for Pr and Pg, whose colours are disjoint only after we
activate the appropriate gadgets to replace Pr by Pp). The picture depicts the case > J ¢ H; the other case
looks only marginally different (Pp might “jump” once from T'N H to T\ H at the point where it uses an
edge of the colour that we removed from P4). P4 uses the colours J U S%; Py, uses the colours S; U S%, Pr
uses the colours Sp; Py uses the colours Sy \ (Sp U Sk U SK% UL); and Pr uses all but at most one of the
colours of LU Jpcr F.

Proof. We apply our regularity result Lemma 2.8 (with e replaced by 2¢!! and o = ¢) to find a subspace H
such that [SNH| > (1—2¢!1)|S| and Cay (SN H) has no e'2-sparse cuts. Identify H = FJ* and set J := S\ H;
notice that

(11) |J| < 2eS).

We now partition S into a large set set Sy and a small set S1; how we do so depends on the proportion of H
occupied by S. If |[SN H| < (1 —&3)|H|, then we set Sy := SN H and Sy := (. If instead |SNH| > (1—¢3)|H]|,
then we let Sy be an arbitrary subset of S N H of size (1 — &3)|H| and set S; := (SN H) \ Sp. Notice that

either way |S;| < €3|H| and the graph Cay;(So) has no e'2-sparse cuts®. Notice also that when S; # (), we
may assume that J # ) since the J = ) case reduces to the situation already handled by Theorem 7.2.

So far, we have a partition S = Sy U S; U J such that

(12) |So| < (1 —€*)|H|, |S1|<e¥|H|, and Cayy(Sp) has no e**-sparse cuts.

Set p := €. Let S, E1, E5 be disjoint i—random subsets of Sy, and let AU RU M UT be a random partition
of F§ where each vertex is (independently) assigned to A, R, M, T with probabilities p, p, 1 — 3p, p, respectively.

We will activate the lemmas from the previous two sections to show that five desirable properties hold with high
probability, and then we will show how to use these properties to find the desired rainbow path in Cang (9).

We now apply Lemma 5.7 with S = So, M = M, S'=5"UE,UE,, J =0, FI* = H and parameters
(13) (=¢ q=1-3p, p=ep/2%, ¢ =3/4,

and we replace € in Lemma 5.7 by £/2. The hypotheses of the lemma are satisfied since
(12 3 11 €
[Sol = 18] = |S1] = [J| 2 (e —e” = 2c7)|H| = S |H|
(12)
and g > (1+ p)|So|/|H| (which holds since |Sy| < (1 —&3)|H|, while g =1—3p=1-3¢*) and ¢’ <1 — ugq/4.
The conclusion of the lemma tells us that with high probability we have:

Q1 For any Sp C S’"UFE,UFE; and any distinct vertices z,w € H, we can find a rainbow path in Cay 5 (S0\SF)
from z to w, with all other vertices in M, such that the path uses all but at most pg of the colours of
So \ SF.

4This is clear when S7 = (0, and otherwise the large size of S gives the stronger property that Cay(So) has no %-sparse cuts.
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The next two properties depend on the random set S’. If |S’| < |Sp|/8, which by a Chernoff bound occurs
with probability o(1), then we declare both properties to fail. So we will work only with outcomes where
[S’] > |So|/8 > |S]/16. In this case, Lemma 6.3 (with e = 1) produces a flexible family F of gadgets in S’ of
size

(14) 7| = p°1S8]/2",
since this is smaller than |S|/254 < |S7|/2°C.

Lemma 6.6 with 7, E = S, U = ), and R (which is allowed since |F]| w p®1S]/216 < |7 |p8/212) tells us that
with high probability we have:

Q2 For each vertex u € H, there is an F-absorbing rainbow path in Cay ;(S’) starting from u and otherwise
contained in R.

Lemma 6.7 with 7, U = ), S and T (which is allowed since | F| > 2!2p~7log N) tells us that with high probability
we have:

Q3 For any L C S of size |L| < pgN + 1 and any vertex v € FJ, there is some F' C F such that
Caypn (L UUpez F) has a rainbow path that starts at v, is otherwise contained in 7', and uses all
except possibly one of the colours from LU Jpc 7 F.

(13)
To check that we may indeed take | L| up to ugN+1, note that ugN+1 < epl®N/2% < pl5|5|/228 w | FlpT/2'2.

(11)
As above, a Chernoff bound tells us that with high probability |E1| > £]S| > 15|S| > p~2?-max{40[.J|,96log N}.
In this case we apply Lemma 6.1 with G = F3, J,E = J U Ej, and our p-random subset A to conclude that
with high probability we have:

Q4 For each vertex u € F, there is a rainbow path in Cay]Fg, (F1 U J), using all of the colours from J, that
starts at u and is otherwise contained in A.

Again by Chernoff’s bound, we have that with high probability |Ez|(1 — 3p)? > 7|S| > max{40[S;|,96log N}.
In this case, another application of Lemma 6.1, this time with G = H, J =51, E = 51 U E5, and our (1 — 3p)-
random subset M, tells us that with high probability we have:

Q5 For each vertex u € FY, there is a rainbow path in Cay]F; (S1 U E3), using all of the colours from Sy,
that starts at v and is otherwise contained in M.

Consider now an outcome for which the properties Q1-Q5 all hold. Fix a vertex u € H.

First, we deal with the junk set J. Using Q4, we find a rainbow path Py, starting at u and otherwise contained
in A, such that P4 uses all of the colours from J and some subset S} of the colours of F;. Among all such
paths, choose one of minimal length. Let v denote the last vertex in Pj.

Next, we use Q5 to handle the set Sy. If S; = 0, then let P}, be the trivial 1-vertex path at v and set S% := ().
Now suppose that S; # 0, and recall that in this case we have J # 0. If > J ¢ H, then we find a rainbow
path Pj,, starting at v and otherwise contained in M, such that P}, uses all of the colours from S; and some
subset S% of the colours of Fa. Notice that Py, is entirely contained in a single proper H-coset since its starting
vertex v is not in H and all of its edges have colours in H. It remains to consider the case where > J € H. The
minimality of P4 guarantees that the last edge of P4 uses some colour j* € J. Now truncate P4 by removing
v, and let v" denote its new final vertex. Now use Q5 as above but with v replaced by v' and with J replaced
by J\ {j*}; again note that the resulting P}, is contained in a proper H-coset. We remark that we will later
build another path Py contained in M N H, and it will automatically be disjoint from Pj, even though both
paths live in the same random subset M ; this ability to jump between H-cosets is the key benefit of working in
the setting J # 0.

We now use Q2 to find an F-absorbing rainbow path Pr, ending” at u and otherwise contained in R, whose
colour set is some S C S’. Let w denote the first vertex of Pr. We have w € H since v € H and S’ C H.

Now Q1 gives us a rainbow path Py in M from z to w which uses all of the colours of Sp\ (SpUSEUSY) except
for some set L of size |L| < ugN (note that Q1 applies since Sy C S’ and S5 US% C E1UEs). The path Py is
fully contained in H since w € H and Sy C H; crucially, Py is disjoint from Pj,. If we removed the last edge

5Strict1y speaking, we take the reverse of the path produced by Q2.
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of P4 in our application of Q5, then we add j* to L. So far we have found a rainbow path P, U P4 U Pr U Py
which avoids the vertex set T and uses precisely the colours in S\ L.

Finally, by Q3 we can find a subfamily of gadgets 7' C F and a rainbow path Pr, ending at z and otherwise
contained in 7', which uses all except possibly one colour of L UJpcr F. Since Pg is F-absorbing, we may
remove the gadgets in F’ from it to obtain a shorter path Pj,. Now Pj,; U P4 U Pj, U Py U Pr is a rainbow path
using all but at most one colour from S, as desired. ]

8. THE SPARSE CASE

In this section we treat the sparse case of Theorem 1.3. This takes the following shape.

Theorem 8.1. There is a constant v > 0 such that every subset S C Fy \ {0} of size |S| < v - 2" satisfying
S+ 8 =F3 has a valid ordering.

This theorem shows that sparse subsets S of Fy have valid orderings as long as S + S = 5. The following
simple lemma shows that this additional assumption is in fact not restrictive.

Lemma 8.2. Let S CFy. If S+ S # FY, then there exists a non-trivial quotient group H of FY such that the
projection map 7: ¥y — H is injective on S. In particular, 7(S) having a valid ordering in H implies that S
has a valid ordering in Fy.

Proof. Let v € Fy \ (S +95), and set H := F3/(v). Now 7 is injective on S because otherwise we would have
distinct s1,82 € S with 7(s1) = 7(s2), and then we would have s; 4+ sy = v, which is impossible. The second
part of the lemma is obvious. (I

Before turning to the proof of Theorem 8.1, let us confirm that Theorem 8.1 and Theorem 7.3 indeed combine
to establish Theorem 1.3. Lemma 8.2 shows that it suffices to consider sets S C Fy with S+ S = 5. Now
Theorem 8.1 handles the regime |S| < vN (with v as given by Theorem 8.1), and Theorem 7.3 handles the
regime |S| > vN.

Our proof of Theorem 8.1 splits into a “structured” (non-expanding) case and “random-like” (expanding) case.
Recall that we say a subset E C FJ is (v, K)-everywhere-ezpanding if every subset E' C E of size v|E| satisfies
|[E'+ E'| > K|F'|.

8.1. The structured case. We start with the non-expanding case since it will essentially reduce to (several
interdependent instances of) the dense case and the argument is similar to what we saw in the previous section.

8.1.1. Preliminaries. We always work with a set S C F4 with |S| < v-2" and S+ S =F5. These assumptions
already guarantee that S has at least a bit of expansion. The following lemma lets us set aside a small,
well-expanding reservoir of colours for later use. As usual, we omit floor and ceiling functions throughout.

Lemma 8.3. Let S C Fy, and let 2/|S| < v < 1. Then there is a subset X C S of size | X| = v|S| such that
X+ X| > L[S+ 9]

Proof. Take a uniformly random subset X of the specified size. Each element of S + S survives in X + X with

probability at least ~ - 'Y‘lss‘l__ll >~2/2, 50 X + X has size at least %2|S + S| in expectation. O

We will often use Ruzsa’s triangle inequality to translate large doubling of 7'+ T into good expansion of V +T
for any other (reasonably large) subset V.

Lemma 8.4 (Ruzsa triangle inequality). For any subsets V,T of an abelian group, we have |V + T|* > |V| -
|T + 1.
We also need a version of the Freiman-Ruzsa Theorem in F4. An asymptotic formulation of the relevant result

was first proven by Green and Tao [22], and we will use the following version due to [14].

Theorem 8.5. Let K > 0. If T C F} satisfies [T + T| < K|T|, then there is a subspace H of Fy such that
T C H and |H| < 22K|T).
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If a set S lacks everywhere-expanding subsets, then we can (almost) partition it into a small number of subsets
with small doubling, and each such subset is dense in a (smaller) subspace. We will analyse most of the subsets
within their respective subspaces. The following lemma will allow us to link up the resulting pieces. Here and
in the subsequent theorem, one should think of v, v, K as constants where K > 0 is sufficiently large in terms
of v and v > 0 is sufficiently small in terms of K. We work with concrete dependences among these constants
to make the calculations easier to verify.

Lemma 8.6. Let 0 < v,y <1 < K satisfy 2v*/*® < 21K < ~. Suppose s,n € N are such that 842 < s < vN,
where N :=2". Let t < 2/v, and let {H;};cpy be a sequence of (not necessarily distinct) subspaces of Fy, each
of size between vs and 22Ks. If X C F3 \ {0} satisfies | X| < s and |X + X| > (v?/5)N, then there exist
wi,...,ws € FY such that the following holds with W; := w; + H;:

(1) For each i € [t], we have [Wi N Uy g1y Wel < v1/4s.
(2) There is a sequence of distinct elements x1,y1,...,Ti—1,Yi—1 € FY such that x; € W;,y; € Wi, and
zi+yi € X (i.e., (xi,y;) is an edge in Caypy (X)) for each i € [t — 1], and the x; +y;’s are distinct.

Proof. We find suitable elements w;41,x;,y; one value of i at a time. Start with w; := 0, so that W, = H;.
Suppose we have already found w1, ..., wm,T1,Y1,---, Tm—1,Ym—1 such that

win U We| < (m+1—i)v*ys/2
te[m\{s}

for each i € [m] and the conditions in part (2) of the lemma statement are so far satisfied.
As long as m < t, we will find w41, Zm, Ym preserving these conditions (with m replaced by m + 1).
Set Xfree := X\ {1+ Y1, Zm-1+ Ym—1}. Then
| Xtree + Xtree| > | X + X| —t|X| > (v?/5)N — tys > (v*/5)N — 2uN > (v*/6)N
since v < 42/60 (with room to spare). Likewise, set Wee := Wy \ {Z1,¥1, - s Tm—1,Ym—1}, 0 that
[Wiree| > [Win| — 2t > vs — 4/ > vs/2.

Now the Ruzsa triangle inequality (Lemma 8.4) gives

[ ~3
‘Wfree + Xfree| Z \/‘Wfree|\/|Xfree + Xfree| Z \/78/2\/(72/6)]\[ Z 1’273 Z V_2/55;

where we used N > s/v and v < y15/12° (say).

Thus there are at least ”2722;585 > 1~ 1/3 cosets of H,, 11 which intersect Weee + Xgree- At most 2m — 2 of these

23K+1

1,1/4%5 < v=1/3 — 2m of them contain at least V1/4'ys/2
elements of Wy U --- U W,, (the last inequality uses m < t < 2/y and v < 2736K=24412) " Hence there is a
coset W41 = Wimt1 + Hpmg1 which intersects Wipee + Xfree in some element yy, ¢ {21,91,-. ., Tm—1,Ym—1}
1/ 4v5/2 elements of Wy U--- U W,,. In particular, there is some z,, € Wee such that

Tm + Ym € Xtree (notice that x,, # y,, since 0 ¢ Xpee); this choice of z,,, ¥, works for our induction.

cosets intersect {x1,¥1,..., Tm—1,Ym—1}, and at most

and contains at most v

Once we reach m = t, we have [W; N U (i Wel < tvt/4ys /2 < v1/4s for every i € [t], as desired. O

8.1.2. The main argument. We are now ready to handle the fully-structured case. The main idea is that if S
is “fully-structured”, then we can decompose it into sets Si,...,S; of small doubling, each of which is fairly
dense in some subspace. We then obtain cosets Wy, ..., W; of these subspaces which are nearly disjoint, and in
each W, we build a rainbow path that uses most of the colours of 5;; at the end we join up these short rainbow
paths and absorb the “junk set” of hitherto-unused colours. See Figure 8.

In the following theorem, we write 1/s,v < 1/K < v < o < 1 to mean that a € (0,1) is a sufficiently small
constant; v is sufficiently small in terms of «; K is sufficiently large in terms of «; and v, 1/s are sufficiently
small in terms of K.

Theorem 8.7. Suppose 1/s,v < 1/K < v < a < 1. Let S CFy \ {0} be a set of size s := |S| < vN (where
N := 2" as usual), and suppose that S+ S =TF%. If S has no (v/«a, K/v)-everywhere-expanding subset E of
size |E| = as, then Cang (S) has a rainbow path of length |S| — 1.
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F1GURE 8. Mlustration of the argument in Theorem 8.7 with ¢t = 4,m = 3. Wy, Wy; Wy, Wg;
W3, Wr are pairs of cosets of the same subspace, and the W;’s are chosen to have very small inter-
sections W, with the other W;’s. We also have fixed “connection points” yo, x1, y1, ..., 7, Y7, Ts.
Pr, is an absorbing path built inside a random subset R. Each Pps; is a rainbow path from
x; to y; built in the intersection of W; with a random set M, while avoiding W/ and all of the
other connection points. The path Pr uses up all of the unused colours, with the help of some
gadgets activated in Pg.

Proof. By assumption, every subset of S of size at least as contains a subset of size ys with doubling constant
at most K. We first extract X C S of size s having |X + X| > +?|S + S|/2 = v2N/2 by Lemma 8.3.
We can iteratively remove disjoint subsets Sp,...,5; € S\ X, each of size vs (so ¢ < 1/7), such that each
|S; +.5;| < K|S;] and S;U...US; covers all of S\ X except for a set Jy of size at most as. By Theorem 8.5, this
implies that there exist subspaces H; O S; such that |H;| < 22K|S;|. Next, we can apply the regularity-type
result Lemma 2.8 to each S; (which has density at least 272X inside of its H;) to find a subset S/ C S, of size
at least (1 — «)|S;| and a subspace H| of H; containing S/ such that Cay . (S!) has no a272K~1.sparse cuts.
We add the leftover elements (J.S; \ S (there are at most >, a|S;| < as such elements in total) to the set Jy
to obtain the set Ji, which has size |J;| < 2as.

Let us re-index so that the quantities |S}|/|H/| are non-increasing with i. Let m be the largest index for which
|SI|/1HL,| > 3/4. Next, we invoke Lemma 8.6 with the sequence of subspaces Hi,..., H}, Hy,..., H, (we list
all of the subspaces in order and then list the first m again) and the set X. This gives us cosets Wi,..., Wirm
and distinct elements z1,y1, . .., Ti4m—1, Yt+m—1 € F5 such that each W; is a coset of H] 4, each W; intersects
the union of other W;’s in at most v/%s elements, each z; € Wi, y; € Wiy1, 25 +v; € X, and the quantities
z; + y; are distinct. Our rainbow path will end up including the ¢t +m — 1 edges (z;,y;) (with colours z; + y;).
As such, we mark the set of vertices U := {z1,y1,. .., Zt4m—1,Yt+m—1} as “already used”. We also add the
unused colours from X, namely, X \ {z1 4+ y1,. .., Zt4m—1 + Yt+m—1}, to J1 to obtain Jo; thus Jo represents a
“junk set” of colours that we will need to absorb into our rainbow path later. Write W/ := W; nJ 2 W for
each i, and note that |[W/| < v'/4s.

Next, for each i € [t], let E; be a t-random subset of 5. Set E :=J E;.

For each ¢ < m, take random subsets S; 1,.5; 2 of S| by assigning each element of S} independently to .S; ; with
probability %, to S; 2 with probability 1, and to both S 1, 51,2 with probability 3. So S;1,S;2 are 3-random

subsets of S}, and S;1 U S; o = S;. Although S; 1,52 are not independent, it is true that after we reveal S; ;

(respectively, S; 2), the intersection S; 1 N .S; 2 is a %—random subset of S; 1 (respectively, S;2).

Set p := 1/16. Let RU M U T be random partition of FZ, where each vertex is assigned to R, M, T with
probabilities p, 1 — 2p, p, respectively.
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For each i, we want to apply Lemma 5.7 in W; = F5? with the sets

Si71 if 4 S m, Ei U (Sz‘,l N SZ‘,Q) if 4 S m,
S=<8 iftm<i<t, J=W/UuU M=MnW, S =<E ifm<i<t,
Sio ifi>t, E;U(S;1NSi2) ifi>t.

Here we choose the parameters®

1/4  ifm<i<t,

j=2vt/
3/4, otherwise,

g=1-2p, e=22K-1 (9 2K-1 02K {
Let us say a brief word about the order in which the random sets are revealed. For the case i < m, we first
reveal S; 1; at this point, the set S; 1 N S;2 is a %—random subset of S; 1, and we wish to apply Lemma 5.7
with this deterministic choice of S;1 (as long as this set has the appropriate size, which is the case with high
probability) and the random subset S;1 N S;2. The case i > t goes the same way. Let us check that the
remaining hypotheses of the lemma hold with high probability (since there are only 2/v = O(1) indices i, it

suffices to check that the hypotheses hold with high probability for each index individually):

e We have |S;1],[S;2/, S]] = 272K-HW;|, since |S}] > (1 — a)|S;| > (1 — )27 2K |W;| > 2. 272K
(deterministically) and [S; 1],]S;,2] > 2|5} (with high probability by Chernoff’s bound).

e The graphs Cayyy, (Si1), Cayw,(Si2), Cayy, (S;) have no ¢-cuts. This holds for m < i < t since
Lemma 2.8 guarantees that Cayyy, (S7) has no a272K~1 cuts. For i < m and i > t, a Chernoff bound
guarantees that with high probability |S; 1], |S: 2| > %|Wl\, since S;1,5; 2 are %—random subsets of S},
which itself has size at least 2|H/|; thus Cayyy, (S\S’) lacks 35-sparse cuts just by density considerations.

e We have q|W;|/(1 4+ p) > |Si| if m < i <t (since |S}|/|W;| < 3/4 for such 4), and q|W;|/(1 + p) >
[Si1l,[Si2] if i <m ori >t (since |S; ;|/|W;| <5/6 with high probability, again by Chernoff’s bound).

e We have ¢’ <1 — pg/4 with room to spare.

Now Lemma 5.7 tells us that with high probability, for all ¢ we have:

Z1 For every subset Sg of E; (if m < ¢ <t) or of E;U(S;,1NS;2) (if i <m, ori > t), we can find a rainbow
path in Cay[Fg(Slf), from x; to y;, that has all of its internal vertices in M \ (WU U) and uses all but
at most pq|W;| of the colours of S} \ Sp (if m <@ <t),of S;1\ Sr (if i <m), or of S; 2\ Sp (if ¢ > ¢t).

We now reveal the sets Eq, ..., E;. Chernoff’s bound implies that with high probability |E;| > %|SZ/| for each ;
suppose we are in such an outcome. Then |E| > s/16 > N'/2/16 (since s = |S| > N'/2 due to S + S = F3).
Lemma 6.3 (with e = 1/16) provides a flexible family F of s/2%? gadgets in E; note that the assumption of this
lemma is satisfied since s/2%2 < |E|/2%8.

We now apply Lemma 6.6 with the random set R, the set U, the set E, and this flexible family F. The
hypotheses of the lemma are satisfied since |F| > 2/y > |U| and 2'31log N < 2!2|F| < |E|p®. The lemma
guarantees that with high probability we have:

Z2 For any vertex yop, there is a rainbow JF-absorbing path in Cang(E) that ends at yo and is otherwise
contained in R\ U.

Finally, apply Lemma 6.7 with the random set T, the set U of already-used vertices, and our flexible family F.
To verify the hypotheses of the lemma, note that |F| > max{2'?p~"log N, 128|U|} (by a huge margin). The
lemma says that with high probability we have:

Z3 For any set L C S of at most (t+m)ug22Xs+2as+vs < |F|p7/2'2 colours and any vertex . ,, there
are a sub-family 7" C F and a rainbow path in Cayg, (L U Jpez F) that starts at z¢4m, is otherwise
contained in 7"\ U, and uses all except possibly one colour from L UJpcr F.

Consider an outcome where Z1-7Z3 hold. We will deduce the existence of the desired rainbow path. Using Z2,
we find an F-absorbing rainbow path Pr that ends at some vertex yo, is otherwise contained in R\ U, and
uses the colours of some subset Sy C E. Next using Z1 we find rainbow paths Py 1,. .., Pareym with internal
vertices in M \ U, where each P; goes from y;_1 to x; (with x;,, chosen arbitrarily) and uses all but some set L;
of at most ug|W;| colours from S; 1 \ Sg (for i < m), from S;\ Sp (for m < i <t), and from S; 2\ (SpUc(P;—t))
(for i > t). Let L:= J, U{J/T" L.

5Tt is possible to make “tighter” choices of parameters in some of the cases, but the choices listed here work for all cases and are
tight enough for later applications.
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We can use the edges (z;,y;) to join the paths Pgr, Pap 1, .- ., Part+m. The result is a rainbow path that avoids
T\ U and uses precisely the colours in S\ L. Note also that

|L| < |Jo| + (t +m)pg - max |W;| < [Jy] + | X| + (t 4+ m)ug2®5 s < 2as + s + (t +m)ug2*Xs,

so the hypothesis of Z3 is satisfied. Now Z3 provides a subfamily 7’ C F and a rainbow path Pr that starts at
Ttim, is otherwise contained in 7"\ U, and uses all except possibly one colour from LU Jpcz F. We use the
F-absorbing properties of Pr to remove |Jz» F and pass to a shorter path Pp using only a subset of vertices
of Pr. Now the concatenation of P]’%, Py, ..o Pariym, Pr gives the desired a rainbow path using all but at
most one colour from S. O

8.2. Expanding case. In this section we will show how to find a rainbow path of length [S| — 1 in Cayg, (S5)
in the case where S has a subset F with suitable everywhere-expanding properties. In order to incorporate
the final few colours at the end of our argument, we will need to replace absorbing paths with slightly larger
structures. Recall the definition of an in-spider from the discussion following Definition 6.2.

Definition 8.8 (Absorbing fork). Let F be a flexible family of gadgets in S C F3. A a corresponding absorbing
fork (P, Q) consists of a (directed) F-absorbing path P and an in-spider @ of F such that @ is based at the
initial endpoint of P and otherwise P, @Q are disjoint. We refer to the final endpoint of P as the final vertex of
the entire absorbing fork.

We now show how to robustly embed absorbing forks in Cang(S) as long as S is large enough.

Lemma 8.9. Let N =2", and let E C S C F¥ be such that |S| > 211 |E|. Let F be a flexible family of subsets
of E. Then Caygy (S) contains an F-absorbing fork (P, Q) with |P| < 8|F| + 1.

Proof. Choose an element ¢(F) € S\ |JF for each F' € F; since |S| — [|JF| > |F|, we can ensure that these
elements ¢(F) are all distinct. Proposition 6.4 tells us that for each F' € F, there is a rainbow path Pp using
precisely the colours in F' U ¢(F). It remains to concatenate these paths and join them to an in-spider of F.

To start, let @ be the in-spider of F based at the vertex 0. We start our path P at the vertex 0 and iteratively
extend the path by adding both a single edge (with a colour from S) and one of the rainbow paths Pr from
the previous paragraph. At each step, we identify a hitherto-unincorporated gadget F' and consider extensions
of our current path by a single edge with some colour z € S\ (Upcr(F U {c(F)})) followed by Pr. Note
that |S\ (Uper(F U {c(F)}))| > |S| = 2|E|. The structure that we have already built has (crudely) at most
|Q| + 2|E| < 4|E| vertices. The new path that we wish to append has at most 8 vertices, so there are fewer
than 32|E| < |S| — 2|E| choices of z (i.e., translates of this new path) that cause collision, so we choose some
x € S\ E that does not cause any collisions. ]

We will build our long rainbow path in stages. We will start with an absorbing fork, as guaranteed by Lemma 8.9,
which embeds a large family of gadgets. In each subsequent step we will append a new short path to the final
vertex of the fork at the cost of “activating” up to two gadgets. In order to iterate this multi-stage procedure,
we need to make sure that the final vertex of the fork is not “blocked” by other vertices of the fork (see
Proposition 2.5 from our proof overview for a model version of this argument). With this in mind, we say a
final vertex v of an F-absorbing fork (P, Q) is t-extendable if at least ¢ of the paths of the out-spider of F based
at v are disjoint from P U @ (except at v, of course). See Figure 9 for a picture of the proof strategy. It will
be notationally convenient to phrase the iteration argument in terms of analysing the properties of a suitable
maximal substructure.

We the symbol < in the following theorem as we used it in Theorem 8.7, viz., z < y means that x is sufficiently
small with respect to y.

Theorem 8.10. Suppose that 1/s < 1/K < v < a < 1. Let S C F3\ {0} be a subset of size s := |S| > /N /2
(where as usual N :=2"). If S has a (v/a, K/v)-everywhere-expanding subset E of size as, then Cay]F;(S) has
a rainbow path of length |S| — 1.

Proof. Lemma 6.3 applied to E provides a flexible family Fy of gadgets in E with |Fy| = o?|E|/2°% = a®s/2%2.
Let B := a3/2°2, so | Fo| = Bs. Now Lemma 8.9 tells us that Caygy (S) contains an Fo-absorbing fork (Fo, Qo)
with | Py| < 9|Fo| = 98s; let v denote its final vertex.



ON GRAHAM’S REARRANGEMENT CONJECTURE OVER FZ 33

v+ R+ R

FIGURE 9. Illustration of the proof of Theorem 8.10. We take a maximal F-absorbing fork
(P, Q) whose final vertex is suitably extendable. The everywhere-expansion of the set F provides
many potential ways to extend P by following a leg of the out-spider, then taking one more step
using a colour from a different gadget, and finally appending a translate of a short rainbow path
P,. The maximality hypothesis ensures that in fact P already used nearly all of the colours of
S, and we can integrate the remaining colours using one of the legs of Q.

There are at least s — 9/s colours not appearing in Py. Let Ny denote the set of vertices in F} \ (Py U Qg) that
are reachable from vy via single edge with one of these colours. We have |Ny| > s — 248s > s/2. Consider an
auxiliary bipartite graph whose left side is the vertex set of Py U @y and whose right side is Ny, with an edge
between a € Py U Qg and b € Ny if the out-spider of Fy based at b contains a. Equivalently, a is adjacent to
b if the in-spider of F{ based at a contains b, so the degree of each vertex on the left is at most 55s. Recall
that the left side has at most 153s vertices, so the graph has at most 753252 edges in total. At the same time,
|No| > s/2, so there is some u € Ny with degree at most 1503%s in the auxiliary bipartite graph. Extending P,
to such a vertex gives a new absorbing fork whose final vertex u is ys-extendable (since |Fo| — 1503%s > vs).

Now, let (P, Q) be a maximal-size F-absorbing fork such that its final vertex v is ys-extendable, F C Fy, and
31Fo \ F| < |P| = (1 — y)min{|P|,s — 8/v}. Note that (Py, Qo) is such a fork for Fy, so this is well-defined.
Let A C S denote the subset of available colours not used in P. We claim that Cayp, (A) has a rainbow path
P, using precisely 4/~ colours if |A| > 8/, and using min{|A|, 7} colours from A otherwise. If |A| > 14 this
follows from the standard greedy argument which always allows us to find a path of length at least |A|/2 (see
[5, Observation 2.2]). If |A| < 14, then we may simply use the fact from [1] that all sets of size at most 7 have
valid orderings.

Since v is ys-extendable, there is some F' C F of size s such that the out-spider of F’ based at v is disjoint
from the vertices of P U @Q (other than v). Let R denote the set of last elements of gadgets in F' (i.e., if we
write each gadget as F' = {fi,..., fip|}, then R = {f|p| : FF € F'}). Note that since each gadget is 0-sum, the
set of leaves of this spider is precisely v + R. The subset R C E and has size s, so our everywhere-expanding
assumption on E ensures that |R+ R| > Ks. This means that if we take a second step with an edge with colour
in R, then we can reach at least K's vertices in v + R 4+ R. There are at least Ks — 1 — s —58s — 5ys > Ks/2
such vertices which are not in P U @ (which contains at most 1 + s + 48s vertices) or in the out-spider of F’
based at v (which contains at most 58s vertices). Further, as P4 is a path using at most 8/~ colours, at most
(8/7) - (1 + 58+ 5vy)s < Ks/4 translations of the path P4 starting at the vertices in v + R + R can intersect
P U Q or the out-spider of F’ based at v; here we used K > «,v. So at least Ks/4 such translates of P4 will
be disjoint from both P U @ and the out-spider of F’ based at v.

Let z = v+ fip| + fip € v+ R+ R, with Fy, F> € F', be such a good vertex, in the sense that if we start
at z and follow the colours of P4 in order, then we obtain a rainbow path whose vertices are disjoint from
P U Q and the out-spider of 7’ based at v. Now we can extend the path P in our current F-absorbing fork
(P, Q) adding the edges with the colours from Fi \ {f|r |}, then the edge with the colour fp,| (to reach z), and
finally the translation of P4. This produces a genuine path since F; € F’ and the out-spider of F’ based at v
is disjoint from P U@, while the choice of z guarantees that z and the translation of P4 do not cause collisions.
This procedure has produced a new F \ {F}, Fs}-absorbing fork by activating the gadgets Fy, Fy (we replace P
by P — F} — F5 to maintain rainbowness). Note that we reintegrated all except the last colour of F; into our
extended rainbow path, but we reintegrated only the first colour of F5. Hence, as our gadgets have size at most
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6, our new absorbing path P’ has size
1 2 1
P|>|P|—6+4/y> — - > — Fy, F:
P12 [P =6+4/72 SR\ Fl+ = 2 oo\ (F\ (B, Bo))
if |A| = s — |P| > 8/~. It still has size
1 1
P12 [Pl +12 5150 \ Fl+ (1= )(s = 8/7) + 1= 51 Fo \ (F\ {F, R])| + (1= )(s — 8/7)

if 7 <|A| = s—|P| < 8/v. The only remaining case is where P’ is missing exactly 6 colours, including the last
5 colours of F5.

In the final case, we can just append the leg of the in-spider @) corresponding to the 5 leftover colours from Fj
at the beginning of the path P’; this produces the desired rainbow path of length |S| — 1. We will be done if we
show that the first two cases are actually impossible by the maximality assumption on (P, Q). For this, we need
to verify that at least one of the K's/4 possible new final vertices is ys-extendable in its new fork. We can repeat
the argument from above with the auxiliary bipartite graph; this time there are at most s + 58s + 5vs < 2s
vertices on the left side (consisting of P U @ together with the vertices of the out-spider of F’' based at v),
each sending at most as edges’ to the right side (consisting of the final vertices of our potential extended forks,
namely, the translations of good vertices by the path P4), which has size at least Ks/4. So some vertex v’
on the right has degree at most 870‘5 < vs. At most s of the leaves of the out-spider of F based at v’ are
blocked by vertices in P U @ or the out-spider of 7’ based at v. Besides these, at most 8/ additional leaves of
the out-spider of F based at v' are blocked by the translate of P4 that we used to reach v’. In total, our new
endpoint v’ is at least |F| — s — 8/y > ys-extendable, since

|F| = |Fo| — |Fo \ F| > Bs — 2max{ys,s — (1 —7)(s — 8/7)} > a’s/2°% — 2ys > 2vs + 8/
here using 5 = /252 and the assumption that v < «). O
( g p ot

9. GENERAL DENSE CASE

In this section we prove Theorem 1.4, which we restate for convenience.

Theorem 1.4. There is an absolute constant ¢ > 0 such that for any finite (possibly nonabelian) group G,
every subset S C G\ {id} of size at least |G|*~¢ admits a valid ordering.

Due to a lack of O-sum subsets, we will need to work with a different type of gadget.

Definition 9.1 (g-pair). Let G be a group, and let g € G. A g-pair is a pair of distinct elements a,b € G such
that ab = g. A family of g-pairs in a subset S C G is a collection of disjoint g-pairs contained in S; we say that
the number of such pairs is the size of the family.

The following easy lemma lets us find a large family of g-pairs in any large subset of a finite group.

Lemma 9.2. Let G be a group, and let S C G. If |S| > |G|*=¢ > 2, then for some g € G there exists a family
of g-pairs in S of size at least |G| =% /6.

Proof. There are |S|(]S| — 1) ordered pairs of distinct elements a,b € S. There are at most |G| possible values
for the product ab, so by the pigeonhole principle there is some g € G such that S contains a collection of at
least |S|(|S| — 1)/|G| > |G|*=2¢/2 g-pairs. Each such g-pair (a,b) can have elements in common with at most
two other g-pairs (a’,b'). So we can find a sub-collection consisting of at least |G|172¢/6 disjoint g-pairs. O

Consider a vertex v of Cay(S) and a family of g-pairs of S. For each g-pair (a,b), the two-edge path v — va —
vab = vg using the colours a,b terminates at the vertex vg. The union of these paths over all of the g-pairs
forms a theta-graph. We will later stitch together several such theta-graphs along a path-like structure which
we call a waveform; see Figure 10 for an illustration (formal definitions forthcoming).

We have great flexibility in taking a path through a waveform, since for each theta-graph we may (independently)
choose which length-two path to include. The downside here, compared to the zero-sum gadget approach from
the previous sections, is that the remaining pairs in each theta-graph remain unused. As each colour pair must
eventually appear somewhere, we need to carefully specify which colour pairs occur in which theta-graphs. This
procedure will be simplest to describe using the language of a certain auxiliary bipartite graph on parts (X, Z),

TWe note that the edges in our auxiliary bipartite graph are defined by the full F out-spiders and not just the F’ ones.
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F1GURE 10. A waveform with three theta-graphs. Notice that some colour pairs repeat across
the theta-graphs. A rainbow path omitting the brown-orange colour pair is highlighted.

where vertices of Z correspond to theta-graphs and vertices of X represent g-pairs as given by Lemma 9.2.
We wish to build a waveform where the theta-graph corresponding to the vertex z € Z contains precisely
the g-pairs in its neighbourhood N(z) C X. No theta-graph should be too big (as then finding absorbing
structures in random subgraphs would be problematic), so our bipartite graph should have small maximum
degree. Furthermore, after we later (during an absorption step) saturate some fraction of the g-pairs elsewhere,
we will wish to integrate exactly the remaining (unused) g-pairs into the path coming from our waveform. In
the language of the bipartite graph, we wish to find perfect matchings between X \ X’ and Z for a wide variety
of choices of subsets X'.

The following proposition from [35] shows that bipartite graphs with such properties exist.

Proposition 9.3 ([35], Lemma 10.7). Let { < k be positive integers. There exists a bipartite graph B with
bipartition (X UY, Z), where X andY are disjoint, |X| =k +£,|Y| = 2k and |Z| = 3k, such that:

(1) The mazimum degree is at most 40.
(2) For any subset X' C X with |X'| = k, there is a perfect matching between X' UY and Z.

We remark that [35, Lemma 10.7] states this result only with ¢ = &, but one can obtain the more general version
above by simply deleting an appropriate number of vertices from X. The construction from [35] is essentially
a union of 40 perfect matchings, sampled uniformly at random, and it is not hard to show that the desired
properties hold with positive probability.

We can now precisely describe the type of absorbing structure we will utilise.

Definition 9.4 (Absorbing family). Let G be a group, g € G, and S C G. Let Pgex C P be families of g-pairs
in S. A (Phex, £)-absorbing family in P consists of a sequence Py, ..., Pip_y € P of sub-families such that each
|P;| < 40 and for every P’ C Phex with |P’| = £ there exists a system of distinct representatives p; € P; \ P’.

The following is essentially an immediate consequence of Proposition 9.3.

Corollary 9.5. Let G be a group. Let g € G, and let S C G, and let P be a family of g-pairs in S of size
3t + ¢, with £ <t. Then for some sub-family Prex C P of size t + £ there is a (Pex, £)-absorbing family in P.

Proof. Consider the bipartite graph B from Proposition 9.3. We identify X UY with P, set Pgex := X, and
define P; to be the set of neighbours of the i-th vertex in Z. Note that each |P;| < 40 since B has maximum
degree at most 40. The matching property of B precisely translates to Pi,...,Ps:, Paex having the desired
property about distinct representatives. (I

As we alluded to above, the building blocks for our absorbing structures are theta-graphs.

Definition 9.6 (Theta-graph). Let P be a family of g-pairs in a group G. The theta-graph of P anchored at
v, denoted T'(v, P), is the union of the |P| length-two paths obtained by starting at v and following the edges
of colours a,b for each g-pair (a,b) € P.

Notice that each of the paths in T'(v,P) terminates at the vertex vab = vg.

Definition 9.7 (Waveform). Let G be a group, g € G, S C G, and let Pq,...,P; be families of g-pairs
in S. A corresponding waveform starting at a vertex u € G is a subgraph of Cays(S) consisting of u and
T(v1,P1),...,T(ve, Py), together with the edges (u,v1), (v1g,v2), (vag, v3), ..., (Vi—1g,v¢), such that:

e the theta-graphs T'(v;, P;) are disjoint from one another and from w;



36 ON GRAHAM’S REARRANGEMENT CONJECTURE OVER FZ

o the edges (u,v1), (v1g,v2), (V2g,v3), ..., (vi—1g,v:) are all edges of Cay(S) of distinct colours, and none
of these colours appear in the T'(v;, P;)’s.

A waveform of a (Phex, £)-absorbing family in P has the key property that by choosing a single length-two
path from each theta-graph, we can construct a rainbow path which uses all the pairs of colours in P apart
from any desired subcollection of ¢ pairs of Pgey; this allows us to “absorb” such subfamilies. We will refer to
the specification of such a subpath of the waveform as collapsing the waveform. We now present a waveform
analogue of Lemma 6.6, with a similar proof.

Lemma 9.8. Let G be a group, g € G, and E C G. Let P1,..., Py be families of g-pairs in E with each
|Pi| <40. Let 0 < p <1 be such that |E|p*?/2'® > max{t,log|G|}. Let R be a p-random subset of G. Then
with high probability, for every vertex u € G we can find a waveform in Cayx(E) corresponding to P1,...,P;
which starts at the vertex u and is otherwise contained in R.

Proof. Let N := |G|. For each vertex v € G and family P;, let E, ; be the event that we can find a collection
of at least 50t elements e € F \ Ule P; whose corresponding theta-graphs T'(ve, P;) are all vertex-disjoint and
contained in R. Notice that each theta-graph T'(ve,P;) intersects at most 422 other such theta-graphs, since
each theta-graph has at most 42 vertices and the translate of the other theta-graph is determined by the relative
positions of the intersection point on the two paths. Thus we can find a collection of at least (|E|— 80t)/(422 +
1) > |E|/2!! vertex-disjoint T'(ve, P;)’s. Each survives in R with probability at least p*?, and these events are
independent. Hence the number of surviving theta-graphs stochastically dominates Bin(|E|/2!1, p*?), and by a
Chernoff bound at least
|E|p*? /2" > 50t

survive with probability at least 1 — exp(—|E|[p*?/2!%) > 1 — 1/N3. Thus P[E, ;] > 1 — 1/N3, and by a union
bound we conclude that with probability at least 1 — 1/N all of the events E,, ; occur.

Suppose we are in such an outcome. We find our waveform by incorporating theta-graphs one at a time, as in
the proof above. We start our waveform W at the vertex u and iteratively add on graphs of the form T'(ve, P;),
where v is the current endpoint of W. At each step, we identify a hitherto-unincorporated P; and consider the
50t theta~graphs T'(ve, P;) identified in the previous paragraph. Of these, at least 49¢ correspond to colours e
that have not yet been used. Since |W| < 42¢, there are at least 7t theta-graphs T'(ve, P;) that remain disjoint
from W; we choose one such theta-graph and add it to the end of our waveform W. O

We will also need a slightly tweaked version of the absorbing lemma (Lemma 6.7).

Lemma 9.9. Let p € (0,1], let Paex be a family of g-pairs in a group G with |Paex| >t + £ > 2%p 3 log |G|,
and let T be a p-random subset of G. Then with high probability, the following holds for every L C G \ | Paex
of size |L| < € < tp®/80 and every vertex v € G: There exist a subfamily P’ C Ppex of size £ and a rainbow path
mn Cay]Fg (LUUP') that starts at v, is otherwise contained in T, and uses all except possibly one colour from
Luyr'.

Proof. Consider a pair of distinct colours a,b € G. For each (a;, b;) € Pgex, consider the length-three path that
starts at the vertex id and then traverses the edges of colours a;, a,b. Our first goal is to construct a family P,
of at least ¢/10 such paths that are vertex-disjoint (except at the shared vertex id). Note that each such path
can intersect at most nine other paths, so we can find a vertex-disjoint collection of |Pgex|/10 > ¢/10 of them.

For each vertex u € G pair of distinct colours a,b € S, let £, 4 be the event that we can find a collection of
more than 4¢ g-pairs P € P, such that the (left-)translates by u of the corresponding length-three paths are all
contained in T (except for possibly u). The number of surviving paths stochastically dominates Bin(t/10, p%),
so by a Chernoff bound at least tp3/20 > 4/ survive with probability at least 1 —exp(tp3/80) > 1 —1/N*. Thus
P[Ey.qp) > 1 —1/N* A union bound over all u,a,b ensures that with probability at least 1 — 1/N all of the
events I, o occur. Suppose we are in such an outcome.

We will construct a sequence of sets L = Lg, L1,..., L1 of sizes |L;| = |L| — i and a sequence of directed
rainbow paths v = Py C P C --- C P of sizes |P;| = 3i+1, as follows. Suppose we have already constructed
L;, P;, and suppose that |L;| > 2. Pick some distinct a,b € L;. There is a collection of more than 4¢ > 4|L|
vertex-disjoint rainbow paths in 7', where each starts at the endpoint of P; and then traverses the edges with
colours a;,a,b for some (aj,b;) € Phex. Some such path uses a colour a; from a new pair and is vertex-disjoint
from P;; we append it to P; to obtain P;1;. To obtain L;;; from L;, we remove a,b and add b; (so indeed
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|L;+1| = |L;| — 1). Thus the process can indeed run |L| — 1 steps, provided we can always find a suitable short
path to extend by. Note also that by construction P; uses colours from at most ¢ pairs in Pey (besides the
colours from L) and has length 3i. So when constructing P;1 at most ¢ pairs are already used, and at most
|P;| — 1 = 3i of our short paths can intersect P;, so we indeed can always choose a short path to extend P; by
into R+1.

At the end of this process we used at most |L| — 1 < ¢ pairs from Ppex and embedded all the colours from
these pairs as well as from L except possibly one. To ensure we use up exactly £ pairs, we continue the process
to find L = Ljy,..., Ly each of size one and P, D ... D P D Py such that for each i > |L| we have
|P;| = |Pi—1] +2, and P; \ P;—1 uses the colour in L;_; together with a new colour from | Pgex. To see that we
can do this, suppose that we are at stage i — 1 € [|[L] — 1,¢) and that the current path P;_; ends at the vertex
v. Then we pick a to be the (unique) colour in L;_; and b # a to be an arbitrary other colour. As the event
E, o holds, there is some new P; = (a;,b;) (not yet used on the path) such that we may extend our current
path by appending the edges going from v to va; to va;a (and we simply do not use the colour b edge in the
path guaranteed by the above process), in order to construct P; (and replace a with b; in L;). Since we have
more than 4¢ choices, we can continue until we have used up exactly ¢ pairs from Pgey, as desired. O

As in Section 7 we start by establishing the main result in the regime |S| > %N , which is slightly different due
to tighter space constraints.

Theorem 9.10. Let G be a group of order N, where N is sufficiently large. If S C G is a subset of size
|S| = 3N, then Cays(S) has a rainbow path of length |S| — 1.

Proof. Set y:=2729 If |S| > N — N'=7, then we are done by Theorem 7.1 so let us assume |S| < N — N177.
Let us also set p = N~27/2.

Let E be a é—random subset of S. Let us also partition Fy into three sets RUM UT by independently assigning
each vertex to R, M,T with probabilities p, 1 — 2p, p, respectively.

We apply Lemma 5.7 with S = S, J =0, M = M, S’ = E and the parameters
3 1 1
= == =1-2 =
1 S= a P 4 =g
Since 1 —2p=¢ > (1+p)(1 — N77), and ¢’ <1 — pg/4, we may indeed apply the lemma. Thus with high
probability we have:

c— ,LL — N—90’y/276.

D1 For any Sp C E and any two vertices v, u € Fy, we can find a rainbow path from v to w in Cang (S\Sr),
using all but at most ug colours from S\ Sg, such that all of the internal vertices of the path lie in M.

Let us now reveal the random subset E. Chernoff’s bound guarantees that with high probability |F| > N/16
(as before, if this is not the case then we declare failure and do not apply the following lemmas). Let

fo= NL7847 /906 g 48 /9T — N1-907 /976

Using Lemma 9.2 we can find some g € G and a family P of g-pairs in E of size 3t + ¢ < N/2!. Using
Corollary 9.5 we can find a (Pgex, £)-absorbing family Py, Pa, ..., Ps; in P for some Phex C P of size t + £.

We apply Lemma 9.8 to Py, Ps, ..., P3; with the random set R; note that this lemma applies since |E|p*? /218 >
3t > log N. Thus with high probability we have:

D2 For any vertex v, there is a waveform corresponding to Py, Pa, ..., Ps; that ends at v and is otherwise
contained in R.

Finally, we apply Lemma 9.9 to Ppex with random set T; we can do so since t+£ > 2p~3log N and ¢ < tp*/80.
Thus with high probability we have:

D3 For any L C S of size |L| < £ and any vertex u, there is a sub-family P’ C Ppey of size £ such that
Cays(LUJP’) contains a rainbow path that starts at u, is otherwise contained in 7', and uses all but
possibly one colour from L UJP’.

Let us fix an outcome in which all three of the above properties hold. Fix some distinct vertices v € M, u € T.
D2 gives us a waveform corresponding to Py, Pa, ..., Ps; that is completely contained in R and ends at v. This
waveform uses a total of 6¢+ £ colours: It uses 3t + ¢ colours within the theta-graphs (we have P1U---UP3; =P
by the properties of an absorbing family) and an additional 3¢ colours connecting the theta-graphs to one
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another (and to the final vertex v). Let Sp C E denote this set of 6¢ + ¢ colours. Now D1 produces a rainbow
path Py, starting at v and ending u and otherwise contained in M, which saturates all but some set L of at
most ugN < £ colours from S\ Sp. Finally, by D3 we can find P’ C Pgex of size precisely ¢ and a rainbow
path Pr contained in T" which uses all except possibly one colour from L U U(ai’bi)ep,{ai, b;}. By the absorbing
property, there is a system of distinct representatives for {P; \ P’ : ¢ € [3t]}. Now we can follow the length-two
paths in our waveform corresponding to these pairs in order to use up the colours in Sg \ U(%bi) eplai, bi}.
The concatenation of these three paths uses all except possibly one of the colours of S, as desired. (]

We are now ready to prove the main theorem of the section, Theorem 1.4, in the following more precise form.

Theorem 9.11. Set~y := 272, Let G be a group of order N, where N is sufficiently large. Then for any subset
S C G of size |S| > N'=7, the graph Cays(S) has a rainbow path of length |S| — 1.

Proof. Set ¢ := N~7, so that |S| > eN. We may assume that ¢ < 2720, We apply our regularity result
Corollary 4.1 (with o = |S|/|G| > ¢) to find a subgroup H of G such that |[SNH| > (1—¢)|S| and Cay (SN H)
has no */1000-sparse cuts. Let Sy := SN H and J := S\ H. We now define two subsets S, So of Sp; how we
do so depends on the proportion of H occupied by Sp.

Case 1. |So| < 3|H|.
In this case we set S; := Sy and Sy := 0.

Case 2. [So| > 3|H|.

Note that if S\ H = (), then we are done by Theorem 9.10, so we may assume that J = S\ H # (. Take
random subsets S1, S5 of Sy by assigning each element of Sy independently to S; with probability %, to Sy with
probability i, and to both 57,5, with probability % So 51,55 are %—random subsets of Sy, and S1 U Sy = S.
Although S7, S5 are not independent, it is true that after we reveal Sy (respectively, S3), the intersection S1 NSy

isa %—random subset of S7 (respectively, Sa).

Let S’ and E be disjoint %—random subsets of Sy. Set p:=1/32, and let AU RU M UT be a random partition
of G where each vertex is (independently) assigned to A, R, M, T with probabilities p, p, 1 — 3p, p, respectively.

We now reveal S;%. We have
5 5
(15) g/l < 151] < £ |H]

deterministically in Case 1, and with high probability by Chernoff in Case 2; suppose that this inequality holds.
Fix a coset sH of H and apply Lemma 5.7 with G = sH,S = S;,J =0, M = M,5" = S'UFE U (S;NS3) and
the parameters
¢=¢*/1000, q=1-3p, p=N"27/2% ¢ =5/6,

and we replace € in Lemma 5.7 with £/2. Let us check that the assumptions of the lemma are satisfied. By (15)
we have |S1| > 2[So| > 2(1—¢)|S| = £N > £|H|. We also need Cay(S1) to have no ¢-sparse cuts: This holds
in Case 1, since S; = Sy has no (-sparse cuts by construction; and it holds in Case 2 by (15) which implies
Cay;(S1) has no g-sparse cuts. Further, we have ¢ > (1 + p)|S1|/|H|, since |Si| < 2|H|, by (15). Finally,

we have ¢’ <1 — pg/4 with plenty of room to spare. Hence, Lemma 5.7 tells us that with probability at least
1—7/|H| we have:

Ul For any Sp C S’ U E U (S1 N Sy) and any vertices w € sH, there is a rainbow path in Cay,z(S1)
starting at w, with all other vertices in M, such that the path uses all but at most ug|H| of the colours
of S1 \ SF.Q

Moreover, since there are only % < (1_‘%“ 57 < 2N7Y = o(|H|) left-cosets of H, with high probability the

conclusion U1 holds simultaneously for all cosets sH.

If we are in Case 2, we will need a second application of Lemma 5.7, this time with S = S5 and with all of
the other sets and parameters the same as in our first application (this time revealing S; but leaving S; as
unrevealed so that S; N S is a genuinely %—random subset of S3). By the same reasoning, we conclude that
with high probability for all cosets sH we have:

U2 For any Sp C S’UFEU(S1NS2) and any vertex z € sH, there is a rainbow path in Cay,;(S2) starting
at z, with all other vertices in M, such that the path uses all but at most pg|H| of the colours of S\ Sp.

8Note that S1 NSy remains a %—random subset of S7.

9Lemma 5.7 also gives us the freedom to specify the other endpoint of the path, but we will not need to do so in this proof.
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We know that |E| > [Sy|/8 > |S|/16 > p~2 max{40|.J|,96 log |G|} with high probability, so Lemma 6.1 (applied
with G =G, E=FEUJ and J = J) tells us that with high probability we have:

U3 For any vertex v € G, there is a rainbow path in Cay.(E U J), starting from u and otherwise contained
in A, that uses all of the colours of J.

We now reveal S”. By a Chernoff bound, with high probability we have |S’| > |Sy|/8 > |S|/16; we henceforth
assume that we are in such an outcome. The next two lemmas use only the randomness in the subsets R,T
(respectively); the key point is that these are independent of S’. Set

ti= N2 oM =3 /81.

Using Lemma 9.2, we can find an element g € H and a family P of g-pairs in S’ of size 3t + ¢ < N1727/212,
Corollary 9.5 provides a (Pfex, £)-absorbing family Py, P, ..., Ps; in P with some Ppeyx C P of size t + £.

We next apply Lemma 9.8 with G = G,g = g,E = S’, the p-random set R, and the families of g-pairs
P1,...,Ps. The hypotheses of the lemma are satisfied since |S’|p??/2!® > max{3t,log|G|}. Thus with high
probability we have:

U4 For any vertex u € G, there is a waveform in Cay(S’) corresponding to Py, ..., Ps; that starts at u
and is otherwise contained in R.

Finally, we apply Lemma 9.9 with G = G, g = g, a p-random subset T and the family Pgey. The hypotheses of
the lemma are satisfied since |Pgex| =t + £ > 2%p~3log N. Thus with high probability we have:

U5 For any L of size |L| < ¢ < tp?/80 and any vertex y € G, there is a subfamily P’ C Pge, with exactly ¢
pairs such that Cay,(L U|JP’) contains a rainbow path that starts at y, is otherwise contained in T,
and uses all except possibly one of the colours from L U|JP’.

Consider an outcome where all of U1-U5 occur. Fix any vertex z € M N H.

If we are in Case 1, then let Py 1 be the empty path. If we are in Case 2, then use U2 to find a rainbow path
Pur, starting at z, that uses all of the colours from S3 \ (S’ U E) except for some some subset Lo of size at
most pug|H|. Note that since So C Sy C H and z € H, the path Py 1 is completely contained in H. Let v € H
be its other endpoint, and let S7% be the set of colours appearing in Py 1.

Next, let P4 be a minimal-length rainbow path that starts at v (if we are in Case 1, we instead let it start
from an arbitrary vertex v € AN H), is otherwise contained in A, and uses all of the colours from J and some
subset of the colours from E. Such a path P4 exists by U3. Let u be the endpoint of P4. If J # (), then the
minimality of P4 guarantees that the last edge of P4 uses some colour j* € J = S\ H. If in addition v € H,
then we delete this last edge from P4 so that its endpoint v now lies in a proper coset sH. Let S% denote the
set of colours from E appearing in P4. Notice that P4 is the empty path (so u = v) if J = 0.

We now use U4 to find a waveform Wx corresponding to Py, ..., Ps; that starts at u, is otherwise contained in
R, and uses the colours of some subset Sp C S’. Let w denote the other endpoint of Wg. Note that w € sH
since S’ C H.

Using U1, we find a rainbow path P2, starting at w and otherwise contained in M, which uses all of the
colours from S \ (Sp U Sk U S%) except for some subset Ly of size at most ug|H|. If we are in Case 2, since
w € sH and 57 C H, the path Py 2 is completely contained in sH; in particular it is vertex-disjoint from Pas 1
(which is contained in H). (Notice that there is no Pys,1 to avoid when J = ) in Case 1.) Let y denote the final
vertex of Py o.

Let L := L; U Ly be the set of colours that we have yet to integrate in our rainbow path; we also include the
element j* if we deleted it from P4 previously. Notice that |L| < 2ug|H|+ 1 < L.

For any family P’ of precisely ¢ pairs from Pgey, we can collapse the waveform Wg into a path Pg by following
the system of distinct representatives for Py \ P’,...,Ps: \ P’ guaranteed by the absorbing property (so in
total we use the pairs in P \ P’). Then, Py;1 U P4 U Pr U Py o is a rainbow path using precisely the colours
in S\ (LU U(%bm)ep,{ai,bi}). This path avoids the vertex set T" because Pyrn € H N M, Py \ {v} C A,
Pr\{u} C R, and Py \ {w} CsHNM.

Finally, by U5 we can find a subfamily P’ C Pgey of size precisely ¢ and a rainbow path Pr, starting at y and
otherwise contained in 7', which uses all except possibly one of the colours from L U U(ai,bi)epl{ah b;}. Take
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the corresponding path Pg from the previous paragraph. Then Py U P4 U Pr U Py 2 U Pr is a rainbow path
using all but one colour from S, as desired. O

10. CONCLUDING REMARKS

As we have seen in Section 9, our methods in the case of dense subsets S C G apply to Problem 1.1 just as well
over arbitrary groups as in the specialised setting of F}. The basic randomness vs. structure dichotomy (see
Section 2) also translates well to general groups. However, a key complication for general groups is that the
structure of subsets with bounded doubling is more complicated; already for I, one has to work with generalised
arithmetic progressions in place of proper subgroups. In particular, over F,, we have no means of passing to a
robust expander of size O(]S|) and finishing most of the job there. There are also further complications over F,,
for the absorption part of the argument, not least because we no longer have access to popular sums as we did
over 7, or as we did in the dense case. Novel ideas are required to settle both of these issues in order to use
our framework to settle Graham’s conjecture for large p.
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APPENDIX A. EXTREMELY DENSE CASE

For brevity, we write K, := Cays (G \ {id}) in this appendix.

For subsets R,C C G, we write K [R;C] to denote the subgraph of K induced on the vertex set R by the
edges with colours in C'. For disjoint subsets Vi, Va C G, we write K, [V1, Va; C] to denote the bipartite subgraph
of K, obtained by keeping only the directed edges from V; to V2 with colours in C.

The following lemma is part of Lemma 6.22 from [36]. The proof combines the sorting network method and
the statement of the random Hall-Paige conjecture. The original statement pertains to both addition and
multiplication tables, but to reduce clutter we have included only the part that we will need. In the remainder
of this appendix, we will perform many calculations in the abelianisation G/[G,G] of G; since the order of
multiplication does not matter in the abelianisation, product notation such as [], . v is unambiguous.

Lemma A.1l. Let 1/n < v,p < 1, and let (logn)” < t < (logn)® be an integer. Set q := p/(t —1). Let G
be a group of order m. Let Vi, Vinid, Vend be disjoint random subsets of G with Viy, Vena q-random and Viiq
p-random. Let C be a (q + p)-random subset of G, sampled independently of Vitr, Vinid, Vend- Then with high
probability the following holds for all choices of C' C G and disjoint subsets V., V! ' 1 CG:

stry> Yend> ¥ mid
If O\ Vi, VD q, Vilig satisfy

strr Yend’ "m

(1) for each R € {Viir, Vinid, Vena, C}, we have |RAR'| < nl=7;
(2) 1TV (V)" =T1C" (mod [G, G));

(3) id ¢ C';

(4) Vel = Venal = Vil /(¢ = 1) = |C7| /2,

then for every bijection f: Vi, — Vi4, the graph K[V,
disjoint paths {P, : v € V

str

UV q U Vi C'] has a rainbow collection of vertex-

}, where each P, has length t and starts at v and ends at f(v).

We can now prove the main result of the appendix. Theorem 6.9 of [36] gives a sharper version of this result in
the regime v > 1/2. In fact, the same proof works verbatim for the larger range 1/n < v < 1, but this flexibility
is unfortunately not recorded in [36], as the authors did not anticipate that it would have further applications.
We follow the proof from [36] quite closely in our discussion here. The main idea is applying Lemma A.1 twice,
in a such a way that the starting-vertices of one collection of paths correspond to the ending-vertices of the
other collection of paths, and vice versa, so that together all of the paths form a single long path.

Theorem A.2. Let 1/N < v < 1. If G is a group of order N and S C G\ {id} is a subset with |S| > N—N1=7,
then S has a valid ordering, i.e., the Cayley graph Cay(S) has a directed rainbow path with |S| — 1 edges.

Proof. Fix distinct z,y € G such that that yz=! = [[S (mod [G, G]). We will show that there is a directed
rainbow path from z to y with |S| edges. Note that if G is abelian and S = 0, then there are no such distinct
2 and y; in this case we simply delete an element of S so that > S # 0, and applying our argument with this
new S still produces the desired rainbow path using all but one of the colours from the original set S.

Set t := 2|(log N)"| and s := |S|. Set ¢ := 1/(2t) and p := (t — 1)q. Take a random partition Vg, U Veng U
Viid,1 U Viid,2 of G where the former two parts are g-random and the latter two are p-random. Independently,
take a random partition of G into 1/2-random sets Cy and C; (note that 1/2 = p + ¢ here).

With high probability, Lemma A.1 applies with Viir, Vends Vimia,1, Co (playing the role of C) and ¢; and
Lemma A.1 applies with Vi, and Vinq interchanged, with Vi,iq,2 instead of Viig,1, and with C; playing the
role of C. In each of these applications of Lemma A.1, let /10 play the role of 4. Furthermore, we can ensure
that with high probability for each g € GG, each random set with randomness parameter z contains a disjoint
collection of (23 N) triples (a, b, ¢) of distinct group elements with abc = g; call this property (*). This property
follows from Chernoff’s bound and the fact that for each g we can find a disjoint collection of Q(N) distinct
triples (a, b, c) with abc = g (and then we union-bound over g). Notice also that with high probability each
random set with parameter z has 2N £ N%6 elements, again by Chernoff’s bound.

Fix an outcome for the random sets satisfying the properties described in the previous paragraph. We will con-
struct slightly-modified “prime” versions of the sets Vitr, Vinid, 1, Viid,2, Vena s0 that the hypotheses of Lemma A.1
are satisfied. We will remove small “junk sets” to guarantee the divisibility condition (4), and then we will in-
terchange a few elements among the sets to guarantee the product condition (2).
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Let £ be the largest integer satisfying 2t/ —t 4+ 1 < s+ 1. Note that £ = ¢gs + O(1) = gN £ N'=7/2. Define
w:= (s+1) — (2t —t + 1), and note that w < (logn)!°. Observe that we can greedily find an S-rainbow path
Py, from z to some z’, which has exactly w + 1 vertices and does not pass through y; fix such a path.

By modifying at most n'=7/2 elements from each of the sets Vstrs Viid, 1, Vinid, 25 Vend, We can obtain new disjoint
sets Vi, Vinia1r Vinid.2o Vena © (V' \ VI(P)) U {2’} such that o' € Vi, y € V], and £ = [V, | = [V 4] =
[Viiaal/(t=1) = [Viq.01/(t = 1). Similarly, we partition S\ C'(Fp) into sets C of size t£ and C] of size (£ — 1)
(this is possible due to the divisibility constraint on the size of Py) satisfying |CoACH|,|C1AC)| < nt=27/3,
Furthermore, we can interchange a few elements, thanks to property (*), to ensure that

[TV \ {2y = [ Vel =] €1 =id  (mod [G,G)).

This implies that [[C, = []STIC(P))”" (mod [G,G]). Our interchanges maintain the property that
|ZAZ'| < n'=7/2 for each set Z.

We now invoke Lemma A.1 for the sets Vi, \ {z'}, Vg \ {y}, Viiiq.0, C1 With an arbitrary choice of bijection to
get a partition into paths of length ¢ with starting points in V] ; \ {y} and endpoints in V;, \ {’'}. We wish to
now invoke Lemma A.1 in the opposite orientation, with the sets Vi, V{4, Vii4.2, C1, and a choice of bijection

that we will shortly specify (to ensure that everything links up to form a path). First, we check the relevant
product condition.

Claim A.3. We have [[ V! 4([1 V)t =T1C} (mod [G,G]).

Proof. We carry out the following calculations modulo [G,G]. Note first that [[ V. ([T V4,) ™t = y(z/)~! as

end

from the previous exchanges we had ensured that [[ V4, \ {z'} = [ V4 \ {v}. Recall that yz=! =[] S, and

that [JC(Py) = 2’271, as Py is a path from  to 2’. Thus y(z')~! = [[ S(J]C(F))~!. We also previously saw
that JJC) = [1S (TTC(Py))™"; this completes the proof of the claim. O

Now, we specify the bijection that will ensure that the concatanation of all paths we have constructed so
far yields an S-rainbow path from z to y. Suppose that the previously-constructed collection of paths had
endpoints y; — x1, Y2 — T3, ..., Ye—1 — Ty_1. Then we choose the bijection that maps z1 — yo2, x2 — vs, ...,
To_o = Yo_1, Te—1 — Y, ¥ — 1. The union of the resulting paths from the two applications of Lemma A.1,
together with Py, yields a rainbow path from x to y whose edges use precisely the colours of S. O
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