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Abstract. A sequence s1, s2, . . . , sk of elements of a group G is called a valid ordering if the partial products
s1, s1s2, . . . , s1 · · · sk are all distinct. A long-standing problem in combinatorial group theory asks whether, for
a given group G, every subset S ⊆ G \ {id} admits a valid ordering; the instance of the additive group Fp is the
content of a well-known 1971 conjecture of Graham. Most partial progress to date has concerned the edge cases
where either S or G \ S is quite small. Our main result is an essentially complete resolution of the problem
for G = Fn

2 : we show that there is an absolute constant C > 0 such that every subset S ⊆ Fn
2 \ {0} of size at

least C admits a valid ordering. Our proof combines techniques from additive and probabilistic combinatorics,
including the Freiman–Ruzsa theorem and the absorption method.

Along the way, we also solve the general problem for moderately large subsets: there is a constant c > 0 such
that for every group G (not necessarily abelian), every subset S ⊆ G \ {id} of size at least |G|1−c admits a valid
ordering. Previous work in this direction concerned only sets of size at least (1 − o(1))|G|. A main ingredient
in our proof is a structural result, similar in spirit to the Arithmetic Regularity Lemma, showing that every
Cayley graph can be efficiently decomposed into mildly quasirandom components.

1. Introduction

1.1. The main problem. A sequence g1, g2, . . . , gn of elements of a (multiplicative) group G is a valid ordering
if the partial products

g1, g1g2, g1g2g3, . . . , g1 · · · gn

are all distinct. Which subsets of groups admit valid orderings? Variants of this natural problem have been
studied in many different cases over the years.

The first question in this direction appeared in 1961, when Gordon [17], motivated by constructions of complete
Latin squares, asked for which finite groups the entire group has a valid ordering. Gordon gave a complete
characterization in the abelian case: A finite (additive), nontrivial abelian group G admits a valid ordering
if and only if

∑
g∈G g ̸= 0, this being the obvious necessary condition for the existence of such an ordering.

In 1974, Ringel [40] posed the closely related problem of characterising the groups G whose elements can be
ordered as g1, . . . , gn in such a way that g1 = g1g2 · · · gn = id but otherwise all partial products are distinct.
The motivation for this question came from Ringel’s solution [41] of the Heawood map colouring conjecture.

The nonabelian case of Gordon’s problem is more subtle, since there are some small nonabelian groups (such as
S3) that for no apparent reason fail to have valid orderings. In 1981, Keedwell [29] posed the bold conjecture
that every sufficiently large nonabelian group has a valid ordering. Müyesser and Pokrovskiy [36] recently
proved Keedwell’s conjecture as a consequence of their more general probabilistic analogue of the Hall–Paige
Conjecture [11, 25] concerning the existence of transversals in multiplication tables. This work also shows that
large groups have an ordering, in the sense that Ringel asked for, if and only if the product of all group elements
(in any order) is an element of the commutator subgroup1.

In this paper we will be concerned not only with the case when an entire group G admits a valid ordering but
with the more general question of when an arbitrary subset S of a given group G admits a valid ordering. Notice
that when S contains the identity element, every possible valid ordering of S must start with the identity, since
otherwise two consecutive partial products would be equal. Thus, if G is abelian and

∑
g∈S g = 0, then there
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cannot be a valid ordering of S. In order to avoid this obstruction, we restrict our attention to subsets S not
containing the identity, and the following is our central question.

Question 1.1. For which groups G does every subset S ⊆ G \ {id} admit a valid ordering?

It seems feasible that the answer to this question is affirmative for every finite group G. At a first glance,
finding valid orderings for smaller subsets S might seem like an easier task, since there is more space to place
the partial products without creating collisions. However, the potential obstructions for small S are at least
as rich as for Gordon’s setting S = G \ {id}, since a small set S may itself be a subgroup of G, or could be a
complicated conglomeration of approximate subgroups and random-like sets. In the graph-theoretic formulation
of these problems, which we will describe below, Gordon’s setting corresponds to the complete graph case (in
particular, a directed variant of a well-known conjecture of Andersen [2]), whereas Question 1.1 corresponds to
a sparse analogue. Such sparse analogues in extremal graph theory tend to be harder and less well understood
than their dense counterparts.

The simplest instance of Question 1.1 is when G = Fp, for a prime p. This problem was first posed by
Graham [19] in 1971 and later reiterated in an open problems book of Erdős and Graham [12].

Conjecture 1.2 (Graham). Let p be prime. Then every subset of Fp \ {0} admits a valid ordering.

Most previous work towards Conjecture 1.2 has concerned the edge cases where either S or Fp \ S is very large.
The best result for small sets S is due to Bedert and Kravitz [4], who showed that every set S ⊆ Fp \ {0} of
size at most elog1/4 p has a valid ordering. For very large sets S, the aforementioned result of Müyesser and
Pokrovskiy [36] establishes Conjecture 1.2 for all sets S ⊆ Fp \{0} of size at least (1−o(1))p (and indeed proves
an analogous result for all finite groups; see Theorem 7.1). The intermediate regime remains open.

Various groups of authors (see, e.g., [1, 10, 26]) have considered instances of Question 1.1 other than G = Fp.
In particular, Alspach [8] conjectured an affirmative answer to Question 1.1 for all finite abelian groups G,
and Alspach and Liversidge [1] confirmed this for subsets of size up to 11. For extensions of this problem to a
nonabelian setting, see [9, 37] and the dynamic survey of Ollis [38].

In a different direction, Bucić, Frederickson, Müyesser, Pokrovskiy, and Yepremyan [5] have recently provided
an affirmative answer to an “approximate” relaxation of Question 1.1. They showed that every finite subset S

of any group G has an ordering in which all but o(|S|) partial products are distinct.

1.2. Main results. Despite the partial progress discussed above, there is no infinite class of groups G for which
we have a complete understanding of Question 1.1. Our main result remedies this situation for the family of
groups Fn

2 .

Theorem 1.3. There is an absolute constant C such that for all n ∈ N, every set S ⊆ Fn
2 \ {0} of size at least

C has a valid ordering.

We remark that our methods allow us to obtain the same result for the class of finite abelian groups of exponent
at most K for any K. For example, with the same method, for p fixed and n → ∞, we can conclude that any
subset of Fn

p \ {0} of size at least C = C(p) has a valid ordering. For clarity of exposition, we describe only the
2-torsion case in this paper.

One can view Theorem 1.3 as resolving the “finite-field model” version of Conjecture 1.2. The study of additive
combinatorial problems over finite-field models is a well-established topic in its own right; see the decennial
surveys by Green [20], Wolf [45], and Peluse [39]. One of the key structural advantages of high-dimensional
vector-spaces over finite fields is their rich subgroup structure. Perhaps more unexpectedly, another key advan-
tage —crucial for our purposes— is that any moderately dense S ⊂ Fn

2 contains an abundance of small subsets
whose elements sum to 0. This is surprising given that 0-sum subsets are precisely what we need to avoid in
valid orderings. We refer the interested reader to Section 2 for a high-level overview of our proof strategy.

Although Fn
2 has its advantages, the simplest setting for Question 1.1 turns out to be Z, where a simple inductive

argument produces a valid ordering of any finite subset of Z \ {0} (see [30]). This fact plays a key role in the
work of Bedert and Kravitz [4], who resolve Conjecture 1.2 for subsets S of quasipolynomial size by leveraging
the fact that Fp looks locally like Z. Unfortunately, there is no such “lifting” trick in the finite-field model.

Our proof of Theorem 1.3 treats the “sparse S” and “dense S” regimes separately. Our argument for the
sparse case makes use of the specific structure of Fn

2 , but our argument for the dense case applies to general
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(even nonabelian) groups. In particular, we are able to provide an affirmative answer to Question 1.1 if one
restricts attention to subsets S of size at least |G|1−c; this significantly improves on the result of Müyesser and
Pokrovskiy [36], which treats only subsets S of size (1 − o(1))|G|.

Theorem 1.4. There is an absolute constant c > 0 such that for any finite (possibly nonabelian) group G,
every subset S ⊆ G \ {id} of size at least |G|1−c admits a valid ordering.

1.3. Connections to designs. Let us say a few words about the relation between Question 1.1 and the
theory of combinatorial designs. Gordon was initially interested in groups with valid orderings because their
multiplication tables can be used to construct complete Latin squares. A Latin square, also called a quasigroup,
is a group without the axiom of associativity; equivalently, a Latin square is an n by n grid filled with the
symbols {1, 2, . . . , n} in such a way that each symbol appears exactly once in each row and in each column. A
Latin square is called complete if for each pair of distinct symbols (i, j), the symbol j appears immediately after
the symbol i in exactly one row and in exactly one column. The additional degree of symmetry in complete
Latin squares gives them practical uses in the design of experiments (see, e.g., [3]), and they have applications
to the study of graph decompositions (see [38]). We point an interested reader to a wonderful book [28] on the
topic with a plethora of further connections and applications.

1.4. A weak nonabelian arithmetic regularity lemma. The proofs of Theorems 1.3 and 1.4 use a combi-
nation of the absorption method and various tools from additive combinatorics. We will give a more detailed
overview in the following section, but for now we will highlight one key intermediate result which may be of
independent interest. Recall that for a subset X of a group G, the right Cayley graph of G with respect to
X, denoted CayG(X), is the directed graph with vertex set G where there is a directed edge from g to gx for
each g ∈ G and x ∈ X. The adjacency matrix of a directed graph Γ = (V, E) is the |V | × |V | matrix MΓ
with rows and columns indexed by V , where the (u, v)-entry equals 1 if (u, v) is a directed edge and equals 0
otherwise. Note that MΓ is not necessarily symmetric, so it may have complex eigenvalues. When every vertex
of Γ has out-degree d, the adjacency matrix MΓ always has d as a trivial eigenvalue (and in fact d is the largest
eigenvalue in absolute value).

Theorem 1.5. Let σ ∈ (0, 1] and ε ∈ (0, 1/2). Let G be a finite (not necessarily abelian) group, and let S ⊆ G

be a subset with density σ = |S|/|G|. Then there is a subgroup H of G such that:

(1) |S ∩ H| ≥ (1 − ε)|S|;
(2) all non-trivial eigenvalues of the adjacency matrix of CayH(S ∩H) have real part at most (1−η)|S ∩H|,

where η := εσ2/1000.

Condition (2) asserts that CayH(S ∩ H) has a positive spectral gap, which turns out to be a natural mild
expansion condition for our purposes. In particular, this spectral condition allows us to lower bound the
number of edges across any cut of CayH(S ∩ H). We say that an η-sparse cut in a finite directed graph Γ is a
partition X1 ⊔ X2 of the vertex set of Γ such that there are fewer than η|X1| · |X2| (directed) edges from X1 to
X2. We will see below (Lemma 4.5) that (2) implies the purely combinatorial condition that CayH(S ∩ H) has
no ησ-sparse cut.

In a sense, Theorem 1.5 is analogous to the more familiar Arithmetic Regularity Lemma (ARL) of Green [21]
(see also [23]). Roughly speaking, the ARL offers a more refined decomposition where (2) is strengthened by
replacing (1 − η)|S| with η|S|. This stronger condition allows one to count occurrences of additive patterns
such as 3-term arithmetic progressions. Theorem 1.5 is unfortunately unable to count such delicate “local”
substructures, but in the context of Question 1.1 the mild quasirandomness condition (2) already provides
sufficiently strong information, and we shall see that it has several further redeeming qualities.

One advantage of our weak ARL is that it can handle nonabelian groups. Although there has been some prior
interest in nonabelian analogues of the ARL (e.g., model-theoretic approaches [6] can be used to give structure
theorems for sets with bounded VC-dimension), our weak ARL is the first such result that applies to arbitrary
subsets S. We further note that the decomposition of CayH(S ∩ H) provided by Theorem 1.5 is particularly
simple, in that it allows us to partition the vertex set G into the cosets of a subgroup H so that each of the
induced graphs CayxH(S ∩ H) is isomorphic to the mildly quasirandom Cayley graph CayH(S ∩ H). The
fact that these structured components are cosets makes the application in the context of Question 1.1 very
convenient. It is known on the other hand that if one wants to find such a decomposition where each component
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is “strongly quasirandom” as in Green’s ARL, then already in the abelian setting one has to work with more
complicated components than subgroups, such as Bohr sets.

Another advantage of our Theorem 1.5 lies in the quantitative aspect. The polynomial dependence of η on σ is
ultimately the source of the polynomial improvement in Theorem 1.4. By contrast, it is well-established that
tower-type dependences are essential to the usual versions of regularity lemmas [21, 27]. Even for the weak
graph regularity lemma of Frieze and Kannan [16], exponential dependencies are required [7]. Therefore, usual
versions of regularity lemmas give useful information only about dense subsets, even in the simplest case of
Cayley graphs over Fn

2 . In contrast, our Theorem 1.5 gives information about polynomially sparse sets S. Note
also that the index of H in G is O(1/σ) by condition (1), so our decomposition of G into H-cosets (with each
CayxH(S ∩ H) mildly quasirandom) uses only O(1/σ) pieces.

We also mention that Theorem 1.5 is closely related to a purely graph-theoretical result of Kühn, Lo, Osthus,
and Staden [32] (see also [24, 33]) that provides a similar structural decomposition for dense d-regular graphs.
More precisely, these authors show that any regular graph of density σ can be decomposed into clusters in
such a way that there are very few edges between different clusters, and there are no f(σ)-sparse cuts within
any single cluster; we refer the reader to [24] for further details. Our Theorem 1.5 is a more specialised result
because it pertains only to Cayley graphs, but it has the dual advantages of giving group-theoretic information
about the clusters, and of enjoying polynomial bounds (as contrasted with the exponential bounds in [32]).

We anticipate that Theorem 1.5 will find further applications in the study of Cayley graphs. For example, in
upcoming work, Bedert, Draganić, Müyesser, and Pavez-Signé apply Theorem 1.5 to the well-known conjecture
of Lovász asserting that every (connected) Cayley graph is Hamiltonian.

1.5. Organization of the paper. In Section 2 we give a high-level overview of our main ideas. The results
in this section are only for expository purposes and are not used in the remainder of the paper. Section 3
contains notation and other preliminaries. We then turn to our weak nonabelian regularity lemma in Section 4,
which is split into one subsection for the special case of Fn

2 and one subsection for the case of general finite
groups. In Section 5 we prove a very flexible asymptotic result for the dense setting under the assumption
of a certain expansion condition (as guaranteed by the natural output of Section 4). In Section 6 we prove
our absorption lemmas. This section is divided into Section 6.1, where we show how to build our absorbing
structure, and Section 6.2, where we show how this structure lets us absorb a small set of leftover colours. In
Section 7 we establish our main result over Fn

2 (Theorem 1.3) in the dense case. In Section 8 we complete
the proof of Theorem 1.3 by analysing the sparse case. This section is split into Section 8.1, where we deal
with the “structured” case, and Section 8.2, where we deal with the “random-like” case. In Section 9 we prove
Theorem 1.4, which provides an affirmative answer to Question 1.1 for polynomial-density subsets of general
groups. Finally, we make some concluding remarks in Section 10.

We remark that the arguments about Fn
2 in Sections 4.1 and 7 are not strictly speaking necessary since they

are subsumed by the more general results in Sections 4.2 and 9. We include the analysis of these special
cases separately because several of the arguments simplify, leading to a more direct and streamlined proof of
Theorem 1.3. This case also provides an opportunity to build intuition for the more technical general results
that follow.

Acknowledgements. We are grateful to Mira Tartarotti and Julia Wolf for remarks concerning arithmetic
regularity lemmas, and we thank Zach Hunter for helpful comments on a draft of this paper. The first author
gratefully acknowledges financial support from the EPSRC. The second and fifth authors were supported by the
National Science Foundation under Grant No. DMS-1928930 during their Spring 2025 residence at the Simons
Laufer Mathematical Sciences Institute in Berkeley, California. The third author was supported in part by the
NSF Graduate Research Fellowship Program under grant DGE–203965.

2. Overview

Our arguments combine several ideas from different parts of combinatorics, including inverse problems and
Fourier analysis from additive combinatorics, absorption from probabilistic combinatorics, and robust expansion
from extremal combinatorics. In the interest of making our proofs accessible to a wide audience, we will first give
a high-level overview of the main ideas in a simplified context. This purely expository section is not logically
necessary for the rest of the paper.
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It is useful to recast the main problem in the language of finding rainbow paths in Cayley graphs. In general, a
rainbow subgraph of an edge-coloured graph is a subgraph all of whose edges have different colours; see [5, 34, 43]
for more context on the rich study of rainbow subgraphs from a graph-theoretic perspective. We can view the
Cayley graph CayG(S) (recall the definition from above) as an edge-coloured digraph with colour set S, where
the directed edge from g to gx has the colour x for each g ∈ G and x ∈ S.

Observation 2.1. Let S be a finite subset of a group G. Then, S has a valid ordering if and only if CayG(S)
has a directed rainbow path with |S| − 1 edges.

Proof. If s1, . . . , s|S| is a valid ordering of S, then

s1 → s1s2 → · · · → s1s2 · · · s|S|

is a directed rainbow path in CayG(S) with |S| − 1 edges. Conversely, any directed rainbow path in CayG(S)
with |S| − 1 edges is of the form

gsσ(1) → gsσ(1)sσ(2) → · · · → gsσ(1)sσ(2) · · · sσ(|S|)

for some permutation σ of [|S|] and g ∈ G, and then sσ(1), sσ(2), . . . , sσ(|S|) is a valid ordering of S. □

Therefore, our goal is to find a rainbow path of length |S|−1 in CayG(S). We use a “99% → 100% framework”,
more commonly known in the world of probabilistic combinatorics as the “absorption method” since its codi-
fication by Rödl, Ruciński, and Szemerédi [42] in 2008 (though its origins can be traced back farther to [13]).
The rough idea is that we first find a rainbow path of length 0.99|S| and then upgrade this partial rainbow path
to a rainbow path of length |S| − 1.2 We carry out this upgrade using a certain “absorbing structure” that we
set aside before finding the 99% rainbow path. We treat these two steps in the following two subsections.

2.1. 99%-results. In this subsection we will describe how to find a rainbow path of length 0.99|S| in CayFn
2
(S).

Such an approximate result was already established recently in [5, Theorem 1.5], but this result is not robust
enough for our framework to be able to convert it into a 100% result. The approach we use in the present paper
for the 99% part is significantly different and in particular more robust in several ways. A key advantage of our
new methods is that we can establish the existence of rainbow paths of length 0.99|S| in random subgraphs of
CayFn

2
(S), and this flexibility is crucial for the second step of our 99% → 100% framework.

A central idea is the dichotomy between structure and randomness from additive combinatorics. We will decom-
pose our given subset S ⊆ Fn

2 into a “structured” part and a “random-like” part. We measure structure/ran-
domness according to the doubling constant |S + S|/|S|, where we have written S + S := {x + y : x, y ∈ S}.
Small doubling corresponds to structure; and its opposite is “everywhere-expansion”, in the following sense.

Definition 2.2 (Everywhere-expansion). Let γ, K > 0. A subset E ⊆ Fn
2 is (γ, K)-everywhere-expanding if

every subset E′ ⊆ E of size γ|E| satisfies |E′ + E′| ≥ K|E′|.

To obtain our decomposition of S, we iteratively remove subsets of size at least γ|S| and doubling at most K as
long as such subsets exist; the remainder is then guaranteed to be (γ, K)-everywhere-expanding. The following
lemma codifies the outcome of this procedure.

Proposition 2.3. Let K ≫ α ≫ γ > 0. We can decompose any subset S ⊆ Fn
2 as S = S1 ∪ S2 ∪ · · · ∪ St ∪ E,

where

(1) |Si| ≥ γ|S| and |Si + Si| ≤ K|Si| for all i;
(2) E is (γ/α, K/α)-everywhere-expanding set of size α|S|.

Here, one should think of the Si’s as the structured pieces of S and of E as the random-like piece. Two extreme
possible outcomes of the above lemma are E = ∅ and E = S. In the former case S completely decomposes
into structured pieces, while in the latter case all of S is random-like; these two cases naturally require different
treatments. Our analysis of the general case splits into two cases depending on the size of E.

We start by illustrating how to solve the 99% problem when the random-like part E is all of S. For this we will
need the following standard additive-combinatorial tool (see [44, Lemma 2.6]).

Lemma 2.4 (Ruzsa triangle inequality). For subsets V, S of an abelian group, we have |V + S|2 ≥ |V | · |S + S|.

2Of course, the constants 0.01 and 0.99 serve schematic purposes and should not be taken too literally.
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We can now establish a 99%-result for the model case of an everywhere-expanding set S. This case per se does
not figure in our main argument, but it serves as an excellent illustration of the ideas involved. The strategy
is that we will build a long rainbow path two vertices at a time, and at each step we will make sure that we
have enough options to continue extending the path at the subsequent step. Extending two vertices at a time
instead of one vertex at a time is what allows us to make use of the everywhere-expanding hypothesis (which
guarantees that sumsets of large subsets of S grow).

Proposition 2.5. Let 0 < γ < 1/10 and K > 0 satisfy K > 10/γ4. Suppose that S ⊆ Fn
2 \ {0} is a (γ, K)-

everywhere-expanding set of size |S| ≥ 2/γ. Then, CayFn
2
(S) has a rainbow path of length (1 − 2γ)|S|.

Proof. For each t = 0, 1, 2, . . . , (1/2 − γ)|S|, we will build a rainbow path

Pt = (v0 → v1 → · · · → v2t)

in CayFn
2
(S) such that v2t has at most γ|S| neighbours in Pt, i.e.,

|(v2t + S) ∩ {v0, . . . , v2t}| ≤ γ|S|.

For t = 0, we can take v0 to be any element of Fn
2 . Suppose that we have already constructed Pt and we want to

extend it to Pt+1. Since v2t has at most γ|S| neighbours in Pt, among the |S|−2t > 2γ|S| colours not appearing
in Pt, there is a set S′ ⊆ S consisting of 2γ|S| − γ|S| = γ|S| colours such that

(1) (v2t + S′) ∩ {v0, . . . , v2t} = ∅;

let S′′ consist of some γ|S| of the remaining colours not appearing in Pt. The Ruzsa triangle inequality and the
(γ, K)-everywhere-expanding hypothesis give

(2) |v2t + S′ + S′′| ≥
√

|S′| · |S′′ + S′′| ≥
√

γ|S| · Kγ|S| =
√

K · γ|S|.

We will obtain the path Pt+1 by setting

v2t+1 := v2t + s′, v2t+2 := v2t + s′ + s′′

for suitable s′ ∈ S′, s′′ ∈ S′′. Our definitions of the sets S′, S′′ guarantee that Pt+1 is a rainbow walk; we show
that we can choose s′, s′′ so that this walk is in fact a path. Note that v2t+1 is disjoint from Pt by (1) for all
choices of s′ ∈ S′. We must check that v2t+2 does not lie on Pt and that v2t+2 has at most γ|S| neighbours in
Pt ∪ {v2t+1}.

Say that a vertex v ∈ Fn
2 is bad if it either lies on Pt or has at least (γ/2)|S| neighbours in Pt. Since there are

at most |S| vertices on Pt and each is incident to |S| edges, the number of bad vertices is at most

(2t + 1) + |S| · |S|
(γ/2)|S|

≤ |S| + (2/γ)|S| <
√

K · γ|S|.

So by (2), we can choose s′ ∈ S′, s′′ ∈ S′′ so that v2t+2 is not bad. It follows that v2t+2 has at most
(γ/2)|S| + 1 ≤ γ|S| neighbours in Pt ∪ {v2t+1, v2t+2}, as desired. □

This proof has a fair bit of flexibility. For example, we had plenty of viable choices, say, at least 1
2
√

Kγ|S|
choices, for v2t+2 at each step. Now, if P ′ is a fixed rainbow path of length 1000 (say) with colours not
appearing in Pt, then we can append a translate of P ′ to one of our viable choices for v2t+2 in such a way that
we still get a path, and that the final vertex of the resulting long rainbow path has few neighbours on the new
path itself. In other words, at the cost of using two colours from the given everywhere-expanding set, we can
incorporate 1000 arbitrary colours into our rainbow path. A careful implementation of this idea leads to the
following proposition ensuring a 99% rainbow path in CayFn

2
(S) whenever the unstructured piece of S has size

at least 0.01|S| (see Theorem 8.10 for more details).

Proposition 2.6. Let S ⊆ Fn
2 , and suppose that there is a (0.001, 1020)-everywhere-expanding subset E ⊆ S of

size at least 0.01|S|. Then CayFn
2
(S) has a rainbow path of length 0.99|S|.

In order to show that CayFn
2
(S) has a rainbow path of length 0.99|S| for all choices of S, it remains only to

handle the case where at least 99% of S is structured, in the sense of Proposition 2.3. To this end, suppose that
at least 99% of S can be expressed as the union of sets S1, . . . , St each with size at least γ|S| and doubling at
most K. Notice that t ≤ 1/γ is bounded. Provided that we can (somewhat flexibly) find a 99% rainbow path
in each CayFn

2
(Si) individually, we will be able to concatenate translates of these paths using ideas similar to

those sketched above (see Lemma 8.6 for more details).
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With this in mind, let us turn our attention to the 99% problem for a single structured piece. Our analysis
of this case starts with the celebrated Freiman–Ruzsa Theorem, which provides a description of sets of small
doubling. Green and Tao [22] proved a strong result of this type in Fn

2 , and we will use the following slight
improvement later formulated in [14].

Theorem 2.7. Let K ≥ 1. If S ⊆ Fn
2 satisfies |S + S| ≤ K|S|, then there is a subspace H of Fn

2 such that
S ⊆ H and |H| ≤ 22K |S|.

The recently proven Polynomial Freiman–Ruzsa Conjecture over Fn
2 [18] provides the additional information

that any subset S ⊆ Fn
2 of doubling at most K can be covered by KO(1) translates of a “small” subspace of

Fn
2 . Using this result in place of Theorem 2.7 would improve the quantitative dependencies among the various

parameters in our proof, but such an improvement would be inconsequential for the final result Theorem 1.3.
Hence, we prefer to work with the conceptually simpler Theorem 2.7 despite its quantitative inefficiency.

Theorem 2.7 effectively reduces the structured case to the case of dense subsets of subspaces of Fn
2 , which, of

course, are isomorphic to Fm
2 for m ≤ n. Such a reduction is useful because it gives us access to so-called “robust

expansion” tools, as in the work of Lo, Kühn, Osthus, and Staden [32] mentioned above, which generally apply
only in the setting of dense graphs. We will return to this theme in Section 5; in the meantime we refer the
reader to [5, Sections 4 and 5] and [24, 32] for more context.

Once we reduce to the dense case, we can apply a result from [5] (based on robust expansion tools) to obtain a
99% path in each CayFn

2
(Si). This is not sufficient, however: For other parts of our argument (concatenating the

paths for different Si’s and carrying out the later absorption step), we need additional flexibility in prescribing
where within CayFn

2
(Si) the 99% path lives. It is here that Theorem 1.5 comes to the rescue by allowing us to

pass from the Cayley graph of a dense set to a robust expander whose vertex set corresponds to a subgroup of
Fn

2 .

We will prove Theorem 1.5 in full generality in Section 4. The proof of Theorem 1.3 requires only the special
case of Cayley graphs on Fn

2 , where the following slightly stronger result holds.

Lemma 2.8. Let ε ∈ (0, 1/2) and write N = 2n. Let S ⊆ Fn
2 have size |S| ≥ σN . Then, there is a subspace H

of Fn
2 satisfying

(1) |S ∩ H| ≥ (1 − ε)|S|;
(2) CayH(S ∩ H) has no εσ/2-sparse cuts.

The proof of Theorem 1.5 simplifies considerably in the special setting of Fn
2 , and we include a separate proof

of this case in Section 4 since it is all that is needed for the proof of Theorem 1.3.

In particular, the reader who wishes only to see a proof of Theorem 1.3 need not bother with our nonabelian
Fourier-analytic arguments for general groups.

Lemma 2.8 tells us that by sacrificing a tiny proportion of the structured set S, we may assume that S generates
a Cayley graph with good expansion properties within the subspace generated by S. This subspace property
will later prove useful since we will be able to “jump” among cosets when linking up translates of various paths;
see Lemma 5.7 below.

2.2. 99% to 100%-results. In this subsection we will discuss how to upgrade a 99% result to a 100% result.
The main framework has three steps:

Step 1. Build a flexible “absorbing” structure within CayG(S).
Step 2. Run the 99% strategy to obtain a rainbow path using 99% of the colours in S.
Step 3. Use the absorbing structure to integrate the remaining 1% of colours of S into the rainbow path.

Let us break this down step by step.

Step 1. The main idea for building our flexible structure is exploiting popular sums. For simplicity, consider
the case where the group G is abelian. Suppose S ⊆ G contains elements a, b, c summing to 0, and let d be
some other element of S. Then, for any v ∈ G we can build a path from v to v + d either directly as v → v + d

(using only the colour d) or as

v → v + a → v + a + d → v + a + d + b → v + a + d + b + c = v + d
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(using the colours a, b, c, d). See Figure 1. We note that for the latter case, some mild conditions on a, b, c, d are
required in order for this to be an actual path rather than a walk. Thus, if we have a rainbow path containing
an edge of colour d, and the above alternative route does not intersect the path elsewhere, then we may choose
whether or not to add the colours a, b, c in addition to d.

We will see in Section 6 that with some minor caveats (including using 6-tuples instead of triples), we can
find not only a single quadruple (a, b, c, d) as above but rather many disjoint such quadruples (ai, bi, ci, di) for
1 ≤ i ≤ |S|/10 (say) with ai +bi +ci = 0. This is possible in Fn

2 because 0 is a “popular sum” for any sufficiently
large subset S ⊂ Fn

2 . In Lemma 6.6, we will see how to string together the gadgets from the previous paragraph
to obtain a long rainbow absorbing path in which for each i, there is a shortcut that avoids precisely ai, bi, ci.
(When we refer to an absorbing path, we mean the path that takes the long route through each gadget.) Thus
we may choose, independently for each i, whether or not to take the colours ai, bi, ci out of our rainbow path.
See Figure 2. The benefit of this manoeuvre is that we may later flexibly use the freed-up triples ai, bi, ci

elsewhere, and below in Step 3 we will see how this flexibility will turn out to be very useful.

For nonabelian groups G, our absorbing structure is more delicate because we cannot rely on an abundance of
small subsets of S with the same product. We will instead use a variant of the so-called “distributive absorption”
strategy, first introduced in [35]. We defer further explanation to Section 9.

a

b

c

d

d

v v + d

Figure 1. Two paths from v to v+
d, one using only the colour d, and
the other using the colours a, b, c, d.

Figure 2. An absorbing path of gadgets. The path
indicated in purple shows a subpath that uses some
triples of colours ai, bi, ci, but not others.

Step 2. We take the last vertex of the absorbing path from Step 1 and use it as the first vertex for a 99%
rainbow path as described in the previous subsection. See Figure 3. (More precisely, the 99% path will use
99% of the colours not already used in the absorbing path.) We need to ensure that the absorbing path is
vertex-disjoint from the 99% path. In the everywhere-expanding case from the previous subsection, this is not
too difficult since we always have enough choices to avoid an absorbing path fixed from the outset. In the
structured case, however, we do not have such freedom, so instead we will build the absorbing path and the
99% path in disjoint random subsets of G; this introduces several technical difficulties that we will gloss over
for now.

Figure 3. An absorbing path connected to a 99% path (drawn dashed).

Step 3. We have now built a rainbow path P that uses 99% of the colours of S and contains a long absorbing
path. The heart of the matter is using the flexibility of our absorbing path to integrate the remaining 1% of the
colours. Let L denote the set of “leftover” colours not yet used. The key insight is that we can iteratively reduce
the size of L by “activating” an absorbing gadget ai, bi, ci, di and using the freed-up colours ai, bi, ci elsewhere.

As long as |L| ≥ 3, choose some three elements ℓ1, ℓ2, ℓ3 ∈ L. Consider all of the 4-edge extensions of P using
the colours ai, ℓ1, ℓ2, ℓ3 in this order, for i ranging over the indices of the absorbing gadgets that have not yet
been activated. See Figure 4. This figure is a bit misleading since the 4-edge paths may intersect one another
or earlier parts of P , but let us suppose for the moment that we can find some 4-edge path, corresponding to
the index i0, which does not intersect P . Then, we modify P as follows: we “activate” the gadget indexed by
i0 and free up the colours ai0 , bi0 , ci0 by taking the shortcut along the colour di0 ; and we extend P by adding
the length-4 path with index i0. We then update the leftover set L by removing ℓ1, ℓ2, ℓ3 and adding bi0 , ci0 . In
total, we have succeeded in reducing the size of L by 1.

We have omitted two important technical points from this discussion. The first point concerns ensuring that
we can always find a length-4 path that does not intersect other parts of our structure. How we ensure this
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a1 a2

ak

ℓ1 ℓ2 ℓ3

ℓ1 ℓ2 ℓ3

ℓ1 ℓ2 ℓ3

Figure 4. Various options for extending our long rainbow path by a 4-edge path. To append
one of the 4-edge paths, we activate the corresponding gadget.

depends on whether or not S has an everywhere-expanding part. If S does have an everywhere-expanding part,
then we can use this expansion to make our candidate length-4 extensions “spread out”. We will show that in
the remaining case of structured S, we can carry out Steps 1, 2, and 3 in disjoint random vertex subsets of
CayG(S), effectively avoiding this issue altogether. The second point is that our iterative procedure terminates
once |L| drops below 3. Saturating the remaining 2 colours is a delicate matter that we will discuss later in the
paper.

3. Notation and Prerequisites

Given a set X, a p-random subset of X is obtained by sampling each element of X with probability p, indepen-
dently of all other elements.

We will need the following basic concentration bound.

Lemma 3.1 (Chernoff’s inequality). Let X be a sum of independent Bernoulli random variables with E(X) = µ.
Then, for every t > 0,

• P(X ≤ µ − t) ≤ exp(−t2/(2µ));
• P(X ≥ µ + t) ≤ exp(−t2/(2µ + t)).

The digraphs we consider are loopless, and for each pair (u, v) of distinct vertices, we allow at most one edge
from u to v, which we denote by (u, v). We do, however, allow both edges (u, v) and (v, u) to appear in the same
digraph. If G is a (possibly edge-coloured) digraph, then for U, V ⊆ V (G), we write eG(U, V ) to denote the
number of edges (u, v) with u ∈ U and v ∈ V . As special cases, for a vertex v ∈ V (G), we denote the out-degree
of v by deg+

G(v) := eG({v}, V (G)) and the in-degree of v by deg−
G(v) := eG(V (G), {v}). We denote the minimum

out-degree and in-degree of G by δ+(G) and δ−(G), respectively, and we write δ±(G) := min{δ+(G), δ−(G)}
for the minimum semi-degree of G.

Nonabelian Fourier analysis. We shall make use of some nonabelian Fourier analysis for finite groups in
order to prove the regularity result in Theorem 1.5; we record all the basic properties that we need here. Again,
we mention that to prove Lemma 2.8, it suffices to use Fourier analysis over Fn

2 . The reader who wishes to
focus on this result may skip ahead to the end of this section, where we separately state the basic properties of
Fourier analysis over Fn

2 .

Let G be a finite (possibly nonabelian) group. We use the following standard notation:

• |G|: the order of G,
• Ĝ: the set of irreducible complex representations of G,
• ρ ∈ Ĝ: a representation ρ : G → GL(Vρ), which means that ρ is a group homomorphism from G to

GL(Vρ),
• dρ = dim Vρ is the degree of the representation ρ, and note that

∑
ρ∈Ĝ d2

ρ = |G|.

We will write triv for the trivial irreducible representation. For a vector v ∈ Vρ, we will write ∥v∥2
Vρ

= ⟨v, v⟩Vρ

where we take ⟨·, ·⟩Vρ to be a Hermitian inner product in each of the vector spaces Vρ, for each irreducible
representation ρ. By Weyl’s unitary trick, we can and will always assume that each of the representations ρ is
unitary with respect to ⟨·, ·⟩Vρ

, meaning that all the matrices ρ(g), g ∈ G are unitary so that ⟨ρ(g)v, ρ(g)v⟩Vρ
=

⟨v, v⟩Vρ
for all v ∈ Vρ and g ∈ G. Recall also that a matrix A is said to be unitary if it satisfies A

T = A−1.

For a function f : G → C, the Fourier transform of f at ρ ∈ Ĝ is given by
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f̂(ρ) =
∑
x∈G

f(x) ρ(x) ∈ Cdρ×dρ .

We shall exclusively consider Fourier transforms 1̂T (ρ), ρ ∈ Ĝ of indicator functions of sets T ⊂ G in this paper.
We note that the eigenvalues of the Fourier coefficient matrices 1̂T (ρ), ρ ∈ Ĝ are precisely the eigenvalues of
the adjacency matrix of the directed graph CayG(T ). In fact, each of the dρ eigenvalues of 1̂T (ρ) appears with
multiplicity dρ as an eigenvalue of the adjacency matrix of CayG(T ) (which has |G| =

∑
ρ∈Ĝ d2

ρ eigenvalues
in total). The value of the function f at y ∈ G can be recovered from its Fourier transform via the inversion
formula

f(y) = 1
|G|

∑
ρ∈Ĝ

dρ · Tr
(

f̂(ρ) · ρ(y)∗
)

where ρ(x)∗ = ρ(x)
T

denotes the conjugate transpose of ρ(x), and where Tr is the trace. Parseval’s identity
states that for f : G → C we have ∑

x∈G

|f(x)|2 = 1
|G|

∑
ρ∈Ĝ

dρ · ∥f̂(ρ)∥2
F

where ∥ · ∥F is the Frobenius norm ∥A∥2
F =

∑
i,j |Aij |2 = Tr(AA∗).

We shall also make use of the following important property for the Fourier transform of the convolution of two
functions f, g : G → C, which is defined as (f ∗ g)(x) =

∑
y∈G f(y)g(y−1x). The Fourier transform of the

convolution satisfies f̂ ∗ g(ρ) = f̂(ρ) · ĝ(ρ).

An important observation is that, for sets X, Y, T ⊂ G, the number of solutions (x, y, t) ∈ X ×Y ×T to xyt = id
can be written using convolutions as 1X ∗ 1Y ∗ 1T (id), and hence the formula for the Fourier transform of a
convolution and Fourier inversion allow us to express this count as 1

|G|
∑

ρ∈Ĝ
dρ · Tr

(
1̂X(ρ)1̂Y (ρ)1̂T (ρ)

)
. Let us

state one more elementary fact, namely that the Fourier transform of the indicator function of the whole group
G is given by

1̂G(ρ) =
{

|G|, if ρ = triv
(0)dρ×dρ

, if ρ ∈ Ĝ is non-trivial,
where (0)dρ×dρ

denotes the dρ by dρ zero matrix. These are all the properties that we require in this paper, for
a more extensive overview of the basics of nonabelian Fourier analysis, we refer the reader to [15].

Fourier analysis over Fn
2 . For the convenience of the reader who wants a streamlined proof of Theorem

1.3, we briefly discuss the results above in the specialised setting where G = Fn
2 . The dual group Ĝ = F̂n

2 of
characters on Fn

2 is isomorphic to Fn
2 , with each character γ ∈ Ĝ being of the form

γξ : Fn
2 → R : x 7→ (−1)⟨ξ,x⟩

for a ξ ∈ Fn
2 , where ⟨ξ, x⟩ =

∑n
i=1 ξixi is the standard dot product over Fn

2 . For a function f : Fn
2 → C, its

Fourier transform is
f̂(γ) =

∑
x∈Fn

2

f(x)γ(x).

We have the inversion formula f(x) = 1
|G|

∑
γ∈Ĝ f̂(γ)γ(x), and Parseval’s formula states that∑

x∈Fn
2

|f(x)|2 = 1
|G|

∑
γ∈Ĝ

|f̂(γ)|2.

For f, g : Fn
2 → C, their convolution f ∗ g is defined as (f ∗ g)(x) =

∑
y∈Fn

2
f(y)g(x + y), and the Fourier

transform of a convolution satisfies f̂ ∗ g(γ) = f̂(γ)ĝ(γ). Finally, we note that the Fourier transform of the
indicator function of the whole group G = Fn

2 is given by

1̂G(γ) =
{

|G|, if γ = 0 is the trivial character
0, if γ ∈ Ĝ \ {0}.
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4. A weak nonabelian regularity lemma for finding expander Cayley subgraphs

The goal of this section is to prove the nonabelian regularity lemma Theorem 1.5, which says that given a subset
S of a finite group G, we can find a subgroup H of G such that H contains most of S and CayH(H ∩ S) is
mildly quasirandom. We restate Theorem 1.5 now for the reader’s convenience.

Theorem 1.5. Let σ ∈ (0, 1] and ε ∈ (0, 1/2). Let G be a finite (not necessarily abelian) group, and let S ⊆ G

be a subset with density σ = |S|/|G|. Then there is a subgroup H of G such that:

(1) |S ∩ H| ≥ (1 − ε)|S|;
(2) all non-trivial eigenvalues of the adjacency matrix of CayH(S ∩H) have real part at most (1−η)|S ∩H|,

where η := εσ2/1000.

Let us digress and make a few remarks. First, the quadratic dependence of η on σ is optimal, as illustrated
by the case where S is an arithmetic progression in Fp. Second, our arguments can be modified to produce a
subgroup H and an element x ∈ G such that |S ∩ (x−1H)| ≥ (1 − ε)|S|, and all non-trivial eigenvalues of the
adjacency matrix of CayH(H ∩ (xS)) have absolute value (rather than real part) at most (1 − η)|(xS) ∩ H|.
Third, another minor variation of the proof shows that there is a subgroup H such that |S ∩ H| ≥ (1 − ε)|S|,
and all non-trivial eigenvalues of the adjacency matrix of CayH(S ∩ H) have real part at most (1 − η)|S ∩ H|,
where η := εδ2

1000| log σ| and δ := |S ∩ H|/|H| is the density of S within H (rather than the density σ of S within
G).

Recall from Section 3 that the spectrum of the adjacency matrix of CayG(S) is precisely the union of the spectra
of the Fourier coefficient matrices 1̂S(ρ) for ρ ∈ Ĝ. Thus, the second condition in Theorem 1.5 can be formulated
in terms of S ∩ H ⊆ H having a spectral gap bounded away from 0, in the sense of Definition 4.3 below. The
connection between spectral gaps, quasirandomness, and edge-expansion is by now a standard theme in spectral
graph theory; see, e.g., the survey [31]. Our formulation of this connection, encapsulated in Lemma 4.5 below,
relies on the notion of an η-sparse cut (as defined in the introduction following the statement of Theorem 1.5)
and leads to the following corollary of Theorem 1.5 that will be convenient for our later applications.

Corollary 4.1. Let σ ∈ (0, 1] and ε ∈ (0, 1/2). Let G be a finite group (not necessarily abelian), and let S ⊆ G

be a subset with density σ = |S|/|G|. Then there is a subgroup H of G such that

(1) |S ∩ H| ≥ (1 − ε)|S|;
(2) CayH(S ∩ H) has no εσ3/1000-sparse cuts.

We remind the reader that CayH(S ∩ H) has no η-sparse cuts if for every partition H = X1 ⊔ X2 we have

#{(x1, x2) ∈ X1 × X2 : x−1
1 x2 ∈ S} ≥ η|X1||X2|.

Our proof of Theorem 1.5 uses nonabelian Fourier analysis. As a warm-up, we will start by proving Theorem 1.5
for the group Fn

2 , where the argument simplifies considerably due to the nature of the Fourier transform on
Fn

2 . This simplified argument also yields a somewhat better (in fact, optimal) quantitative dependence of the
sparse-cut parameter on the density σ. We remark that only this special case is necessary for the proof of
Theorem 1.3, so the reader who is interested only in that result may safely skip our treatment of the general
case of Theorem 1.5.

4.1. The Fn
2 case. Here is Lemma 2.8 restated for the reader’s convenience.

Lemma 2.8. Let ε ∈ (0, 1/2) and write N = 2n. Let S ⊆ Fn
2 have size |S| ≥ σN . Then, there is a subspace H

of Fn
2 satisfying

(1) |S ∩ H| ≥ (1 − ε)|S|;
(2) CayH(S ∩ H) has no εσ/2-sparse cuts.

Before proving this lemma, we will need the following auxiliary result which states that the Cayley graph of
a subset T ⊂ Fn

2 has no sparse cuts provided that it has a spectral gap. As we discussed at the start of this
section, results of this flavour are well-known.
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Lemma 4.2. Let T ⊂ H = Fn
2 have a spectral gap

max
γ∈Ĥ:γ ̸=0

1̂T (γ) ≤ (1 − β)|T |,

then CayH(T ) has no βτ -sparse cuts, where τ = |T |/|H|.

Proof of Lemma 4.2. Let H = X1 ⊔ X2 be a partition of H = Fn
2 , so that our goal is to show that #{(x1, x2) ∈

X1 × X2 : x1 + x2 ∈ T} ⩾ βτ |X1||X2|. By the formula for the Fourier transform of a convolution and Fourier
inversion, we can write

#{(x1, x2) ∈ X1 × X2 : x1 + x2 ∈ T} = 1X1 ∗ 1X2 ∗ 1T (0) = 1
|H|

∑
γ∈Ĥ

1̂X1(γ)1̂X2(γ)1̂T (γ).

Since the contribution from the trivial character γ = 0 to the right hand side is |X1||X2||T |/|H| = τ |X1||X2|,
it suffices to show that

−1
|H|

∑
γ∈Ĥ:γ ̸=0

1̂X1(γ)1̂X2(γ)1̂T (γ) ≤ (1 − β)τ |X1||X2|(3)

as this would show precisely that #{(x1, x2) ∈ X1 × X2 : x1 + x2 ∈ T} ≥ βτ |X1||X2|. Note that as X1, X2
partition H, we have that

1̂X1 + 1̂X2 = 1̂H =
{

|H|, if γ = 0
0, otherwise.

So 1̂X2(γ) = −1̂X1(γ) at all non-zero characters γ. Hence,
−1
|H|

∑
γ∈Ĥ:γ ̸=0

1̂X1(γ)1̂X2(γ)1̂T (γ) = 1
|H|

∑
γ∈Ĥ:γ ̸=0

|1̂X1(γ)|21̂T (γ).

Now we simply invoke the spectral gap assumption to bound this by
(1 − β)|T |

|H|
∑
γ ̸=0

|1̂X1(γ)|2 = (1 − β)|T |
(

|X1| − |X1|2

|H|

)
= (1 − β)τ |X1||X2|

where we used Parseval to calculate 1
|H|

∑
γ ̸=0 |1̂X1(γ)|2 = |X1|−1̂X1(0)2/|H| = |X1|−|X1|2/|H| = |X1||X2|/|H|

as |X2| = |H| − |X1| since X1, X2 partition H. This establishes (3) and hence completes the proof. □

It is now a simple matter to prove our result over Fn
2 due to the nature of the Fourier transform in this group.

Namely, the characters γ ∈ F̂n
2 are precisely those functions of the form γξ : x ∈ Fn

2 7→ (−1)⟨x,ξ⟩ for some vector
ξ ∈ Fn

2 , where ⟨x, ξ⟩ =
∑n

j=1 xjξj is the standard dot product in Fn
2 . Hence, if we write

⟨γ⟩⊥ = {x ∈ Fn
2 : γ(x) = 1} = {x ∈ Fn

2 : ⟨x, ξ⟩ = 0}

for the codimension one subspace defined by γ, then for any subset T ⊂ Fn
2 , the Fourier transform of T at γ is

simply given by
1̂T (γ) =

∑
x∈T

γ(x) =
∑
x∈T

(−1)⟨x,ξ⟩ = |T ∩ ⟨γ⟩⊥| − |T ∩ (x0 + ⟨γ⟩⊥)|,

where x0 + ⟨γ⟩⊥ is the non-trivial coset of ⟨γ⟩⊥ in Fn
2 . In particular, if T has no spectral gap (in the sense of

Lemma 4.2), one immediately sees that most of T is contained in the proper subspace ⟨γ⟩⊥ of Fn
2 .

Proof of Lemma 2.8. Let ε ∈ (0, 1/2) be given. Let S ⊂ Fn
2 and we define σ = |S|/N and δ = εσ/2. We

proceed by a basic density increment argument, starting with S0 = S and H0 = Fn
2 . We will iteratively

construct subgroups Hj < Hj−1 and sets Sj := Sj−1 ∩ Hj satisfying for all j that:

(4) |Sj+1| ≥ (1 − ε

2j+1 )|Sj |.

Suppose now that we have constructed Hj < Hj−1 < · · · < H0 and Si = S ∩ Hi, for i ≤ j, satisfying (4). Then
we certainly have

(5) |Sj | ≥ |S|
∞∏

i=0
(1 − ε

2i+1 ) ≥ (1 − ε)|S|.

So item (1) from the conclusion of Lemma 2.8 is satisfied for all Sj . If there is no δ-sparse cut in CayHj
(Sj),

then item (2) is also satisfied and we are done. Else, by Lemma 4.2 there is a non-trivial character γ ∈ Ĥj
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satisfying

1̂Sj
(γ) ≥

(
1 − δ

|Hj |
|Sj |

)
|Sj | ≥

(
1 − δ

2j−1σ

)
|Sj |

since we noted that Sj has size at least (1 − ε)|S| ≥ |S|/2 as ε < 1/2, and hence Sj has density at least
2j−1σ in Hj because Hj is a subgroup of H0 of codimension j (note that at each stage i we find Hi which
is a proper subgroup of Hi−1). Now define Hj+1 = ⟨γ⟩⊥ which is a subspace of Hj of codimension 1. As
1̂Sj

(γ) = |Sj ∩ Hj+1| − |Sj ∩ (non-trivial coset of Hj+1)|, we get from the bound on the Fourier coefficient at γ

from above that Sj+1 = Sj ∩ Hj+1 has size

|Sj+1| ≥
(

1 − δ

2jσ

)
|Sj | ≥

(
1 − ε

2j+1

)
|Sj |,

as δ = εσ/2. Hence, we have shown that if CayHj
(Sj) has a δ-sparse cut, then we can continue and find a

proper subgroup Hj+1 < Hj such that the set Sj+1 = S ∩ Hj+1 still satisfies (4).

Observe that the process must trivially halt after a finite number of steps, since there is no infinite chain of
subgroups Hj in the finite group Fn

2 . In fact, since each Sj has density at least 2j−1σ in Hj , the process
terminates after O(log 1/σ) steps. The final set Sj in this process then has the property that CayHj

(Sj) has no
δ-sparse cuts, and moreover it satisfies (5), so Hj and Sj = S ∩ Hj are the desired sets from the conclusion of
the lemma. □

4.2. The general case. Next, we prove the result in Theorem 1.5 in full generality, i.e. for a general finite
group. We emphasise again that this general result is needed to establish Theorem 1.4, but that it is not
required for our resolution of the rearrangement problem over Fn

2 (Theorem 1.3). We begin by defining the
correct notion, at least for our application, of a spectral gap for subsets of a general (not necessarily abelian)
group. Note that for a subset T of a nonabelian group G, its Fourier coefficients 1̂T (ρ) are matrices, rather than
scalars as is the case when G is abelian (such as G = Fn

2 in the previous subsection).

Definition 4.3 (Spectral gap). Let H be a finite possibly nonabelian group, and let T ⊂ H. We say that T

has a β-spectral gap if for every non-trivial irreducible representation ρ ∈ Ĥ and every unit vector v ∈ Vρ the
following holds:

ℜ ⟨1̂T (ρ)v, v⟩Vρ
≤ (1 − β)|T |.

Remark 4.4. We note that this definition of the spectral gap is equivalent to the condition that all eigenvalues
of the matrices 1̂T (ρ) have real part at most (1 − β)|T |, for all non-trivial irreducible representations ρ. In
particular, recalling from Section 3 that the adjacency matrix of the directed graph CayH(T ) has precisely the
same eigenvalues as the matrices 1̂T (ρ) as ρ ranges over Ĥ, we further note T has a β-spectral gap if and only
if all non-trivial eigenvalues of the adjacency matrix of CayH(T ) have real part at most (1 − β)|T |.

Intuitively speaking, T has no (or only a small) spectral gap if there is some non-trivial irreducible representation
ρ and some vector v such that 1̂T (ρ)v ≈ |T |v. We also remark that 1̂T (ρ) =

∑
t∈T ρ(t) is a sum of |T | unitary

matrices, and hence we always have the trivial bound ℜ ⟨1̂T (ρ)v, v⟩Vρ
≤ ∥1̂T (ρ)v∥Vρ

≤ |T | for unit vectors v.
The following lemma generalises Lemma 4.2, showing that if a subset T of a finite group H has a spectral gap,
then CayH(T ) has no sparse cut. In particular, it immediately shows that Corollary 4.1 follows from Theorem
1.5.

Lemma 4.5. Let H be a finite group, and suppose that T ⊂ H has a β-spectral gap in the sense of Definition
4.3:

sup
ρ∈Ĥ:ρ̸=triv

sup
v∈Vρ

∥v∥Vρ =1

ℜ ⟨1̂T (ρ)v, v⟩Vρ
≤ (1 − β)|T |.

Then CayH(T ) has no βτ -sparse cuts, where τ = |T |/|H|.

Proof of Lemma 4.5. Let H = X1 ⊔ X2 be a partition of H, so that our goal is to show that #{(x1, x2) ∈
X1 × X2 : x−1

1 x2 ∈ T} ⩾ βτ |X1||X2|. By the formula for the Fourier transform of a convolution and Fourier
inversion, we can write

#{(x1, x2) ∈ X1 × X2 : x−1
1 x2 ∈ T} = 1X1 ∗ 1T ∗ 1X−1

2
(idH) = 1

|H|
∑
ρ∈Ĥ

dρ Tr
(

1̂X1(ρ)1̂T (ρ)1̂X2(ρ)
T

)
,
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where we used that all irreducible representations are unitary to note that 1̂X−1
2

(ρ) =
∑

x2∈X2
ρ(x2)−1 =∑

x2∈X2
ρ(x2)

T
= 1̂X2(ρ)

T
. Since the contribution from the trivial representation to the right hand side is

|X1||X2||T |/|H| = τ |X1||X2|, and by using that the trace is invariant under cyclic shifts, it suffices to show that

ℜ −1
|H|

∑
ρ∈Ĥ:ρ̸=triv

dρ Tr(1̂X2(ρ)
T

1̂X1(ρ)1̂T (ρ)) ≤ (1 − β)τ |X1||X2|,(6)

as plugging this into the first equation would show precisely that #{(x1, x2) ∈ X1 × X2 : x−1
1 x2 ∈ T} ≥

βτ |X1||X2|. Note that as X1, X2 partition H, we have that

1̂X1 + 1̂X2 = 1̂H =
{

|H|, if ρ = triv
0, otherwise.

So 1̂X2(ρ) = −1̂X1(ρ) at all non-trivial representations ρ. Hence,

ℜ −1
|H|

∑
ρ∈Ĥ:ρ̸=triv

dρ Tr(1̂X2(ρ)
T

1̂X1(ρ)1̂T (ρ)) = 1
|H|

∑
ρ∈Ĥ:ρ ̸=triv

dρℜ Tr(1̂X1(ρ)
T

1̂X1(ρ)1̂T (ρ)).(7)

The matrix 1̂X1(ρ)
T

1̂X1(ρ) is conjugate symmetric (so self-adjoint with respect to ⟨·, ·⟩Vρ) and positive semi-
definite, so there is an orthonormal basis of vectors v1, v2, . . . , vdρ of Vρ which are eigenvectors, and with real

non-negative eigenvalues λ1, λ2, . . . , λdρ
⩾ 0 whose sum is equal to Tr(1̂X1(ρ)1̂X1(ρ)

T
). By noting that for any

linear map A : Vρ → Vρ and any orthonormal basis wj we have that Tr(A) =
∑

j⟨Awj , wj⟩Vρ
, we get for any

non-trivial irreducible representation ρ that

ℜ Tr(1̂X1(ρ)
T

1̂X1(ρ)1̂T (ρ)) = ℜ
dρ∑

j=1
⟨1̂X1(ρ)

T
1̂X1(ρ)1̂T (ρ)vj , vj⟩Vρ

= ℜ
dρ∑

j=1
⟨1̂T (ρ)vj , 1̂X1(ρ)

T
1̂X1(ρ)vj⟩Vρ

=
dρ∑

j=1
λjℜ ⟨1̂T (ρ)vj , vj⟩Vρ

,

where we used that 1̂X1(ρ)
T

1̂X1(ρ) is self-adjoint in the second line. The spectral gap assumption states that
for any unit vector v we have an upper bound ℜ ⟨1̂T (ρ)v, v⟩Vρ ⩽ (1 − β)|T |. Using this spectral gap bound in
the equation above, we get the following upper bound for every non-trivial irreducible representation ρ:

ℜ Tr(1X1(ρ)
T

1̂X1(ρ)1̂T (ρ)) ⩽ (1 − β)|T |
dρ∑

j=1
λj

= (1 − β)|T | Tr(1̂X1(ρ)
T

1̂X1(ρ)),

as Tr(1̂X1(ρ)
T

1̂X1(ρ)) =
∑dρ

j=1 λj . Finally, we can plug these trace bounds in the right hand side of (7) and
bound this by

(1 − β)|T |
|H|

∑
ρ̸=0

dρ Tr(1̂X1(ρ)
T

1̂X1(ρ)) = (1 − β)|T |
(

|X1| − |X1|2

|H|

)
= (1 − β)τ |X1||X2|

where we used Parseval to calculate 1
|H|

∑
ρ̸=triv dρ Tr(1̂X1(γ)

T
1̂X1(ρ)) = |X1| − 1̂X1(triv)2/|H| = |X1| −

|X1|2/|H| = |X1||X2|/|H| as |X2| = |H| − |X1| since X1, X2 partition H. This establishes (6) and hence
completes the proof of the lemma. □

Recall that over Fn
2 , a lemma of the type that we just proved could immediately be combined with a density

increment argument to conclude Lemma 2.8, basically because a subset T of Fn
2 having no spectral gap is

trivially equivalent to most of T being contained in a proper subgroup. Such a statement is more delicate in
general groups, and in fact only true in a weaker sense. The next auxiliary lemma is a result of this type that
is true in general groups. It states that if a set T ⊂ G has no β-spectral gap for some β which is sufficiently
small in terms of the density of T in G, then one can again conclude that most of T lies in a proper subgroup.
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Lemma 4.6. Let H be a finite group, and suppose that T ⊂ H is a subset for which there exists a non-trivial
irreducible representation ρ and a unit vector v ∈ Vρ such that

ℜ ⟨1̂T (ρ)v, v⟩ ⩾ (1 − β)|T |.

Let τ = |T |/|H| and assume that β ≤ τ2/1000 (say). Then there is a proper subgroup H ′ of H which contains
at least |T ∩ H ′| ≥ (1 − 50β/τ2)|T | of the elements of T .

Proof. Suppose that there exists a non-trivial irreducible representation ρ and a unit vector v ∈ Vρ such that
ℜ ⟨1̂T (ρ)v, v⟩Vρ

⩾ (1 − β)|T |. Throughout this proof, ρ will be fixed and hence we will simply write ∥·∥ and ⟨·, ·⟩
for ∥·∥Vρ , ⟨·, ·⟩Vρ . We will consider the Bohr sets

B(η) := {h ∈ H : ∥ρ(h)v − v∥ ≤ η}

for η ∈ [0, 2] (these sets also depend on v, but we consider v to be fixed in this proof). Recall that ℜ ⟨ρ(t)v, v⟩ ⩽ 1
for any t ∈ T , as ρ(t) is unitary. From the assumption that ℜ ⟨1̂T (ρ)v, v⟩ ≥ (1 − β)|T | we thus deduce that the
set

Tm := {t ∈ T : ℜ ⟨ρ(t)v, v⟩ ≥ 1 − mβ}
satisfies

(1 − β)|T | ≤ ℜ ⟨1̂T (ρ)v, v⟩ =
∑
t∈T

ℜ ⟨ρ(t)v, v⟩ ≤ |Tm| + (1 − mβ)|T \ Tm| = |T | − mβ|T \ Tm|

and hence has size |Tm| ≥ (1 − 1/m)|T |. Tm is not (necessarily) a Bohr set, but we show that it is efficiently
contained in a Bohr set. Since v and hence ρ(t)v are unit vectors, we have for t ∈ Tm, i.e. for t satisfying
ℜ⟨ρ(t)v, v⟩ ⩾ (1 − mβ), that ∥ρ(t)v − v∥2 = 2 − 2ℜ⟨ρ(t)v, v⟩ ⩽ 2mβ. We conclude that the set

T (m) := T ∩ B(
√

2mβ) = {t ∈ T : ∥ρ(t)v − v∥ ⩽
√

2mβ}

contains Tm and thus has size |T (m)| ≥ (1 − 1/m)|T |. In other words, we have shown that T (m) contains ‘most’
of T and is contained in a Bohr set B(

√
2mβ) of rather short width.

We make the following basic observation about the Bohr sets B(η): if x ∈ B(η) then xB(η′) ⊂ B(η + η′). The
proof of this is simply observing that if ∥ρ(x)v − v∥ ⩽ η and ∥ρ(y)v − v∥ ⩽ η′, then

∥ρ(xy)v − v∥ =∥ρ(x)ρ(y)v − v∥
= ∥ρ(x)ρ(y)v − ρ(x)v + ρ(x)v − v∥
⩽ ∥ρ(y)v − v∥ + ∥ρ(x)v − v∥ ⩽ η + η′,

by the triangle inequality and as ρ(x) is unitary.

We now choose m = τ2/(50β) and we will write η := τ/5, so we have shown that T (m) := T ∩ B(
√

2mβ) =
T ∩ B(η) contains at least (1 − 1/m)|T | ⩾ (1 − 50β/τ2)|T | elements of T . In particular, as we are assuming
that β ≤ τ2/1000, we certainly have that |T (m)| ⩾ 0.9|T |. Note also that T (m) satisfies the size requirement
from the conclusion of the lemma, so to complete the proof of this lemma, it only remains to show that T (m)

is contained in a proper subgroup of H. It thus suffices to show that B(η) is contained in a proper subgroup,
and to do this we will establish the following claim.

Claim 4.7. There exists some integer k < 4/τ such that B(kη) \ B((k − 1)η) = ∅, where η = τ/5.

First let us see how, assuming this claim, we can easily deduce the desired conclusion that B(τ/5) = B(η)
is contained in a proper subgroup of H. Indeed, we have the basic fact that xB((k − 1)η) ⊂ B(kη) for any
x ∈ B(η), and hence the claim that B(kη) \ B((k − 1)η) = ∅ implies that B(η) · X ⊂ X where X = B((k − 1)η).
Iterating this, we see that B(η)j · X ⊂ X for all j and as X = B((k − 1)η) clearly contains the identity element,
X must therefore contain the subgroup generated by B(η). Finally, to see that this subgroup is proper we may
simply note that X is not the whole of H since

X = B((k − 1)η) ⊂ B(kη) ⊂ B((4/τ)τ/5) ⊂ B(4/5) = {h ∈ H : ∥ρ(h)v − v∥ ⩽ 4/5}

cannot contain the whole of H: recall the orthogonality relation
∑

h∈H ρ(h) = 0 which holds as ρ is a non-trivial
irreducible representation, so

∑
h∈H ρ(h)v = 0 and hence

|G| =

∥∥∥∥∥∥|G|v −
∑
g∈G

ρ(g)v

∥∥∥∥∥∥ ⩽
4
5 |B(4/5)| + 2|G \ B(4/5)|
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which shows that |G \ B(4/5)| ⩾ |G|/10.

It only remains to prove the claim. Suppose for a contradiction that it is not true, then for each integer j ⩽ 4/τ

we can find an element hj ∈ B(jη) \ B((j − 1)η). Consider the elements h1, h4, . . . , h3r+1 with indices which
are 1 (mod 3) up to 4/τ . We claim that the sets h1B(η), h4B(η), . . . , h3r+1B(η) are pairwise disjoint subsets of
H. Indeed, pick x ∈ h3i+1B(η) and y ∈ h3j+1B(η) for some i > j. So x = h3i+1x0 for some x0 ∈ B(η). Then
we calculate

∥ρ(x)v − ρ(y)v∥ ⩾ ∥ρ(x)v − v∥ − ∥ρ(y)v − v∥
≥ ∥(ρ(h3i+1)v − v) + ρ(h3i+1)(ρ(x0)v − v)∥ − (3j + 2)η,

where we used that y ∈ h3j+1B(η) ⊂ B((3j+2)η). Hence, using that ρ(h3i+1) is unitary (so distance preserving)
and that x0 ∈ B(η), we get

∥ρ(x)v − ρ(y)v∥ ⩾ ∥ρ(h3i+1)v − v∥ − ∥ρ(x0)v − v∥ − (3j + 2)η
> 3iη − (3j + 3)η

where the strictness in the final inequality holds as h3i+1 ∈ B((3i + 1)η) \ B(3iη). As i > j this implies that
x ̸= y so that indeed the sets h3i+1B(η), h3j+1B(η) are disjoint as we claimed. Finally, we note that this gives
us the required contradiction since we showed above that T (m) ⊂ B(τ/5) = B(η) and that T (m) contains at
least (1 − 50β/τ2)|T | ≥ 0.9|T | = 0.9τ |H| elements, by the assumption of the lemma that β ≤ τ2/1000. Hence
the sets h3j+1B(τ/5) for 1 ⩽ 3j + 1 ⩽ 4/τ would give us 4/(3τ) disjoints sets of size at least 0.9τ |H| inside H.
This is of course absurd, and we deduce that there must be some j ⩽ 4/τ for which B(jη) \ B((j − 1)η) = ∅,
proving the claim. □

We can now prove Theorem 1.5 by repeatedly applying Lemma 4.6.

Proof. Let ε ∈ (0, 1/2) be given. Let S ⊂ G and we define σ = |S|/|G| and η = εσ2/1000. We proceed by
a density increment argument, starting with S0 = S and H0 = G. We will iteratively construct subgroups
Hj < Hj−1 and sets Sj := Sj−1 ∩ Hj satisfying for all j that:

(8) |Sj+1| ≥
(

1 − ε

2j+1

)
|Sj |.

Suppose now that we have constructed Hj < Hj−1 < · · · < H0 and Si = S ∩ Hi, for i ≤ j, satisfying (8). Then
we certainly have

(9) |Sj | ≥ |S|
∞∏

i=0

(
1 − ε

2i+1

)
≥ (1 − ε)|S|.

So item (1) is satisfied for all Sj . Hence, either item (2) is also satisfied in which case the desired conclusion
from Theorem 1.5 holds, or the adjacency matrix of CayHj

(Sj) has a non-trivial eigenvalue with real part at
least (1 − η)|Sj |, where η = εσ2/1000. Following the remark after Definition 4.3, this is equivalent to Sj ⊂ Hj

having no η-spectral gap meaning that there are a non-trivial irreducible representation ρ ∈ Ĥj and a unit
vector v ∈ Vρ satisfying

ℜ ⟨1̂Sj
(ρ)v, v⟩Vρ

⩾ (1 − η) |Sj |.
By (9), we have that Sj has size at least (1 − ε)|S| ≥ |S|/2 as ε < 1/2, and hence Sj has density at least
2j−1σ in |Hj | because Hj is a subgroup of H0 of index at least 2j (note that at each stage i we find Hi which
is a proper subgroup of Hi−1). In particular, as η = εσ2/1000, we see that η ≤ (|Sj |/|Hj |)2/1000 so that the
assumption of Lemma 4.6 is satisfied. This lemma concludes that there is a proper subgroup Hj+1 < Hj such
that Sj+1 = S ∩ Hj+1 has size at least

|Sj+1| ≥
(

1 − η · 50
(|Sj |/|Hj |)2

)
|Sj | ≥

(
1 − η · 50

4j−1σ2

)
|Sj | ≥

(
1 − ε

2j+1

)
|Sj |,

as η = εσ2/1000. Hence, we have shown that if CayHj
(Sj) does not satisfy condition (2), then we can continue

and find a proper subgroup Hj+1 < Hj such that Sj+1 = S ∩ Hj+1 still satisfies (8).

Observe that the process must trivially halt after a finite number of steps, since there is no infinite chain of
subgroups Hj in the finite group G. The final set Sj in this process then has the property that CayHj

(Sj)
satisfies condition (2), and moreover it satisfies (9), so Hj and Sj = S ∩ Hj are the desired sets from the
conclusion of Theorem 1.5. □
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5. A flexible 99% result

The main result of this section is Lemma 5.7, a flexible asymptotic statement about finding rainbow paths in
dense robust expander digraphs. This Lemma 5.7 will play a crucial role at several stages in the remainder of
the paper.

As we mentioned in the introduction, it is shown in [5] that if CayG(S) is a robust expander, then it contains
a rainbow path of length (1 − o(1))|S|. This result is insufficient for our applications because we will need to
obtain the same conclusion even if we restrict to random vertex subsets of CayG(S) and forbid a small number
of colours from S. Due to this additional flexibility requirement, our proof of Lemma 5.7 diverges significantly
from the approach in [5].

5.1. Tools. In this section we introduce some notation and previous results.

We start with the following lemma ([36, Lemma 3.8]), which combines Thomason’s jumbledness criterion with
the Rödl nibble. The power of the lemma is that the set C ′ can be chosen completely arbitrarily after the
random sets A′, B′ are revealed. We say that a tripartite 3-uniform hypergraph is (γ, p, n)-typical if each partite
set has (1 ± γ)n vertices; each vertex has degree (1 ± γ)pn; and for each pair of vertices u, v in the same partite
set, there are (1 ± γ)p2n vertices w in each other partite set such that (u, w, x), (v, w, y) are edges for some x, y

in the third partite set. A hypergraph is linear if through every two vertices there exists at most one edge.

Lemma 5.1 ([36], Lemma 3.8). Let H = (A, B, C) be a (0, 1, n)-typical tripartite linear hypergraph, and let
p ≥ n−1/600. Let A′ ⊆ A and B′ ⊆ B be (not necessarily independent) p-random subsets. Then with probability
at least 1 − n−2, the following holds: For any C ′ ⊆ C of size (1 ± n−0.2)pn, there is a matching covering all but
2n1−1/500 vertices in A′ ∪ B′ ∪ C ′.

We will always use the above lemma in the form of the following corollary, which picks out the special case of
the multiplication hypergraph of a group G (which is always (0, 1, n)-typical).

Corollary 5.2. Let G be a group on n elements, and let p ≥ n−1/600. Let A, B ⊆ G be disjoint p-random
subsets. Then with probability at least 1 − n−2, the following holds: For any C ⊆ G of size (1 ± n−0.2)pn, there
is a rainbow matching in CayG(C) from A to B covering all but 2n1−1/500 vertices in A ∪ B and using all but
at most 2n1−1/500 colours from C.

We next introduce the notion of robust expansion (following [33]). As we will see shortly, robust expansion is
implied3 by the absence of sparse cuts. We will use robust expansion only through our invocation of Lemma 5.5
below (from [5]); the notion will not otherwise figure in the paper.

Definition 5.3 (Robust expansion). Let G be a directed graph on n vertices. For U ⊆ V (G) and ν > 0, the
ν-robust out-neighbourhood of U in G is the set

RN+
ν,G(U) := {v ∈ V (G) : |N−(v) ∩ U | ≥ νn}.

We say that G is a robust (ν, τ)-out-expander if every U ⊆ V (G) with τn ≤ |U | ≤ (1 − τ)n satisfies

|RN+
ν,G(U) \ U | ≥ νn.

Similarly, the ν-robust in-neighbourhood of U in G is the set

RN−
ν,G(U) := {v ∈ V (G) : |N+(v) ∩ U | ≥ νn},

and we say that G is a robust (ν, τ)-in-expander if every U ⊆ V (G) with τn ≤ |U | ≤ (1 − τ)n satisfies

|RN−
ν,G(U) \ U | ≥ νn.

We say that an undirected graph G is a robust (ν, τ)-expander if the directed graph obtained by replacing each
edge with two directed edges (one in each direction) is a robust (ν, τ)-out-expander (or, equivalently, a robust
(ν, τ)-in-expander).

The following elementary proposition shows that a graph with no sparse cuts, as in the definition following
Theorem 1.5, is a robust expander. After quoting Lemma 5.5 from [5], we will work with only the no-sparse-
cuts property in the rest of this paper.

3The two notions are in fact equivalent up to a constant factor loss in parameters.
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Proposition 5.4. Let 0 ≤ τ ≤ 1/2 and 0 ≤ ζ ≤ 1. Then any digraph H with no ζ-sparse cuts is a (ζτ/8, τ)-
robust-out-expander.

Proof. Set n := |H|. Let U be any subset of V (H) of size τn ≤ |U | ≤ (1−τ)n Since U ⊔(H \U) is not a ζ-sparse
cut, there must be at least ζτ(1 − τ)n2 edges from U to H \ U . The ζτ/8-non-robust out-neighbourhood of
U can pick up at most (ζτ/8)n2 of these edges, so the ζτ/8-robust out-neighbourhood of U has size at least
(ζτ(1 − τ) − ζτ/8)n ≥ (ζτ/8)n. □

In a sufficiently dense robust expander, one can find short paths connecting any two given vertices, and one
can moreover guarantee that all vertices and edge-colours in the connecting path come from specified random
subsets. The following lemma makes this precise (here we we state only one of the several properties in the
lemma from [5]). The proof consists of elementary applications of Chernoff’s bound and an application of the
definition of robust expansion.

Lemma 5.5 ([5], Lemma 4.3). Let ν, τ, p ≤ 1 be positive constants. Let G be a properly edge-coloured directed
graph on n vertices, where p3ν2n ≥ 144 log n. Suppose that G is a robust (ν, τ)-out-expander, with δ±(G) ≥
(ν + τ)n. Let V0 ⊆ V (G), C0 ⊆ C(G) be independent p-random subsets. Then with probability at least 1 − 5/n,
the following holds:

For any distinct vertices u, v ∈ V (G), and for any vertex subset V1 ⊆ V0 and colour subset C1 ⊆ C0 with
|V1|, |C1| ≤ (p3ν/100)n, there exists a rainbow directed path of length at most ν−1 + 1 from u to v in G whose
internal vertices lie in V0 \ V1 and whose colours lie in C0 \ C1.

Iterative applications of this lemma yield the following corollary.

Corollary 5.6. Let 0 < ν, τ, p ≤ 1. Let G be a properly edge-coloured directed graph on n vertices, where
p3ν2n ≥ 144 log n. Suppose that G is a robust (ν, τ)-out-expander with δ±(G) ≥ (ν+τ)n. Let V0 ⊆ V, C0 ⊆ C(G)
be independent p-random subsets. Then with probability at least 1 − 5/n, the following holds:

For any collection (vi, wi)i∈[k] of k ≤ p3ν2

300 n disjoint pairs of vertices, we can find a rainbow collection of vertex-
disjoint paths P1, . . . , Pk (meaning that the union of the Pi’s is rainbow), where each Pi goes from vi to wi, and
the vertices of the Pi’s lie in V0 and use colours from C0.

Proof. With probability 1 − 5/n, the conclusion of Lemma 5.5 holds for V0, C0. We construct the paths Pi one
at a time. Suppose we have already constructed P1, . . . , Pℓ for some ℓ < k. Let V1 denote the union of the
internal vertices in P1, . . . , Pℓ, and let C1 denote the set of colours in P1, . . . , Pℓ. Notice that

|C1|, |V1| ≤ (ν−1 + 2)ℓ ≤ (ν−1 + 2)k ≤ (p3ν/100)n.

Then Lemma 5.5 with this choice of V1, C1 produces the desired path Pℓ+1 from vℓ+1 to wℓ+1. □

5.2. The 99% lemma. We have nearly arrived at the main lemma, which establishes a very flexible asymptotic
result in the dense setting. This lemma allows us to find a rainbow path of length (1 − o(1))|S| inside a (large)
random vertex subset of CayFn

2
(S) with high probability. We can in fact guarantee a bit more: For SF contained

in a random S′ ⊆ S, we want to find a rainbow path in CayFn
2
(S \ SF ) of length (1 − o(1))|S \ SF |; our lemma

guarantees that with high probability, the restriction of CayFn
2
(S \ SF ) to our random vertex set contains such

a path for all eligible choices of SF simultaneously. This flexibility will be useful later in the argument, for
instance when we want our 99% path to avoid the absorbing structure that we set aside initially.

The statement of our lemma involves many different parameters, objects, and quantifiers. To help the reader
get their bearing, we gloss over some of the characters involved. The main thrust of the lemma is that a nicely
expanding Cayley graph with a generating set S of size at least 8n1−1/9500 has a rainbow path which uses all
but a few colours from S. For our later applications, we will need to be able to impose further restrictions on
this long rainbow path:

• If M is a randomly sampled vertex subset, then with high probability for any two vertices u, v we can
require the long rainbow path to start at u, end at v, and have all of its internal vertices lying in M .

• We require the path to avoid a small (adversarially-chosen) deterministic vertex set J .
• We also require the colour set of the path to avoid an adversarially-chosen subset SF of a randomly

sampled subsets S′ ⊆ S.
• Our path should use all but a small fraction of the colours in S \ SF .
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We now give the formal statement of our flexible 99% lemma.

Lemma 5.7. Let G be an N -element group. Let 8N−1/9500 ≤ ζ, µ, ε, q ≤ 1.

• Let S ⊆ G have |S| ≥ εN , and suppose that CayG(S) has no ζ-sparse cuts.
• Let J ⊆ G have |J | ≤ 2−28q3µ3ε2ζ2N .
• Let M ⊆ G be a q-random subset of G, with q ≥ (1 + µ)|S|/N.

• Let S′ ⊆ S be a q′-random subset of S, with q′ ≤ 1 − µq/4.

Then with probability at least 1 − 7/N , the following holds for every choice of SF ⊆ S′ and every pair of distinct
vertices u, v ∈ G: There exists a rainbow path from u to v in CayG(S \ SF ), using all but at most µqN colours
of S \ SF , such that all of the internal vertices of the path lie in M \ J .

Proof. Let H := CayG(S) and set τ := 3
4 ε. Due to Proposition 5.4, the no ζ-sparse cuts hypothesis implies that

H is a (ν, τ)-robust out-expander for ν := ζτ/8.

Since |J | ≤ ζε/32 · N ≤ ζτ/16 · N , the graph H \ J is still a (ν/2, τ)-robust out-expander with minimum degree
at least |S| − |J | ≥ 7

8 εN . Note that 7
8 ε ≥ ζτ/16 + τ , so H \ J satisfies the minimum-degree requirement of

Corollary 5.6.

Let t := 228

q2µ3ζ2ε2 . We now randomly partition G (the vertex set of H) into sets R, M1, . . . , Mt and a junk set
by placing each vertex into R with probability p̃ := µq/4, into each Mi with probability p := (q − p̃)/t, and into
the junk set otherwise (independently for each vertex). Hence R ⊆ G is a p̃-random subset, each Mi ⊆ G is a
p-random subset, and

M := R ∪ M1 ∪ . . . ∪ Mt ⊆ G

is a q-random subset of G; of course the sets R, M1, . . . , Mt are all disjoint. (We discard the junk set.) Our
choice of t guarantees that

p ≥ q

2t
≥ q3µ3ζ2ε2/229 ≥ N−1/600.

We can now describe the plan for the proof, depicted schematically in Figure 5. We will use Corollary 5.2 to
obtain an almost-complete rainbow matching between Mi and Mi+1 for each i (using a fresh set of colours for
each new pair); this produces a large rainbow path forest with few components. We will then use Corollary 5.6
to find rainbow paths in R (depicted in gray in Figure 5) linking together the components of the path forest;
this step will use colours from a reserved random set C ′

R.

M1 M2 M3 M4 R

Figure 5. An illustration of the argument in Lemma 5.7.

In order to carry out this strategy, we need to upper-bound the probability of failure in our applications of
Corollaries 5.2 and 5.6 to various random sets. Let us start with the latter. Let CR ⊆ S be a p̃

1−q′ -random
subset, and define C ′

R := CR \ S′, which is a p̃-random subset of S. Now Corollary 5.6 applied to H \ J tells us
that with probability at least 1 − 5/(N − |J |), the following property holds: We can link any collection of up to

(10) p̃3(ν/2)2

300 · (N − |J |) ≥ p̃3ζ2ε2

219 · N

disjoint pairs of vertices with a rainbow path forest such that the paths use colours only from C ′
R and all of

their internal vertices lie in R\J . Note that the final hypothesis of Corollary 5.6 is satisfied since the right-hand
side of (10) is much larger than log N .



20 ON GRAHAM’S REARRANGEMENT CONJECTURE OVER Fn
2

The second desirable property is that for each 1 ≤ i ≤ t − 1 and every subset C ⊆ G of pN colours, the graph
CayG(C) contains a rainbow matching between Mi and Mi+1 covering all but at most 2N1−1/500 vertices of
Mi ∪ Mi+1 and using all but at most 2N1−1/500 colours of C. This happens for each fixed i with probability
at least 1 − 1/N2 by Corollary 5.2 applied to the whole of CayG(G) (which is (0, 1, n)-typical) since Mi, Mi+1
are both p-random subsets with p ≥ N−1/600. Notice that independence of Mi, Mi+1 is not required for the
application of Corollary 5.2.

By a union bound we can ensure that with probability at least 1 − 7/N , the properties from the previous two
paragraphs simultaneously hold, and we have |C ′

R| ≤ 2p̃N and |Mi| ≤ 2pN for all i (using Chernoff bounds).
We will now establish the conclusion of the lemma under the assumption that this is the case.

Using the second property, we can find a rainbow matching between M1 and M2 using at least pN − 2N1−1/500

colours from S \ (SF ∪ C ′
R). We then remove these newly-used colours from consideration and use the second

property to obtain a rainbow matching between M2 and M3 using at least pN − 2N1−1/500 colours, and so on.
We continue until there are fewer than pN unused colours of S \ (SF ∪ C ′

R) remaining; this happens after at
most t − 1 steps because otherwise we would have used up

(t − 1)(pN − 2N1−1/500) ≥ tpN − pN − 2tN1−1/500 = N(q − p̃ − p − 2tN−1/500) > (1 − µ/2)qN ≥ |S|

colours, which is impossible. (The last inequality uses the hypothesis on the size of q.)

Consider the union of the matchings constructed in the previous paragraph, and throw out all edges incident
to J ∪ {u, v} The remainder is a rainbow (directed) path forest using all but at most

pN + |C ′
R| + |J | + 2 ≤ pN + 2p̃N + µqN/4 + 2 ≤ µqN

colours of S \ SF . Since each matching left at most 2N1−1/500 uncovered vertices on each side of (Mi, Mi+1),
the total number of degree-1 vertices in this path forest is at most

4pN + t · 2N1−1/500 + 2|J | + 4 ≤ 4q

t
· N + 229N

q2µ3ζ2ε2 · N1/500 + q3µ3ζ2ε2

227 · N + 4 ≤ q3µ3ζ2ε2

225 · N = p̃3ζ2ε2

219 · N.

Fix an ordering P1, . . . , Pm of the paths in our path forest, where m ≤ p̃3ζ2ε2

219 · N . By the linking-up property
guaranteed above, we can find vertex-disjoint paths in R \ J using colours in C ′

R that connect u to the initial
vertex of P1, connect the final vertex of Pi to the initial vertex of Pi+1 for each 1 ≤ i ≤ m − 1, and connect the
final vertex of Pm to v. Putting everything together produces the desired long rainbow path. □

6. The absorption (99% → 100%) lemmas

In this section we prove several lemmas which will allow us to run the absorption argument. We start with the
simplest one, in part to illustrate an argument which, in a somewhat more complicated form, will appear in
several later lemmas.

Lemma 6.1. Let 0 < p ≤ 1, and let G be a finite group. Suppose J ⊆ E ⊆ G \ {id} satisfy

|E|p2 ≥ max(40|J |, 96 log |G|).

Let A be a p-random subset of G. Then with high probability, we can find, for each vertex u ∈ G, a rainbow
path in CayG(E) that starts at u, has all other vertices in A, and contains all of the colours in J .

Proof. Set N := |G|. For each vertex v ∈ G and colour j ∈ J , let Ev,j be the event that there are at least 5|J |
paths of the form

v, vg, vgj

with g ∈ E \ {j} and vg, vgj ∈ A, and these paths are vertex-disjoint except on v.

We will show that these events are very likely. Fix some v ∈ G, j ∈ J . There are at least |E| − 2 candidate
paths v, vg, vgj in CayG(E) (since we may have to exclude g = j−1 to guarantee vgj ̸= v), and each such path
intersects at most two other paths (since vg = vg′j implies that g = g′j). Thus we can greedily find a collection
at least (|E|−2)/3 disjoint such paths. Each path in this collection survives in A with probability p2, and these
events are independent. Hence the number of surviving paths dominates Bin(|E|/4, p2), and a Chernoff bound
tells us that at least |E|p2/8 > 5|J | of them survive with probability at least 1 − exp(−|E|p2/32) ≥ 1 − 1/N3.
Thus P[Ev,j ] ≥ 1 − 1/N3. By a union bound, we conclude that with probability at least 1 − 1/N all of the
events Ev,j simultaneously occur.
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Suppose we are in such an outcome. We can find our desired path by starting at u and repeatedly adding a
length-2 path containing an arbitrary hitherto-unused element of J . Indeed, since we have at least 5|J | candidate
extensions at each step, we can ensure that the colour g is hitherto unused (there are at most 2|J | − 2 colours
already used) and that the two new vertices do not intersect the part of the path (of length at most 2|J | − 2)
that we have already built. □

In the remainder of this section, we shall work specifically over Fn
2 since our absorbing structures for general

groups have a very different form.

6.1. Building an absorbing path. In this section we describe our absorbing path and show how to find it
robustly. By an ordered subset of Fn

2 we mean a subset F ⊆ Fn
2 together with an ordering on its elements. We

write fi for the i-th element of F , and we write ⟨F ⟩ for the subspace generated by F .

Definition 6.2 (Gadget). Let S ⊆ Fn
2 . An ordered subset F ⊆ S is a gadget in S if |F | ≤ 6, the elements of F

sum to 0, and no proper subset of F is 0-sum. A family F of gadgets in S is flexible if the following all hold:

F1 The elements of F are pairwise disjoint.
F2 The sets of partial sums {f1, f1 + f2, . . . , f1 + . . . + f|F |−1} for F ∈ F are all disjoint.
F3 For any distinct F1, F2 ∈ F , we have |⟨F1⟩ ∩ ⟨F2⟩| ≤ 2.

Equivalently, F is a gadget if and only |F | ≤ 6 and starting at any vertex v and following the edges of the
colours of F (in order) produces a rainbow cycle. Removing the last edge of such a rainbow cycle produces a
rainbow path starting from v associated to the gadget F . If F is a flexible family of gadgets, then for each
vertex v, the rainbow paths from v associated to the gadgets in F are vertex-disjoint except for v. (This fact
uses only F1 and F2. The role of F3 will become clear later; at a high level, it ensures that different gadgets
do not interact too much.) The union of these paths is a rainbow tree which we will refer to as an out-spider of
F . An in-spider of F is an out-spider of the gadget obtained from F by reversing the ordering of each gadget.

For example, if v is a vertex and F = {f1, f2, f3, f4} is a gadget in a flexible family F , then the path v, v+f1, v+
f1 +f2, v+f1 +f2 +f3 forms a leg of the out-spider of F and v, v+f4, v+f4 +f3, v+f4 +f3 +f2 forms a leg of an
in-spider of F . Notice that an out-spider and an in-spider with the same starting vertex v have the same vertex
set, since for any gadget F we have {f1, f1+f2, . . . , f1+. . .+f|F |−1} = {f2+. . .+f|F |, f3+f4+. . .+f|F |, . . . , f|F |}
due to the 0-sum assumption. See Figure 6 for an illustration.

v

v + f1 v + f1 + f2 v + f1 + f2 + f3v + f4v + f3 + f4v + f2 + f3 + f4

Figure 6. An out-spider and an in-spider of a flexible family F . The figure is misleading
in representing the out-spider and in-spider on different vertex sets. The bottom two legs
correspond to the gadget F = {f1, f2, f3, f4}.

Our absorbing structure will allow us to choose, for each gadget F ∈ F , either to leave all of the colours of F

in the absorbing structure or to free them all up for use embedding other colours elsewhere. In an idealised
scenario (which provides good intuition), each F would consist of a single colour, and then

⋃
F would represent

a set of flexible colours which we may absorb into our absorbing structure at the very end of the argument if
they ended up being unneeded elsewhere. Since of course there are no non-trivial 0-sum single elements, we
must package our flexible colours in short tuples (of size at most six), as encoded by our gadgets.

We can find a large flexible family in any reasonably large subset of Fn
2 , essentially by the pigeonhole principle.
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Lemma 6.3. Let 0 < ε ≤ 1. If E ⊆ Fn
2 has size |E| ≥ εN1/2, where N := 2n, then E contains a flexible family

with at least
⌊
ε2|E|/249⌋

gadgets.

Proof. We may assume that |E| ≥ 249/ε2, as otherwise the statement is trivial. Let us take F to be a maximal
flexible family of gadgets in E. Towards a contradiction, let us assume that |F| < ε2|E|/249. Define the set
B :=

⋃
F ∈F ⟨F ⟩ of blocked vertices. Note that each F ∈ F is a 0-sum set of size at most 6, so |⟨F ⟩| ≤ 32 and

hence |B| ≤ 32|F| ≤ ε2|E|/32.

Now consider triples {e1, e2, e3} ⊆ E of linearly independent elements such that ⟨e1, e2, e3⟩ ∩ B = {0}. We have
at least (1−ε2/32)|E|−1 ≥ 2−1/3|E| such choices for e1 ̸= 0 (ensuring e1 /∈ B), then (1−ε2/16)|E|−2 ≥ 2−1/3|E|
choices for e2 /∈ ⟨e1⟩ (ensuring e2, e1 +e2 /∈ B) and (1−ε2/8)|E|−4 ≥ 2−1/3|E| choices for e3 /∈ ⟨e1, e2⟩ (ensuring
the remaining four subsums are not in B). Since we counted each triple 6 times, there are at least |E|3/12 many
such triples. Fix an ordering of the elements of Fn

2 , and let si denote the number of triples summing to the i-th
element of Fn

2 . Then s1+. . .+sN ≥ |E|3/12, and (by convexity) there are at least
(

s1
2

)
+. . .+

(
sN

2
)

≥ |E|6/(512N)
6-tuples (e1, e2, e3, e4, e5, e6) such that e1 + e2 + e3 = e4 + e5 + e6 and ⟨e1, e2, e3⟩, ⟨e4, e5, e6⟩ are disjoint from
B \ {0}; let us call such 6-tuples good.

Since dim(⟨e1, e2, e3, e4, e5, e6⟩ ≤ 5, there are at most 326 good 6-tuples with a given span. Thus we can find a
subcollection of at least |E|6/(239N) good 6-tuples spanning pairwise distinct subspaces. We will be done if we
can show that some such good 6-tuple F ′ = (e1, e2, e3, e4, e5, e6) satisfies |⟨F ′⟩ ∩ ⟨F ⟩| ≤ 2 for all F ∈ F , since
then we can add a suitable 0-sum subset of F ′ to F , contradicting the maximality of F .

There are at most 322 · |F| pairs of distinct nonzero elements (a, b) such that a, b ∈ ⟨F ⟩ for some F ∈ F . Each
such pair (a, b) is contained in at most 1 + |E| +

(|E|
2

)
+

(|E|
3

)
≤ |E|3 subspaces of the form ⟨F ′⟩ as F ′ ranges

over our subcollection of good 6-tuples (since any such subspace can be obtained as the span of a, b and at most
3 elements of E). When we range over the pairs (a, b), there are at most

322 · |F| · |E|3 < ε2|E|4/239 ≤ |E|6/(239N)

such subspaces in total. In particular, we can choose a good tuple F ′ = (e1, e2, e3, e4, e5, e6) for which there
are no such pairs (a, b); this means that |⟨e1, e2, e3, e4, e5, e6⟩ ∩ ⟨F ⟩| ≤ 2 for every F ∈ F . Now let F ′′ be a
minimal 0-sum subset of {e1, e2, e3, e4, e5, e6} and fix an ordering of F ′′ which first traverses the elements from
{e1, e2, e3} and only afterwards traverses the elements from {e4, e5, e6}; then F ′′ is a new gadget which can be
added to F , giving the desired contradiction.

Let us check more explicitly that F ∪ {F ′′} is a flexible family. F1 holds as we chose each ei /∈
⋃

F ∈F ⟨F ⟩. We
chose F ′ to satisfy |⟨F ′⟩ ∩ ⟨F ⟩| ≤ 2 for all F ∈ F ; a fortiori the same holds with F ′ replaced by F ′′, so F3
holds. It remains to verify F2. Write F ′′ = {ei1 , . . . , eit}. Each partial sum ei1 + · · · + eir = eir+1 + · · · + eit

is in either ⟨e1, e2, e3⟩ or ⟨e4, e5, e6⟩ according to whether or not ir ≤ 3; either way, the sum is by construction
not in B. □

To gain intuition on a first read-through, the reader may wish to think of the properties F1–F3 in the definition
of a flexible family as saying that ⟨F ⟩ ∩ ⟨F ′⟩ = {0} for distinct F, F ′ ∈ F . This stronger property implies all of
F1–F3. There is, however, one instance where we wish to find such a family but we will not be able to ensure
this stronger zero-intersection property.

The following easy proposition allows us to obtain a short rainbow path from a gadget and an arbitrary element
not in the gadget. This will come in handy in several places.

Proposition 6.4. Let F be a gadget, and let x /∈ F be any nonzero element. Then we can order the elements of
F in such a way that x is not equal to any contiguous subsum of F . In particular, inserting x into this ordering
of F in any position except for the first or the last produces a valid ordering of F ∪ {x}.

Proof. If x /∈ ⟨F ⟩, then any ordering of F will do, so suppose that x ∈ ⟨F ⟩. Since F is a gadget, it has no
nontrivial zero subsums. Thus there is a nonempty subset T ⊊ F , unique up to complementation, such that

x =
∑
f∈T

f =
∑

f∈F \T

f.

Our task is to show that the elements of F can be ordered in such a way that neither the elements of T , nor
the elements of F \ T appear as a contiguous subsequence. Since x /∈ F , we know that |T |, |F \ T | ≥ 2. We can
build our desired ordering by taking all but one of the elements of T , then one element of F \ T , then the last
element of T , then the remaining elements of F \ T (in any way). □
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The next step is incorporating a flexible family of gadgets into an absorbing path in CayFn
2
(S).

Definition 6.5 (Absorbing path). We say a rainbow path P in CayFn
2
(S) is F-absorbing for a flexible family

F of gadgets in S if there exists an injective function c : F → S \
⋃

F such that for each F ∈ F we can find a
subpath of P using precisely the colours in F ∪ c(F ). We say the colours of P not in

⋃
F are the fixed colours

of P .

In an F-absorbing path P , for each F ∈ F we can delete the subpath of P consisting of the edges with colours
F ∪ c(F ). Doing so leaves two subpaths of P , which we can join using a single edge of colour c(F ) (since F is
zero-sum). We will denote the resulting subpath by P − F ; see Figure 2 for an illustration.

The following lemma will let us find an absorbing path inside a random vertex subset while avoiding a small
set of forbidden vertices.

Lemma 6.6. Let p ∈ (0, 1], let F be a flexible family of gadgets in E ⊆ Fn
2 , and let U ⊆ Fn

2 be a subset of
size |U | ≤ |F|. Suppose p8|E| ≥ 212|F| ≥ 213n. Let R be a p-random subset of Fn

2 . Then with high probability,
we can find, for each u ∈ Fn

2 , an F-absorbing rainbow path in CayFn
2
(E) of length at most 8|F| that starts at

u ∈ Fn
2 and has all other vertices in R \ U .

Proof. Fix N = 2n. First we add a fixed, unique colour cF ∈ E \
⋃

F to each gadget F ∈ F and construct a
rainbow path PF that starts at 0 and uses the colours {cF } ∪ F (which is possible by Proposition 6.4). Write
PF,y for the translate of PF starting at the vertex y ∈ G. Let

X := E \
⋃

F ∈F
({cF } ∪ F )

be the set of unused colours from E, and notice that that |X| ≥ |E| − 7|F| ≥ |E|/2. For each vertex v ∈ Fn
2 and

gadget F ∈ F , we define Ev,F to be the event that we can find a collection of at least 10|F| elements x ∈ X

whose corresponding paths PF,v+x are all vertex-disjoint and contained in R.

We will show that these events are (very) likely. Fix some v ∈ Fn
2 , F ∈ F . We will find many paths PF,v+x

which are disjoint and do not contain v. There are |X| paths in total. Of these, at most |PF | + 1 contain v,
since the position of v in a translate of PF determines the translate. Each path PF,v+x can intersect at most
(|PF |+1)2 other such paths, since again the translate of the other path is determined by the relative positions of
the intersection point in the two paths. Thus there is a family of |X|/100 vertex-disjoint paths PF,v+x avoiding
v. Each such path is contained in R with probability p|PF |+1, and these events are independent. Hence the
number of surviving paths dominates Bin(|X|/100, p|PF |+1), and by a Chernoff bound at least

|X|p|PF |+1/200 ≥ |E|p8/400 ≥ 10|F|

survive with probability at least 1 − exp(−|X|p|PF |+1/800) ≥ 1 − 1/N3 (using |E|p8 ≥ 212|F| ≥ 213n). Thus
P[Ev,F ] ≥ 1 − 1/N3, and by a union bound we conclude that with probability at least 1 − 1/N all of the events
Ev,F occur.

Suppose we are in such an outcome. We find our F-absorbing path by incorporating gadgets F one at a time,
as in the proof of Lemma 6.1. We start our path P at the vertex u and iteratively add on paths of the form
PF,x+v, where v is the current endpoint of P . At each step, we identify a hitherto-unincorporated gadget F

and consider the 10|F| paths PF,x+v identified in the previous paragraph. Of these, at least 9|F| correspond to
values of x that have not yet been used. Since |P | < 8|F|, there are more than |F| paths PF,x+v that remain
disjoint from P . Finally, since |U | ≤ |F|, we can choose a path PF,x+v that is also disjoint from U (notice that
each element of U eliminates at most one choice of x since the paths PF,x+v are vertex disjoint); we choose one
such path and concatenate P with it. □

6.2. The absorbing lemma. In this subsection we establish a lemma which will eventually allow us to “absorb”
any small subset of colours using the flexibility provided by an absorbing path. We also need the ability to work
within a random vertex subset and guarantee that we avoid a given small subset of forbidden vertices.

Lemma 6.7. Let p ∈ (0, 1], let F be a flexible family of at least 212p−7n gadgets in S ⊆ Fn
2 \ {0}, let U ⊆ Fn

2
be a set of size |U | ≤ |F|/128. Let T ⊆ Fn

2 be a p-random set. Then with high probability, the following holds
for every L ⊆ S of size |L| ≤ |F|p7/212 and every vertex v ∈ Fn

2 : There exist a subfamily of gadgets F ′ ⊆ F
and a rainbow path in CayFn

2
(L ∪

⋃
F ∈F ′ F ) that starts at v, is otherwise contained in T \ U , and uses all except

possibly one colour from L ∪
⋃

F ∈F ′ F .
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Proof. Consider a pair of distinct colours a, b ∈ S. Our first goal is to construct a subfamily Fa,b ⊆ F consisting
of at least |F|/64 gadgets F ∈ F (possibly not inheriting the original orderings {f1, f2, . . . , f|F |}) such that
extending each leg of the Fa,b-out-spider starting at 0 by the edge of colour a and then the edge of colour b

produces a family of vertex-disjoint paths (except for the shared initial vertex 0).

For each F ∈ F , consider the walk PF that starts at 0 and then follows the edges of colours f1, . . . , f|F |−1, a, b

(recall that F = {f1, . . . , f|F |}). Note that PF is a bona fide path as long as a, a + b /∈ ⟨F ⟩. We claim that each
path PF can intersect at most 11 other paths PF ′ at vertices other than 0. Indeed, PF can intersect PF ′ only
if {f ′

1, f ′
1 + f ′

2, . . . , f ′
1 + · · · + f ′

|F ′|−1} intersects the set

{f1 + · · · + fi, f1 + · · · + fi + a, f1 + · · · + fi + a + b : 1 ≤ i ≤ |F | − 1} ∪ {f1 + · · · + f|F |−1 + b}.

Property F2 in the definition of flexibility ensures that f1 + · · · + fi can never appear in {f ′
1, f ′

1 + f ′
2, . . . , f ′

1 +
· · · + f ′

|F ′|−1}. This leaves us with at most 2(|F | − 1) + 1 ≤ 2(5) + 1 = 11 possible collisions.

It follows that if we can find a collection of |F|/3 gadgets F ∈ F for which PF is a path (as opposed to just a
walk), then we can find the desired subfamily Fa,b consisting of at least |F|/36 gadgets F whose corresponding
paths PF are vertex-disjoint (except for 0).

Suppose instead that for some x ∈ {a, a + b} there are at least |F|/3 gadgets F ∈ F with x ∈ ⟨F ⟩. As the sets
F ∈ F are disjoint by property F1 of flexibility, there is at most one such F which contains x; let us remove
it from consideration (if it exists). For each remaining F we have x ∈ ⟨F ⟩ \ F ; Proposition 6.4 provides an
ordering of the elements of F such that x is not equal to any contiguous subsum of F .

The walk PF with respect to this ordering of F is a bona fide path. The spans of any two such F ’s intersect
precisely in ⟨x⟩ by F3, so there are no collisions among the sets {f1, f1 + f2, . . . , f1 + · · · + f|F |−1}. We can thus
repeat the above argument from the second paragraph of the proof in order to find the desired family Fa,b.

Let ℓ := |F|p7/212. For each vertex u ∈ Fn
2 \ U and two colours a, b ∈ S, let Eu,a,b be the event that we can

find a collection of at least 10ℓ gadgets F ∈ Fa,b for which the translate of PF starting at u is contained in T

(except possibly u) and does not intersect U . By the above considerations, there are at least |F|/128 such paths
which avoid U . The number of surviving such paths in R dominates Bin(|F|/128, p7). By Chernoff’s bound, at
least |F|p7/28 > 10ℓ of these paths survive (i.e., Eu,a,b occurs) with probability at least 1 − exp(−|F|p7/210) ≥
1 − 1/N4. A union bound over u, a, b ensures that with probability at least 1 − 1/N all of the events Eu,a,b

occur.

Suppose we are in such an outcome. We will construct a sequence of subsets L = L0, L1, . . . , Lm and a sequence
of directed rainbow paths P0 ⊂ P1 ⊂ · · · ⊂ Pm starting at v such that for each 0 ≤ i ≤ m ≤ |L| − 1, we have
|Li| ≤ |Li−1| − 1, and the path Pi is contained in T \ U , has size |Pi| ≤ |Pi−1| + 7 , and contains L \ Li. The
path Pm will satisfy the conclusion of the lemma. Suppose we have already done this for some i < |L| − 1.
Then |Li| ≥ 2. Pick some distinct a, b ∈ Li. By the above considerations, we can find 10ℓ − 2 ≥ 10|L| − 2
vertex-disjoint rainbow paths, each of which uses edges with colours a, b and all but one of the elements of some
F ∈ F , and starts at the endpoint of Pi and has all other vertices in T \ U . One of these paths uses a new F ,
does not use any of the already used colours and is vertex-disjoint from Pi since 2i + |Pi| ≤ 9i + 1 ≤ 9|L|. Now
append this path to Pi to obtain Pi+1. To obtain Li+1 from Li, remove a, b, F ∩ Li and add the unused element
of F . □

7. Proof of the dense case for Fn
2

In this section we prove Graham’s conjecture over Fn
2 in the dense case, namely, the case where the size of the

set S is linear in N := 2n. The results of Section 9 show that any subset S ⊂ G \ {0} of size |S| ≥ |G|1−c, in
any finite group G, admits a valid ordering, so those results subsume the results in this section. We include
a short proof of the weaker result here to demonstrate the implementation of the tools from the previous two
sections, which we will also need for the sparse case of Fn

2 . We also note that the simpler results in this section
already suffice for proving Theorem 1.3 using only the basic absorption argument (similar in spirit to one used
in [13]), rather than the distributive absorption tools that we will need for the general dense case in Section 9.

The following theorem handles the extremely dense case. It is convenient to isolate this regime since in the
dense-but-not-extremely-dense case our absorption arguments will make essential use of the resulting extra
vertex space. The result that we need is contained in [36]; see Appendix A for more details.
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Theorem 7.1 ([36]). Let γ > 0. Then for all sufficiently large N the following holds: For every group G of
order N , every subset S ⊆ G \ {id} with |S| ≥ N − N1−γ has a valid ordering.

For the rest of this section, assume that S ⊂ Fn
2 \ {0} has linear size in N = 2n. The case |S| ≥ 3

4 N , which
requires a separate treatment due to tighter space constraints, will serve as a simple illustration of our strategy.
The main idea is that we first set aside an absorbing path, then find a rainbow path using nearly all of the
remaining colours of S, and finally use some of the gadgets from the absorbing path to integrate the remaining
few colours of S. To prevent unwanted collisions among the rainbow paths produced in these three steps, we
carry out each step in its own random vertex subset.

Theorem 7.2. Let n be sufficiently large, and set N := 2n. If S ⊆ Fn
2 \ {0} is a subset of size |S| ≥ 3

4 N , then
CayFn

2
(S) has a rainbow path of length |S| − 1.

Proof. Set γ := 2−14. If |S| ≥ N − N1−γ/32, then we are done by Theorem 7.1. It remains to consider the case
|S| ≤ N − N1−γ/32. Set p := N−γ/16/2.

Let E be a 1
4 -random subset of S. Partition Fn

2 into three sets R ⊔ M ⊔ T by independently assigning each
vertex to R, M, T with probabilities p, 1 − 2p, p, respectively.

We apply Lemma 5.7 with S = S, J = ∅, M = M , S′ = E and parameters

ε = 3/4, q = 1 − 2p, q′ = 1/4, ζ = 1/8, µ = N−γ .

The graph CayFn
2
(S) has no 1

4 -sparse cuts since |S| ≥ 3
4 N , and the other hypotheses of the lemma are easy to

check (|J | = 0, 1 − 2p = q ≥ (1 + µ)(1 − N−γ/32), and q′ ≤ 1 − µq/4). Thus with high probability we have:

P1 For any SF ⊆ E and any two vertices u, v ∈ Fn
2 , we can find a rainbow path from u to v in CayFn

2
(S\SF ),

using all but at most µq colours from S \ SF , such that all of the internal vertices of the path lie in M .

By a Chernoff bound we have |E| ≥ N/8 with high probability. In any such outcome, Lemma 6.3 (with ε = 1)
lets us find a flexible family F of gadgets in E of size Np8/215 (since this is at most |E|/250); fix such a flexible
family for each outcome. Lemma 6.6 with F = F , E = E, U = ∅, R = R (note that |F| ≤ |E|p8/212) guarantees
that with high probability we have:

P2 There is an F-absorbing rainbow path in CayFn
2
(E) starting from any given vertex and otherwise

contained in R.

Lemma 6.7 with F = F , S = S, U = ∅, T = T (note that |F| ≥ 212p−7 log N) shows that with high probability
we have:

P3 For any L ⊆ S of size |L| ≤ |F|p7/212 and any vertex v ∈ Fn
2 , there is some F ′ ⊆ F such that

CayFn
2
(L ∪

⋃
F ∈F ′ F ) has a rainbow path that starts at v, is otherwise contained in T , and uses all

except possibly one the colours from L ∪
⋃

F ∈F ′ F .

From now on consider an outcome for E, M, R, T where conclusions P1-P3 hold.

Fix some distinct vertices u, v ∈ M . P2 provides an F-absorbing rainbow path PA starting at u, otherwise
contained in R, and using only colours from E; write SF for the the set of colours from E appearing in PA.
Now P1 allows us to find a rainbow path PM from u to v which is contained in M and saturates all but some
set L of up to µqN colours from S \ SF . Note that |L| ≤ µqN ≤ N1−γ ≤ Np15/227 = |F|p7/212. Now PA ∪ PM

is a rainbow path using precisely the colours in S \ L. Next, as |L| ≤ |F|p7/212, by P3 we can find a subfamily
of gadgets F ′ ⊆ F and a rainbow path PT starting at v and otherwise contained in T which uses all except
possibly one colour of L ∪

⋃
F ∈F ′ F . Now we use the F-absorbing properties of PA to remove

⋃
F ∈F ′ F and

pass to a shorter path P ′
A using only a subset of the vertices of PA (see the illustrations in Section 2.2). Finally,

P ′
A ∪ PM ∪ PT is a rainbow path using all but one colour from S, as desired. □

We now turn to the main argument for the dense regime. In the very-dense setting of Theorem 7.2, the Cayley
graph CayFn

2
(S) was automatically a robust expander. In the merely-dense regime, we have to use our regularity

lemma to locate a robustly expanding part of CayFn
2
(S); this requires setting aside a few colours of S that lie

outside of the subspace H from Lemma 2.8, and re-integrating these colours causes some additional technical
complications. Also, to avoid the case where S ∩ H is too dense in H for Lemma 5.7 to apply, we artificially
remove a few of these colours and re-integrate them separately, as with the colours in S \ H.
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Theorem 7.3. Let ε ∈ (0, 1/16), and let n be sufficiently large in terms of ε. Set N := 2n. Then for any
S ⊆ Fn

2 of size |S| ≥ εN , the graph CayFn
2
(S) has a rainbow path of length |S| − 1.

PM

M

H

Fn
2 \ H

A R T

P
′
M

PRPA PT

v

u w x

Figure 7. Illustration of the rainbow path constructed in the proof of Theorem 7.3. The dashed line indicates
that the path P ′

M does not intersect R. Colours indicate the different segments of the path, which of course
are all rainbow with disjoint colour sets (except for PT and PR, whose colours are disjoint only after we
activate the appropriate gadgets to replace PR by P ′

R). The picture depicts the case
∑

J /∈ H; the other case
looks only marginally different (PT might “jump” once from T ∩ H to T \ H at the point where it uses an
edge of the colour that we removed from PA). PA uses the colours J ∪ S′

F ; P ′
M uses the colours S1 ∪ S′′

F , PR

uses the colours SF ; PM uses the colours S0 \ (SF ∪ S′
F ∪ S′′

F ∪ L); and PT uses all but at most one of the
colours of L ∪

⋃
F ∈F ′ F .

Proof. We apply our regularity result Lemma 2.8 (with ε replaced by 2ε11 and σ = ε) to find a subspace H

such that |S ∩H| ≥ (1−2ε11)|S| and CayH(S ∩H) has no ε12-sparse cuts. Identify H ∼= Fm
2 and set J := S \H;

notice that

(11) |J | ≤ 2ε11|S|.

We now partition S into a large set set S0 and a small set S1; how we do so depends on the proportion of H

occupied by S. If |S ∩ H| ≤ (1 − ε3)|H|, then we set S0 := S ∩ H and S1 := ∅. If instead |S ∩ H| > (1 − ε3)|H|,
then we let S0 be an arbitrary subset of S ∩ H of size (1 − ε3)|H| and set S1 := (S ∩ H) \ S0. Notice that
either way |S1| ≤ ε3|H| and the graph CayH(S0) has no ε12-sparse cuts4. Notice also that when S1 ̸= ∅, we
may assume that J ̸= ∅ since the J = ∅ case reduces to the situation already handled by Theorem 7.2.

So far, we have a partition S = S0 ∪ S1 ∪ J such that

(12) |S0| ≤ (1 − ε3)|H|, |S1| ≤ ε3|H|, and CayH(S0) has no ε12-sparse cuts.

Set p := ε4. Let S′, E1, E2 be disjoint 1
4 -random subsets of S0, and let A ⊔ R ⊔ M ⊔ T be a random partition

of Fn
2 where each vertex is (independently) assigned to A, R, M, T with probabilities p, p, 1 − 3p, p, respectively.

We will activate the lemmas from the previous two sections to show that five desirable properties hold with high
probability, and then we will show how to use these properties to find the desired rainbow path in CayFn

2
(S).

We now apply Lemma 5.7 with S = S0, M = M, S′ = S′ ∪ E1 ∪ E2, J = ∅, Fm
2

∼= H and parameters

(13) ζ = ε12, q = 1 − 3p, µ = εp15/228, q′ = 3/4,

and we replace ε in Lemma 5.7 by ε/2. The hypotheses of the lemma are satisfied since

|S0| = |S| − |S1| − |J |
(12)
≥ (ε − ε3 − 2ε11)|H| ≥ ε

2 |H|

and q ≥ (1 + µ)|S0|/|H| (which holds since |S0|
(12)
≤ (1 − ε3)|H|, while q = 1 − 3p = 1 − 3ε4) and q′ ≤ 1 − µq/4.

The conclusion of the lemma tells us that with high probability we have:

Q1 For any SF ⊆ S′∪E1∪E2 and any distinct vertices x, w ∈ H, we can find a rainbow path in CayH(S0\SF )
from x to w, with all other vertices in M , such that the path uses all but at most µq of the colours of
S0 \ SF .

4This is clear when S1 = ∅, and otherwise the large size of S0 gives the stronger property that CayH(S0) has no 1
4 -sparse cuts.
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The next two properties depend on the random set S′. If |S′| ≤ |S0|/8, which by a Chernoff bound occurs
with probability o(1), then we declare both properties to fail. So we will work only with outcomes where
|S′| ≥ |S0|/8 ≥ |S|/16. In this case, Lemma 6.3 (with ε = 1) produces a flexible family F of gadgets in S′ of
size

(14) |F| = p8|S|/216,

since this is smaller than |S|/254 ≤ |S′|/250.

Lemma 6.6 with F , E = S′, U = ∅, and R (which is allowed since |F| (14)= p8|S|/216 ≤ |S′|p8/212) tells us that
with high probability we have:

Q2 For each vertex u ∈ H, there is an F-absorbing rainbow path in CayH(S′) starting from u and otherwise
contained in R.

Lemma 6.7 with F , U = ∅, S and T (which is allowed since |F| ≥ 212p−7 log N) tells us that with high probability
we have:

Q3 For any L ⊆ S of size |L| ≤ µqN + 1 and any vertex v ∈ Fn
2 , there is some F ′ ⊆ F such that

CayFn
2
(L ∪

⋃
F ∈F ′ F ) has a rainbow path that starts at v, is otherwise contained in T , and uses all

except possibly one of the colours from L ∪
⋃

F ∈F ′ F .

To check that we may indeed take |L| up to µqN+1, note that µqN+1
(13)
≤ εp15N/228 ≤ p15|S|/228 (14)= |F|p7/212.

As above, a Chernoff bound tells us that with high probability |E1| ≥ 1
8 |S0| ≥ 1

16 |S|
(11)
≥ p−2·max{40|J |, 96 log N}.

In this case we apply Lemma 6.1 with G = Fn
2 , J, E = J ∪ E1, and our p-random subset A to conclude that

with high probability we have:

Q4 For each vertex u ∈ Fn
2 , there is a rainbow path in CayFn

2
(E1 ∪ J), using all of the colours from J , that

starts at u and is otherwise contained in A.

Again by Chernoff’s bound, we have that with high probability |E2|(1 − 3p)2 ≥ 1
16 |S| ≥ max{40|S1|, 96 log N}.

In this case, another application of Lemma 6.1, this time with G = H, J = S1, E = S1 ∪ E2, and our (1 − 3p)-
random subset M , tells us that with high probability we have:

Q5 For each vertex u ∈ Fn
2 , there is a rainbow path in CayFn

2
(S1 ∪ E2), using all of the colours from S1,

that starts at u and is otherwise contained in M .

Consider now an outcome for which the properties Q1-Q5 all hold. Fix a vertex u ∈ H.

First, we deal with the junk set J . Using Q4, we find a rainbow path PA, starting at u and otherwise contained
in A, such that PA uses all of the colours from J and some subset S′

F of the colours of E1. Among all such
paths, choose one of minimal length. Let v denote the last vertex in PA.

Next, we use Q5 to handle the set S1. If S1 = ∅, then let P ′
M be the trivial 1-vertex path at v and set S′′

F := ∅.
Now suppose that S1 ̸= ∅, and recall that in this case we have J ̸= ∅. If

∑
J /∈ H, then we find a rainbow

path P ′
M , starting at v and otherwise contained in M , such that P ′

M uses all of the colours from S1 and some
subset S′′

F of the colours of E2. Notice that P ′
M is entirely contained in a single proper H-coset since its starting

vertex v is not in H and all of its edges have colours in H. It remains to consider the case where
∑

J ∈ H. The
minimality of PA guarantees that the last edge of PA uses some colour j∗ ∈ J . Now truncate PA by removing
v, and let v′ denote its new final vertex. Now use Q5 as above but with v replaced by v′ and with J replaced
by J \ {j∗}; again note that the resulting P ′

M is contained in a proper H-coset. We remark that we will later
build another path PM contained in M ∩ H, and it will automatically be disjoint from P ′

M even though both
paths live in the same random subset M ; this ability to jump between H-cosets is the key benefit of working in
the setting J ̸= ∅.

We now use Q2 to find an F-absorbing rainbow path PR, ending5 at u and otherwise contained in R, whose
colour set is some SF ⊆ S′. Let w denote the first vertex of PR. We have w ∈ H since u ∈ H and S′ ⊆ H.

Now Q1 gives us a rainbow path PM in M from x to w which uses all of the colours of S0 \(SF ∪S′
F ∪S′′

F ) except
for some set L of size |L| ≤ µqN (note that Q1 applies since SF ⊆ S′ and S′

F ∪ S′′
F ⊆ E1 ∪ E2). The path PM is

fully contained in H since w ∈ H and S0 ⊆ H; crucially, PM is disjoint from P ′
M . If we removed the last edge

5Strictly speaking, we take the reverse of the path produced by Q2.
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of PA in our application of Q5, then we add j∗ to L. So far we have found a rainbow path P ′
M ∪ PA ∪ PR ∪ PM

which avoids the vertex set T and uses precisely the colours in S \ L.

Finally, by Q3 we can find a subfamily of gadgets F ′ ⊆ F and a rainbow path PT , ending at x and otherwise
contained in T , which uses all except possibly one colour of L ∪

⋃
F ∈F ′ F . Since PR is F-absorbing, we may

remove the gadgets in F ′ from it to obtain a shorter path P ′
R. Now P ′

M ∪ PA ∪ P ′
R ∪ PM ∪ PT is a rainbow path

using all but at most one colour from S, as desired. □

8. The sparse case

In this section we treat the sparse case of Theorem 1.3. This takes the following shape.

Theorem 8.1. There is a constant ν > 0 such that every subset S ⊆ Fn
2 \ {0} of size |S| ≤ ν · 2n satisfying

S + S = Fn
2 has a valid ordering.

This theorem shows that sparse subsets S of Fn
2 have valid orderings as long as S + S = Fn

2 . The following
simple lemma shows that this additional assumption is in fact not restrictive.

Lemma 8.2. Let S ⊆ Fn
2 . If S + S ̸= Fn

2 , then there exists a non-trivial quotient group H of Fn
2 such that the

projection map π : Fn
2 → H is injective on S. In particular, π(S) having a valid ordering in H implies that S

has a valid ordering in Fn
2 .

Proof. Let v ∈ Fn
2 \ (S + S), and set H := Fn

2 /⟨v⟩. Now π is injective on S because otherwise we would have
distinct s1, s2 ∈ S with π(s1) = π(s2), and then we would have s1 + s2 = v, which is impossible. The second
part of the lemma is obvious. □

Before turning to the proof of Theorem 8.1, let us confirm that Theorem 8.1 and Theorem 7.3 indeed combine
to establish Theorem 1.3. Lemma 8.2 shows that it suffices to consider sets S ⊆ Fn

2 with S + S = Fn
2 . Now

Theorem 8.1 handles the regime |S| ≤ νN (with ν as given by Theorem 8.1), and Theorem 7.3 handles the
regime |S| ≥ νN .

Our proof of Theorem 8.1 splits into a “structured” (non-expanding) case and “random-like” (expanding) case.
Recall that we say a subset E ⊆ Fn

2 is (γ, K)-everywhere-expanding if every subset E′ ⊆ E of size γ|E| satisfies
|E′ + E′| ≥ K|E′|.

8.1. The structured case. We start with the non-expanding case since it will essentially reduce to (several
interdependent instances of) the dense case and the argument is similar to what we saw in the previous section.

8.1.1. Preliminaries. We always work with a set S ⊂ Fn
2 with |S| ≤ ν · 2n and S + S = Fn

2 . These assumptions
already guarantee that S has at least a bit of expansion. The following lemma lets us set aside a small,
well-expanding reservoir of colours for later use. As usual, we omit floor and ceiling functions throughout.

Lemma 8.3. Let S ⊆ Fn
2 , and let 2/|S| ≤ γ ≤ 1. Then there is a subset X ⊆ S of size |X| = γ|S| such that

|X + X| ≥ γ2

2 |S + S|.

Proof. Take a uniformly random subset X of the specified size. Each element of S + S survives in X + X with
probability at least γ · γ|S|−1

|S|−1 ≥ γ2/2, so X + X has size at least γ2

2 |S + S| in expectation. □

We will often use Ruzsa’s triangle inequality to translate large doubling of T + T into good expansion of V + T

for any other (reasonably large) subset V .

Lemma 8.4 (Ruzsa triangle inequality). For any subsets V, T of an abelian group, we have |V + T |2 ≥ |V | ·
|T + T |.

We also need a version of the Freiman–Ruzsa Theorem in Fn
2 . An asymptotic formulation of the relevant result

was first proven by Green and Tao [22], and we will use the following version due to [14].

Theorem 8.5. Let K ≥ 0. If T ⊆ Fn
2 satisfies |T + T | ≤ K|T |, then there is a subspace H of Fn

2 such that
T ⊆ H and |H| ≤ 22K |T |.
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If a set S lacks everywhere-expanding subsets, then we can (almost) partition it into a small number of subsets
with small doubling, and each such subset is dense in a (smaller) subspace. We will analyse most of the subsets
within their respective subspaces. The following lemma will allow us to link up the resulting pieces. Here and
in the subsequent theorem, one should think of ν, γ, K as constants where K > 0 is sufficiently large in terms
of γ and ν > 0 is sufficiently small in terms of K. We work with concrete dependences among these constants
to make the calculations easier to verify.

Lemma 8.6. Let 0 < ν, γ ≤ 1 ≤ K satisfy 2ν1/48 ≤ 21−K ≤ γ. Suppose s, n ∈ N are such that 8γ−2 ≤ s ≤ νN ,
where N := 2n. Let t ≤ 2/γ, and let {Hi}i∈[t] be a sequence of (not necessarily distinct) subspaces of Fn

2 , each
of size between γs and 22Ks. If X ⊆ Fn

2 \ {0} satisfies |X| ≤ γs and |X + X| ≥ (γ2/5)N , then there exist
w1, . . . , wt ∈ Fn

2 such that the following holds with Wi := wi + Hi:

(1) For each i ∈ [t], we have |Wi ∩
⋃

ℓ∈[t]\{i} Wℓ| ≤ ν1/4s.

(2) There is a sequence of distinct elements x1, y1, . . . , xt−1, yt−1 ∈ Fn
2 such that xi ∈ Wi, yi ∈ Wi+1, and

xi + yi ∈ X (i.e., (xi, yi) is an edge in CayFn
2
(X)) for each i ∈ [t − 1], and the xi + yi’s are distinct.

Proof. We find suitable elements wi+1, xi, yi one value of i at a time. Start with w1 := 0, so that W1 = H1.
Suppose we have already found w1, . . . , wm, x1, y1, . . . , xm−1, ym−1 such that∣∣∣∣∣∣Wi ∩

⋃
ℓ∈[m]\{i}

Wℓ

∣∣∣∣∣∣ ≤ (m + 1 − i)ν1/4γs/2

for each i ∈ [m] and the conditions in part (2) of the lemma statement are so far satisfied.

As long as m < t, we will find wm+1, xm, ym preserving these conditions (with m replaced by m + 1).

Set Xfree := X \ {x1 + y1, . . . , xm−1 + ym−1}. Then

|Xfree + Xfree| ≥ |X + X| − t|X| ≥ (γ2/5)N − tγs ≥ (γ2/5)N − 2νN ≥ (γ2/6)N

since ν ≤ γ2/60 (with room to spare). Likewise, set Wfree := Wm \ {x1, y1, . . . , xm−1, ym−1}, so that

|Wfree| ≥ |Wm| − 2t ≥ γs − 4/γ ≥ γs/2.

Now the Ruzsa triangle inequality (Lemma 8.4) gives

|Wfree + Xfree| ≥
√

|Wfree|
√

|Xfree + Xfree| ≥
√

γs/2
√

(γ2/6)N ≥
√

γ3

12ν
s ≥ ν−2/5s,

where we used N ≥ s/ν and ν ≤ γ15/125 (say).

Thus there are at least ν−2/5s
22K s

≥ ν−1/3 cosets of Hm+1 which intersect Wfree + Xfree. At most 2m − 2 of these
cosets intersect {x1, y1, . . . , xm−1, ym−1}, and at most 23K+1s

ν1/4γs
≤ ν−1/3 − 2m of them contain at least ν1/4γs/2

elements of W1 ∪ · · · ∪ Wm (the last inequality uses m ≤ t ≤ 2/γ and ν ≤ 2−36K−24γ12). Hence there is a
coset Wm+1 = wm+1 + Hm+1 which intersects Wfree + Xfree in some element ym /∈ {x1, y1, . . . , xm−1, ym−1}
and contains at most ν1/4γs/2 elements of W1 ∪ · · · ∪ Wm. In particular, there is some xm ∈ Wfree such that
xm + ym ∈ Xfree (notice that xm ̸= ym since 0 /∈ Xfree); this choice of xm, ym works for our induction.

Once we reach m = t, we have |Wi ∩
⋃

ℓ∈[t]\{i} Wℓ| ≤ tν1/4γs/2 ≤ ν1/4s for every i ∈ [t], as desired. □

8.1.2. The main argument. We are now ready to handle the fully-structured case. The main idea is that if S

is “fully-structured”, then we can decompose it into sets S1, . . . , St of small doubling, each of which is fairly
dense in some subspace. We then obtain cosets W1, . . . , Wt of these subspaces which are nearly disjoint, and in
each Wi we build a rainbow path that uses most of the colours of Si; at the end we join up these short rainbow
paths and absorb the “junk set” of hitherto-unused colours. See Figure 8.

In the following theorem, we write 1/s, ν ≪ 1/K ≪ γ ≪ α ≪ 1 to mean that α ∈ (0, 1) is a sufficiently small
constant; γ is sufficiently small in terms of α; K is sufficiently large in terms of γ; and ν, 1/s are sufficiently
small in terms of K.

Theorem 8.7. Suppose 1/s, ν ≪ 1/K ≪ γ ≪ α ≪ 1. Let S ⊆ Fn
2 \ {0} be a set of size s := |S| ≤ νN (where

N := 2n as usual), and suppose that S + S = Fn
2 . If S has no (γ/α, K/γ)-everywhere-expanding subset E of

size |E| = αs, then CayFn
2
(S) has a rainbow path of length |S| − 1.
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Figure 8. Illustration of the argument in Theorem 8.7 with t = 4, m = 3. W1, W5; W2, W6;
W3, W7 are pairs of cosets of the same subspace, and the Wi’s are chosen to have very small inter-
sections W ′

i with the other Wj ’s. We also have fixed “connection points” y0, x1, y1, . . . , x7, y7, x8.
PR is an absorbing path built inside a random subset R. Each PM,i is a rainbow path from
xi to yi built in the intersection of Wi with a random set M , while avoiding W ′

i and all of the
other connection points. The path PT uses up all of the unused colours, with the help of some
gadgets activated in PR.

Proof. By assumption, every subset of S of size at least αs contains a subset of size γs with doubling constant
at most K. We first extract X ⊆ S of size γs having |X + X| ≥ γ2|S + S|/2 = γ2N/2 by Lemma 8.3.
We can iteratively remove disjoint subsets S1, . . . , St ⊆ S \ X, each of size γs (so t ≤ 1/γ), such that each
|Si +Si| ≤ K|Si| and S1 ∪ . . .∪St covers all of S \X except for a set J0 of size at most αs. By Theorem 8.5, this
implies that there exist subspaces Hi ⊇ Si such that |Hi| ≤ 22K |Si|. Next, we can apply the regularity-type
result Lemma 2.8 to each Si (which has density at least 2−2K inside of its Hi) to find a subset S′

i ⊆ Si of size
at least (1 − α)|Si| and a subspace H ′

i of Hi containing S′
i such that CayH′

i
(S′

i) has no α2−2K−1-sparse cuts.
We add the leftover elements

⋃
Si \ S′

i (there are at most
∑

i α|Si| ≤ αs such elements in total) to the set J0
to obtain the set J1, which has size |J1| ≤ 2αs.

Let us re-index so that the quantities |S′
i|/|H ′

i| are non-increasing with i. Let m be the largest index for which
|S′

m|/|H ′
m| ≥ 3/4. Next, we invoke Lemma 8.6 with the sequence of subspaces H ′

1, . . . , H ′
t, H ′

1, . . . , H ′
m (we list

all of the subspaces in order and then list the first m again) and the set X. This gives us cosets W1, . . . , Wt+m

and distinct elements x1, y1, . . . , xt+m−1, yt+m−1 ∈ Fn
2 such that each Wi is a coset of H ′

i mod t, each Wi intersects
the union of other Wj ’s in at most ν1/4s elements, each xi ∈ Wi, yi ∈ Wi+1, xi + yi ∈ X, and the quantities
xi + yi are distinct. Our rainbow path will end up including the t + m − 1 edges (xi, yi) (with colours xi + yi).
As such, we mark the set of vertices U := {x1, y1, . . . , xt+m−1, yt+m−1} as “already used”. We also add the
unused colours from X, namely, X \ {x1 + y1, . . . , xt+m−1 + yt+m−1}, to J1 to obtain J2; thus J2 represents a
“junk set” of colours that we will need to absorb into our rainbow path later. Write W ′

i := Wi ∩
⋃

j ̸=i Wj for
each i, and note that |W ′

i | ≤ ν1/4s.

Next, for each i ∈ [t], let Ei be a 1
4 -random subset of S′

i. Set E :=
⋃

Ei.

For each i ≤ m, take random subsets Si,1, Si,2 of S′
i by assigning each element of S′

i independently to Si,1 with
probability 1

4 , to Si,2 with probability 1
4 , and to both Si,1, S1,2 with probability 1

2 . So Si,1, Si,2 are 3
4 -random

subsets of S′
i, and Si,1 ∪ Si,2 = S′

i. Although Si,1, Si,2 are not independent, it is true that after we reveal Si,1
(respectively, Si,2), the intersection Si,1 ∩ Si,2 is a 2

3 -random subset of Si,1 (respectively, Si,2).

Set p := 1/16. Let R ⊔ M ⊔ T be random partition of Fn
2 , where each vertex is assigned to R, M, T with

probabilities p, 1 − 2p, p, respectively.
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For each i, we want to apply Lemma 5.7 in Wi
∼= Fni

2 with the sets

S =


Si,1 if i ≤ m,
S′

i if m < i ≤ t,
Si,2 if i > t,

J = W ′
i ∪ U, M = M ∩ Wi, S′ =


Ei ∪ (Si,1 ∩ Si,2) if i ≤ m,
Ei if m < i ≤ t,
Ei ∪ (Si,1 ∩ Si,2) if i > t.

Here we choose the parameters6

q = 1 − 2p, ε = 2−2K−1, ζ = α2−2K−1, µ = γα2−2K , q′ =
{

1/4 if m < i ≤ t,
3/4, otherwise,

j = 2ν1/4.

Let us say a brief word about the order in which the random sets are revealed. For the case i ≤ m, we first
reveal Si,1; at this point, the set Si,1 ∩ Si,2 is a 2

3 -random subset of Si,1, and we wish to apply Lemma 5.7
with this deterministic choice of Si,1 (as long as this set has the appropriate size, which is the case with high
probability) and the random subset Si,1 ∩ Si,2. The case i > t goes the same way. Let us check that the
remaining hypotheses of the lemma hold with high probability (since there are only 2/γ = O(1) indices i, it
suffices to check that the hypotheses hold with high probability for each index individually):

• We have |Si,1|, |Si,2|, |S′
i| ≥ 2−2K−1|Wi|, since |S′

i| ≥ (1 − α)|Si| ≥ (1 − α)2−2K |Wi| ≥ 3
4 · 2−2K |Wi|

(deterministically) and |Si,1|, |Si,2| ≥ 2
3 |S′

i| (with high probability by Chernoff’s bound).
• The graphs CayWi

(Si,1), CayWi
(Si,2), CayWi

(S′
i) have no ζ-cuts. This holds for m < i ≤ t since

Lemma 2.8 guarantees that CayWi
(S′

i) has no α2−2K−1 cuts. For i ≤ m and i > t, a Chernoff bound
guarantees that with high probability |Si,1|, |Si,2| ≥ 17

32 |Wi|, since Si,1, Si,2 are 3
4 -random subsets of S′

i,
which itself has size at least 3

4 |H ′
i|; thus CayWi

(S\S′) lacks 1
32 -sparse cuts just by density considerations.

• We have q|Wi|/(1 + µ) ≥ |S′
i| if m < i ≤ t (since |S′

i|/|Wi| ≤ 3/4 for such i), and q|Wi|/(1 + µ) ≥
|Si,1|, |Si,2| if i ≤ m or i > t (since |Si,j |/|Wi| ≤ 5/6 with high probability, again by Chernoff’s bound).

• We have q′ ≤ 1 − µq/4 with room to spare.

Now Lemma 5.7 tells us that with high probability, for all i we have:

Z1 For every subset SF of Ei (if m < i ≤ t) or of Ei ∪ (Si,1 ∩Si,2) (if i ≤ m, or i > t), we can find a rainbow
path in CayFn

2
(S′

i), from xi to yi, that has all of its internal vertices in M \ (W ′
i ∪ U) and uses all but

at most µq|Wi| of the colours of S′
i \ SF (if m < i ≤ t), of Si,1 \ SF (if i ≤ m), or of Si,2 \ SF (if i > t).

We now reveal the sets E1, . . . , Et. Chernoff’s bound implies that with high probability |Ei| ≥ 1
8 |S′

i| for each i;
suppose we are in such an outcome. Then |E| ≥ s/16 ≥ N1/2/16 (since s = |S| ≥ N1/2 due to S + S = Fn

2 ).
Lemma 6.3 (with ε = 1/16) provides a flexible family F of s/262 gadgets in E; note that the assumption of this
lemma is satisfied since s/262 ≤ |E|/258.

We now apply Lemma 6.6 with the random set R, the set U , the set E, and this flexible family F . The
hypotheses of the lemma are satisfied since |F| ≥ 2/γ ≥ |U | and 213 log N ≤ 212|F| ≤ |E|p8. The lemma
guarantees that with high probability we have:

Z2 For any vertex y0, there is a rainbow F-absorbing path in CayFn
2
(E) that ends at y0 and is otherwise

contained in R \ U .

Finally, apply Lemma 6.7 with the random set T , the set U of already-used vertices, and our flexible family F .
To verify the hypotheses of the lemma, note that |F| ≥ max{212p−7 log N, 128|U |} (by a huge margin). The
lemma says that with high probability we have:

Z3 For any set L ⊆ S of at most (t + m)µq22Ks + 2αs + γs ≤ |F|p7/212 colours and any vertex xt+m, there
are a sub-family F ′ ⊆ F and a rainbow path in CayFn

2
(L ∪

⋃
F ∈F ′ F ) that starts at xt+m, is otherwise

contained in T \ U , and uses all except possibly one colour from L ∪
⋃

F ∈F ′ F .

Consider an outcome where Z1-Z3 hold. We will deduce the existence of the desired rainbow path. Using Z2,
we find an F-absorbing rainbow path PR that ends at some vertex y0, is otherwise contained in R \ U , and
uses the colours of some subset SF ⊆ E. Next using Z1 we find rainbow paths PM,1, . . . , PM,t+m with internal
vertices in M \U , where each Pi goes from yi−1 to xi (with xt+m chosen arbitrarily) and uses all but some set Li

of at most µq|Wi| colours from Si,1 \ SF (for i ≤ m), from S′
i \ SF (for m < i ≤ t), and from Si,2 \ (SF ∪ c(Pi−t))

(for i > t). Let L := J2 ∪
⋃t+m

i=1 Li.

6It is possible to make “tighter” choices of parameters in some of the cases, but the choices listed here work for all cases and are
tight enough for later applications.
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We can use the edges (xi, yi) to join the paths PR, PM,1, . . . , PM,t+m. The result is a rainbow path that avoids
T \ U and uses precisely the colours in S \ L. Note also that

|L| ≤ |J2| + (t + m)µq · max
i

|Wi| ≤ |J1| + |X| + (t + m)µq22Ks ≤ 2αs + γs + (t + m)µq22Ks,

so the hypothesis of Z3 is satisfied. Now Z3 provides a subfamily F ′ ⊆ F and a rainbow path PT that starts at
xt+m, is otherwise contained in T \ U , and uses all except possibly one colour from L ∪

⋃
F ∈F ′ F . We use the

F-absorbing properties of PR to remove
⋃

F ∈F ′ F and pass to a shorter path P ′
R using only a subset of vertices

of PR. Now the concatenation of P ′
R, PM,1, . . . , PM,t+m, PT gives the desired a rainbow path using all but at

most one colour from S. □

8.2. Expanding case. In this section we will show how to find a rainbow path of length |S| − 1 in CayFn
2
(S)

in the case where S has a subset E with suitable everywhere-expanding properties. In order to incorporate
the final few colours at the end of our argument, we will need to replace absorbing paths with slightly larger
structures. Recall the definition of an in-spider from the discussion following Definition 6.2.

Definition 8.8 (Absorbing fork). Let F be a flexible family of gadgets in S ⊆ Fn
2 . A a corresponding absorbing

fork (P, Q) consists of a (directed) F-absorbing path P and an in-spider Q of F such that Q is based at the
initial endpoint of P and otherwise P, Q are disjoint. We refer to the final endpoint of P as the final vertex of
the entire absorbing fork.

We now show how to robustly embed absorbing forks in CayFn
2
(S) as long as S is large enough.

Lemma 8.9. Let N = 2n, and let E ⊆ S ⊆ Fn
2 be such that |S| ≥ 211|E|. Let F be a flexible family of subsets

of E. Then CayFn
2
(S) contains an F-absorbing fork (P, Q) with |P | ≤ 8|F| + 1.

Proof. Choose an element c(F ) ∈ S \
⋃

F for each F ∈ F ; since |S| − |
⋃

F| ≥ |F|, we can ensure that these
elements c(F ) are all distinct. Proposition 6.4 tells us that for each F ∈ F , there is a rainbow path PF using
precisely the colours in F ∪ c(F ). It remains to concatenate these paths and join them to an in-spider of F .

To start, let Q be the in-spider of F based at the vertex 0. We start our path P at the vertex 0 and iteratively
extend the path by adding both a single edge (with a colour from S) and one of the rainbow paths PF from
the previous paragraph. At each step, we identify a hitherto-unincorporated gadget F and consider extensions
of our current path by a single edge with some colour x ∈ S \ (

⋃
F ∈F (F ∪ {c(F )})) followed by PF . Note

that |S \ (
⋃

F ∈F (F ∪ {c(F )}))| ≥ |S| − 2|E|. The structure that we have already built has (crudely) at most
|Q| + 2|E| < 4|E| vertices. The new path that we wish to append has at most 8 vertices, so there are fewer
than 32|E| < |S| − 2|E| choices of x (i.e., translates of this new path) that cause collision, so we choose some
x ∈ S \ E that does not cause any collisions. □

We will build our long rainbow path in stages. We will start with an absorbing fork, as guaranteed by Lemma 8.9,
which embeds a large family of gadgets. In each subsequent step we will append a new short path to the final
vertex of the fork at the cost of “activating” up to two gadgets. In order to iterate this multi-stage procedure,
we need to make sure that the final vertex of the fork is not “blocked” by other vertices of the fork (see
Proposition 2.5 from our proof overview for a model version of this argument). With this in mind, we say a
final vertex v of an F-absorbing fork (P, Q) is t-extendable if at least t of the paths of the out-spider of F based
at v are disjoint from P ∪ Q (except at v, of course). See Figure 9 for a picture of the proof strategy. It will
be notationally convenient to phrase the iteration argument in terms of analysing the properties of a suitable
maximal substructure.

We the symbol ≪ in the following theorem as we used it in Theorem 8.7, viz., x ≪ y means that x is sufficiently
small with respect to y.

Theorem 8.10. Suppose that 1/s ≪ 1/K ≪ γ ≪ α ≪ 1. Let S ⊆ Fn
2 \ {0} be a subset of size s := |S| ≥

√
N/2

(where as usual N := 2n). If S has a (γ/α, K/γ)-everywhere-expanding subset E of size αs, then CayFn
2
(S) has

a rainbow path of length |S| − 1.

Proof. Lemma 6.3 applied to E provides a flexible family F0 of gadgets in E with |F0| = α2|E|/252 = α3s/252.
Let β := α3/252, so |F0| = βs. Now Lemma 8.9 tells us that CayFn

2
(S) contains an F0-absorbing fork (P0, Q0)

with |P0| ≤ 9|F0| = 9βs; let v0 denote its final vertex.
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Figure 9. Illustration of the proof of Theorem 8.10. We take a maximal F-absorbing fork
(P, Q) whose final vertex is suitably extendable. The everywhere-expansion of the set E provides
many potential ways to extend P by following a leg of the out-spider, then taking one more step
using a colour from a different gadget, and finally appending a translate of a short rainbow path
PA. The maximality hypothesis ensures that in fact P already used nearly all of the colours of
S, and we can integrate the remaining colours using one of the legs of Q.

There are at least s − 9βs colours not appearing in P0. Let N0 denote the set of vertices in Fn
2 \ (P0 ∪ Q0) that

are reachable from v0 via single edge with one of these colours. We have |N0| ≥ s − 24βs ≥ s/2. Consider an
auxiliary bipartite graph whose left side is the vertex set of P0 ∪ Q0 and whose right side is N0, with an edge
between a ∈ P0 ∪ Q0 and b ∈ N0 if the out-spider of F0 based at b contains a. Equivalently, a is adjacent to
b if the in-spider of F0 based at a contains b, so the degree of each vertex on the left is at most 5βs. Recall
that the left side has at most 15βs vertices, so the graph has at most 75β2s2 edges in total. At the same time,
|N0| ≥ s/2, so there is some u ∈ N0 with degree at most 150β2s in the auxiliary bipartite graph. Extending P0
to such a vertex gives a new absorbing fork whose final vertex u is γs-extendable (since |F0| − 150β2s ≥ γs).

Now, let (P, Q) be a maximal-size F-absorbing fork such that its final vertex v is γs-extendable, F ⊆ F0, and
1
2 |F0 \ F| ≤ |P | − (1 − γ) min{|P |, s − 8/γ}. Note that (P0, Q0) is such a fork for F0, so this is well-defined.
Let A ⊆ S denote the subset of available colours not used in P . We claim that CayFn

2
(A) has a rainbow path

PA using precisely 4/γ colours if |A| ≥ 8/γ, and using min{|A|, 7} colours from A otherwise. If |A| ≥ 14 this
follows from the standard greedy argument which always allows us to find a path of length at least |A|/2 (see
[5, Observation 2.2]). If |A| < 14, then we may simply use the fact from [1] that all sets of size at most 7 have
valid orderings.

Since v is γs-extendable, there is some F ′ ⊆ F of size γs such that the out-spider of F ′ based at v is disjoint
from the vertices of P ∪ Q (other than v). Let R denote the set of last elements of gadgets in F ′ (i.e., if we
write each gadget as F = {f1, . . . , f|F |}, then R = {f|F | : F ∈ F ′}). Note that since each gadget is 0-sum, the
set of leaves of this spider is precisely v + R. The subset R ⊆ E and has size γs, so our everywhere-expanding
assumption on E ensures that |R+R| ≥ Ks. This means that if we take a second step with an edge with colour
in R, then we can reach at least Ks vertices in v + R + R. There are at least Ks − 1 − s − 5βs − 5γs ≥ Ks/2
such vertices which are not in P ∪ Q (which contains at most 1 + s + 4βs vertices) or in the out-spider of F ′

based at v (which contains at most 5βs vertices). Further, as PA is a path using at most 8/γ colours, at most
(8/γ) · (1 + 5β + 5γ)s ≤ Ks/4 translations of the path PA starting at the vertices in v + R + R can intersect
P ∪ Q or the out-spider of F ′ based at v; here we used K ≫ α, γ. So at least Ks/4 such translates of PA will
be disjoint from both P ∪ Q and the out-spider of F ′ based at v.

Let z = v + f|F1| + f|F2| ∈ v + R + R, with F1, F2 ∈ F ′, be such a good vertex, in the sense that if we start
at z and follow the colours of PA in order, then we obtain a rainbow path whose vertices are disjoint from
P ∪ Q and the out-spider of F ′ based at v. Now we can extend the path P in our current F-absorbing fork
(P, Q) adding the edges with the colours from F1 \ {f|F1|}, then the edge with the colour f|F2| (to reach z), and
finally the translation of PA. This produces a genuine path since F1 ∈ F ′ and the out-spider of F ′ based at v

is disjoint from P ∪ Q, while the choice of z guarantees that z and the translation of PA do not cause collisions.
This procedure has produced a new F \ {F1, F2}-absorbing fork by activating the gadgets F1, F2 (we replace P

by P − F1 − F2 to maintain rainbowness). Note that we reintegrated all except the last colour of F1 into our
extended rainbow path, but we reintegrated only the first colour of F2. Hence, as our gadgets have size at most
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6, our new absorbing path P ′ has size

|P ′| ≥ |P | − 6 + 4/γ ≥ 1
2γ

|F0 \ F| + 2
γ

≥ 1
2γ

|F0 \ (F \ {F1, F2})|

if |A| = s − |P | ≥ 8/γ. It still has size

|P ′| ≥ |P | + 1 ≥ 1
2 |F0 \ F| + (1 − γ)(s − 8/γ) + 1 = 1

2 |F0 \ (F \ {F1, F2})| + (1 − γ)(s − 8/γ)

if 7 ≤ |A| = s − |P | < 8/γ. The only remaining case is where P ′ is missing exactly 6 colours, including the last
5 colours of F2.

In the final case, we can just append the leg of the in-spider Q corresponding to the 5 leftover colours from F2
at the beginning of the path P ′; this produces the desired rainbow path of length |S| − 1. We will be done if we
show that the first two cases are actually impossible by the maximality assumption on (P, Q). For this, we need
to verify that at least one of the Ks/4 possible new final vertices is γs-extendable in its new fork. We can repeat
the argument from above with the auxiliary bipartite graph; this time there are at most s + 5βs + 5γs ≤ 2s

vertices on the left side (consisting of P ∪ Q together with the vertices of the out-spider of F ′ based at v),
each sending at most αs edges7 to the right side (consisting of the final vertices of our potential extended forks,
namely, the translations of good vertices by the path PA), which has size at least Ks/4. So some vertex v′

on the right has degree at most 8α
K s ≤ γs. At most γs of the leaves of the out-spider of F based at v′ are

blocked by vertices in P ∪ Q or the out-spider of F ′ based at v. Besides these, at most 8/γ additional leaves of
the out-spider of F based at v′ are blocked by the translate of PA that we used to reach v′. In total, our new
endpoint v′ is at least |F| − γs − 8/γ ≥ γs-extendable, since

|F| = |F0| − |F0 \ F| ≥ βs − 2 max{γs, s − (1 − γ)(s − 8/γ)} ≥ α3s/252 − 2γs ≥ 2γs + 8/γ

(here using β = α3/252 and the assumption that γ ≪ α). □

9. General dense case

In this section we prove Theorem 1.4, which we restate for convenience.

Theorem 1.4. There is an absolute constant c > 0 such that for any finite (possibly nonabelian) group G,
every subset S ⊆ G \ {id} of size at least |G|1−c admits a valid ordering.

Due to a lack of 0-sum subsets, we will need to work with a different type of gadget.

Definition 9.1 (g-pair). Let G be a group, and let g ∈ G. A g-pair is a pair of distinct elements a, b ∈ G such
that ab = g. A family of g-pairs in a subset S ⊆ G is a collection of disjoint g-pairs contained in S; we say that
the number of such pairs is the size of the family.

The following easy lemma lets us find a large family of g-pairs in any large subset of a finite group.

Lemma 9.2. Let G be a group, and let S ⊆ G. If |S| ≥ |G|1−ε ≥ 2, then for some g ∈ G there exists a family
of g-pairs in S of size at least |G|1−2ε/6.

Proof. There are |S|(|S| − 1) ordered pairs of distinct elements a, b ∈ S. There are at most |G| possible values
for the product ab, so by the pigeonhole principle there is some g ∈ G such that S contains a collection of at
least |S|(|S| − 1)/|G| ≥ |G|1−2ε/2 g-pairs. Each such g-pair (a, b) can have elements in common with at most
two other g-pairs (a′, b′). So we can find a sub-collection consisting of at least |G|1−2ε/6 disjoint g-pairs. □

Consider a vertex v of CayG(S) and a family of g-pairs of S. For each g-pair (a, b), the two-edge path v → va →
vab = vg using the colours a, b terminates at the vertex vg. The union of these paths over all of the g-pairs
forms a theta-graph. We will later stitch together several such theta-graphs along a path-like structure which
we call a waveform; see Figure 10 for an illustration (formal definitions forthcoming).

We have great flexibility in taking a path through a waveform, since for each theta-graph we may (independently)
choose which length-two path to include. The downside here, compared to the zero-sum gadget approach from
the previous sections, is that the remaining pairs in each theta-graph remain unused. As each colour pair must
eventually appear somewhere, we need to carefully specify which colour pairs occur in which theta-graphs. This
procedure will be simplest to describe using the language of a certain auxiliary bipartite graph on parts (X, Z),

7We note that the edges in our auxiliary bipartite graph are defined by the full F out-spiders and not just the F ′ ones.
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Figure 10. A waveform with three theta-graphs. Notice that some colour pairs repeat across
the theta-graphs. A rainbow path omitting the brown-orange colour pair is highlighted.

where vertices of Z correspond to theta-graphs and vertices of X represent g-pairs as given by Lemma 9.2.
We wish to build a waveform where the theta-graph corresponding to the vertex z ∈ Z contains precisely
the g-pairs in its neighbourhood N(z) ⊆ X. No theta-graph should be too big (as then finding absorbing
structures in random subgraphs would be problematic), so our bipartite graph should have small maximum
degree. Furthermore, after we later (during an absorption step) saturate some fraction of the g-pairs elsewhere,
we will wish to integrate exactly the remaining (unused) g-pairs into the path coming from our waveform. In
the language of the bipartite graph, we wish to find perfect matchings between X \ X ′ and Z for a wide variety
of choices of subsets X ′.

The following proposition from [35] shows that bipartite graphs with such properties exist.

Proposition 9.3 ([35], Lemma 10.7). Let ℓ ≤ k be positive integers. There exists a bipartite graph B with
bipartition (X ∪ Y, Z), where X and Y are disjoint, |X| = k + ℓ, |Y | = 2k and |Z| = 3k, such that:

(1) The maximum degree is at most 40.
(2) For any subset X ′ ⊂ X with |X ′| = k, there is a perfect matching between X ′ ∪ Y and Z.

We remark that [35, Lemma 10.7] states this result only with ℓ = k, but one can obtain the more general version
above by simply deleting an appropriate number of vertices from X. The construction from [35] is essentially
a union of 40 perfect matchings, sampled uniformly at random, and it is not hard to show that the desired
properties hold with positive probability.

We can now precisely describe the type of absorbing structure we will utilise.

Definition 9.4 (Absorbing family). Let G be a group, g ∈ G, and S ⊆ G. Let Pflex ⊆ P be families of g-pairs
in S. A (Pflex, ℓ)-absorbing family in P consists of a sequence P1, . . . , P|P|−ℓ ⊆ P of sub-families such that each
|Pi| ≤ 40 and for every P ′ ⊆ Pflex with |P ′| = ℓ there exists a system of distinct representatives pi ∈ Pi \ P ′.

The following is essentially an immediate consequence of Proposition 9.3.

Corollary 9.5. Let G be a group. Let g ∈ G, and let S ⊆ G, and let P be a family of g-pairs in S of size
3t + ℓ, with ℓ ≤ t. Then for some sub-family Pflex ⊆ P of size t + ℓ there is a (Pflex, ℓ)-absorbing family in P.

Proof. Consider the bipartite graph B from Proposition 9.3. We identify X ∪ Y with P, set Pflex := X, and
define Pi to be the set of neighbours of the i-th vertex in Z. Note that each |Pi| ≤ 40 since B has maximum
degree at most 40. The matching property of B precisely translates to P1, . . . , P3t, Pflex having the desired
property about distinct representatives. □

As we alluded to above, the building blocks for our absorbing structures are theta-graphs.

Definition 9.6 (Theta-graph). Let P be a family of g-pairs in a group G. The theta-graph of P anchored at
v, denoted T (v, P), is the union of the |P| length-two paths obtained by starting at v and following the edges
of colours a, b for each g-pair (a, b) ∈ P.

Notice that each of the paths in T (v, P) terminates at the vertex vab = vg.

Definition 9.7 (Waveform). Let G be a group, g ∈ G, S ⊆ G, and let P1, . . . , Pt be families of g-pairs
in S. A corresponding waveform starting at a vertex u ∈ G is a subgraph of CayG(S) consisting of u and
T (v1, P1), . . . , T (vt, Pt), together with the edges (u, v1), (v1g, v2), (v2g, v3), . . . , (vt−1g, vt), such that:

• the theta-graphs T (vi, Pi) are disjoint from one another and from u;
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• the edges (u, v1), (v1g, v2), (v2g, v3), . . . , (vt−1g, vt) are all edges of CayG(S) of distinct colours, and none
of these colours appear in the T (vi, Pi)’s.

A waveform of a (Pflex, ℓ)-absorbing family in P has the key property that by choosing a single length-two
path from each theta-graph, we can construct a rainbow path which uses all the pairs of colours in P apart
from any desired subcollection of ℓ pairs of Pflex; this allows us to “absorb” such subfamilies. We will refer to
the specification of such a subpath of the waveform as collapsing the waveform. We now present a waveform
analogue of Lemma 6.6, with a similar proof.

Lemma 9.8. Let G be a group, g ∈ G, and E ⊆ G. Let P1, . . . , Pt be families of g-pairs in E with each
|Pi| ≤ 40. Let 0 < p ≤ 1 be such that |E|p42/218 ≥ max{t, log |G|}. Let R be a p-random subset of G. Then
with high probability, for every vertex u ∈ G we can find a waveform in CayG(E) corresponding to P1, . . . , Pt

which starts at the vertex u and is otherwise contained in R.

Proof. Let N := |G|. For each vertex v ∈ G and family Pi, let Ev,i be the event that we can find a collection
of at least 50t elements e ∈ E \

⋃t
i=1 Pi whose corresponding theta-graphs T (ve, Pi) are all vertex-disjoint and

contained in R. Notice that each theta-graph T (ve, Pi) intersects at most 422 other such theta-graphs, since
each theta-graph has at most 42 vertices and the translate of the other theta-graph is determined by the relative
positions of the intersection point on the two paths. Thus we can find a collection of at least (|E| − 80t)/(422 +
1) ≥ |E|/211 vertex-disjoint T (ve, Pi)’s. Each survives in R with probability at least p42, and these events are
independent. Hence the number of surviving theta-graphs stochastically dominates Bin(|E|/211, p42), and by a
Chernoff bound at least

|E|p42/212 ≥ 50t

survive with probability at least 1 − exp(−|E|p42/214) ≥ 1 − 1/N3. Thus P[Ev,i] ≥ 1 − 1/N3, and by a union
bound we conclude that with probability at least 1 − 1/N all of the events Ev,i occur.

Suppose we are in such an outcome. We find our waveform by incorporating theta-graphs one at a time, as in
the proof above. We start our waveform W at the vertex u and iteratively add on graphs of the form T (ve, Pi),
where v is the current endpoint of W . At each step, we identify a hitherto-unincorporated Pi and consider the
50t theta-graphs T (ve, Pi) identified in the previous paragraph. Of these, at least 49t correspond to colours e

that have not yet been used. Since |W | < 42t, there are at least 7t theta-graphs T (ve, Pi) that remain disjoint
from W ; we choose one such theta-graph and add it to the end of our waveform W . □

We will also need a slightly tweaked version of the absorbing lemma (Lemma 6.7).

Lemma 9.9. Let p ∈ (0, 1], let Pflex be a family of g-pairs in a group G with |Pflex| ≥ t + ℓ ≥ 29p−3 log |G|,
and let T be a p-random subset of G. Then with high probability, the following holds for every L ⊆ G \

⋃
Pflex

of size |L| ≤ ℓ < tp3/80 and every vertex v ∈ G: There exist a subfamily P ′ ⊆ Pflex of size ℓ and a rainbow path
in CayFn

2
(L ∪

⋃
P ′) that starts at v, is otherwise contained in T , and uses all except possibly one colour from

L ∪
⋃

P ′.

Proof. Consider a pair of distinct colours a, b ∈ G. For each (ai, bi) ∈ Pflex, consider the length-three path that
starts at the vertex id and then traverses the edges of colours ai, a, b. Our first goal is to construct a family Pa,b

of at least t/10 such paths that are vertex-disjoint (except at the shared vertex id). Note that each such path
can intersect at most nine other paths, so we can find a vertex-disjoint collection of |Pflex|/10 ≥ t/10 of them.

For each vertex u ∈ G pair of distinct colours a, b ∈ S, let Eu,a,b be the event that we can find a collection of
more than 4ℓ g-pairs P ∈ Pa,b such that the (left-)translates by u of the corresponding length-three paths are all
contained in T (except for possibly u). The number of surviving paths stochastically dominates Bin(t/10, p3),
so by a Chernoff bound at least tp3/20 > 4ℓ survive with probability at least 1 − exp(tp3/80) ≥ 1 − 1/N4. Thus
P[Eu,a,b] ≥ 1 − 1/N4. A union bound over all u, a, b ensures that with probability at least 1 − 1/N all of the
events Eu,a,b occur. Suppose we are in such an outcome.

We will construct a sequence of sets L = L0, L1, . . . , L|L|−1 of sizes |Li| = |L| − i and a sequence of directed
rainbow paths v = P0 ⊂ P1 ⊂ · · · ⊂ P|L|−1 of sizes |Pi| = 3i+1, as follows. Suppose we have already constructed
Li, Pi, and suppose that |Li| ≥ 2. Pick some distinct a, b ∈ Li. There is a collection of more than 4ℓ ≥ 4|L|
vertex-disjoint rainbow paths in T , where each starts at the endpoint of Pi and then traverses the edges with
colours aj , a, b for some (aj , bj) ∈ Pflex. Some such path uses a colour aj from a new pair and is vertex-disjoint
from Pi; we append it to Pi to obtain Pi+1. To obtain Li+1 from Li, we remove a, b and add bj (so indeed
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|Li+1| = |Li| − 1). Thus the process can indeed run |L| − 1 steps, provided we can always find a suitable short
path to extend by. Note also that by construction Pi uses colours from at most i pairs in Pflex (besides the
colours from L) and has length 3i. So when constructing Pi+1 at most i pairs are already used, and at most
|Pi| − 1 = 3i of our short paths can intersect Pi, so we indeed can always choose a short path to extend Pi by
into Pi+1.

At the end of this process we used at most |L| − 1 ≤ ℓ pairs from Pflex and embedded all the colours from
these pairs as well as from L except possibly one. To ensure we use up exactly ℓ pairs, we continue the process
to find L = L|L|, . . . , Lℓ each of size one and Pℓ ⊃ . . . ⊃ P|L| ⊃ P|L|−1 such that for each i ≥ |L| we have
|Pi| = |Pi−1| + 2, and Pi \ Pi−1 uses the colour in Li−1 together with a new colour from

⋃
Pflex. To see that we

can do this, suppose that we are at stage i − 1 ∈ [|L| − 1, ℓ) and that the current path Pi−1 ends at the vertex
v. Then we pick a to be the (unique) colour in Li−1 and b ̸= a to be an arbitrary other colour. As the event
Ev,a,b holds, there is some new Pi = (ai, bi) (not yet used on the path) such that we may extend our current
path by appending the edges going from v to vai to vaia (and we simply do not use the colour b edge in the
path guaranteed by the above process), in order to construct Pi (and replace a with bi in Li). Since we have
more than 4ℓ choices, we can continue until we have used up exactly ℓ pairs from Pflex, as desired. □

As in Section 7 we start by establishing the main result in the regime |S| ≥ 3
4 N , which is slightly different due

to tighter space constraints.

Theorem 9.10. Let G be a group of order N , where N is sufficiently large. If S ⊆ G is a subset of size
|S| ≥ 3

4 N , then CayG(S) has a rainbow path of length |S| − 1.

Proof. Set γ := 2−20. If |S| ≥ N − N1−γ , then we are done by Theorem 7.1 so let us assume |S| ≤ N − N1−γ .
Let us also set p = N−2γ/2.

Let E be a 1
8 -random subset of S. Let us also partition Fn

2 into three sets R⊔M ⊔T by independently assigning
each vertex to R, M, T with probabilities p, 1 − 2p, p, respectively.

We apply Lemma 5.7 with S = S, J = ∅, M = M, S′ = E and the parameters

ε = 3
4 , ζ = 1

4 , q = 1 − 2p, q′ = 1
8 , µ = N−90γ/276.

Since 1 − 2p = q ≥ (1 + µ)(1 − N−γ), and q′ ≤ 1 − µq/4, we may indeed apply the lemma. Thus with high
probability we have:

D1 For any SF ⊆ E and any two vertices v, u ∈ Fn
2 , we can find a rainbow path from v to u in CayFn

2
(S\SF ),

using all but at most µq colours from S \ SF , such that all of the internal vertices of the path lie in M .

Let us now reveal the random subset E. Chernoff’s bound guarantees that with high probability |E| ≥ N/16
(as before, if this is not the case then we declare failure and do not apply the following lemmas). Let

t := N1−84γ/266, ℓ := tp3/27 = N1−90γ/276.

Using Lemma 9.2 we can find some g ∈ G and a family P of g-pairs in E of size 3t + ℓ ≤ N/211. Using
Corollary 9.5 we can find a (Pflex, ℓ)-absorbing family P1, P2, . . . , P3t in P for some Pflex ⊆ P of size t + ℓ.

We apply Lemma 9.8 to P1, P2, . . . , P3t with the random set R; note that this lemma applies since |E|p42/218 ≥
3t ≥ log N . Thus with high probability we have:

D2 For any vertex v, there is a waveform corresponding to P1, P2, . . . , P3t that ends at v and is otherwise
contained in R.

Finally, we apply Lemma 9.9 to Pflex with random set T ; we can do so since t+ ℓ ≥ 29p−3 log N and ℓ < tp3/80.
Thus with high probability we have:

D3 For any L ⊆ S of size |L| ≤ ℓ and any vertex u, there is a sub-family P ′ ⊆ Pflex of size ℓ such that
CayG(L ∪

⋃
P ′) contains a rainbow path that starts at u, is otherwise contained in T , and uses all but

possibly one colour from L ∪
⋃

P ′.

Let us fix an outcome in which all three of the above properties hold. Fix some distinct vertices v ∈ M , u ∈ T .
D2 gives us a waveform corresponding to P1, P2, . . . , P3t that is completely contained in R and ends at v. This
waveform uses a total of 6t+ℓ colours: It uses 3t+ℓ colours within the theta-graphs (we have P1 ∪· · ·∪P3t = P
by the properties of an absorbing family) and an additional 3t colours connecting the theta-graphs to one
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another (and to the final vertex v). Let SF ⊆ E denote this set of 6t + ℓ colours. Now D1 produces a rainbow
path PM , starting at v and ending u and otherwise contained in M , which saturates all but some set L of at
most µqN ≤ ℓ colours from S \ SF . Finally, by D3 we can find P ′ ⊆ Pflex of size precisely ℓ and a rainbow
path PT contained in T which uses all except possibly one colour from L ∪

⋃
(ai,bi)∈P′{ai, bi}. By the absorbing

property, there is a system of distinct representatives for {Pi \ P ′ : i ∈ [3t]}. Now we can follow the length-two
paths in our waveform corresponding to these pairs in order to use up the colours in SF \

⋃
(ai,bi)∈P′{ai, bi}.

The concatenation of these three paths uses all except possibly one of the colours of S, as desired. □

We are now ready to prove the main theorem of the section, Theorem 1.4, in the following more precise form.

Theorem 9.11. Set γ := 2−20. Let G be a group of order N , where N is sufficiently large. Then for any subset
S ⊆ G of size |S| ≥ N1−γ , the graph CayG(S) has a rainbow path of length |S| − 1.

Proof. Set ε := N−γ , so that |S| ≥ εN . We may assume that ε ≤ 2−20. We apply our regularity result
Corollary 4.1 (with σ = |S|/|G| ≥ ε) to find a subgroup H of G such that |S ∩H| ≥ (1−ε)|S| and CayH(S ∩H)
has no ε4/1000-sparse cuts. Let S0 := S ∩ H and J := S \ H. We now define two subsets S1, S2 of S0; how we
do so depends on the proportion of H occupied by S0.

Case 1. |S0| ≤ 3
4 |H|.

In this case we set S1 := S0 and S2 := ∅.

Case 2. |S0| ≥ 3
4 |H|.

Note that if S \ H = ∅, then we are done by Theorem 9.10, so we may assume that J = S \ H ̸= ∅. Take
random subsets S1, S2 of S0 by assigning each element of S0 independently to S1 with probability 1

4 , to S2 with
probability 1

4 , and to both S1, S2 with probability 1
2 . So S1, S2 are 3

4 -random subsets of S0, and S1 ∪ S2 = S0.
Although S1, S2 are not independent, it is true that after we reveal S1 (respectively, S2), the intersection S1 ∩S2
is a 2

3 -random subset of S1 (respectively, S2).

Let S′ and E be disjoint 1
4 -random subsets of S0. Set p := 1/32, and let A ⊔ R ⊔ M ⊔ T be a random partition

of G where each vertex is (independently) assigned to A, R, M, T with probabilities p, p, 1 − 3p, p, respectively.

We now reveal S1
8. We have

(15) 5
8 |S0| ≤ |S1| ≤ 5

6 |H|

deterministically in Case 1, and with high probability by Chernoff in Case 2; suppose that this inequality holds.
Fix a coset sH of H and apply Lemma 5.7 with G = sH, S = S1, J = ∅, M = M, S′ = S′ ∪ E ∪ (S1 ∩ S2) and
the parameters

ζ = ε4/1000, q = 1 − 3p, µ = N−2γ/238, q′ = 5/6,

and we replace ε in Lemma 5.7 with ε/2. Let us check that the assumptions of the lemma are satisfied. By (15)
we have |S1| ≥ 5

8 |S0| ≥ 5
8 (1 − ε)|S| ≥ ε

2 N ≥ ε
2 |H|. We also need CayH(S1) to have no ζ-sparse cuts: This holds

in Case 1, since S1 = S0 has no ζ-sparse cuts by construction; and it holds in Case 2 by (15) which implies
CayH(S1) has no 1

8 -sparse cuts. Further, we have q ≥ (1 + µ)|S1|/|H|, since |S1| ≤ 5
6 |H|, by (15). Finally,

we have q′ ≤ 1 − µq/4 with plenty of room to spare. Hence, Lemma 5.7 tells us that with probability at least
1 − 7/|H| we have:

U1 For any SF ⊆ S′ ∪ E ∪ (S1 ∩ S2) and any vertices w ∈ sH, there is a rainbow path in CaysH(S1)
starting at w, with all other vertices in M , such that the path uses all but at most µq|H| of the colours
of S1 \ SF .9

Moreover, since there are only |G|
|H| ≤ |G|

(1−ε)|S| ≤ 2Nγ = o(|H|) left-cosets of H, with high probability the
conclusion U1 holds simultaneously for all cosets sH.

If we are in Case 2, we will need a second application of Lemma 5.7, this time with S = S2 and with all of
the other sets and parameters the same as in our first application (this time revealing S2 but leaving S1 as
unrevealed so that S1 ∩ S2 is a genuinely 2

3 -random subset of S2). By the same reasoning, we conclude that
with high probability for all cosets sH we have:

U2 For any SF ⊆ S′ ∪ E ∪ (S1 ∩ S2) and any vertex z ∈ sH, there is a rainbow path in CaysH(S2) starting
at z, with all other vertices in M , such that the path uses all but at most µq|H| of the colours of S2 \SF .

8Note that S1 ∩ S2 remains a 2
3 -random subset of S1.

9Lemma 5.7 also gives us the freedom to specify the other endpoint of the path, but we will not need to do so in this proof.
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We know that |E| ≥ |S0|/8 ≥ |S|/16 ≥ p−2 max{40|J |, 96 log |G|} with high probability, so Lemma 6.1 (applied
with G = G, E = E ∪ J and J = J) tells us that with high probability we have:

U3 For any vertex v ∈ G, there is a rainbow path in CayG(E ∪ J), starting from u and otherwise contained
in A, that uses all of the colours of J .

We now reveal S′. By a Chernoff bound, with high probability we have |S′| ≥ |S0|/8 ≥ |S|/16; we henceforth
assume that we are in such an outcome. The next two lemmas use only the randomness in the subsets R, T

(respectively); the key point is that these are independent of S′. Set

t := N1−2γ/214, ℓ := tp3/81.

Using Lemma 9.2, we can find an element g ∈ H and a family P of g-pairs in S′ of size 3t + ℓ ≤ N1−2γ/212.
Corollary 9.5 provides a (Pflex, ℓ)-absorbing family P1, P2, . . . , P3t in P with some Pflex ⊆ P of size t + ℓ.

We next apply Lemma 9.8 with G = G, g = g, E = S′, the p-random set R, and the families of g-pairs
P1, . . . , P3t. The hypotheses of the lemma are satisfied since |S′|p42/218 ≥ max{3t, log |G|}. Thus with high
probability we have:

U4 For any vertex u ∈ G, there is a waveform in CayG(S′) corresponding to P1, . . . , P3t that starts at u

and is otherwise contained in R.

Finally, we apply Lemma 9.9 with G = G, g = g, a p-random subset T and the family Pflex. The hypotheses of
the lemma are satisfied since |Pflex| = t + ℓ ≥ 29p−3 log N . Thus with high probability we have:

U5 For any L of size |L| ≤ ℓ < tp3/80 and any vertex y ∈ G, there is a subfamily P ′ ⊆ Pflex with exactly ℓ

pairs such that CayG(L ∪
⋃

P ′) contains a rainbow path that starts at y, is otherwise contained in T ,
and uses all except possibly one of the colours from L ∪

⋃
P ′.

Consider an outcome where all of U1–U5 occur. Fix any vertex z ∈ M ∩ H.

If we are in Case 1, then let PM,1 be the empty path. If we are in Case 2, then use U2 to find a rainbow path
PM,1, starting at z, that uses all of the colours from S2 \ (S′ ∪ E) except for some some subset L2 of size at
most µq|H|. Note that since S2 ⊆ S0 ⊆ H and z ∈ H, the path PM,1 is completely contained in H. Let v ∈ H

be its other endpoint, and let S′′
F be the set of colours appearing in PM,1.

Next, let PA be a minimal-length rainbow path that starts at v (if we are in Case 1, we instead let it start
from an arbitrary vertex v ∈ A ∩ H), is otherwise contained in A, and uses all of the colours from J and some
subset of the colours from E. Such a path PA exists by U3. Let u be the endpoint of PA. If J ̸= ∅, then the
minimality of PA guarantees that the last edge of PA uses some colour j∗ ∈ J = S \ H. If in addition u ∈ H,
then we delete this last edge from PA so that its endpoint u now lies in a proper coset sH. Let S′

F denote the
set of colours from E appearing in PA. Notice that PA is the empty path (so u = v) if J = ∅.

We now use U4 to find a waveform WR corresponding to P1, . . . , P3t that starts at u, is otherwise contained in
R, and uses the colours of some subset SF ⊆ S′. Let w denote the other endpoint of WR. Note that w ∈ sH

since S′ ⊆ H.

Using U1, we find a rainbow path PM,2, starting at w and otherwise contained in M , which uses all of the
colours from S1 \ (SF ∪ S′

F ∪ S′′
F ) except for some subset L1 of size at most µq|H|. If we are in Case 2, since

w ∈ sH and S1 ⊆ H, the path PM,2 is completely contained in sH; in particular it is vertex-disjoint from PM,1
(which is contained in H). (Notice that there is no PM,1 to avoid when J = ∅ in Case 1.) Let y denote the final
vertex of PM,2.

Let L := L1 ∪ L2 be the set of colours that we have yet to integrate in our rainbow path; we also include the
element j∗ if we deleted it from PA previously. Notice that |L| ≤ 2µq|H| + 1 ≤ ℓ.

For any family P ′ of precisely ℓ pairs from Pflex, we can collapse the waveform WR into a path PR by following
the system of distinct representatives for P1 \ P ′, . . . , P3t \ P ′ guaranteed by the absorbing property (so in
total we use the pairs in P \ P ′). Then, PM,1 ∪ PA ∪ PR ∪ PM,2 is a rainbow path using precisely the colours
in S \

(
L ∪

⋃
(ai,bi)∈P′{ai, bi}

)
. This path avoids the vertex set T because PM,1 ⊆ H ∩ M , PA \ {v} ⊆ A,

PR \ {u} ⊆ R, and PM,2 \ {w} ⊆ sH ∩ M .

Finally, by U5 we can find a subfamily P ′ ⊆ Pflex of size precisely ℓ and a rainbow path PT , starting at y and
otherwise contained in T , which uses all except possibly one of the colours from L ∪

⋃
(ai,bi)∈P′{ai, bi}. Take
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the corresponding path PR from the previous paragraph. Then PM,1 ∪ PA ∪ PR ∪ PM,2 ∪ PT is a rainbow path
using all but one colour from S, as desired. □

10. Concluding remarks

As we have seen in Section 9, our methods in the case of dense subsets S ⊂ G apply to Problem 1.1 just as well
over arbitrary groups as in the specialised setting of Fn

2 . The basic randomness vs. structure dichotomy (see
Section 2) also translates well to general groups. However, a key complication for general groups is that the
structure of subsets with bounded doubling is more complicated; already for Fp one has to work with generalised
arithmetic progressions in place of proper subgroups. In particular, over Fp, we have no means of passing to a
robust expander of size O(|S|) and finishing most of the job there. There are also further complications over Fp

for the absorption part of the argument, not least because we no longer have access to popular sums as we did
over Fn

2 , or as we did in the dense case. Novel ideas are required to settle both of these issues in order to use
our framework to settle Graham’s conjecture for large p.
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Appendix A. Extremely dense case

For brevity, we write K−
G := CayG(G \ {id}) in this appendix.

For subsets R, C ⊆ G, we write K−
G [R; C] to denote the subgraph of K−

G induced on the vertex set R by the
edges with colours in C. For disjoint subsets V1, V2 ⊆ G, we write K−

G [V1, V2; C] to denote the bipartite subgraph
of K−

G obtained by keeping only the directed edges from V1 to V2 with colours in C.

The following lemma is part of Lemma 6.22 from [36]. The proof combines the sorting network method and
the statement of the random Hall–Paige conjecture. The original statement pertains to both addition and
multiplication tables, but to reduce clutter we have included only the part that we will need. In the remainder
of this appendix, we will perform many calculations in the abelianisation G/[G, G] of G; since the order of
multiplication does not matter in the abelianisation, product notation such as

∏
v∈V v is unambiguous.

Lemma A.1. Let 1/n ≪ γ, p ≤ 1, and let (log n)7 ≤ t ≤ (log n)8 be an integer. Set q := p/(t − 1). Let G

be a group of order n. Let Vstr, Vmid, Vend be disjoint random subsets of G with Vstr, Vend q-random and Vmid
p-random. Let C be a (q + p)-random subset of G, sampled independently of Vstr, Vmid, Vend. Then with high
probability the following holds for all choices of C ′ ⊆ G and disjoint subsets V ′

str, V ′
end, V ′

mid ⊆ G:

If C ′, V ′
str, V ′

end, V ′
mid satisfy

(1) for each R ∈ {Vstr, Vmid, Vend, C}, we have |R∆R′| ≤ n1−γ ;
(2)

∏
V ′

end · (
∏

V ′
str)−1 =

∏
C ′ (mod [G, G]);

(3) id /∈ C ′;
(4) |V ′

str| = |V ′
end| = |V ′

mid|/(t − 1) = |C ′|/t,

then for every bijection f : V ′
str → V ′

end, the graph K−
G [V ′

str ∪ V ′
end ∪ V ′

mid; C ′] has a rainbow collection of vertex-
disjoint paths {Pv : v ∈ V ′

str}, where each Pv has length t and starts at v and ends at f(v).

We can now prove the main result of the appendix. Theorem 6.9 of [36] gives a sharper version of this result in
the regime γ ≥ 1/2. In fact, the same proof works verbatim for the larger range 1/n ≪ γ < 1, but this flexibility
is unfortunately not recorded in [36], as the authors did not anticipate that it would have further applications.
We follow the proof from [36] quite closely in our discussion here. The main idea is applying Lemma A.1 twice,
in a such a way that the starting-vertices of one collection of paths correspond to the ending-vertices of the
other collection of paths, and vice versa, so that together all of the paths form a single long path.

Theorem A.2. Let 1/N ≪ γ ≤ 1. If G is a group of order N and S ⊆ G\{id} is a subset with |S| ≥ N −N1−γ ,
then S has a valid ordering, i.e., the Cayley graph CayG(S) has a directed rainbow path with |S| − 1 edges.

Proof. Fix distinct x, y ∈ G such that that yx−1 =
∏

S (mod [G, G]). We will show that there is a directed
rainbow path from x to y with |S| edges. Note that if G is abelian and

∑
S = 0, then there are no such distinct

x and y; in this case we simply delete an element of S so that
∑

S ̸= 0, and applying our argument with this
new S still produces the desired rainbow path using all but one of the colours from the original set S.

Set t := 2⌊(log N)7⌋ and s := |S|. Set q := 1/(2t) and p := (t − 1)q. Take a random partition Vstr ⊔ Vend ⊔
Vmid,1 ⊔ Vmid,2 of G where the former two parts are q-random and the latter two are p-random. Independently,
take a random partition of G into 1/2-random sets C0 and C1 (note that 1/2 = p + q here).

With high probability, Lemma A.1 applies with Vstr, Vend, Vmid,1, C0 (playing the role of C) and t; and
Lemma A.1 applies with Vstr and Vend interchanged, with Vmid,2 instead of Vmid,1, and with C1 playing the
role of C. In each of these applications of Lemma A.1, let γ/10 play the role of γ. Furthermore, we can ensure
that with high probability for each g ∈ G, each random set with randomness parameter z contains a disjoint
collection of Ω(z3N) triples (a, b, c) of distinct group elements with abc = g; call this property (∗). This property
follows from Chernoff’s bound and the fact that for each g we can find a disjoint collection of Ω(N) distinct
triples (a, b, c) with abc = g (and then we union-bound over g). Notice also that with high probability each
random set with parameter z has zN ± N0.6 elements, again by Chernoff’s bound.

Fix an outcome for the random sets satisfying the properties described in the previous paragraph. We will con-
struct slightly-modified “prime” versions of the sets Vstr, Vmid,1, Vmid,2, Vend so that the hypotheses of Lemma A.1
are satisfied. We will remove small “junk sets” to guarantee the divisibility condition (4), and then we will in-
terchange a few elements among the sets to guarantee the product condition (2).
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Let ℓ be the largest integer satisfying 2tℓ − t + 1 ≤ s + 1. Note that ℓ = qs + O(1) = qN ± N1−γ/2. Define
w := (s + 1) − (2tℓ − t + 1), and note that w ≤ (log n)10. Observe that we can greedily find an S-rainbow path
P0, from x to some x′, which has exactly w + 1 vertices and does not pass through y; fix such a path.

By modifying at most n1−γ/2 elements from each of the sets Vstr, Vmid,1, Vmid,2, Vend, we can obtain new disjoint
sets V ′

str, V ′
mid,1, V ′

mid,2, V ′
end ⊆ (V \ V (P0)) ∪ {x′} such that x′ ∈ V ′

str, y ∈ V ′
end, and ℓ = |V ′

str| = |V ′
end| =

|V ′
mid,1|/(t − 1) = |V ′

mid,2|/(t − 1). Similarly, we partition S \ C(P0) into sets C ′
0 of size tℓ and C ′

1 of size t(ℓ − 1)
(this is possible due to the divisibility constraint on the size of P0) satisfying |C0∆C ′

0|, |C1∆C ′
1| ≤ n1−2γ/3.

Furthermore, we can interchange a few elements, thanks to property (∗), to ensure that∏
V ′

str \ {x′} =
∏

V ′
end \ {y} =

∏
C ′

1 = id (mod [G, G]).

This implies that
∏

C ′
0 =

∏
S (

∏
C(P0))−1 (mod [G, G]). Our interchanges maintain the property that

|Z∆Z ′| ≤ n1−γ/2 for each set Z.

We now invoke Lemma A.1 for the sets V ′
str \ {x′}, V ′

end \ {y}, V ′
mid,2, C ′

1 with an arbitrary choice of bijection to
get a partition into paths of length t with starting points in V ′

end \ {y} and endpoints in V ′
str \ {x′}. We wish to

now invoke Lemma A.1 in the opposite orientation, with the sets V ′
str, V ′

end, V ′
mid,2, C ′

1, and a choice of bijection
that we will shortly specify (to ensure that everything links up to form a path). First, we check the relevant
product condition.

Claim A.3. We have
∏

V ′
end(

∏
V ′

str)−1 =
∏

C ′
0 (mod [G, G]).

Proof. We carry out the following calculations modulo [G, G]. Note first that
∏

V ′
end(

∏
V ′

str)−1 = y(x′)−1 as
from the previous exchanges we had ensured that

∏
V ′

str \ {x′} =
∏

V ′
end \ {y}. Recall that yx−1 =

∏
S, and

that
∏

C(P0) = x′x−1, as P0 is a path from x to x′. Thus y(x′)−1 =
∏

S(
∏

C(P0))−1. We also previously saw
that

∏
C ′

0 =
∏

S (
∏

C(P0))−1; this completes the proof of the claim. □

Now, we specify the bijection that will ensure that the concatanation of all paths we have constructed so
far yields an S-rainbow path from x to y. Suppose that the previously-constructed collection of paths had
endpoints y1 → x1, y2 → x2, . . ., yℓ−1 → xℓ−1. Then we choose the bijection that maps x1 → y2, x2 → y3, . . .,
xℓ−2 → yℓ−1, xℓ−1 → y, x′ → y1. The union of the resulting paths from the two applications of Lemma A.1,
together with P0, yields a rainbow path from x to y whose edges use precisely the colours of S. □
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