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Abstract

We show that there exists a constant c > 0 such that every n-vertex tree T with ∆(T ) ≤ cn has
Ramsey number R(T ) = max{2t1, t1 + 2t2} − 1, where t1 ≥ t2 are the sizes of the bipartition classes
of T . This improves an asymptotic result of Haxell,  Luczak, and Tingley from 2002, and shows that,
though Burr’s 1974 conjecture on the Ramsey numbers of trees has long been known to be false for
certain ‘double stars’, it is true for trees with up to small linear maximum degrees.

1 Introduction

The Ramsey number of a graph G, denoted by R(G), is the smallest positive integer N such that every
red/blue edge colouring of the complete N -vertex graph KN contains a monochromatic copy of G. The
existence of R(G) follows from Ramsey’s foundational result in 1930 [32], but determining good bounds on
Ramsey numbers has since proved extremely challenging. The most notorious and natural case is where
G is the complete n-vertex graph Kn. The famous upper bound by Erdős and Szekeres [14] in 1935 and
lower bound by Erdős [11] in 1947 showed that the rate of growth of R(Kn) is exponential in n. Since
then, these bounds saw only modest improvements until the recent remarkable breakthrough of Campos,
Griffiths, Morris, and Sahasrabudhe [8] finally gave an exponential improvement to the upper bound of
Erdős and Szekeres (see also [1, 18]).

Away from complete graphs, the sparser G is, the more ambitious we can reasonably be in bounding
R(G). For example, a classical result of Chvátal, Rödl, Szemerédi, and Trotter [9] from 1983 states that
the Ramsey number of every n-vertex graph with bounded maximum degree is linear in n. That is, for
every ∆, there is some c∆ such that any n-vertex graph G with maximum degree at most ∆ satisfies
R(G) ≤ c∆n. Burr and Erdős [6] had conjectured in 1975 that, moreover, this should hold with maximum
degree replaced by degeneracy, and this was proved by Lee [26] in 2017.

There are not many graphs G for which we can muster any hope of determining R(G) exactly. Aside
from the smallest of graphs, the main candidates are trees and cycles. In 1967, Gerencsér and Gyárfás [16]
determined the Ramsey number of the n-vertex path Pn−1, showing that R(Pn−1) = ⌊3n/2⌋ − 1. For
the n-vertex star K1,n−1, note that R(K1,n−1) − 1 is the size of the largest graph such that both it
and its complement have maximum degree at most n − 2. Thus, as shown by Harary [20] in 1972,
R(K1,n−1) = 2n− 2 if n is even, and R(K1,n−1) = 2n− 3 if n is odd. The Ramsey number of the n-vertex
cycle Cn is known due to independent work in the early 1970’s by Bondy and Erdős [4], Faudree and
Schelp [15], and Rosta [33], where we have R(C3) = R(C4) = 6, R(Cn) = 2n − 1 for odd n ≥ 5, and
R(Cn) = 3n/2 − 1 for even n ≥ 6.
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For a general tree T , two constructions of Burr [5] in 1974 (see Figure 1) show that if T has bipartition
classes of sizes t1 and t2, where t1 ≥ t2, then

R(T ) ≥ max{t1 + 2t2, 2t1} − 1. (1.1)

From the results quoted above, this bound is tight when T is a path or a star of odd size, and Burr
conjectured [5] that this bound is tight for every tree T with t1 ≥ t2 ≥ 2. However, this was disproved
in 1979 by Grossman, Harary, and Klawe [17] for certain trees called double stars. For each t1 ≥ t2 ≥ 2,
let St1,t2 be the tree formed by joining the central vertices of the stars K1,t1−1 and K1,t2−1 with an edge,
noting that St1,t2 has bipartition classes with sizes t1 and t2. Grossman, Harary, and Klawe [17] showed
that if t1 ≥ 3t2 − 2, then R(St1,t2) = 2t1, and thus the bound at (1.1) is off by 1 in this case. In 1982,
Erdős, Faudree, Rousseau, and Schelp [12] attempted to rescue Burr’s conjecture by conjecturing that the
bound at (1.1) is tight when t1 = 2t2. However, this was strongly disproved by Norin, Sun, and Zhao [29]
in 2016, who showed in particular that R(S2t,t) ≥ (4.2− o(1))t (see also [10]), and thus the bound at (1.1)
can be off by a multiplicative factor.

U1 U2I:

t1 + t2 − 1 t2 − 1

U1 U2II:

t1 − 1 t1 − 1

Figure 1: Burr’s extremal constructions for R(T ) when T is a tree with bipartition classes of sizes t1 ≥ t2.
I: Disjoint blue cliques on U1 and U2, with |U1| = t1 + t2−1, |U2| = t2−1, and every edge between U1 and
U2 coloured red. Any connected blue subgraph has at most t1 + t2 − 1 < |T | vertices, and any connected
red subgraph is bipartite with fewer than t2 vertices in one class.
II: Disjoint blue cliques on U1 and U2, with |U1| = |U2| = t1 − 1, and every edge between U1 and U2

coloured red. Any connected blue subgraph has at most t1 − 1 < |T | vertices, and any connected red
subgraph is bipartite with fewer than t1 vertices in each class.
Thus, in both I and II there is no monochromatic copy of T .

All the known counterexamples to Burr’s conjecture, however, have large maximum degree, and thus
the bound at (1.1) may still be tight for trees with small maximum degree. Towards this, Haxell,  Luczak,
and Tingley [21] showed in 2002 that the bound at (1.1) is approximately tight for trees with up to small
linear maximum degree. That is, they showed that, for every ε > 0, there exists some c > 0 such that
any n-vertex tree T with maximum degree ∆(T ) ≤ cn and bipartition classes of sizes t1 ≥ t2 satisfies
R(T ) ≤ (1 + ε) max{t1 + 2t2, 2t1}.

In this paper, we will show that Burr’s bound at (1.1) is tight for all trees with up to small linear
maximum degree, as follows.

Theorem 1.1. There exists a constant c > 0 such that the following holds. Any n-vertex tree T with
∆(T ) ≤ cn and bipartition classes of sizes t1 ≥ t2 satisfies R(T ) = max{2t1, t1 + 2t2} − 1.

The existence of such a constant c in Theorem 1.1 answers in the positive a question asked explicitly
by Stein [34] in 2020. Our value of c is very small due to the use of regularity methods, and is likely
very far from optimal. It follows from the double star examples given in [29] that c cannot be improved
beyond 7/11 + o(1). For a tree T with large maximum degree we do not have a good conjecture for
the exact value of R(T ), though Burr and Erdős [7] conjectured in 1976 that for any n-vertex tree T ,
R(T ) ≤ 2n− 2 when n is even and R(T ) ≤ 2n− 3 when n is odd, or in other words R(T ) ≤ R(K1,n−1).
In 2011, Zhao [36] showed that this is true for all large even n, as a consequence of his resolution for
large n of Loebl’s n/2 − n/2 − n/2 conjecture [13]. Burr and Erdős’s conjecture follows directly from the
Erdős-Sós conjecture, and thus for large n follows from the proof of the Erdős-Sós conjecture for large trees
announced by Ajtai, Komlós, Simonovits, and Szemerédi in the early 1990s (see [30] for a discussion of
this result). A wide-ranging discussion of further results on Ramsey numbers can be found in the dynamic
survey by Radziszowski [31].
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To prove Theorem 1.1 we will conduct what is known as a stability analysis. When the red/blue
coloured host graph is not close to one of the extremal constructions in Figure 1, we will develop the
work of Haxell,  Luczak, and Tingley [21], and find a monochromatic copy of our tree T using methods
involving Szemerédi’s regularity lemma. If instead the colouring is close to an extremal construction, then
we will analyse the structure more closely to still find a monochromatic copy of T , often using randomised
embeddings. We call these two parts of the proof the ‘stability part’ and ‘extremal part’, and both of
them will be rather involved. For the stability part of the argument, we will be able to start from a certain
monochromatic structure found by Haxell,  Luczak, and Tingley [21] in the reduced graph, but will still
need to do much more work to cover all the non-extremal cases, with the main problem to overcome being
a deficit of vertices in this initial structure. For the extremal part, proving Theorem 1.1 when the colouring
approximates either extremal construction turns out to be surprisingly delicate. For instance, looking at
the first extremal construction in Figure 1, one might expect that a blue copy of an n-vertex tree T with
∆(T ) ≤ cn would appear once U1 contains one more vertex, even if a small linear proportion of the edges
within U1 are red. However, a famous example of Komlós, Särkózy and Szemerédi [23] shows that this is
not true. As such, proving Theorem 1.1 in the extremal part will require a careful consideration of both
the structure of the tree T and the presence of edges of the ‘wrong’ colour in the extremal colouring, to
decide to where, and in which colour, the tree should be embedded in different cases.

This paper is organised as follows. In Section 2 we first give a brief overview of our proof of Theorem 1.1,
focusing on how it can be divided into the stability part (Sections 4 and 5) and the extremal part (Sections 6
and 7), then collect all the basic notations and preliminary results. Then, in Section 3, we give a detailed
outline of the stability part of our proof of Theorem 1.1. In Section 4, we prove a series of technical
regularity embedding lemmas, each of which allows us to embed a monochromatic copy of the tree T into
a red/blue coloured reduced graph that contains a certain suitable structure. In Section 5, we use these
embedding lemmas to move through 4 stages of embedding attempts, and eventually conclude either that
we can find a monochromatic copy of T using regularity, or that the reduced graph and thus the original
graph are both extremal, in the sense that they approximate one of the extremal constructions. Depending
on which of the two extremal constructions our original graph approximates, we show in Section 6 and
Section 7 respectively that a monochromatic copy of T can still be found.

2 Proof overview and preliminaries

In this section, we begin by giving a short overview of our proof of Theorem 1.1 in Section 2.1, specifically
on how it divides into the stability part and the extremal part, and formalising what it means for a colouring
to approximate an extremal construction. Then, we record the basic notations we use in Section 2.2, and
collect a series of preliminary results in Sections 2.3 to 2.6.

2.1 Division of the proof of Theorem 1.1 into stability and extremal parts

We start by recapping the situation in Theorem 1.1. Let t1, t2 be positive integers so that n = t1 + t2 and
t1 ≥ t2. Let T be an n-vertex tree with ∆(T ) ≤ cn and bipartition classes V1 and V2, such that |V1| = t1
and |V2| = t2. Note that ∆(T ) ≤ cn implies t2 ≥ c−1. Let N = max{t1 + 2t2, 2t1} − 1 and let G be a
red/blue coloured complete graph on N vertices. Our aim, then, is to find a monochromatic copy of T in
G.

Our proof of Theorem 1.1 consists of two main parts, the stability part (Sections 4 and 5) and the
extremal part (Sections 6 and 7). In the stability part, we show that either G contains a monochromatic
copy of T , or G is close to one of the two extremal constructions in Figure 1. Then in the extremal part we
show that a monochromatic copy of T still exists even if G approximates an extremal construction. These
parts are quite separate, and both are quite involved, so we will sketch their proofs later (in Section 3 for
the stability part, and in Sections 6.1 and 7.1 for the two different cases of the extremal part). Here, we
state the main results for both parts, and put them together to prove Theorem 1.1. We start with the
following definition of what it means for G to be close to one of the extremal constructions.

Definition 2.1. Let 0 < µ < 1 and let G be a red/blue coloured complete graph. We say G is Type I
(µ, t1, t2)-extremal if with n = t1 + t2, there are disjoint subsets U1, U2 ⊂ V (G) such that
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• |U1| ≥ (1 − µ)n and |U2| ≥ (1 − µ)t2,

• for every u ∈ U1, dred(u, U1) ≤ µn, and

• for every i ∈ [2] and every u ∈ Ui, dblue(u, U3−i) ≤ µn,

or with red and blue swapped. On the other hand, we say G is Type II (µ, t1, t2)-extremal if with n = t1+t2,
there are disjoint subsets U1, U2 ⊂ V (G) such that

• |U1|, |U2| ≥ (1 − µ)t1, and

• for each i ∈ [2] and u ∈ Ui, dred(u, Ui) ≤ µn and dblue(u, U3−i) ≤ µn,

or with red and blue swapped. If G is either or Type I or Type II (µ, t1, t2)-extremal, we say it is
(µ, t1, t2)-extremal.

Using this, we can now state the main result of the stability part of our proof, as follows.

Theorem 2.2. Let 1/n ≪ c ≪ µ ≪ 1 and let t1, t2 ∈ N satisfy t1 + t2 = n and t1 ≥ t2. Let G be a
red/blue coloured complete graph with max{t1 + 2t2, 2t1} − 1 vertices. Then, at least one of the following
is true.

• G contains a monochromatic copy of every n-vertex tree T with ∆(T ) ≤ cn and bipartition class
sizes t1 and t2.

• G is Type I (µ, t1, t2)-extremal.

• t1 ≥ (2 − µ)t2 and G is Type II (µ, t1, t2)-extremal.

Theorem 2.2 will be proved in Section 5, and reduces the proof of Theorem 1.1 to the following two
results, which find a monochromatic copy of T even when G is close to one of the extremal constructions.
We will prove them in Sections 6 and 7, respectively.

Theorem 2.3. Let 1/n ≪ c ≪ µ ≪ 1 and let t1, t2 ∈ N satisfy t1 + t2 = n and t1 ≥ t2. If G is a Type
I (µ, t1, t2)-extremal graph with max{t1 + 2t2, 2t1} − 1 vertices, then G contains a monochromatic copy of
every n-vertex tree T with ∆(T ) ≤ cn and bipartition class sizes t1 and t2.

Theorem 2.4. Let 1/n ≪ c ≪ µ ≪ 1 and let t1, t2 ∈ N satisfy t1 + t2 = n and t1 ≥ (2 − µ)t2. If G is a
Type II (µ, t1, t2)-extremal graph with max{t1 + 2t2, 2t1} − 1 vertices, then G contains a monochromatic
copy of every n-vertex tree T with ∆(T ) ≤ cn and bipartition class sizes t1 and t2.

Given Theorems 2.2–2.4, Theorem 1.1 follows essentially immediately, but we will conclude this
overview by formally making this deduction, as follows.

Proof of Theorem 1.1. Let µ satisfy c ≪ µ ≪ 1. If G is not (µ, t1, t2)-extremal, then G contains a
monochromatic copy of T by Theorem 2.2. If G is Type I (µ, t1, t2)-extremal, then G contains a monochro-
matic copy of T by Theorem 2.3, while if t1 ≥ (2 − µ)t2 and G is Type II (µ, t1, t2)-extremal, then G
contains a monochromatic copy of T by Theorem 2.4.

Finally, we remark that in these proofs, we can often assume that t1 ≤ 2t2 + 1. Indeed, if t1 ≥ 2t2 + 2,
then we can take 2/c vertices in V1 with degree 1, which are guaranteed to exist by Lemma 2.10, and
attach ⌊(t1 − 2t2)/2⌋ new leaves to them, with none of them receiving more than cn new leaves. Let T ′

be the new tree obtained in this way, and note that the bipartition classes of T ′ have sizes t′1 = t1 and
t′2 = ⌊t1/2⌋, satisfying t′1 ≤ 2t′2 + 1 and max{t′1 + 2t′2, 2t

′
1}−1 = 2t′1−1 = 2t1−1 = max{t1 + 2t2, 2t1}−1.

Thus, the number of vertices in G remains unchanged, and it is clear that if G contains a monochromatic
copy of T ′, then G also contains a monochromatic copy of T .
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2.2 Notation

For a positive integer n ∈ N, we write [n] = {1, . . . , n} and [n]0 = [n] ∪ {0}. We will use the standard
hierarchy notation, that is, for a, b ∈ (0, 1], we will use a ≪ b to mean that there exists a non-decreasing
function f : (0, 1] → (0, 1] such that if a ≤ f(b) then the following statement holds. For a, b ≥ 1, we write
a ≪ b if 1/b ≪ 1/a. Hierarchies with more constants are defined in a similar way. For simplicity we will
sometimes ignore floor and ceiling signs when doing so does not affect the argument.

Given a graph G, we use V (G) and E(G) to denote the set of vertices and edges of G, respectively,
and write |G| = |V (G)| and e(G) = |E(G)|. For not necessarily disjoint subsets A,B ⊂ V (G), we denote
the number of edges in G with one endpoint in A and one in B by e(A,B). For a subset S ⊂ V (G), we
use G[S] to denote the graph with vertex set S and all the edges from G with both endpoints in S, and
we write G − S for the graph G[V (G) \ S]. Given two disjoint subsets S, S′ ⊂ V (G), we use G[S, S′] to
denote the bipartite graph with parts S and S′, and all edges of the form ss′ ∈ E(G) with s ∈ S and
s′ ∈ S′.

For a vertex v ∈ V (G), the set of neighbours of v is denoted by N(v), and d(v) = |N(v)| denotes
the degree of v. The maximum degree and the minimum degree of G are denoted by ∆(G) and δ(G),
respectively. Given a subset S ⊂ V (G), its external neighbourhood is N(S) = (∪s∈SN(s)) \ S. For
a vertex v ∈ V (G) and subsets S,U ⊂ V (G), we write N(v, S) = N(v) ∩ S, d(v, S) = |N(v, S)|, and
N(U, S) = N(U)∩S. When working with more than one graph, we add subscripts to denote which graph
we are working with. For example, dG(x) refers to the degree of x in the graph G.

Say G is a red/blue coloured graph if every edge in E(G) is coloured with either red or blue. We let
Gred and Gblue denote the graphs spanned by the red edges and the blue edges, respectively. For brevity,
we write dred(x) instead of dGred

(x) and dblue(x) instead of dGblue
(x), and use similar notations for the red

and blue neighbourhoods of a vertex or a set of vertices.
For µ ∈ [0, 1], a graph G is µ-almost complete if δ(G) ≥ (1 − µ)|G|, and is µ-almost empty if ∆(G) ≤

µ|G|. A bipartite graph H with bipartition classes A,B is µ-almost complete if d(a) ≥ (1−µ)|B| for every
a ∈ A and d(b) ≥ (1 − µ)|A| for every b ∈ B, and is µ-almost empty if d(a) ≤ µ|B| for every a ∈ A and
d(b) ≤ µ|A| for every b ∈ B.

2.3 Concentration results

We will need the following well-known concentration results.

Lemma 2.5 (Chernoff’s Bound [22, Corollary 2.3, Theorem 2.10]). Let X be either a binomial random
variable or a hypergeometric random variable. Then, for all 0 < ε ≤ 3/2,

P
(∣∣X − E[X]

∣∣ ≥ εE[X]
)
≤ 2 exp(−ε2E[X]/3).

Lemma 2.6 (Azuma’s Inequality [35, Lemma 4.2]). Let X1, . . . , Xm be a sequence of random variables
such that for each i ∈ [m], there exist constants ai ∈ R and ci > 0 with |Xi − ai| ≤ ci.

• If E[Xi | X1, . . . , Xi−1] ≥ ai for every i ∈ [m], then for every t > 0,

P (
∑m

i=1(Xi − ai) ≤ −t) ≤ exp
(
− t2

2
∑m

i=1 c2i

)
.

• If E[Xi | X1, . . . , Xi−1] ≤ ai for every i ∈ [m], then for every t > 0,

P (
∑m

i=1(Xi − ai) ≥ t) ≤ exp
(
− t2

2
∑m

i=1 c2i

)
.

Lemma 2.7 (McDiarmid’s Inequality [27, Lemma 1.2]). Let X1, . . . , Xm be independent random variables
taking values in a set Ω. Let c1, . . . , cm ≥ 0 and suppose f : Ωm → R is a function such that for every

i ∈ [m] and every x1, . . . , xm, x
′
i ∈ Ω, we have

∣∣∣f(x1, . . . , xi, . . . , xm) − f(x1, . . . , x
′
i, . . . , xm)

∣∣∣ ≤ ci. Then,

for all t > 0,

P
(∣∣∣f(X1, . . . , Xm) − E[f(X1, . . . , Xm)]

∣∣∣ ≥ t
)
≤ 2 exp

(
−2t2∑m
i=1 c

2
i

)
.
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2.4 Matchings in bipartite graphs

In many of our later tree embedding arguments, we will first embed all but a small set of vertices in T
with degrees 1 or 2. To finish the embedding, the following well-known Hall’s matching theorem and its
generalisation are useful.

Lemma 2.8 (Hall’s matching theorem [19, Theorem 1]). Let G be a bipartite graph with bipartition classes
A and B. If |N(S)| ≥ |S| for every S ⊂ A, then G contains a matching covering all vertices in A.

Lemma 2.9 ([3, Corollary 11]). Let G be a bipartite graph with bipartition classes A and B, and let
(fa)a∈A be a tuple of non-negative integers indexed by elements of A. Suppose that |N(S)| ≥

∑
a∈S fa

for every S ⊂ A. Then, there exists a collection of vertex-disjoint stars (Sa)a∈A in G, such that for each
a ∈ A, Sa is centred at a and has exactly fa leaves.

The conditions in Lemma 2.8 and Lemma 2.9 will both be referred as Hall’s matching condition.

2.5 Trees

We now record several useful results on tree embeddings and tree decompositions.

Lemma 2.10. If T is an n-vertex tree with bipartition classes V1 and V2 such that |V1| = t1, |V2| = t2,
and t1 ≥ t2, then T contains at least t1 − t2 + 1 leaves in V1.

Proof. Let L be the set of leaves of T in V1. Then

n− 1 = e(V1, V2) =
∑
v∈V1

d(v) ≥ |L| + 2|V1 \ L| = 2t1 − |L|,

from which it follows that |L| ≥ 2t1 − n+ 1 = t1 − t2 + 1.

A path P in a tree T is a bare path if all of its internal vertices have degree 2 in T . By the following
well-known result, every tree has either many leaves or many bare paths.

Lemma 2.11 ([25, Lemma 2.1]). Let k, ℓ, n ∈ N and let T be an n-vertex tree with at most ℓ leaves. Then
T contains a collection of at least n

k+1 − (2ℓ− 2) vertex-disjoint bare paths, each of length k.

In many of our tree embeddings, we will first divide the tree into two parts that are then embedded
with different methods and different aims. For this, we use the following definition.

Definition 2.12. For a tree T , we say that subgraphs T1, T2 of T form a decomposition of T if they are
edge-disjoint subforests of T such that E(T ) = E(T1) ∪ E(T2).

We will use the following result to decompose a tree into two subtrees so that each subtree in the
decomposition contains a large proportion of a set chosen in advance.

Lemma 2.13 ([28, Proposition 3.19]). Let T be a tree and let Q ⊂ V (T ). Then, T has a decomposition into
subtrees T1 and T2 with a unique common vertex such that |Q ∩ V (T1)| ≥ |Q|/3 and |Q ∩ V (T2)| ≥ |Q|/3.

The following almost immediate corollary is obtained by taking Q = V (T ) in Lemma 2.13.

Corollary 2.14. Every n-vertex tree T decomposes into subtrees T1 and T2 with a unique common vertex
such that ⌈n/3⌉ ≤ |T1| ≤ |T2| ≤ ⌈2n/3⌉.

Proof. Apply Lemma 2.13 with Q = V (T ), we get a decomposition of T into subtrees T1 and T2 with a
unique common vertex v such that ⌈n/3⌉ ≤ |T1| ≤ |T2| ≤ n−⌈n/3⌉+1. If n is congruent to 1 or 2 modulo
3, then n− ⌈n/3⌉ + 1 = ⌈2n/3⌉, so we are done. If n = 3k for some integer k ≥ 1, then the only situation
where the result does not follow immediately is when |T1| = k and |T2| = 2k+ 1. Assume that this holds.

If dT (v, T2) = 1, let v′ be the unique neighbour of v in T2, then T1 + vv′ and T2 − v are subtrees
decomposing T with a unique common vertex v′, and contains k + 1 and 2k vertices, respectively, as
required. If dT (v, T2) ≥ 2, let S be the smallest component in T2 − v, so 1 ≤ |S| ≤ k. Then V (T1) ∪ S
and V (T2) \ S induce two subtrees decomposing T with a unique common vertex v, and contain k + 1 ≤
k + |S| ≤ 2k and k + 1 ≤ 2k + 1 − |S| ≤ 2k vertices, respectively, finishing the proof.
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The following results show that we can cut a tree into smaller subtrees using few vertices.

Lemma 2.15. For every n-vertex tree T , there exists a vertex v ∈ T so that each component of T − v has
size at most n/2.

Proof. Choose an arbitrary vertex as the root of T . Let v be a vertex at a maximal distance from the
root subject to the condition that the tree T ′ induced by v and all of its descendents has size at least n/2.
By the choice of v, each component of T ′ − v has size less than n/2. The only component of T − v that
is not a component of T ′ − v is T − T ′, which has size at most n/2 as |T ′| ≥ n/2.

Lemma 2.16 ([2, Proposition 4.1]). Let 1/n ≪ ξ ≪ 1 and let T be an n-vertex tree. Then, there exists
a subset X ⊂ V (T ) with |X| ≤ 2ξ−1, such that every component of T −X has size at most ξn.

The following two results state that trees can be greedily embedded into graphs with large minimum
degrees, and will be used throughout the paper without any further reference.

Lemma 2.17. Let T be an n-vertex tree containing a vertex t. If G is a graph with δ(G) ≥ n− 1, then,
for any vertex v ∈ G, there is a copy of T in G with t copied to v.

Lemma 2.18. Let T be a tree with bipartition classes V1 and V2 of sizes t1 and t2, respectively. Suppose
that G is a bipartite graph with bipartition classes U1 and U2, such that

• every vertex in U1 has at least t2 neighbours in U2, and

• every vertex in U2 has at least t1 neighbours in U1.

Then, for any i ∈ [2] and any vertices t ∈ Vi and u ∈ Ui, there exists a copy of T in G such that V1 is
copied to U1, V2 is copied to U2, and t is copied to u.

2.6 Szemerédi’s regularity lemma

Let G be a bipartite graph with bipartition classes A and B. For sets X ⊂ A and Y ⊂ B, the density
between X and Y is defined as

d(X,Y ) =
e(X,Y )

|X||Y |
.

We say G is ε-regular if for every X ⊂ A and every Y ⊂ B with |X| ≥ ε|A| and |Y | ≥ ε|B|, we have
|d(X,Y ) − d(A,B)| ≤ ε. Furthermore, we say G is (ε, d)-regular if G is ε-regular and d(A,B) ≥ d. The
following results are standard.

Lemma 2.19. Let ε ≤ 1/4, and let G be a bipartite graph with bipartition classes A and B that is
(ε, d)-regular. Suppose X ⊂ A and Y ⊂ B satisfy |X| ≥

√
ε|A| and |Y | ≥

√
ε|B|, then G[X,Y ] is

(
√
ε, d− ε)-regular.

Lemma 2.20. Let G be a bipartite graph with bipartition classes A and B that is (ε, d)-regular. Suppose
Y ⊂ B satisfies |Y | ≥ ε|B|, then there are less than ε|A| vertices v ∈ A for which d(v, Y ) < (d− ε)|Y |.

Lemma 2.21. Let G be a graph containing disjoint subsets V0, V1, . . . , Vr ⊂ V (G), such that G[V0, Vi] is
(ε, d)-regular for each i ∈ [r]. Let Ui ⊂ Vi have size |Ui| ≥ ε|Vi| for each i ∈ [r]. Then, there are less than√
ε|V0| vertices v ∈ V0 such that d(v, Ui) < (d− ε)|Ui| for at least

√
εr indices i ∈ [r].

The following colourful variant of Szemerédi’s Regularity Lemma is well-known, and is the starting
point of the stability part of our proof.

Theorem 2.22 (Coloured Regularity Lemma [24, Theorem 1.18]). Let 1/k2 ≪ 1/k1 ≪ ε. Every red/blue
coloured graph G on n ≥ k1 vertices contains disjoint subsets V1, . . . , Vk ⊂ V (G) with k1 ≤ k ≤ k2 that
satisfy the following.

(i) |V (G) \ (V1 ∪ · · · ∪ Vk)| ≤ εn.

(ii) |V1| = · · · = |Vk|.
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(iii) For all but at most εk2 indices 1 ≤ i < j ≤ k, both Gred[Vi, Vj ] and Gblue[Vi, Vj ] are ε-regular.

For technical reasons, we sometimes require the sets Vi to have different sizes, but do not necessarily
need them to cover all but εn vertices in G. As this is a minor point, we do not introduce more notation
and instead use the standard term ε-regular partition under the following more relaxed definition.

Definition 2.23. Let 1/n ≪ ε ≪ d ≤ 1, and let G be a red/blue coloured graph on n vertices. An
ε-regular partition in G is a collection of disjoint subsets V1, . . . , Vk ⊂ V (G), such that for all but at most
εk2 pairs of indices 1 ≤ i < j ≤ k, both Gred[Vi, Vj ] and Gblue[Vi, Vj ] are ε-regular. Each set Vi is called a
cluster.

Given an ε-regular partition V1 ∪ · · · ∪ Vk in G, its corresponding (ε, d)-reduced graph R is a red/blue
coloured graph with vertex set [k], such that for each ∗ ∈ {red,blue} and any distinct i, j ∈ [k], there is
an ij edge of colour ∗ in R if and only if G∗[Vi, Vj ] is (ε, d)-regular.

Note that if V1, . . . , Vk form an ε-regular partition in a red/blue coloured complete graph and ε≪ d ≤
1/2, then for all but at most εk2 pairs of indices 1 ≤ i < j ≤ k, there is either a red edge ij or a blue edge
ij (or both) in the corresponding (ε, d)-reduced graph R.

Finally, we prove the following refinement result that will be used later.

Lemma 2.24. Let 1/k, 1/m ≪ ε ≪ η ≪ α ≪ d ≤ 1. Suppose G is a graph containing disjoint subsets
V1, . . . , Vk ⊂ V (G), each of size m. Let R be a graph on [k] such that for every ij ∈ E(R), G[Vi, Vj ] is
(ε, d)-regular. Suppose there exists a partition [k] = I1 ∪ I2, with |I1| = k1, |I2| = k2, and k1, k2 ≥ αk,
such that R[I1, I2] is η-almost complete. Then, there exist two collections of disjoint sets {Ui : i ∈ J} and
{Wi : i ∈ J} such that

• |Ui| = |Uj | and |Wi| = |Wj | for any i, j ∈ J ,

•
∑

i∈J |Ui| ≥ (1 − α)
∑

i∈I1
|Vi|,

∑
i∈J |Wi| ≥ (1 − α)

∑
i∈I2

|Vi|, and

• G[Ui,Wi] is (
√
ε, d− ε)-regular for every i ∈ J .

Proof. Let η ≪ γ ≪ α. For each i ∈ I1, pick a largest collection of disjoint subsets of Vi of size
γk1m/(k1 + k2). For each i ∈ I2, pick a largest collection of disjoint subsets of Vi of size γk2m/(k1 + k2).
Let {Ui : i ∈ J1} and {Wi : i ∈ J2} be the collections of refined subsets coming from {Vi : i ∈ I1}
and {Vi : i ∈ I2}, respectively. Note that at most a γ-proportion of vertices are lost from each Vi in
this refinement process. Let R′ be a graph with vertex set J1 ∪ J2, such that ij ∈ E(R′) if G[Ui,Wj ]
is (

√
ε, d − ε)-regular. Then, as R[I1, I2] is η-almost complete, R′[J1, J2] is η-almost complete as well by

Lemma 2.19. Therefore, we can greedily find a matching M of size (1 − η) min{|J1|, |J2|} in R′[J1, J2].
To finish, observe that

∑
i∈J1∩V (M) |Ui| ≥ (1 − η)(1 − γ)

∑
i∈I1

|Vi| ≥ (1 − α)
∑

i∈I1
|Vi|, and similarly∑

i∈J2∩V (M) |Ui| ≥ (1 − α)
∑

i∈I2
|Vi|.

3 Outline of the proof of Theorem 2.2: Stability

Simplifications for the discussion. The main technical tool for the stability part of the proof of
Theorem 1.1, i.e. the proof of Theorem 2.2, is Szemerédi’s regularity lemma. The following outline of the
proof of Theorem 2.2 assumes a working knowledge of the regularity lemma and simple embeddings using
it, and further surpresses two technical details that we will explain momentarily. Readers less familiar
with regularity techniques may find it useful to start with Section 2.6, and readers finding this outline too
scant in detail may find it valuable instead as a blueprint when reading the formal proofs in Section 4 and
Section 5.

There are two main technicalities that we will suppress in the following outline. Most notably, due to
the imbalance in the sizes t1 and t2 of the bipartition classes of the tree T , we will sometimes work with
regularity partitions whose clusters have different sizes. In several cases, clusters will have two different
sizes that are in the ratio t1 : t2. Moreover, in many of our more intricate arguments, the same cluster
may change its role throughout the proof, having vertices from either the larger or the smaller side of the
bipartition embedded into it. To facilitate this, we sometimes need to refine the regularity partition that
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we started with, partitioning all clusters into smaller clusters of suitable sizes, before pairing them up
again to form regular pairs with the right size ratio (see e.g. Lemma 2.24). In this outline, we will skim
over this aspect of the proof. That is, we will only work with a fixed regularity partition here and not
worry about the technicalities regarding cluster sizes and refinements. The crucial point we focus on in
the outline here is the number of vertices in the original graph that are covered by a certain set of clusters,
where for any set I ⊂ [k], we say that I covers the vertices ∪i∈IVi.

The other technicality is one common to many uses of the regularity lemma: we will need to have
many constants of decreasing sizes in some hierarchy. To avoid this burden here, we will informally use
m+ or m− to denote a number equal to m + αn or m − αn, respectively, for some small and suitable
constant α > 0. In particular, 0+ will represent αn for some α > 0. The constants α involved in different
instances of these notations are all different and will be chosen later carefully in the formal proofs. To
give a rough idea of the relation of parameters, we can expect these α to satisfy ε ≪ α ≪ 1, where ε is
the regularity parameter.

Set-up in the proof of Theorem 2.2. In Theorem 2.2, we have an n-vertex tree T satisfying ∆(T ) ≤ cn
that has bipartition classes U1 and U2 with sizes t1 and t2 respectively, where t1 ≥ t2. We also have
a red/blue coloured complete graph G with max{t1 + 2t2, 2t1} − 1 vertices, and wish to either find a
monochromatic copy of T in G or show that the colouring of G is close to one of the two extremal
constructions, where this proximity is controlled with the parameter µ. As mentioned in Section 2.1, by
adding leaves to the t2-side of the tree if necessary, we may assume that t1 ≤ 2t2 + 1. In fact, as will be
justified in Section 5.7, we can even assume that t1 ≤ 2t2 in the proof of Theorem 2.2, which we will do
from now on. In particular then, the graph G has t1 + 2t2 − 1 vertices.

Stages, situations and embedding methods. Let ε be a suitable regularity parameter satisfying
1/n≪ c≪ ε≪ µ≪ 1. We begin by applying a result (Theorem 5.1) of Haxell,  Luczak, and Tingley [21]
to find an ε-regular partition in V (G) that contains a certain monochromatic structure in the reduced
graph (see the top left of Figure 2). Having found this, we say we have an A-situation. We then work
through a sequence of 4 stages. At each stage, we either find a monochromatic copy of the tree, or deduce
that G must be close to an extremal construction, or find more useful structure in the reduced graph. If
the last of these is true at the end of a stage, we reach another named situation (see Figure 2), and if we
reach the end of these 4 stages, then we have an E-situation (see the right of Figure 2), which will imply
that G is close to an extremal construction.

At each stage, our deductions will often say that if there is a certain structure in the reduced graph
R, then we can find a monochromatic copy of the tree T in G using a named embedding method. These
embedding methods include one due to Haxell,  Luczak, and Tingley [21] that we will refer to as H LT,
as well as a series of new ones denoted by EM1a-c and EM2a-d that we will prove in Section 4. The
structure required for each of these methods is depicted in either Figure 3 or Figure 4, marked with
relevant references to the corresponding lemmas and the sections they are proved in. Formal definitions
of the required structures can be found in the relevant sections, though informal descriptions of these
structures are provided in the captions. Which embedding methods are used for which stages are noted in
Figure 2. To give a rough idea of how these embedding lemmas are proved, we will discuss and sketch a
proof of simplest embedding method H LT below, and briefly relate it to the other methods. All of these
proofs use the same general framework relying on a technical embedding lemma using regularity proved
in Section 4.2.

Embedding method H LT. As shown by Haxell,  Luczak, and Tingley [21], if the left-most structure in
Figure 3 can be found in the reduced graph R in red, say, then we can find a red copy of T in G. More
precisely, the structure is defined as follows. There is an ε-regular partition V1 ∪ · · · ∪ V2k+1 in G with a
corresponding (ε, d)-reduced graph R, an index i ∈ [2k + 1] and a partition [2k + 1] \ {i} = IA ∪ IB , such
that ia is an edge in Rred for each a ∈ IA, and there is a perfect matching M in Rred between IA and IB .
Furthermore, IA covers t+2 vertices of G while IB covers t+1 vertices of G, and the ratio between the sizes
of the clusters indexed by IB and by IA is around t1 : t2.

Observe that the structure described here is a bipartite subgraph of the reduced graph, so if we are to
embed the tree T into the ε-regular pairs corresponding to edges in this structure, it is necessary that IA
covers t+2 vertices of G so that there is enough room for vertices in U2 to be embedded among them, and
similarly that IB covers t+1 vertices of G for the embedding of vertices in U1. To prove their approximate
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Stage 2: H LT, Cascading lemma (Lemma 5.10)

Stage 3: EM2a,b,c,d
Stage 4: H LT, EM2a,b,c,d

Figure 2: The different situations we find in the reduced graph, and the stages we use to work through
them, along with the sections they are carried out in and the corresponding lemmas. Which embedding
methods are used at which stages is recorded underneath. The numbers n− and (n+ t2)− on top refer to
the total number of vertices in G covered by IA ∪ IB , while the numbers beneath refer to the number of
vertices of G covered by IA or IB as appropriate. The shaded areas indicate that the corresponding edges
in the reduced graph are mostly that colour.
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Figure 3: The structure in the reduced graph required for embedding methods H LT and EM1a-c, along
with their corresponding sections, names, and lemmas. On the left, t+2 and t+1 refer to the number of
vertices in G covered by IA and IB . In each other structure, H LT− refers to the same structure as H LT
attached to i but covering t−2 and t−1 vertices, and comprises the majority of the required structure, while
the remaining structure pictured covers 0+ vertices in G. In EM1a-c, each vertex in I ′B or IB,1 has some
red neighbours in IC . In EM1b there are some red edges within I ′A, while in EM1c there are sets IA,2

and IB,2 matched together in red and every vertex in these sets has some red neighbours in IA,1.
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Figure 4: The structure in the reduced graph required for EM2a-d, along the corresponding sections,
names, and lemmas. In all cases IA and IB together cover n− vertices, and lower bounds or sizes for the
number of vertices covered by IA and by IB are given in each case. In EM2a-c, almost all of the edges in
R between IA and IB are red. In EM2a and EM2b, there is a red edge in R[IA] and R[IB ], respectively.
In EM2d almost all edges in R within IA and within IB are red.
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version of Theorem 1.1 in [21], Haxell,  Luczak, and Tingley started with a red/blue coloured complete
graph on (t1 + 2t2)+ vertices, and showed that its reduced graph will always contain, in red or blue, the
structure required to apply H LT. However, as our graph G has only t1 + 2t2 − 1 vertices, we cannot find
this structure in full. Instead, we use their result to show that we can find a slightly scaled down version of
H LT with the corresponding sets IA and IB covering t−2 and t−1 vertices respectively (see Theorem 5.1).
This is the A-situation depicted in Figure 2, and we denote this structure by H LT−.

Roughly speaking, in each of our other embedding methods we will be able to embed most of the tree
relatively easily, but need to somehow make up for a lack of vertices in both IA and IB in the H LT−

structure. This can be seen in the structures required for EM1a-c depicted in Figure 3, where part
of the structure in each case is H LT−, and we need to find some additional structure to complete the
embedding. A major driver of the complexity in our embedding is that the tree T could have a linear
maximum degree, so the diameter of T could be as small as 5. This means that structures in the reduced
graph with larger diameters are often not very useful for us.

As an example, we now give a sketch of how to embed T into the structure H LT described above. We
start by finding a constant-sized set of vertices X ⊂ V (T ) such that T − X has only small components
(see Lemma 2.16 and Lemma 4.1). These components could be linear-sized, but must be much smaller
compared to the regularity clusters. Let i1 = i. Remove an arbitrary edge from M , let i2 be the endpoint
of this edge in IA, and note that i1i2 is an edge in Rred. This small modification is depicted in Figure 9.

Our aim is to embed T into Gred so that vertices in X ∩ U2 are embedded into Vi2 , vertices in
(X ∩ U1) ∪ NT (X ∩ U2) are embedded into Vi1 , and for each component K of T − X, we can assign to
it some edge ab in M with a ∈ IA and b ∈ IB , such that all vertices in K not mentioned so far are
embedded into either Va or Vb depending on if they are in U2 or U1, respectively. As X is constant-sized,
by choosing the maximum degree parameter c to be small enough, NT (X ∩ U2) will be a linear-sized set
small enough to be embedded along with X ∩ U1 into the regularity cluster Vi1 . We are only embedding
X ∩U2 into the cluster Vi2 , so there is plenty of room there. To make sure that we have enough room for
the rest of the embedding, for each component of T −X we will decide which clusters to embed it into by
picking an edge ab in M independently and uniformly at random. As each component of T −X is small,
with high probability this will distribute the components of T − X across the edges of M without too
many vertices assigned to any one edge. This ensures we have enough room in each cluster, so standard
regularity techniques now apply to find a red copy of T .

Overview of the 4 stages in the proof of Theorem 2.2. We start the 4-stage proof of Theorem 2.2
by applying the aforementioned Haxell,  Luczak, and Tingley [21] result (see Theorem 5.1) to our red/blue
coloured complete graph G to find a monochromatic H LT− structure in the reduced graph R. This is
the A-situation depicted in the left of Figure 2, and we can now proceed to Stage 1.

Stage 1
Given an A-situation in R, say in red, IA and IB each does not cover enough vertices to let us use

the embedding method H LT. Let IC = V (R) \ (IA ∪ IB ∪{i}), so that IC covers (n+ t2)−− t−2 − t−1 = t−2
vertices. If almost all of the edges in R between IB and IC are blue, then we would have a C-situation
in blue with IC in place of IA, and can skip ahead to Stage 3. Suppose, then, that there are at least
some red edges between IB and IC . In particular, if IB,1 is the set of vertices in IB with at least some
red neighbours in IC , then IB,1 is non-empty. Let IA,1 be the set of vertices matched with IB,1 by the
matching M . Then, take IA,3 to be the set of vertices in IA \ IA,1 with at least some red neighbours in
IC , and let IB,3 be the set of vertices matched with IA,3 by M . Finally, let IA,2 = IA \ (IA,1 ∪ IA,3) and
IB,2 = IB \ (IB,1 ∪ IB,3). See the left of Figure 5 for a depiction of these vertex sets.

Suppose there is no copy of T in red, and thus the structure required to use any of EM1a-c does not
exist in red. We will be able to show, then, that i) the edges between IA,1 and IC are almost all blue, ii)
the edges between IA,1 and IB,3 are almost all blue, iii) most of the edges in IA,1 are blue, and iv) for
most of the edges iAiB ∈ M [IA,2, IB,2], one of iA or iB will have mostly blue neighbours in IA,1. These
deductions are commented on below, but assuming i)–iv) hold, we find a B-stituation as follows.

From iv), we can find a subset IAB,2 ⊂ IA,2 ∪ IB,2 containing a vertex in almost every edge in
M [IA,2, IB,2], so that the edges between IAB,2 and IA,1 are mostly blue. Combined with ii) and iii), the
edges between ID := IAB,2∪ IB,3∪ IA,1 and IA,1 are mostly blue. Furthermore, since ID contains a vertex
in almost every edge in M , and every cluster indexed by IB contains more vertices than one indexed by
IA, we see that ID covers at least close to the same number of vertices as IA does, and thus ID covers
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Figure 5: On the left, the main structure in Stage 1. On the right, the main structure in Stage 2.

at least t−2 vertices. Moreover, as IA,1 is non-empty and i) holds, the edges from IC to ID are almost all
blue, and we can select some j ∈ IA,1 with almost all blue edges to IC ∪ ID. Thus, j, IC and ID \ {j} give
the structure required for a B-situation in blue.

We finish this discussion of Stage 1 by commenting briefly on the four deductions mentioned above
and the embedding methods required for them, using the same labels as in Figure 3 where possible.

i) R[IA,1, IC ] is almost all blue. If this does not hold, then let I ′A,1 be a small set of vertices in IA,1

with some red neighbours in IC , and let I ′B,1 be the vertices matched with I ′A,1 by M . We can then find
a perfect red matching between I ′A,1 and some I ′′B,1 ⊂ IC , and set I ′C = IC \ I ′′B,1 to obtain the structure
required for EM1a.

ii) R[IA,1, IB,3] is almost all blue. If this does not hold, then, similar to i), let I ′A,1 be a small set of
vertices in IA,1 with some red neighbours in IB,3, let I ′B,1 be the vertices matched with I ′A,1 by M , and
find a perfect red matching between I ′A,1 and some I ′′B,1 ⊂ IB,3. Unlike i), using I ′′B,1 for the structure
in EM1a will ‘orphan’ the vertices in IA,3 matched to I ′′B,1 by M , say those in I ′A,3. However, from the
definition of IA,3, we can find a perfect red matching between I ′A,3 and some I ′B,3 ⊂ IC , which can be used
to replace I ′′B,1 to complete the structure required for EM1a.

iii) R[IA,1] is almost all blue. If this does not hold, then we have the structure required for EM1b –
some red edges within a set IA,1 whose neighbours under M (i.e., the vertices in IB,1) all have some red
neighbours in IC .

iv) For most edges in M [IA,2, IB,2], one endpoint has mostly blue edges to IA,1. If this does not
hold, then we have the structure required for EM1c – a small red submatching of M [IA,2, IB,2] whose
vertices all have some neighbours within IA,1.

Stage 2

Suppose, now, we have a blue B-situation in R: a vertex j with blue edges to almost every vertex
in two disjoint sets IA and IB , with both IA and IB covering t−2 vertices of G, and almost every edge
between them being blue. Let M be a maximum blue matching between IA ∪ IB and IC (see the right
of Figure 5). If IC ∩ V (M) covers more than (t1 − t2)+ vertices in G, then using this matching and the
B-situation structure, we can find the structure required to embed T in blue using H LT, where we use
j as the vertex i in the H LT structure and use that IA ∪ IB ∪ (IC ∩ V (M)) covers 2t−2 + (t1 − t2)+ = n+

vertices in G.
Therefore, we can assume that IC ∩ V (M) covers at most (t1 − t2)+ vertices, so IC \ V (M) covers at

least (n + t2)− − 2t−2 − (t1 − t2)+ = t−2 vertices. If almost all edges between a subset I ⊂ IA ∪ IB and
IC \ V (M) are red, with I ∪ (IC \ V (M)) covering n− vertices in G, then we have a red C-situation.
Unfortunately, the maximality of M only immediately gives that almost all edges between (IA∪IB)\V (M)
and IC \ V (M) are red, and they might cover only (n+ t2)− − 2(t1 − t2)+ = (4t2 − t1)− vertices together,
which could be as small as 2t−2 if t1 ≈ 2t2.

To combat this, we exploit the maximality of the matching M in a more sophisticated way using what
we call a ‘cascading argument’ (see Lemma 5.10). Note that any blue edge between some c ∈ IC \ V (M)
and (IA ∪ IB) ∩ V (M) would allow us to exchange that edge into the matching M to create a matching
M ′ that has the same intersection with IA∪IB as M , but whose intersection with IC includes c and omits
some vertex c′ ∈ IC∩V (M). The maximality of M then implies the edges between c′ and (IA∪IB)\V (M)
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are mostly red. Iterating such an argument will eventually allow us to find two large subsets X and Y
with (IA ∪ IB) \ V (M) ⊂ X ⊂ IA ∪ IB and IC \ V (M) ⊂ Y ⊂ IC , such that the edges between X and Y
are mostly red, X and Y both cover at least t−2 vertices in G, and X ∪ Y cover at least n− vertices in G.
This gives a red C-situation.

Stage 3
Suppose then we have a red C-situation in R, which consists of two disjoint vertex sets IA and IB ,

each covering at least t−2 vertices and together covering n− vertices, such that R[IA, IB ] is mostly red.
Let IC = V (R) \ (IA ∪ IB), which covers (n+ t2)− − n− = t−2 vertices. In the rest of Stage 3 we will use
two different sequences of deductions (Claim A and Claim B) several times. Before continuing then, we
state roughly what they are and summarise the arguments for them.

IA IB

IC

t−1 t−2

t−2

=⇒
or

EM2c

IA IB

IC

t−1 t−2

t−2
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D-sit.
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t−2
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WLOG
.
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IC

t−1 t−2

t−2

Figure 6: The deductions for Claim A, before finally EM2c is applied to get a red copy of T .

Claim A: If IA and IB cover t−1 and t−2 vertices respectively, and there are some red edges between IB
and IC , then we can either find a monochromatic copy of T or reach a D-situation.
Argument for Claim A: If there are some red edges between IA and IC then EM2c applies. Thus, we
can assume R[IA, IC ] is almost all blue. If R[IB , IC ] is mostly red, then we have a D-situation in red
using IA ∪ IC and IB , so there must be some blue edges between IB and IC , as well as some red edges as
part of the assumption. If there are some red edges in IA, then we can find a small red matching in IA
and move one side of this matching out of IA to get the structure required for EM2c in red. Finally, if
there are some blue edges in IA then we can similarly apply EM2c in blue.
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Figure 7: The deductions for Claim B, before finally either EM2d applies or we have a D-situation.

Claim B: Suppose IA and IB cover at least t+2 and t−2 vertices respectively, and n− vertices in total. If
there are some red edges between IA and IC , then we can either find a monochromatic copy of T or reach
a D-situation.
Argument for Claim B: If there are some red edges in R[IA] or R[IB ], then EM2a or EM2b applies
respectively, so assume that R[IA] and R[IB ] are both mostly blue. If some vertices in IC have some blue
neighbours in both IA and IB , then we can use EM2d. Thus, we can partition most of IC into I ′A ∪ I ′B ,
such that R[IA, I

′
B ] and R[I ′A, IB ] are both mostly red.

Like above, if there are some red edges in R[IA ∪ I ′A] or R[IB ∪ I ′B ], then EM2a or EM2b applies
respectively, so we can assume that both R[IA∪I ′A] and R[IB∪I ′B ] are mostly blue. If there is some vertex
in I ′A with some blue neighbours in IB ∪ I ′B , or if there is some vertex in I ′B with some blue neighbours in
IA ∪ I ′A, then we can apply EM2d. Thus, we can assume that R[IA ∪ I ′A, IB ∪ I ′B ] is mostly red, which
gives a D-situation.

Stage 3 using Claim A and B. Using these two claims, we can now carry out Stage 3. Note first that
if R[IA ∪ IB , IC ] is mostly blue, then they form a D-situation, so assume that there are some red edges
either between IA and IC or between IB and IC . If both IA and IB cover at least t+2 vertices, then we
can use Claim B to find a monochromatic copy of T or reach a D-situation.
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Thus, we can assume without loss of generality that IB covers at most t+2 vertices, so IA covers at
least t−1 vertices. If there are some red edges between IB and IC , then we can use Claim A to find a
monochromatic copy of T or reach a D-situation. Otherwise, there must be some red edges between IA
and IC . If t1 ≤ t+2 , then we can apply Claim A with IA and IB swapped as t1 ≈ t2, while if t1 ≥ t+2 ,
then we can apply Claim B.

Stage 4

Suppose finally that we have a blue D-situation in R, which consists of two disjoint vertex sets IA
and IB , each covering at least t−2 vertices and together covering (n+ t2)− vertices, such that R[IA, IB ] is
mostly blue. First, suppose in addition that both IA and IB cover at least t+2 vertices. Then, if there is
a blue edge in either R[IA] or R[IB ], we can take some vertices out of IB to form IC , which allows us to
apply EM2a or EM2b, respectively, to find a blue copy of T . Thus, we can assume that R[IA] and R[IB ]
are both mostly red. If the larger of IA and IB , which we can assume is IA, covers at least t+1 vertices,
then we can take some vertices out of IA to form ID and some vertices out of IB to form IC , so that we
can apply EM2c to get a blue copy of T . If IA covers at most t+1 vertices, then we have (n+ t2)− ≤ 2t+1 ,
and so t1 ≈ 2t2 and both IA and IB must cover at least t−1 vertices in G. This gives an E-situation, and
will imply that G is close to a Type II extremal construction.

Now suppose that the smaller of IA and IB , which we can assume is IB , covers at most t+2 vertices.
Then, IA covers (n + t2)− − t+2 = n− vertices in G. If there are some blue edges in R[IA], then we can
use them to take some vertices out of IA to form IC , and then apply EM2a. Thus, we can assume that
R[IA] is mostly red. If IA covers at least n+ vertices, then we can easily find the structure required to
apply EM2c in R[IA]. Therefore, we can assume that IA covers at most n+ vertices, and so we have an
E-situation that will imply that G is close to a Type I extremal construction.

4 Embedding methods for the proof of Theorem 2.2: Stability

In this section, we prove a series of embedding lemmas using regularity, each of which says that if a certain
structure exists in the reduced graph R, then we can embed T into G. In Section 4.1, we prove a tree
decomposition lemma phrased in terms of graph homomorphisms, which cuts the tree T into small pieces by
removing very few vertices. Then, in Section 4.2, we prove our main technical lemma, Lemma 4.2. Roughly
speaking, it says that given a suitable structure in the reduced graph and an appropriate assignment of
each small piece of the tree T to a part of the structure, we can find a copy of T by embedding each piece
between a randomly chosen regular pair within the part it is assigned to. This is then applied to prove
embedding methods H LT in Section 4.3, EM1a-c in Sections 4.4–4.6, and EM2a-d in Sections 4.7–4.10.
In each application, the structure in the reduced graph provided by the assumption is transformed into a
substructure of the one used in Lemma 4.2, then we find a proper assignment of each piece of the tree T
to a part of this structure, so that on average no cluster has too many vertices assigned to it.

As mentioned at the end of Section 2.1, by adding leaves to the t2-side of the tree if necessary, we can
assume that t1 ≤ 2t2 + 1. In fact, as we will show later in Section 5 when we prove Theorem 2.2, it can
even be assumed that t1 ≤ 2t2. As such, all of the embedding methods we prove below in this section will
have the assumption that t2 ≤ t1 ≤ 2t2.

4.1 Tree decomposition

In this subsection, we prove the following lemma phrased in terms of graph homomorphisms that cuts
the tree T into small pieces by removing very few vertices. Recall that for graphs H1 and H2, a function
ϕ : H1 → H2 is a graph homomorphism if for any edge uv in H1, ϕ(u)ϕ(v) is also an edge in H2.

Lemma 4.1. Let 1/n≪ c≪ ξ. Let S be the following graph:

Y3 X2 Y1 X0 Y0 X1 Y2 X3

S :

Let T be an n-vertex tree. Then, there is a homomorphism ϕ : T → S such that each component of
T − ϕ−1(X0 ∪ Y0) has size at most ξn and |ϕ−1(X0 ∪ Y0 ∪X1 ∪ Y1)| ≤ ξn.
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Proof. Let the bipartition classes of T be V1 and V2. By Lemma 2.16, there exists Z ⊂ V (T ) such that
each component of T − Z has size at most ξn and |Z| ≤ 2ξ−1. It follows that T − Z contains at most
|Z| · ∆(T ) ≤ 2cnξ−1 ≤ ξn/10 components. Arbitrarily pick t1 ∈ Z, view T as being rooted at t1, and
extend t1 to an ordering t1, t2, . . . , tn of the vertices of T , such that for each 2 ≤ i ≤ n, ti has a unique
neighbour, namely its parent in T , to its left in this ordering, and vertices in the same component of T −Z
appear consecutively.

Let A ⊂ V (T − Z) be the set consisting of each vertex in a component of T − Z that appears first in
the ordering. Let B be the set of parents of vertices in Z, and let C be the set of parents and children
of vertices in B. Note that the sets A,B,C could overlap. For each ∗ ∈ {A,B,C,Z} and j ∈ [2], let
∗j = ∗ ∩ Vj .

We now define a homomorphism ϕ : T → S, so that the following conditions are maintained.

A1 ϕ(t) = X0 for each t ∈ Z1 and ϕ(t) = Y0 for each t ∈ Z2.

A2 ϕ(t) ∈ {X0, X1} for each t ∈ B1 and ϕ(t) ∈ {Y0, Y1} for each t ∈ B2.

A3 ϕ−1({X0, X1, Y0, Y1}) ⊂ A ∪B ∪ C ∪ Z.

To initialise, let ϕ(t1) = X0 if t1 ∈ Z1 and ϕ(t1) = Y0 if t1 ∈ Z2. Suppose we have just finished defining ϕ
for a vertex in Z or a component in T − Z.

Suppose first that the next vertex in the ordering is a vertex ti ∈ Z. If ti ∈ Z1, then we can define
ϕ(ti) = X0 as the image of its parent in T under ϕ is adjacent to X0 in S by A2. Similarly, if ti ∈ Z2,
then we can safely define ϕ(t1) = Y0.

Now suppose the next vertex in the ordering is a vertex ti ∈ A within a component K of T − Z.
Assume that ti ∈ A1, then ϕ sends its parent to Y0 by A1, so we can define ϕ(ti) = X1. Note that A2 is
also maintained if ti happens to be in B1. Define ϕ on the remaining vertices t ∈ K as follows.

t ∈ A1 B1 B2 C1 V1 \ (A1 ∪B1 ∪ C1) V2 \B2

ϕ(t) = X1 X1 Y0 X1 X3 Y2

One can check that this defines a valid homomorphism using the definitions of A,B,C. For example, if
t ∈ B2 ∩K, then ϕ(t) is defined to be Y0. The parent and children of t are in C1 from definition, and are
sent by ϕ to X1, which is valid. Moreover, both A2 and A3 are maintained. The case when ti ∈ A2 is
symmetric so is omitted.

Therefore, we can define a homomorphism ϕ : T → S satisfying A1–A3. Every component of
T − ϕ−1({X0, Y0}) has size at most ξn as it is contained in a component of T − Z. Finally, by A3,
|ϕ−1({X0, X1, Y0, Y1})| ≤ |A|+ |B|+ |C|+ |Z| ≤ ξn/10 + 2ξ−1 + 2ξ−1 ·∆(T ) + 2ξ−1 ≤ ξn, as required.

4.2 Main technical embedding lemma

In this subsection, we prove our main technical embedding lemma. Roughly speaking, it says that given
a reduced graph structure R and a tree T cut into many small pieces, if each piece can be assigned
appropriately into a part of R (represented below as a homomorphism φ : T → R′), so that on average no
cluster has too many vertices assigned to it (see B2), then we can find a copy of T in G.

Lemma 4.2. Let 0 < 1/n ≪ c ≪ ξ ≪ 1/k ≪ ε ≪ α ≪ d ≤ 1. Let i1, i2, i3 ∈ [k] be distinct and let
I0,1, I0,2, I0,3, I1,1, I1,2, I1,3, I2,1, I2,2, I2,3, I3,1, I3,2, I3,3 partition [k] \ {i1, i2, i3} such that |I0,1| = |I0,2| =
|I0,3|, |I1,1| = |I1,2| = |I1,3|, |I2,1| = |I2,2| = |I2,3|, and |I3,1| = |I3,2| = |I3,3|.

As depicted in Figure 8, let R be a graph with vertex set [k] and edge set consisting of the edges in

{i1i2, i2i3} ∪ {i1i : i ∈ I0,1} ∪ {iai : a ∈ [3], i ∈ Ia,1},

along with a perfect matching between each of the eight pairs of vertex sets (Ia,1, Ia,2) and (Ia,2, Ia,3) for
every a ∈ [3]0. Let R′ be the graph with vertex set {i1, i2, i3} ∪ {Ia,b : a ∈ [3]0, b ∈ [3]} and edge set

{i1i2, i2i3, i1I0,1, i1I1,1, i2I2,1, i3I3,1} ∪ {Ia,1Ia,2 : a ∈ [3]0} ∪ {Ia,2Ia,3 : a ∈ [3]0}.
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i1

i2

i3

R :

I0,1 I0,2 I0,3

I1,1 I1,2 I1,3

I2,1 I2,2 I2,3

I3,1 I3,2 I3,3

i1

i2

i3

I1,1 I1,2 I1,3

I2,1 I2,2 I2,3

I3,1 I3,2 I3,3

I0,1 I0,2 I0,3

R′ :

Figure 8: Auxiliary graphs R and R′ used in the statement of Lemma 4.2

Let G be a graph on at most 2n vertices with a vertex partition V1 ∪ V2 ∪ · · · ∪ Vk, such that for each
ij ∈ E(R), G[Vi, Vj ] is (ε, d)-regular, and for each I ∈ V (R′) \ {i1, i2, i3}, the sets Vi with i ∈ I all have
the same size. Assume also that n/10k ≤ |Vi| ≤ εn for each i ∈ {i1, i2, i3}.

Let T be an n-vertex tree with ∆(T ) ≤ cn. Suppose φ : T → R′ is a homomorphism such that the
following hold.

B1 φ−1({i1, i2, i3}) ̸= ∅, and every component of T − φ−1({i1, i2, i3}) has size at most ξn.

B2 For each I ∈ V (R′) \ {i1, i2, i3} with φ−1(I) ̸= ∅, |φ−1(I)| + αn ≤
∑

i∈I |Vi|.

B3 For each i ∈ {i1, i2, i3}, |φ−1(i)| ≤ ξn.

Then, G contains a copy of T .

Proof. Since φ is a homomorphism, the image of every component of T − φ−1({i1, i2, i3}) under φ is
entirely contained in Ia := Ia,1 ∪ Ia,2 ∪ Ia,3 for some a ∈ [3]0. For each a ∈ [3]0 then, let ra be the
number of components of T − φ−1({i1, i2, i3}) whose images are contained in Ia,1 ∪ Ia,2 ∪ Ia,3, and label
these components as Ta,1, . . . , Ta,ra . Let x1 ∈ φ−1({i1, i2, i3}), view T as being rooted at x1, and extend
it to an ordering x1, . . . , xn of V (T ) so that T [x1, . . . , xj ] is a tree for each j ∈ [n], and vertices in the
same component of T − φ−1({i1, i2, i3}) appear consecutively. Moreover, we can ensure that for every
x ∈ φ−1({i1, i2, i3}), the components of T − φ−1({i1, i2, i3}) that directly descends from x appear right
after x in this ordering. For each a ∈ [3]0 and ℓ ∈ [ra], let pa,ℓ be the smallest index such that xpa,ℓ

is a
vertex in Ta,ℓ. By relabelling if necessary, assume that pa,1 < pa,2 < · · · < pa,ra for each a ∈ [3]0.

We now provide a random algorithm that, with positive probability, produces an assignment function
σ : V (T ) → V (R) consistent with φ that guides an embedding ψ : T → G. To initialise, let σ(x) = i for
every x ∈ φ−1(i) and i ∈ {i1, i2, i3}, and let ψ be the empty function. Now, for each s ∈ [n] in turn, if
s = pa,ℓ for some a ∈ [3]0 and ℓ ∈ [ra], then we extend the definition of σ to include all vertices in Ta,ℓ in
a random manner defined below, while we do nothing to σ otherwise. Then, if possible, we extend ψ by
embedding xs into G so that the following properties hold, otherwise we stop this process. For notational
convenience, let i0 = i1, and let ka = |Ia,1| for every a ∈ [3]0.

C1 ψ(xj) ∈ Vσ(xj) for each j ∈ [s].

C2 For every j ∈ [s] and j′ > j satisfying j′ /∈ {pa,ℓ : a ∈ [3]0, ℓ ∈ [ra]} and xjxj′ ∈ E(T ), we have
dG(ψ(xj), Vσ(xj′ )

\ ψ({x1, . . . , xj−1})) ≥ d|Vσ(xj′ )
|/4 if σ(xj′) ∈ {i1, i2, i3}, and dG(ψ(xj), Vσ(xj′ )

\
ψ({x1, . . . , xj−1})) ≥ dαn/4ka if σ(xj′) ∈ Ia for some a ∈ [3]0.

C3 For every a ∈ [3]0 and j ∈ [s], if φ(xj) = ia, then for all but at most αka/100 values of i ∈ Ia,1,
there exists a set Wi,j ⊂ N(ψ(xj), Vi \ψ({x1, . . . , xj−1})) with size dαn/8ka, such that if j < j′ ≤ s
and xj′ is a vertex in a component that directly descends from xj , then ψ(xj′) avoids these sets Wi,j

unless xj′ ∈ NT (xj).

First, we show how σ is randomly extended when s = pa,ℓ for some a ∈ [3]0 and ℓ ∈ [ra]. Note that
s > 1 as x1 ∈ φ−1({i1, i2, i3}). Let 1 ≤ s′ < s be the unique index satisfying xs′xs ∈ E(T ), and observe
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that as Ta,ℓ is a component of T − φ−1({i1, i2, i3}), we have φ(xs) = Ia,1, and thus σ(xs′) = ia. By
C3, there exists Ia,1,ℓ ⊂ Ia,1 with |Ia,1,ℓ| ≥ (1 − α/100)ka, such that for every i ∈ Ia,1,ℓ, there exists
Wi,s′ ⊂ N(ψ(xs′), Vi \ ψ({x1, . . . , xs′−1})) with size dαn/8ka. Pick ia,1,ℓ ∈ Ia,1,ℓ uniformly at random.
Let ia,2,ℓ ∈ Ia,2 and ia,3,ℓ ∈ Ia,3 be such that ia,1,ℓia,2,ℓ, ia,2,ℓia,3,ℓ ∈ E(R). For each b ∈ [3] and each
x ∈ V (Ta,ℓ) ∩ φ−1(Ia,b), set σ(x) = ia,b,ℓ. This extends the definition of σ to include vertices in V (Ta,b).

Now, for each a ∈ [3]0, b ∈ [3], i ∈ Ia,b and ℓ ∈ [ra], if ia,b,ℓ = i, then let

Za,b,i,ℓ = |V (Ta,ℓ) ∩ φ−1(Ia,b)|,

otherwise, including if the process above stops early, let Za,b,i,ℓ = 0.

Claim 4.3. For each a ∈ [3]0, b ∈ [3], and i ∈ Ia,b, with probability at least 1 − 1/20k, we have

∑
ℓ∈[ra]

Za,b,i,ℓ ≤
|φ−1(Ia,b)|

ka
+
αn

2ka
.

Proof of Claim 4.3. Fix a ∈ [3]0, b ∈ [3], and i ∈ Ia,b. For each ℓ ∈ [ra], we have

E(Za,b,i,ℓ | Za,b,i,1, . . . , Za,b,i,ℓ−1) ≤ |V (Ta,ℓ) ∩ φ−1(Ia,b)|
|Ia,1,ℓ|

≤ |V (Ta,ℓ) ∩ φ−1(Ia,b)|
(1 − α/100)ka

,

and
1

(1 − α/100)ka

∑
ℓ∈[ra]

|V (Ta,ℓ) ∩ φ−1(Ia,b)| ≤
|φ−1(Ia,b)|

ka
+
αn

4ka
.

Furthermore, as |Ta,ℓ| ≤ ξn for each ℓ ∈ [ra], we have Za,b,i,ℓ ≤ |Ta,ℓ| ≤ ξn. Thus, using
∑

ℓ∈[ra]
|Ta,ℓ| ≤ n,

we have ∑
ℓ∈[ra]

|Ta,ℓ|2 ≤ n

ξn
· (ξn)2 = ξn2.

Therefore, applying Lemma 2.6 with t = αn/4ka, we have that

P

∑
ℓ∈[ra]

Za,b,i,ℓ >
|φ−1(Ia,b)|

ka
+
αn

2ka

 ≤ exp

(
− (αn/4ka)2

2ξn2

)
≤ exp

(
− α2

32ξk2

)
≤ 1

20k
,

as required, where we have used that ka ≤ k and ξ ≪ 1/k, α≪ 1. ⊡

Claim 4.4. Suppose for some 0 ≤ s < n, ψ(x1), . . . , ψ(xs) satisfy C1–C3, and for every a ∈ [3]0, b ∈ [3]
and i ∈ Ia,b, we have ∑

ℓ∈[ra]:pa,ℓ≤s

Za,b,i,ℓ ≤
|φ−1(Ia,b)|

ka
+
αn

2ka
. (4.1)

Then, we can extend the embedding ψ to include xs+1 so that C1–C3 still hold with s+ 1 in place of s.

Proof of Claim 4.4. Let s′ ∈ [s] be such that xs′xs+1 ∈ E(T ).
If s+1 = pa,ℓ for some a ∈ [3]0 and ℓ ∈ [ra], then from above we have σ(xs+1) = i for some i ∈ Ia,1, and

by C3 there exists Wi,s′ ⊂ N(ψ(xs′), Vi \ ψ({x1, . . . , xs′−1})) with size dαn/8ka. Using C3, ∆(T ) ≤ cn,
and that components directly descending from xs′ appear right after xs′ in the ordering, we see that at
most cn vertices in Wi,s′ have been used, thus the set Ys+1 := Wi,s′ \ ψ({x1, . . . , xs}) has size at least
dαn/10ka.

If s + 1 ̸∈ {pa,ℓ : a ∈ [3]0, ℓ ∈ [ra]}, then σ(xs′) ̸∈ {i1, i2, i3}. If σ(xs+1) = ia for some a ∈ [3],
then by C2, we have dG(ψ(xs′), Via \ ψ({x1, . . . , xs′−1})) ≥ d|Via |/4. By B3, Ys+1 := NG(ψ(xs′), Via \
ψ({x1, . . . , xs})) has size at least d|Via |/4 − ξn ≥ d|Via |/5. If instead σ(xs+1) = i ∈ Ia for some a ∈ [3]0,
then xs′ and xs are in the same component of T − φ−1({i1, i2, i3}). Say this component is directly
descended from xs′′ ∈ φ−1({i1, i2, i3}). By C2, we have dG(ψ(xs′), Vi \ ψ({x1, . . . , xs′−1})) ≥ dαn/4ka.
Since vertices in the same component appear consecutively in the ordering, by B1, at most ξn vertices
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are embedded between xs′ and xs. Thus, the set Ys+1 := NG(ψ(xs′), Vi \ (ψ({x1, . . . , xs}) ∪Wi,s′′)) has
size at least dαn/4ka − ξn− dαn/8ka ≥ dαn/10ka.

We now embed xs+1 to a suitable vertex in Ys+1 by splitting into the following two cases, depending
on whether σ(xs+1) ∈ {i1, i2, i3}.

Case I. σ(xs+1) = ia for some a ∈ [3]. For every i ∈ NR(ia) \ {i1, i2, i3} ⊂ Ia,1, by C1, (4.1) and B2, we
have

|Vi ∩ ψ({x1, . . . , xs})| ≤ |φ−1(Ia,1)|
ka

+
αn

2ka
≤
∑

i′∈Ia,1
|Vi′ |

ka
− αn

2ka
.

Since |Vi| = 1
ka

∑
i′∈Ia,1

|Vi′ |, we have |Vi \ψ({x1, . . . , xs})| ≥ αn/2ka ≫ ε|Vi|. Since iai ∈ E(R), G[Via , Vi]

is (ε, d)-regular, so by Lemma 2.21, for all but at most
√
ε|Via | vertices y ∈ Ys+1,

d(y, Vi \ ψ({x1, . . . , xs})) ≥ d|Vi \ ψ({x1, . . . , xs})|/2 ≥ dαn/4ka > dαn/8ka

for all but at most
√
εka ≤ α|Ia,1|/100 indices i ∈ Ia,1. Similarly, when a = 1, for all but at most

√
ε|Vi1 |

vertices y ∈ Ys+1, d(y, Vi \ ψ({x1, . . . , xs})) ≥ dαn/8k0 for all but at most α|I0,1|/100 indices i ∈ I0,1.
Furthermore, for each i ∈ NR(ia) ∩ {i1, i2, i3}, by using B3 and Lemma 2.20 instead of B2 and

Lemma 2.21, we have that for all but at most ε|Via | vertices y ∈ Ys+1, d(y, Vi \ψ({x1, . . . , xs})) ≥ d|Vi|/4.
As |Ys+1| ≥ d|Via |/5 ≥ 10

√
ε|Via |, we can pick ψ(xs+1) ∈ Ys+1 such that all of the above hold, so C1–C3

hold with s+ 1 in place of s, as required.

Case II. σ(xs+1) ∈ Ia for some a ∈ [3]0. Similar to Case I, we can deduce from Lemma 2.20, C1, (4.1),
and either B2 or B3 that for every i ∈ NR(σ(xs+1), Ia), all but at most ε|Vσ(xs+1)| vertices y ∈ Ys+1

satisfy d(y, Vi \ ψ({x1, . . . , xs})) ≥ dαn/4ka, and for every i ∈ NR(σ(xs+1), {i1, i2, i3}), all but at most
ε|Vσ(xs+1)| vertices y ∈ Ys+1 satisfy d(y, Vi\ψ({x1, . . . , xs})) ≥ d|Vi|/4. Then, using that dR(σ(xs+1)) ≤ 2,
and |Ys+1| ≥ dαn/10ka ≥ 20εn/ka ≥ 10ε|Vσ(xs+1)|, we can pick ψ(xs+1) ∈ Ys+1 such that all of the above
hold, so C1–C3 hold with s+ 1 in place of s, as required. ⊡

Finally, note that by a union bound over all a ∈ [3]0, b ∈ [3], and i ∈ Ia,b, Claim 4.3 and Claim 4.4
combine to show that the process above embeds T into G with strictly positive probability, and thus G
contains a copy of T . □

4.3 Embedding method H LT

The following result appeared in the work of Haxell,  Luczak, and Tingley [21]. For completion and to
illustrate our method, we include a proof using our framework.

··· ···

RH LT :

t+2 t+1

i

IA IB

=⇒

··· ···

t+2 t+1

i1
i2

I1,1 I1,2
X1

X3

X2

Y3

Y2

Y1

Y0

X0
=⇒ i1

i2

I1,1 I1,2

R′
H LT :

Figure 9: On the left, the slight refinement of the initial reduced graph RH LT used in the proof of
Lemma 4.5. On the right, a depiction of the rule of the embedding used at (4.3), condensing S from
Lemma 4.1 into a subgraph R′

H LT of R′ from Figure 8.

Lemma 4.5 (H LT). Let 1/n ≪ c ≪ 1/k ≪ ε ≪ α ≪ d ≤ 1. Let T be an n-vertex tree with ∆(T ) ≤ cn
and bipartition classes of sizes t1 and t2 satisfying t2 ≤ t1 ≤ 2t2. Let G be a graph on at most 2n
vertices with a partition V (G) = V1 ∪ · · · ∪ V2k+1. Let RH LT be a graph with vertex set [2k + 1], such
that if ij ∈ E(RH LT) then G[Vi, Vj ] is (ε, d)-regular. Let i ∈ [2k + 1] and suppose there is a partition
[2k+1]\{i} = IA∪IB, with |IA| = |IB | = k, such that the following hold for some mA,mB (see Figure 9).

D1 |Va| = mA for each a ∈ IA, |Vb| = mB for each b ∈ IB, and |Vi| ≥ n/10k.
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D2 kmA ≥ t2 + αn and kmB ≥ t1 + αn.

D3 In RH LT, i is adjacent to each vertex in IA, and there is a perfect matching M between IA and IB.

Then, there is a copy of T in G.

Proof. Let ξ satisfy c ≪ ξ ≪ 1/k. Let S be the graph defined in Lemma 4.1. Using this lemma, we can
take a homomorphism ϕ : T → S such that each component of T − ϕ−1(X0 ∪ Y0) has size at most ξn and
|ϕ−1(X0 ∪ Y0 ∪X1 ∪ Y1)| ≤ ξn. Assume, by relabelling if necessary, that |ϕ−1(X0 ∪X1 ∪X2 ∪X3)| = t1
and |ϕ−1(Y0 ∪ Y1 ∪ Y2 ∪ Y3)| = t2.

Let i1 = i. Pick some i2 ∈ IA and suppose it is matched with i3 ∈ IB by M . Let I1,1 = IA \ {i2} and
I1,2 = IB \ {i3} (see Figure 9). Let R′

H LT be the graph on the right in Figure 9, and note that it is a
subgraph of R′ in Figure 8. Then, for each v ∈ V (T ), as depicted in Figure 9, let

φ(v) =


i1 if ϕ(v) ∈ {X0, X1}
i2 if ϕ(v) = Y0
I1,1 if ϕ(v) ∈ {Y1, Y2, Y3}
I1,2 if ϕ(v) ∈ {X2, X3}

,

so that φ is a homomorphism from T to R′
H LT, and thus to R′, with |φ−1({i1, i2})| ≤ ξn, |φ−1(I1,1)| ≤ t2,

and |φ−1(I1,2)| ≤ t1.
We will now check the conditions required for an application of Lemma 4.2. First, B1 holds as every

component of T − φ−1({i1, i2, i3}) is contained in a component of T − ϕ−1(X0 ∪ Y0), which has size at
most ξn. Next, using D1, D2, and 1/n≪ 1/k ≪ α, we have

|φ−1(I1,1)| + αn/2 ≤ t2 + αn/2 ≤ (k − 1)mA =
∑

j∈I1,1

|Vj |,

and similarly |φ−1(I1,2)| + αn/2 ≤
∑

j∈I1,2
|Vj |, so B2 holds as φ−1(I) = ∅ for each I ∈ V (R′) \

{i1, i2, I1,1, I1,2}. Finally, for each j ∈ {i1, i2, i3}, |φ−1(j)| ≤ |ϕ−1(X0 ∪ Y0 ∪ X1 ∪ Y1)| ≤ ξn, so B3
holds. Therefore, we can apply Lemma 4.2 to find a copy of T in G, as required.

4.4 EM1a Embedding Method

H LT−

REM1a :

0

I ′A

I ′′B

I ′B
IC

IA IB

=⇒

H LT−

i1

i2

i3

I0/1,1

I1,2

I1,1 I1,2

I0,2 I0,3

I3,2 I3,1

i1

i2

i3

I1,1 I1,2

I3,1 I3,2

I0,1 I0,2 I0,3

R′
EM1a :

Figure 10: On the left, the initial reduced graph REM1a transformed into the subgraph used to embed
the tree in Lemma 4.6. On the right, the auxiliary graph R′

EM1a used when applying Lemma 4.2.

Lemma 4.6 (EM1a). Let 1/n ≪ 1/m ≪ c ≪ 1/k ≪ ε ≪ α ≪ d ≤ 1. Let T be an n-vertex tree with
∆(T ) ≤ cn and bipartition classes of sizes t1 and t2 satisfying t2 ≤ t1 ≤ 2t2. Let G be a graph with with a
partition V (G) = V0∪V1∪· · ·∪Vk. Let REM1a be a graph with vertex set [k]0, such that if ij ∈ E(REM1a)
then G[Vi, Vj ] is (ε, d)-regular. Suppose there is a partition [k] = IA ∪ I ′A ∪ IB ∪ I ′B ∪ I ′′B ∪ IC , such that
the following properties hold (see Figure 10).

E1 |Vi| = m for all i ∈ {0} ∪ IA ∪ I ′A ∪ IC and |Vi| = t1m/t2 for all i ∈ IB ∪ I ′B ∪ I ′′B.
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E2 |∪i∈IA∪I′
A
Vi| ≥ (1−α2)t2, |∪i∈IB∪I′

B
Vi| ≥ (1−α2)t1, |∪i∈I′

A
Vi| = αt2, |∪i∈I′

B
Vi| = |∪i∈I′′

B
Vi| = αt1,

and | ∪i∈IC Vi| ≥ 2
3 t2.

E3 In REM1a, 0 is adjacent to every vertex in IA ∪ I ′A.

E4 In REM1a, there is a perfect matching between IA and IB, a perfect matching between I ′A and I ′B,
and a perfect matching between I ′A and I ′′B.

E5 In REM1a, every vertex in I ′B is adjacent to at least 10α|IC | vertices in IC .

Then, G contains a copy of T .

Proof. We begin with a claim that will also be used later in the proofs of Lemma 4.8 and Lemma 4.9.

Claim 4.7. For any Z ⊂ I ′B with α−2 ≪ |Z| ≤ 5α|IC |, there exists z ∈ Z and Z ′ ⊂ Z \ {z} with
|Z ′| = 5α|Z|, and a matching M in REM1a[Z ′, IC ] covering Z ′, with z adjacent to every i ∈ IC ∩ V (M).

Proof of Claim 4.7. By E5, e(REM1a[Z, IC ]) ≥ 10α|Z||IC |, so there exists a set I ′C ⊂ IC with size 5α|IC |
such that every i ∈ I ′C has at least 5α|Z| + 1 neighbours in Z, as otherwise

e(REM1a[Z, IC ]) < 5α|IC | · |Z| + (1 − 5α)|IC | · (5α|Z| + 1) < 10α|Z||IC |,

a contradiction. Then, since e(REM1a[Z, I ′C ]) ≥ 5α|Z||I ′C |, by averaging, there exists z ∈ Z with at least
5α|I ′C | neighbours in I ′C . Let I ′′C be a set of 5α|I ′C | neighbours of z in I ′C . Greedily, and using 5α|Z| ≤ |I ′′C |,
we can find a matching M between I ′′C and Z \ {z} with size 5α|Z|, which proves the claim. ⊡

Let i1 = 0. Since |I ′B | = αt2/m < 10αt2/3m ≤ 5α|IC |, we can apply Claim 4.7 to find ZB ⊂ I ′B with
|ZB | = 5α|I ′B | = 5α2t2/m, i3 ∈ I ′B \ZB , and a perfect matching M between ZB and some ZC ⊂ IC , such
that i3 is adjacent to all i ∈ ZC . Suppose that in the matchings given by E4, i3 is matched with i2 ∈ I ′A,
and i2 is matched with i′2 ∈ I ′′B .

Let V ′
i = Vi for all i ∈ IB ∪ I ′′B ∪ZB ∪ZC ∪ {i1, i2, i3}. For every i ∈ (IA ∪ I ′A) \ {i2}, let V ′

i ⊂ Vi have
size (1−α2/2)|Vi|. Let I1,1 = (IA∪I ′A)\{i2} and I1,2 = (IB∪I ′′B)\{i′2}. Partition ZB as evenly as possible
into two sets I0,2 and I3,2, and say they are matched by M with subsets I0,3 and I3,1 of ZC , respectively.
Note that i3 is adjacent to every vertex in I3,1. Finally, take a new index set I0,1 with size |I0,2|, say I0,2
is matched with I ′0,1 ⊂ I ′A in the matching given by E4, and relabel the collection {Vi \ V ′

i : i ∈ I ′0,1} as
{V ′

j : j ∈ I0,1}. Note that by Lemma 2.19, if ij is an edge in the graph depicted in the middle of Figure 10,
then G[V ′

i , V
′
j ] is (

√
ε, d− ε)-regular.

Let ξ satisfy c ≪ ξ ≪ 1/k. Let S be the graph defined in Lemma 4.1. Using that lemma, take
a homomorphism ϕ : T → S such that each component of T − ϕ−1(X0 ∪ Y0) has size at most ξn and
|ϕ−1(X0 ∪ Y0 ∪ X1 ∪ Y1)| ≤ ξn. Without loss of generality, say |ϕ−1(X0 ∪ X1 ∪ X2 ∪ X3)| = t1 and
|ϕ−1(Y0 ∪ Y1 ∪ Y2 ∪ Y3)| = t2. Let the components of T − ϕ−1(X0 ∪ Y0) be {Kj : j ∈ J}, and note that
each of these component has neighbours in exactly one of ϕ−1(X0) and ϕ−1(Y0). Thus, we can partition
J as JX ∪ JY , such that NT (Kj) ⊂ ϕ−1(X0) for each j ∈ JX , and NT (Kj) ⊂ ϕ−1(Y0) for each j ∈ JY .

Let J ′
X ⊂ JX and J ′

Y ⊂ JY both be random sets with each element being included independently with
probability 2α2. Then, by Lemma 2.7, with positive probability we have both of the following, so fix such
a choice of J ′

X , J
′
Y . ∑

j∈J′
X∪J′

Y

|Kj ∩ ϕ−1(Y1 ∪ Y2 ∪ Y3)| = 2α2t2 ± α2n/100. (4.2)

∑
j∈J′

X∪J′
Y

|Kj ∩ ϕ−1(X1 ∪X2 ∪X3)| = 2α2t1 ± α2n/100. (4.3)

Let R′
EM1a be the graph on the right of Figure 10. Define a homomorphism φ : T → R′

EM1a as
follows. Let φ(v) = i1 for every v ∈ ϕ−1(X0), and let φ(v) = i2 for every v ∈ ϕ−1(Y0). For every
Kj with j ∈ J ′

X , define φ on Kj by composing ϕ with the function sending Y1, X2, Y3 to I0,1, I0,2, I0,3,
respectively; while if j ∈ JX \ J ′

X , define φ on Kj by composing ϕ with the function sending Y1, X2, Y3 to
I1,1, I1,2, I1,1, respectively. For every Kj with j ∈ J ′

Y , define φ on Kj by composing ϕ with the function
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sending X1, Y2, X3 to i3, I3,1, I3,2, respectively; while for every Kj with j ∈ JY \ J ′
Y , define φ on Kj by

composing ϕ with the function sending X1, Y2, X3 to i1, I1,1, I1,2, respectively.
Since |ϕ−1(X0 ∪ Y0 ∪ X1 ∪ Y1)| ≤ ξn and ξ ≪ 1/k ≪ α, we have |φ−1(I)| ≤ ξn for each I ∈

{i1, i2, i3}, and |φ−1(I0,1)| + α4n/100 ≤
∑

i∈I0,1
|V ′

i |. From definition,
∑

i∈I0,2
|V ′

i |,
∑

i∈I3,2
|V ′

i | ≥ 2.4α2t1

and
∑

i∈I0,3
|V ′

i |,
∑

i∈I3,1
|V ′

i | ≥ 2.4α2t2. Thus, by (4.2), (4.3), and E2, we have |φ−1(I)| + α3n/100 ≤∑
i∈I |V ′

i | for each I ∈ {I1,1, I1,2, I0,2, I0,3, I3,1, I3,2}. Therefore, we can apply Lemma 4.2 to find a copy
of T in G. □

4.5 EM1b Embedding Method

H LT−

0

I ′A I ′B
IC

IA IB

=⇒

i2

H LT−i1

ZA ZB ZC

and

H LT−i1

ZA ZB ZCi2

and

H LT−i1

i2

i3

ZA ZB ZC

REM1b I & II III IV

Figure 11: The initial reduced graph REM1b in Lemma 4.8 on the left, and the three substructures within
that we use to embed the tree in Cases I & II, Case III, and Case IV, respectively.

Lemma 4.8 (EM1b). Let 1/n ≪ 1/m ≪ c ≪ 1/k ≪ ε ≪ γ ≪ α ≪ d ≤ 1. Let T be an n-vertex
tree with ∆(T ) ≤ cn and bipartition classes of sizes t1 and t2 satisfying t2 ≤ t1 ≤ 2t2. Let G be a graph
with with a partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vk. Let REM1b be a graph with vertex set [k]0, such that if
ij ∈ E(REM1b) then G[Vi, Vj ] is (ε, d)-regular. Suppose there is a partition [k] = IA ∪ I ′A ∪ IB ∪ I ′B ∪ IC ,
such that the following properties hold (see Figure 11).

F1 |Vi| = m for all i ∈ {0} ∪ IA ∪ I ′A ∪ IC and |Vi| = t1m/t2 for all i ∈ IB ∪ I ′B.

F2 | ∪i∈IA∪I′
A
Vi| ≥ (1 − γ)t2, | ∪i∈IB∪I′

B
Vi| ≥ (1 − γ)t1, | ∪i∈I′

A
Vi| = 10αt2, | ∪i∈I′

B
Vi| = 10αt1, and

| ∪i∈IC Vi| ≥ 2
3 t2.

F3 In REM1b, 0 is adjacent to every vertex in IA ∪ I ′A.

F4 In REM1b, there exists a perfect matching between IA and IB, and a perfect matching between I ′A
and I ′B.

F5 In REM1b, every vertex in I ′B is adjacent to at least 10α|IC | vertices in IC .

F6 In REM1b, there exist at least α|I ′A| vertices with at least α|I ′A| neighbours in I ′A.

Then, G contains a copy of T .

Proof. Let ξ satisfy c ≪ ξ ≪ 1/k. Let S be the graph defined in Lemma 4.1. Using that lemma, take
a homomorphism ϕ : T → S such that each component of T − ϕ−1(X0 ∪ Y0) has size at most ξn and
|ϕ−1(X0 ∪ Y0 ∪ X1 ∪ Y1)| ≤ ξn. Without loss of generality, say |ϕ−1(X0 ∪ X1 ∪ X2 ∪ X3)| = t1 and
|ϕ−1(Y0 ∪ Y1 ∪ Y2 ∪ Y3)| = t2. Let the components of T − ϕ−1(X0 ∪ Y0) be {Kj : j ∈ J}. Moreover,
partition J as JX ∪ JY , so that NT (Kj) ⊂ ϕ−1(X0) for each j ∈ JX , and NT (Kj) ⊂ ϕ−1(Y0) for each
j ∈ JY .

Let τ1,X = |ϕ−1(X2)|, τ2,X = |ϕ−1(Y3)|, τ1,Y = |ϕ−1(X3)|, and τ2,Y = |ϕ−1(Y2)|. Let γ ≪ β ≪ α, and
consider the following four cases. I: τ2,X ≥ 3βt2. II: τ2,X < 3βt2, τ1,X < 100βt1, and t1 < (1 + 200β)t2.
III: τ2,X < 3βt2, τ1,X < 100βt1, and t1 ≥ (1 + 200β)t2. IV: τ2,X < 3βt2 and τ1,X ≥ 100βt1.
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i2

H LT−i1

ZA ZB ZC

=⇒

i2

i1

i1

i2

I1,1 I1,2

I0,1 I0,2 I0,3

R′
EM1b1 :

Figure 12: On the left, the transformation of the reduced graph structure used in Cases I and II to
embed the tree. On the right, the auxiliary graph R′

EM1b1 used when applying Lemma 4.2.

Cases I & II. By F6, we can greedily find a matching in REM1b[I ′A] with size α|I ′A|/2 = 5α2t2/m. Let
ZA ⊂ I ′A be the set of vertices covered by this matching, and let ZB ⊂ I ′B be the vertices matched with
ZA. By F5, we can greedily find a perfect matching in REM1b between ZB and some ZC ⊂ IC .

Now, as depicted on the left of Figure 12, we further transform this structure into what we need to
apply Lemma 4.2. Set i1 = 0, pick i2 arbitrarily from I ′A \ ZA, and say it is matched with i′2 ∈ I ′B \ ZB .
For each a ∈ ZA, let a′ ∈ ZA be its neighbour in the matching above. Let η ≥ β be a constant to be
chosen later depending on whether we are in Case I or Case II. Pick disjoint subsets Va,1, Va,2 ⊂ Va and
Va′,1, Va′,2 ⊂ Va′ such that |Va,1| = |Va′,1| = ηt1m/n, |Va,2| = |Va′,2| = ηt2m/n. By Lemma 2.19, we can
refine each of these new clusters, along with each cluster Vi with index i in (IA ∪ I ′A) \ (ZA ∪ {i2}) and
(IB ∪ I ′B) \ (ZB ∪ {i′2}), into a maximum disjoint collection of smaller clusters with sizes γm or γt1m/t2
accordingly, then pair them up so that they form (

√
ε, d − ε)-regular pairs. Note that at most O(γn)

covered vertices are lost in this refinement process. Relabel these new refined clusters as {V ′
i : i ∈ I1,1}

and {V ′
i : i ∈ I1,2} with I1,1 indexing those with the smaller size. Then, we have∑

i∈I1,1

|V ′
i | ≥

∑
i∈IA∪I′

A

|Vi| −m− |ZA|
(
m− ηt2m

n

)
−O(γn)

≥ (1 −O(γ))t2 − 10α2t2

(
1 − ηt2

n

)
≥ (1 − 10α2 + 3α2η)t2,

and similarly
∑

i∈I1,2
|V ′

i | ≥ (1 − 10α2 + 3α2η)t1.

Then, relabel the subsets {Vi \ (Vi,1∪Vi,2) : i ∈ ZA} as {V ′
i : i ∈ I0,1}, and relabel the subsets Vi with i

in ZB and ZC as {V ′
i : i ∈ I0,2} and {V ′

i : i ∈ I0,3}, respectively. Note that
∑

i∈I0,1
|V ′

i | = |ZA|(1− η)m =

(10α2 − 10α2η)t2,
∑

i∈I0,2
|V ′

i | = 10α2t1, and
∑

i∈I0,3
|V ′

i | = 10α2t2.

Let R′
EM1b1 be the graph on the right of Figure 12. If we are in Case I, so τ2,X ≥ 3βt2, set η = β

and define a homomorphism φ : T → R′
EM1b1 as follows. Let φ(v) = i1 for every v ∈ ϕ−1(X0), and let

φ(v) = i2 for every v ∈ ϕ−1(Y0). For every Kj with j ∈ JX , independently with probability 10α2 − α2β,
define φ on Kj by composing ϕ with the function sending Y1, X2, Y3 to I0,1, I0,2, I0,3, respectively; and
with probability 1 − 10α2 + α2β, define φ on Kj by composing ϕ with the function sending Y1, X2, Y3
to I1,1, I1,2, I1,1, respectively. For every Kj with j ∈ JY , independently with probability 10α2 − α2β,
define φ on Kj by composing ϕ with the function sending X1, Y2, X3 to i1, I0,1, I0,2, respectively; and
with probability 1 − 10α2 + α2β, define φ on Kj by composing ϕ with the function sending X1, Y2, X3 to
i1, I1,1, I1,2, respectively.

By Lemma 2.7, with positive probability we have |φ−1(I0,1∪I0,3)| = (10α2−α2β±α3β)t2, |φ−1(I0,3)| ≥
20α2βt2 using that τ2,X ≥ 3βt2, and |φ−1(I0,2)| = (10α2 − α2β ± α3β)t1. Thus, |φ−1(I0,1)| ≤ (10α2 −
20α2β)t2 ≤

∑
i∈I0,1

|V ′
i | − 10α2βt2, and similarly for I0,2 and I0,3. It also follows that

|φ−1(I1,1)| ≤ t2 − |φ−1(I0,1 ∪ I0,3)| ≤ (1 − 10α2 + 2α2β)t2 ≤
∑
i∈I1,1

|V ′
i | − α2βt2,

and similarly for I1,2. Therefore, we can apply Lemma 4.2 to find a copy of T in G.
If we are in Case II instead, so τ2,X < 3βt2, τ1,X < 100βt1, and t1 < (1 + 200β)t2, then we proceed

similarly to above with the role of X and Y swapped, and with η = 1/2. More specifically, we define a
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homomorphism φ : T → R′
EM1b1 as follows. Let φ(v) = i1 for every v ∈ ϕ−1(Y0), and let φ(v) = i2

for every v ∈ ϕ−1(X0). For every Kj with j ∈ JX , independently with probability 9α2, define φ on Kj

by composing ϕ with the function sending Y1, X2, Y3 to i1, I0,1, I0,2, respectively; and with probability
1 − 9α2, define φ on Kj by composing ϕ with the function sending Y1, X2, Y3 to i1, I1,1, I1,2, respectively.
For every Kj with j ∈ JY , independently with probability 9α2, define φ on Kj by composing ϕ with the
function sending X1, Y2, X3 to I0,1, I0,2, I0,3, respectively; and with probability 1 − 9α2, define φ on Kj

by composing ϕ with the function sending X1, Y2, X3 to I1,1, I1,2, I1,1, respectively.
By Lemma 2.7, with positive probability we have |φ−1(I0,3)| ≤ |φ−1(I0,1 ∪ I0,3)| = (9 ± 0.1)α2t1,

|φ−1(I0,1)| ≤ ξn + 1000α2βt1 using τ1,X < 100βt1, and |φ−1(I0,2)| = (9 ± 0.1)α2t2. It follows using
t1 < (1+200β)t2 that |φ−1(I)| ≤

∑
i∈I |V ′

i |−α2n/100 for each I ∈ {I0,1, I0,2, I0,3}. Using t1 < (1+200β)t2
again, we also get |φ−1(I1,1)| ≤ (1 − 8.8α2)t1 ≤ (1 − 8.7α2)t2 ≤

∑
i∈I1,1

|V ′
i | − α2n/100, and similarly for

I1,2. Therefore, we can apply Lemma 4.2 to find a copy of T in G.

H LT−i1

ZA ZB ZCi2

=⇒

i1

i2 i1

i2

I1,1 I1,2

I2,1 I2,2 I2,3
R′

EM1b2 :

Figure 13: On the left, the transformation of the reduced graph structure used in Case III to embed the
tree. On the right, the auxiliary graph R′

EM1b2 used when applying Lemma 4.2.

Case III. In this case, we have τ2,X < 3βt2, τ1,X < 100βt1, and t1 ≥ (1 + 200β)t2. Thus, τ2,Y ≥
t2− τ2,X − ξn ≥ (1−4β)t2, and similarly τ1,Y ≥ (1−101β)t1. Set i1 = 0. By F6, we can find i2 ∈ I ′A such
that i2 is adjacent to a set ZA of α|I ′A| = 10α2t2/m vertices in I ′A. Let i′2 ∈ I ′B be the vertex matched with
i2, and let ZB ⊂ I ′B be the vertices matched with ZA. By F5, we can greedily find a perfect matching
between ZB and some subset ZC of IC .

For convenience, denote t1/t2 by ρ, so 1 + 200β ≤ ρ ≤ 2 from assumptions. We now further transform
this structure as depicted on the left of Figure 13. For each a ∈ ZA, suppose it is matched with b ∈ ZB ,
which is in turn matched with c ∈ ZC . Take Ua ⊂ Va with size 2

√
εm, take Ub ⊂ Vb with size m/ρ, and

let Uc = Vc. Then, G[Ua, Ub], G[Ub, Uc] are both (
√
ε, d − ε)-regular by Lemma 2.19. Relabel {Ua : a ∈

ZA}, {Ub : b ∈ ZB}, {Uc : c ∈ ZC} as {V ′
i : i ∈ I2,1}, {V ′

i : i ∈ I2,2}, {V ′
i : i ∈ I2,3}, respectively. Note that∑

i∈I2,1
|V ′

i | = 20α2
√
εt2 ≫ ξn,

∑
i∈I2,2

|V ′
i | = 10α2t2/ρ, and

∑
i∈I2,3

|V ′
i | = 10α2t2.

Next, again for each a ∈ ZA, suppose it is matched with b ∈ ZB . Let Wb = Vb\Ub, so |Wb| = (ρ−1/ρ)m.
Let Wa ⊂ Va \Ua have size (1−1/ρ2)m, possible as ε≪ 1/ρ. Observe that |Wa| ≥ (1− (1 + 200β)−2)m ≥
200βm. Refine the collections of clusters {Wa : a ∈ ZA} and {Wb : b ∈ Zb} above, and the clusters in
{Vi : i ∈ (IA ∪ I ′A) \ (ZA ∪ {i2})} and {Vi : i ∈ (IB ∪ I ′B) \ (ZB ∪ {i′2})} down to clusters with sizes γm
and γρm respectively. In the process, we lose O(γn) covered vertices, and the resulting refined clusters
can be paired together again as (

√
ε, d − ε)-regular pairs by Lemma 2.19. Relabel these refined clusters

as {V ′
i : i ∈ I1,1} and {V ′

i : i ∈ I1,2}, with I1,1 indexing the smaller clusters. Note that∑
i∈I1,1

|V ′
i | ≥

∑
i∈IA∪I′

A

|Vi| −
∑

i∈ZA∪{i2}

|Vi| +
∑
a∈ZA

|Wa| −O(γn)

≥ (1 − γ)t2 − 10α2t2 −m+ 10α2t2(1 − 1/ρ2) −O(γn) ≥ (1 − (1 + β)10α2/ρ2)t2,

and ∑
i∈I1,2

|V ′
i | ≥

∑
i∈(IB∪I′

B)\{i′2}

|Vi| −
∑
b∈ZB

|Ub| −O(γn)

≥ (1 − γ)t1 −m− 10α2t2/ρ−O(γn) ≥ (1 − (1 + β)10α2/ρ2)t1.

Since ρ ≥ 1 + 200β, we have ρ(1 − 10β)(1 − 101β) ≥ 1 + 10β, so we can find p ∈ [0, 1] such that

10α2(1 + 10β)

(1 − 101β)ρ2
≤ p ≤ 10α2(1 − 10β)

ρ
.
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Let R′
EM1b2 be the graph on the right of Figure 13. Define a homomorphism φ : T → R′

EM1b2 as follows.
Let φ(v) = i1 for every v ∈ ϕ−1(X0), and let φ(v) = i2 for every v ∈ ϕ−1(Y0). For every Kj with j ∈ JX ,
define φ on Kj by composing ϕ with the function sending Y1, X2, Y3 to I1,1, I1,2, I1,1, respectively. For
every Kj with j ∈ JY , independently with probability p, define φ on Kj by composing ϕ with the function
sending X1, Y2, X3 to I2,1, I2,2, I2,3, respectively; and with probability 1− p, define φ on Kj by composing
ϕ with the function sending X1, Y2, X3 to i1, I1,1, I1,2, respectively.

Using τ2,Y ≥ (1 − 4β)t2, τ1,Y ≥ (1 − 101β)t1, and Lemma 2.7, with positive probability we have
|φ−1(I2,1)| ≤ ξn,

(1 + 5β)10α2t2/ρ
2 ≤ p(1 − 4β)t2 − 5α2βt2 ≤ |φ−1(I2,2)| = pτ2,Y ± 5α2βt2 ≤ (1 − 5β)10α2t2/ρ,

and similarly (1 + 5β)10α2t1/ρ
2 ≤ |φ−1(I2,3)| ≤ (1 − 5β)10α2t1/ρ. It follows that |φ−1(I)| is suit-

ably smaller than
∑

i∈I |V ′
i | for each I ∈ {I2,1, I2,2, I2,3}. Moreover, we have |φ−1(I1,1)| ≤ (1 − (1 +

5β)10α2/ρ2)t2 ≤
∑

i∈I1,1
|V ′

i | − 40α2βt2/ρ
2, and similarly for I1,2. Thus, we can apply Lemma 4.2 to find

a copy of T in G.

H LT−i1

i2

i3

ZA ZB ZC

=⇒

i1

i2

i3

i1

i2

i3

I1,1 I1,2

I3,1 I3,2

I0,1 I0,2

R′
EM1b3 :

Figure 14: On the left, the transformation of the reduced graph structure used in Case IV to embed the
tree. On the right, the auxiliary graph R′

EM1b3 used when applying Lemma 4.2.

Case IV. In this case, we assume that τ2,X < 3βt2 and τ1,X ≥ 100βt1. Then, τ2,Y ≥ (1 − 4β)t2 and
τ1,Y < (1 − 100β)t1. Let ρY = τ1,Y /τ2,Y , and observe that ρY < (1 − 40β)t1/t2.

Let i1 = 0. By F6, we can greedily find a matching M in REM1b[I ′A] with size α|I ′A|/2 = 5α2t2/m.
Let Z ′

A ⊂ I ′A be the set of vertices covered by this matching, so |Z ′
A| = 10α2t2/m, and let Z ′

B ⊂ I ′B be the
vertices matched with Z ′

A. By F5, and as in Claim 4.7, we can find a matching M ′ in REM1b[Z ′
B , IC ] with

size 5α|Z ′
B | = 50α3t2/m, and a vertex i3 ∈ Z ′

B \ V (M ′) that is adjacent to every vertex in IC ∩ V (M ′).
At the cost of halving the size, we can restrict M ′ to a perfect matching between some ZB ⊂ Z ′

B and
ZC ⊂ IC with |ZB | = |ZC | = 25α3t2/m, such that if ZA ⊂ Z ′

A is the set matched with ZB , then vertices
in ZA all belong to the same side of the matching M . Let i2 ∈ Z ′

A \ ZA be the vertex matched with i3.
We now further transform this structure as depicted on the left of Figure 14. For every a ∈ ZA,

suppose it is matched with a′ ∈ Z ′
A \ ZA by M and with b ∈ ZB . Say b is matched with c ∈ ZC by

M ′, and a′ is matched with b′ ∈ Z ′
B . Let Uc = Vc, and pick Ub ⊂ Vb with size (ρY + 2

√
ε)m. Note that

G[Ub, Uc] is (
√
ε, d−ε)-regular by Lemma 2.19. Relabel {Uc : c ∈ ZC} and {Ub : b ∈ ZB} as {V ′

i : i ∈ I3,1}
and {V ′

i : i ∈ I3,2}, respectively. Note that
∑

i∈I3,1
|V ′

i | = 25α3t2 and
∑

i∈I3,2
|V ′

i | = 25α3(ρY + 2
√
ε)t2 ≥

25α3τ1,Y + 50α3
√
εt2.

Since ρY < (1 − 40β)t1/t2, we have |Vb \ Ub| ≥ 39βt1m/t2, so Vb \ Ub can be partitioned as Wb ∪ Sb

with |Wb| = 20βt1m/t2 and

|Sb| = (1 − 20β)t1m/t2 − (ρY + 2
√
ε)m ≥ 19βt1m/t2.

Partition Va into Wa ∪ Sa ∪ La with |Wa| = 20βm, |Sa| = 5βm, and |La| = (1 − 25β)m. Recall that a′

is the vertex in I ′A matched with a by M , and it is matched with b′ ∈ I ′B . Take La′ ⊂ Va′ and Lb′ ⊂ Vb′

with sizes 5βm and 5βt1m/t2, respectively. By shrinking exactly one of Sa and La′ if necessary, we can
ensure |La|/|La′ | = |Sb|/|Sa|, max{|La′ |, |Sa|} = 5βm, and min{|La′ |, |Sa|} ≥ β2m.

Refine all pairs of clusters of the forms (Wa,Wb) and (Va′ \La′ , Vb′ \Lb′), and all other matched clusters
in {Vi : i ∈ (IA ∪ I ′A) \ (ZA ∪ {i2})} and {Vi : i ∈ (IB ∪ I ′B) \ (ZB ∪ {i3})} down to clusters with sizes
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γm and γt1m/t2 accordingly. In the refinement process, we lose O(γn) covered vertices, and the resulting
refined clusters can still be paired together as (

√
ε, d − ε)-regular pairs by Lemma 2.19. Relabel these

refined clusters as {V ′
i : i ∈ I1,1} and {V ′

i : i ∈ I1,2}, with I1,1 indexing the smaller clusters. Note that∑
i∈I1,1

|V ′
i | ≥

∑
i∈IA∪I′

A

|Vi| −
∑

i∈ZA∪{i2}

(1 + 5β)|Vi| +
∑
a∈ZA

|Wa| −O(γn)

≥ (1 −O(γ))t2 − 25α3(1 + 5β)t2 + 500α3βt2 ≥ (1 − 25α3 + 370α3β)t2,

and similarly
∑

i∈I1,2
|V ′

i | ≥ (1 − 25α3 + 370α3β)t1.

By Lemma 2.19, we can also refine all pairs of clusters of the forms (Sa, Sb) and (La′ , La) down to
clusters with sizes γm and γ|La|m/|La′ |, then pair the new clusters into (

√
ε, d− ε)-regular pairs. Relabel

the refined clusters as {V ′
i : i ∈ I0,1} and {V ′

i : i ∈ I0,2}, with I0,1 indexing the smaller clusters. Note that∑
i∈I0,1

|V ′
i | ≥ 5βm · 25α3t2/m−O(γn) ≥ 100α3βt2. Moreover, using ρY = τ1,Y /τ2,Y ≤ (t1 − τ1,X)/τ2,Y ,

we have ∑
i∈I0,2

|V ′
i | ≥

∑
a∈ZA

|La| +
∑
b∈ZB

|Sb| −O(γn)

≥ 25α3

(
(1 − 25β)t2 + (1 − 20β)t1 −

t1 − τ1,X
τ2,Y

t2 − 2
√
εt2

)
−O(γn)

≥ 25α3

(
(1 − 26β)t2 + (1 − 20β)t1 −

t1
1 − 4β

+ τ1,X

)
≥ 25α3τ1,X .

Let R′
EM1b3 be the graph on the right of Figure 14. Define a homomorphism φ : T → R′

EM1b3 as
follows. Let φ(v) = i1 for every v ∈ ϕ−1(X0), and let φ(v) = i2 for every v ∈ ϕ−1(Y0). For every Kj

with j ∈ JX , independently with probability p = 25α3 − α3β, define φ on Kj by composing ϕ with the
function sending Y1, X2, Y3 to I0,1, I0,2, I0,1, respectively; and with probability 1 − p, define φ on Kj by
composing ϕ with the function sending Y1, X2, Y3 to I1,1, I1,2, I1,1, respectively. For every Kj with j ∈ JY ,
independently with probability p = 25α3−α3β, define φ on Kj by composing ϕ with the function sending
X1, Y2, X3 to i3, I3,1, I3,2, respectively; and with probability 1 − p, define φ on Kj by composing ϕ with
the function sending X1, Y2, X3 to i1, I1,1, I1,2, respectively.

By Lemma 2.7, with positive probability we have

(25α3 − 150α3β)t2 ≤ 25α3(1 − 2β)(1 − 4β)t2 ≤ |φ−1(I3,1)| = pτ2,Y ± α3βt2/2 ≤ (25α3 − α3β/2)t2,

|φ−1(I0,2 ∪ I3,2)| = p(τ1,X + τ1,Y ) ± α3βt1 ≥ (25α3 − α3β)(t1 − ξn) − α3βt1 ≥ (25α3 − 3α3β)t1,

as well as |φ−1(I0,2)| ≤ pτ1,X + α3βτ1,X/2 ≤ (25α3 − α3β/2)τ1,X , |φ−1(I3,2)| ≤ pτ1,Y + α3
√
εt2 ≤

(25α3 − α3β)τ1,Y + α3
√
εt2, and |φ−1(I0,1)| ≤ pτ2,X ± α3βt2 ≤ 90α3βt2.

It also follows that |φ−1(I1,1)| ≤ t2 − |φ−1(I3,1)| ≤ (1 − 25α3 + 150α3β)t2 and |φ−1(I1,2)| ≤ t1 −
|φ−1(I0,2 ∪ I3,2)| ≤ (1 − 25α3 + 3α3β)t1. Therefore, |φ−1(I)| is suitably smaller than

∑
i∈I |V ′

i | for each
I ∈ {I1,1, I1,2, I0,1, I0,2, I3,1, I3,2}. Thus, we can apply Lemma 4.2 to find a copy of T in G.

4.6 EM1c Embedding Method

Lemma 4.9 (EM1c). Let 1/n ≪ 1/m ≪ c ≪ 1/k ≪ ε ≪ γ ≪ α ≪ d ≤ 1. Let T be an n-vertex tree
with ∆(T ) ≤ cn and bipartition classes of sizes t1 and t2 with t2 ≤ t1 ≤ 2t2. Let G be a graph with with a
partition V (G) = V0∪V1∪· · ·∪Vk. Let REM1c be a graph with vertex set [k]0, such that if ij ∈ E(REM1c)
then G[Vi, Vj ] is (ε, d)-regular. Suppose there is a partition [k] = IA ∪ IA,1 ∪ IA,2 ∪ IB ∪ IB,1 ∪ IB,2 ∪ IC ,
such that the following properties hold (see Figure 15).

G1 |Vi| = m for all i ∈ {0} ∪ IA ∪ IA,1 ∪ IA,2 ∪ IC and |Vi| = t1m/t2 for all i ∈ IB ∪ IB,1 ∪ IB,2.

G2 | ∪i∈IA∪IA,1∪IA,2
Vi| ≥ (1− γ)t2, | ∪i∈IB∪IB,1∪IB,2

Vi| ≥ (1− γ)t1, | ∪i∈IA,1
Vi| ≥ | ∪i∈IA,2

Vi| = 10αt2,
| ∪i∈IB,1

Vi| ≥ | ∪i∈IB,2
Vi| = 10αt1, and | ∪i∈IC Vi| ≥ 2

3 t2.

G3 In REM1c, 0 is adjacent to every vertex in IA ∪ IA,1 ∪ IA,2.
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H LT−

0

IA,1 IB,1

IA,2 IB,2

IA IB

IC

=⇒
i2

H LT−
i1

ZA,1
ZB,1 ZC,1

ZA,2
ZB,2 ZC,2

ZA,3 ZB,3

and

H LT−
i1

ZA
ZB ZCi2

and

H LT−
i1

i2

i3

ZA,1
ZB,1 ZC

ZA,2
ZB,2

ZA,3 ZB,3

REM1c I & II III IV

Figure 15: The initial reduced graph REM1c in Lemma 4.9 on the left, and the three substructures within
used to embed the tree in Cases I & II, Case III, and Case IV, respectively.

G4 In REM1c, there exist perfect matchings between each of the three pairs of sets (IA, IB), (IA,1, IB,1),
and (IA,2, IB,2).

G5 In REM1c, every vertex in IB,1 is adjacent to at least 10α|IC | vertices in IC .

G6 In REM1c, for every a ∈ IA,2 and b ∈ IB,2 with ab ∈ E(REM1c), both a and b have at least α|IA,1|
neighbours in IA,1.

Then, G contains a copy of T .

Proof. We proceed similarly to the proof of Lemma 4.8. Let ξ satisfy c ≪ ξ ≪ 1/k. Let S be the graph
defined in Lemma 4.1 and, using that lemma, take a homomorphism ϕ : T → S such that each component
of T −ϕ−1(X0∪Y0) has size at most ξn and |ϕ−1(X0∪Y0∪X1∪Y1)| ≤ ξn. Without loss of generality, say
|ϕ−1(X0 ∪X1 ∪X2 ∪X3)| = t1 and |ϕ−1(Y0 ∪Y1 ∪Y2 ∪Y3)| = t2. Let the components of T −ϕ−1(X0 ∪Y0)
be {Kj : j ∈ J}. Moreover, partition J as JX ∪ JY , so that NT (Kj) ⊂ ϕ−1(X0) for each j ∈ JX , and
NT (Kj) ⊂ ϕ−1(Y0) for each j ∈ JY .

Let τ1,X = |ϕ−1(X2)|, τ2,X = |ϕ−1(Y3)|, τ1,Y = |ϕ−1(X3)|, and τ2,Y = |ϕ−1(Y2)|. Let γ ≪ β ≪ α, and
consider the following four cases. I: τ2,X ≥ 3βt2. II: τ2,X < 3βt2, τ1,X < 100βt1, and t1 < (1 + 200β)t2.
III: τ2,X < 3βt2, τ1,X < 100βt1, and t1 ≥ (1 + 200β)t2. IV: τ2,X < 3βt2 and τ1,X ≥ 100βt1.

i2

H LT−
i1

ZA,1 ZB,1 ZC,1

ZA,2
ZB,2 ZC,2

ZA,3 ZB,3

=⇒

i2

i1

i1

i2

I1,1 I1,2

I0,1 I0,2 I0,3

R′
EM1c1 :

Figure 16: On the left, the transformation of the reduced graph structure used in Cases I and II to
embed the tree. On the right, the auxiliary graph R′

EM1c1 used when applying Lemma 4.2.

Cases I & II. Fix a submatching in REM1c[IA,2, IB,2] with size α|IA,2|/2 = 5α2t2/m, say between
ZA,3 and ZB,3. By G6, we can greedily find two disjoint matchings M1 and M2 in REM1c[IA,1, ZB,3] and
REM1c[IA,1, ZA,3] covering ZB,3 and ZA,3, respectively. Let ZA,1 = V (M1)∩IA,1 and ZA,2 = V (M2)∩IA,1.
Let ZB,1, ZB,2 ⊂ IB,1 be the vertices matched with ZA,1 and ZA,2, respectively. By G5, we can greedily
find disjoint perfect matchings in REM1c[ZB,1∪ZB,2, IC ] between ZB,1 and some ZC,1 ⊂ IC , and between
ZB,2 and some ZC,2 ⊂ IC . Let ZA = ZA,1 ∪ ZA,2 ∪ ZA,3 and ZB = ZB,1 ∪ ZB,2 ∪ ZB,3.

We now further transform this structure as depicted on the left of Figure 16. Set i1 = 0, pick i2
arbitrarily from IA,2\ZA,3, and let i′2 be the vertex in IB,2\ZB,3 that i2 is matched with. For each a3 ∈ ZA,3

matched with b3 ∈ ZB,3, say a3 is matched with a2 ∈ ZA,2 under M2, and b3 is matched with a1 ∈ ZA,1
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under M1. Let η ≥ β be a constant to be chosen later depending on whether we are in Case I or Case
II. Pick disjoint subsets Va3,1, Va3,2 ⊂ Va3

and Va2,1, Va2,2 ⊂ Va2
such that |Va3,1| = |Va2,1| = ηt1m/n and

|Va3,2| = |Va2,2| = ηt2m/n. Partition Va1
as Va1,1∪Va1,2 with |Va1,1| = ηm and |Va1,2| = (1−η)m. Partition

Vb3 as Vb3,1 ∪ Vb3,2 with |Vb3,1| = ηt1m/t2 and |Vb3,2| = (1 − η)t1m/t2. By Lemma 2.19, we can refine
all pairs of clusters of the forms (Va3,2, Va2,1), (Va2,2, Va3,1), (Va1,1, Vb3,1), (Va3

\ (Va3,1 ∪Va3,2), Vb3,2), along
with all pairs of matched clusters indexed by (IA∪IA,1∪IA,2)\(ZA∪{i2}) and (IB∪IB,1∪IB,2)\(ZB∪{i′2})
into smaller clusters with sizes γm or γt1m/t2 accordingly, then pair them up again into (

√
ε, d−ε)-regular

pairs. Note that O(γn) covered vertices are lost in this refinement process. Relabel these new clusters as
{V ′

i : i ∈ I1,1} and {V ′
i : i ∈ I1,2} with I1,1 indexing those with the smaller size. Then, we have∑

i∈I1,1

|V ′
i | ≥

∑
i∈IA∪IA,1∪IA,2

|Vi| −m− 2|ZA,2|
(
m− ηt2m

n

)
−O(γn)

≥ (1 −O(γ))t2 − 10α2t2

(
1 − ηt2

n

)
≥ (1 − 10α2 + 3α2η)t2,

and similarly
∑

i∈I1,2
|V ′

i | ≥ (1 − 10α2 + 3α2η)t1.

Then, let Ui = Vi,2 for every i ∈ ZA,1 and let Ui = Vi \ (Vi,1 ∪ Vi,2) for every i ∈ ZA,2. Relabel the
subsets {Ui : i ∈ ZA,1 ∪ ZA,2} as {V ′

i : i ∈ I0,1}, and similarly use I0,2 and I0,3 to relabel the subsets
Vi with i ∈ ZB,1 ∪ ZB,2 and i ∈ ZC,1 ∪ ZC,2, respectively. Note that

∑
i∈I0,1

|V ′
i | = 2|ZA,1|(1 − η)m =

(10α2 − 10α2η)t2,
∑

i∈I0,2
|V ′

i | = 10α2t1, and
∑

i∈I0,3
|V ′

i | = 10α2t2. We are now in the same situation as
Cases I & II in the proof of Lemma 4.8, so we can proceed in the same way to find a copy of T in G.

H LT−i1

ZA ZB ZCi2

=⇒

i1

i2 i1

i2

I1,1 I1,2

I2,1 I2,2 I2,3
R′

EM1c2 :

Figure 17: On the left, the transformation of the reduced graph structure used in Case III to embed the
tree. On the right, the auxiliary graph R′

EM1c2 used when applying Lemma 4.2.

Case III. τ2,X < 3βt2, τ1,X < 100βt1, and t1 ≥ (1 + 200β)t2. Set i1 = 0 and pick i2 ∈ IA,2 arbitrarily.
By G6, there is a set ZA ⊂ NREM1c

(i2, IA,1) with size α|IA,1| = 10α2t2/m. Let ZB ⊂ IB,1 be the indices
matched with ZA, and use G5 to greedily find a perfect matching between ZB and some ZC ⊂ IC . This
is the same structure used in Case III of the proof of Lemma 4.8, so we can proceed in the same way to
find an embedding of T in G.

H LT−
i1

i2

i3

ZA,1 ZB,1 ZC

ZA,2
ZB,2

ZA,3 ZB,3

=⇒

i1

i2

i3

i1

i2

i3

I1,1 I1,2

I3,1 I3,2

I0,1 I0,2

R′
EM1c3 :

Figure 18: On the left, the transformation of the reduced graph structure used in Case IV to embed the
tree. On the right, the auxiliary graph R′

EM1c3 used when applying Lemma 4.2.

Case IV. τ2,X < 3βt2 and τ1,X ≥ 100βt1. Let ρY = τ1,Y /τ2,Y , and observe that ρY < (1−40β)t1/t2. Fix
a submatching in REM1c[IA,2, IB,2] with size α|IA,1|/2 = 5α2t2/m, say between Z ′

A,3 and Z ′
B,3. By G6, we

can greedily find two disjoint matchings M1 and M2 in REM1c[IA,1, Z
′
B,3] and REM1c[IA,1, Z

′
A,3] covering

Z ′
B,3 and Z ′

A,3, respectively. Let Z ′
A,1 = V (M1)∩ I ′A,1 and Z ′

A,2 = V (M2)∩ I ′A,1, and let Z ′
B,1, Z

′
B,2 ⊂ IB,1
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be the vertices matched with Z ′
A,1 and Z ′

A,2, respectively. Using G5, and as in Claim 4.7, we can find a

matching M in REM1c[Z ′
B,1, IC ] with size 5α|Z ′

B,1| = 25α3t2/m, and a vertex i3 ∈ Z ′
B,1 \ V (M) that is

adjacent to every vertex in IC ∩ V (M). Say M matches ZB,1 ⊂ Z ′
B,1 with ZC ⊂ IC , let ZA,1 ⊂ Z ′

A,1 be
the set matched with ZB,1, and let i2 ∈ Z ′

A,1 \ ZA,1 be the vertex matched with i3. Let ZB,3 ⊂ Z ′
B,3 be

matched with ZA,1 by M1, and suppose ZB,3 is matched with ZA,3 ⊂ Z ′
A,3, which is in turn matched with

ZA,2 ⊂ Z ′
A,2 by M2. Finally, let ZB,2 ⊂ Z ′

B,2 be matched with ZA,2, set ZA = ZA,1 ∪ZA,2 ∪ZA,3, and set
ZB = ZB,1 ∪ ZB,2 ∪ ZB,3.

We now further transform this structure as depicted on the left of Figure 18. Set i1 = 0. For each
a3 ∈ ZA,3 matched with b3 ∈ ZB,3, say a3 is matched with a2 ∈ ZA,2 by M2, which is matched with
b2 ∈ ZB,2. Say b3 is matched with a1 ∈ ZA,1 by M1, which is matched with b1 ∈ ZB,1, which is in turn
matched with c ∈ ZC by M . Let Uc = Vc, and pick Ub1 ⊂ Vb1 with size (ρY +2

√
ε)m. Note that G[Ub1 , Uc]

is (
√
ε, d − ε)-regular by Lemma 2.19. Relabel {Uc : c ∈ ZC} and {Ub1 : b1 ∈ ZB,1} as {V ′

i : i ∈ I3,1}
and {V ′

i : i ∈ I3,2}, respectively. Note that
∑

i∈I3,1
|V ′

i | = 25α3t2 and
∑

i∈I3,2
|V ′

i | = 25α3(ρY + 2
√
ε)t2 ≥

25α3τ1,Y + 50α3
√
εt2.

Since ρY < (1−40β)t1/t2, we have |Vb1 \Ub1 | ≥ 39βt1m/t2, so Vb1 \Ub1 can be partitioned as Wb1 ∪Lb1

with |Wb1 | = 20βt1m/t2 and

|Lb1 | = (1 − 20β)t1m/t2 − (ρY + 2
√
ε)m ≥ 19βt1m/t2.

Partition Va1 into Wa1 ∪W ′
a1

∪La1 with |Wa1 | = 20βm, |W ′
a1
| = (1− 25β)m, and |La1 | = 5βm. Partition

Vb3 as Wb3 ∪W ′
b3

with |Wb3 | = 25βt1m/t2 and |W ′
b3
| = (1 − 25β)t1m/t2. Partition Va3

as Wa3
∪ La3

with |Wa3
| = 25βm and |La3

| = (1 − 25β)m. Partition Va2
as Wa2

∪ La2
with |Wa2

| = (1 − 5β)m and
|La2

| = 5βm. Partition Vb2 as Wb2 ∪Lb2 with |Wb2 | = (1−5β)t1m/t2 and |Lb2 | = 5βt1m/t2. By shrinking
exactly one of La1 or La2 if necessary, we can ensure |Lb1 |/|La1 | = |La3 |/|La2 |, max{|La1 |, |La2 |} = 5βm,
and min{|La1 |, |La2 |} ≥ β2m.

Refine all pairs of clusters of the forms (Wa1
,Wb1), (W ′

a1
,W ′

b3
), (Wa3

,Wb3), (Wa2
,Wb2), and all matched

clusters in {Vi : i ∈ (IA ∪ IA,1 ∪ IA,2) \ (ZA ∪ {i2})} and {Vi : i ∈ (IB ∪ IB,1 ∪ IB,2) \ (ZB ∪ {i3})} down to
clusters with sizes γm or γt1m/t2 accordingly. In the refinement process, we lose O(γn) covered vertices,
and the resulting refined clusters can be paired together again as (

√
ε, d−ε)-regular pairs by Lemma 2.19.

Relabel these refined clusters as {V ′
i : i ∈ I1,1} and {V ′

i : i ∈ I1,2}, with I1,1 indexing the smaller clusters.
Note that ∑

i∈I1,1

|V ′
i | ≥

∑
i∈IA∪IA,1∪IA,2

|Vi| −m− |ZA,1|(5β + 5β + (1 − 25β))m−O(γn)

≥ (1 −O(γ))t2 − 25α3(1 − 15β)t2 ≥ (1 − 25α3 + 370α3β)t2,

and similarly
∑

i∈I1,2
|V ′

i | ≥ (1 − 25α3 + 370α3β)t1.

Next, by Lemma 2.19, we can refine all pairs of clusters of the forms (La2 , La3) and (La1 , Lb1) down to
clusters with sizes γm and γ|Lb1 |m/|La1 |, and pair them up again into (

√
ε, d− ε)-regular pairs. Relabel

the refined clusters as {V ′
i : i ∈ I0,1} and {V ′

i : i ∈ I0,2}, with I0,1 indexing the smaller clusters. Note that∑
i∈I0,1

|V ′
i | ≥ 5βm · 25α3t2/m−O(γn) ≥ 100α3βt2. Moreover, using ρY = τ1,Y /τ2,Y ≤ (t1 − τ1,X)/τ2,Y ,

we have ∑
i∈I0,2

|V ′
i | ≥

∑
a3∈ZA,3

|La3 | +
∑

b1∈ZB,1

|Lb1 | −O(γn)

≥ 25α3

(
(1 − 25β)t2 + (1 − 20β)t1 −

t1 − τ1,X
τ2,Y

t2 − 2
√
εt2

)
−O(γn)

≥ 25α3

(
(1 − 26β)t2 + (1 − 20β)t1 −

t1
1 − 4β

+ τ1,X

)
≥ 25α3τ1,X .

We are now in the same situation as Case IV in the proof of Lemma 4.8, so we can proceed in the same
way to find an embedding of T in G.

4.7 EM2a Embedding Method

Lemma 4.10 (EM2a). Let 1/n ≪ c ≪ 1/k ≪ ε ≪ η ≪ α ≪ d ≤ 1. Let T be an n-vertex tree with
∆(T ) ≤ cn and bipartition classes of sizes t1 and t2 with t2 ≤ t1 ≤ 2t2. Let G be a graph with at most
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Figure 19: On the left, the initial reduced graph REM2a transformed into the substructure used to embed
the tree in Lemma 4.10. On the right, the auxiliary graph R′

EM2a used when applying Lemma 4.2.

2n vertices and a vertex partition V1 ∪ · · · ∪ Vk such that |V1| = |V2| = · · · = |Vk| = m. Let REM2a be a
graph with vertex set [k], such that if ij ∈ E(REM2a) then G[Vi, Vj ] is (ε, d)-regular. Suppose there is a
partition [k] = IA ∪ IB ∪ IC such that the following properties hold (see Figure 19).

H1 | ∪i∈IA Vi| ≥ t2 + 200αn, | ∪i∈IB Vi| ≥ t2 − αn, | ∪i∈IA∪IB Vi| = n− αn, and | ∪i∈IC Vi| = 100αn.

H2 REM2a[IA, IB ] is an η-almost complete bipartite graph.

H3 REM2a[IA, IC ] contains a matching M covering IC .

H4 E(REM2a[IA] − V (M)) ̸= ∅.

Then, G contains a copy of T .

Proof. Let ξ satisfy c ≪ ξ ≪ 1/k. Let S be the graph defined in Lemma 4.1 and, using that lemma,
take a homomorphism ϕ : T → S such that each component of T − ϕ−1(X0 ∪ Y0) has size at most ξn
and |ϕ−1(X0 ∪ Y0 ∪X1 ∪ Y1)| ≤ ξn. Without loss of generality, say |ϕ−1(X0 ∪X1 ∪X2 ∪X3)| = t1 and
|ϕ−1(Y0 ∪ Y1 ∪ Y2 ∪ Y3)| = t2. Let the components of T − ϕ−1(X0 ∪ Y0) be {Kj : j ∈ J}. Moreover,
partition J as JX ∪ JY , so that NT (Kj) ⊂ ϕ−1(X0) for each j ∈ JX , and NT (Kj) ⊂ ϕ−1(Y0) for each
j ∈ JY .

Let τ1,X = |ϕ−1(X2)|, τ2,X = |ϕ−1(Y3)|, τ1,Y = |ϕ−1(X3)| and τ2,Y = |ϕ−1(Y2)|. Let nA = | ∪i∈IA Vi|,
nB = | ∪i∈IB Vi| and nC = | ∪i∈IC Vi|. We now separate into the following two cases. I: τ1,X + τ2,Y ≥
nB + 20αn. II: τ1,X + τ2,Y < nB + 20αn.

Case I. τ1,X + τ2,Y ≥ nB + 20αn. Then, (1 − 20α)(τ1,X + τ2,Y ) ≥ nB − αn. Note that τ2,X + τ2,Y ≤
t2 ≤ nB + αn, so (1 − 20α)(τ2,X + τ2,Y ) ≤ nB − αn. Thus, we can find p ∈ [0, 1 − 20α] such that
(1 − 20α)τ2,Y + (1 − 20α− p)τ2,X + pτ1,X = nB − αn.

Let R′
EM2a be the graph depicted on the right in Figure 19, which is a subgraph of the graph R′

in Lemma 4.2. Define a random homomorphism φ : T → R′
EM2a as follows. First, for vertices in

ϕ−1(X0 ∪ Y0), set φ(v) = i3 if ϕ(v) = Y0, and set φ(v) = i2 if ϕ(v) = X0.
For each j ∈ JX independently at random, with probability 20α, define φ on Kj by composing ϕ with

the map that sends Y1, X2, Y3 to i3, I3,1, I3,2, respectively; with probability p define φ on Kj by composing
ϕ with the map that sends Y1, X2, Y3 to i1, I1,1, I1,2, respectively; and with probability 1 − 20α− p define
φ on Kj by composing ϕ with the map that sends Y1, X2, Y3 to I2,1, I2,2, I2,1, respectively.

For each j ∈ JY independently at random, with probability 20α, define φ on Kj by composing ϕ with
the map that sends X1, Y2, X3 to I3,1, I3,2, I3,1, respectively; and with probability 1− 20α define φ on Kj

by composing ϕ with the map that sends X1, Y2, X3 to i2, I2,1, I2,2, respectively.
Since |Kj | ≤ ξn for all j ∈ J , and |ϕ−1(X0 ∪ Y0 ∪X1 ∪ Y1)| ≤ ξn, we can use Lemma 2.7 to conclude

that with strictly positive probability, |φ−1(I3,1)| = 20αt1±αt1, |φ−1(I3,2)| = 20αt2±αt2 ≤ nC −αn, and
|φ−1(I1,1 ∪ I2,1)| = nB −αn±αn/2. It follows that |φ−1({I1,2, I2,2, I3,1})| ≤ n− 19αt2 − (nB − 3αn/2) ≤
nA + 3αn− 19αt2 ≤ nA − αn.

Using H2–H4, we can find i1, i2 ∈ IA \ V (M) and i3 ∈ IB , such that i1i2, i2i3 ∈ E(REM2a), and i3 is
adjacent to all but at most ηk vertices in IA ∩ V (M). Thus, we can find I3,1 ⊂ NREM2a

(i3, IA ∩ V (M))
covering |φ−1(I3,1)| + αn/10 vertices. Let I3,2 ⊂ IC denote the set of vertices matched with I3,1 by M ,
then |φ−1(I3,b)| ≤

∑
i∈I3,b

|Vi| − αn/10 for each b ∈ [2].
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Let I ′A = IA \(I3,1∪{i1, i2}) and I ′B = (NREM2a
(i1, IB)∩NREM2a

(i2, IB))\{i3}. Note that from above,
|φ−1({I1,2, I2,2})| ≤ nA − αn − |φ−1(I3,1)| ≤

∑
i∈I′

A
|Vi| − αn/5, and |φ−1(I1,1 ∪ I2,1)| ≤ nB − αn/2, so

we can find partitions I ′A = I ′1,2 ∪ I ′2,2 and I ′B = I ′1,1 ∪ I ′2,1, such that
∑

i∈I′
a,b

|Vi| ≥ |φ−1(Ia,b)| + αn/20

for each a, b ∈ [2]. Moreover, as |I ′a,b| ≥ αn/20m by construction for each a, b ∈ [2], and REM2a[IA, IB ]
is η-almost complete, by choosing these two partitions randomly and applying Lemma 2.5, we can find a
realisation such that both REM2a[I ′1,1, I

′
1,2] and REM2a[I ′2,1, I

′
2,2] are 10η-almost complete. This allows us

to apply Lemma 2.24 to refine the clusters Vi with i ∈ I ′1,1 ∪ I ′1,2 ∪ I ′2,1 ∪ I ′2,2 to obtain, for each a, b ∈ [2],
a set {V ′

i : i ∈ Ia,b} of clusters of the same size, such that
∑

i∈Ia,b
|V ′

i | ≥ |φ−1(Ia,b)| + αn/100. Moreover,

for each a ∈ [2], the refined clusters indexed by Ia,1 and Ia,2 can be matched up, so that each pair is
(
√
ε, d− ε)-regular (see Figure 19). This allows us to use Lemma 4.2 to find a copy of T in G.

Case II. τ1,X + τ2,Y < nB + 20αn. Then, (1 − 70α)(τ1,X + τ2,Y ) ≤ nB − αn. Note that τ1,X + τ1,Y ≥
t1 − ξn ≥ nB + 100αn, so (1 − 70α)(τ1,X + τ1,Y ) ≥ nB − αn. Therefore, there exists p ∈ [0, 1 − 70α] such
that (1 − 70α)τ1,X + (1 − 70α− p)τ1,Y + pτ2,Y = nB − αn.

Similar to above, we define a random homomorphism φ : T → R′
EM2a as follows. First, for vertices in

ϕ−1(X0 ∪ Y0), set φ(v) = i2 if ϕ(v) = Y0, and set φ(v) = i3 if ϕ(v) = X0.
For each j ∈ JX independently at random, with probability 70α, define φ on Kj by composing ϕ with

the map that sends Y1, X2, Y3 to I3,1, I3,2, I3,1, respectively; and with probability 1 − 70α define φ on Kj

by composing ϕ with the map that sends Y1, X2, Y3 to i2, I2,1, I2,2, respectively.
For each j ∈ JY independently at random, with probability 70α, define φ on Kj by composing ϕ with

the map that sends X1, Y2, X3 to i3, I3,1, I3,2, respectively; with probability p define φ on Kj by composing
ϕ with the map that sends X1, Y2, X3 to i1, I1,1, I1,2, respectively; and with probability 1− 70α− p define
φ on Kj by composing ϕ with the map that sends X1, Y2, X3 to I2,1, I2,2, I2,1, respectively.

Again, we can use Lemma 2.7 to conclude that with positive probability, |φ−1(I3,1)| = 70αt2 ± αt2,
|φ−1(I3,2)| = 70αt1 ± αt1 ≤ nC − αn, and |φ−1(I1,1 ∪ I2,1)| = nB − αn ± αn/2. It follows that
|φ−1({I1,2, I2,2})| + |φ−1(I3,2)| ≤ n− 69αt2 − (nB − 3αn/2) ≤ nA + 3αn− 69αt2 ≤ nA − αn.

Similar to Case I above, by H2–H4 and after refining, we can find i1, i2 ∈ IA and i3 ∈ IB , along with
three matchings of refined clusters of suitable sizes in G attached to i1, i2, i3 respectively, as depicted in
Figure 19, which allow us to apply Lemma 4.2 to find a copy of T in G.

4.8 EM2b Embedding Method
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Figure 20: On the left, the initial reduced graph REM2b transformed into the substructure used to embed
the tree in Lemma 4.11. On the right, the auxiliary graph R′

EM2b used when applying Lemma 4.2.

Lemma 4.11 (EM2b). Let 1/n ≪ 1/m ≪ c ≪ 1/k ≪ ε ≪ η ≪ α ≪ d ≤ 1. Let T be an n-vertex tree
with ∆(T ) ≤ cn and bipartition classes of sizes t1 and t2 with t2 ≤ t1 ≤ 2t2. Let G be a graph with at
most 2n vertices and a vertex partition V1 ∪ · · · ∪ Vk with |V1| = · · · = |Vk| = m. Let REM2b be a graph
with vertex set [k], such that if ij ∈ E(REM2b) then G[Vi, Vj ] is (ε, d)-regular. Suppose there is a partition
[k] = IA ∪ IB ∪ IC such that the following properties hold (see Figure 20).

I1 | ∪i∈IA Vi| ≥ t2 + 200αn, | ∪i∈IB Vi| ≥ t2 − αn, | ∪i∈IA∪IB Vi| = (1 − α)n, and | ∪i∈IC Vi| = 100αn.

I2 REM2b[IA, IB ] is an η-almost complete bipartite graph.
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I3 REM2b[IA, IC ] contains a matching M covering IC .

I4 E(REM2b[IB ]) ̸= ∅.

Then, G contains a copy of T .

Proof. Let ξ satisfy c ≪ ξ ≪ 1/k. Let S be the graph defined in Lemma 4.1. Using that lemma, take
a homomorphism ϕ : T → S such that each component of T − ϕ−1(X0 ∪ Y0) has size at most ξn and
|ϕ−1(X0 ∪ Y0 ∪ X1 ∪ Y1)| ≤ ξn. Without loss of generality, say |ϕ−1(X0 ∪ X1 ∪ X2 ∪ X3)| = t1 and
|ϕ−1(Y0 ∪ Y1 ∪ Y2 ∪ Y3)| = t2. Let the components of T − ϕ−1(X0 ∪ Y0) be {Kj : j ∈ J}, and partition J
as JX ∪ JY , so that NT (Kj) ⊂ ϕ−1(X0) for each j ∈ JX , and NT (Kj) ⊂ ϕ−1(Y0) for each j ∈ JY .

Let τ1 = |ϕ−1(X2 ∪ X3)| and τ2 = |ϕ−1(Y2 ∪ Y3)|. Let nA = | ∪i∈IA Vi|, nB = | ∪i∈IB Vi|, and
nC = | ∪i∈IC Vi|. Note that τ2 ≤ t2 ≤ nB + αn, so (1 − 20α)τ2 ≤ nB − αn. On the other hand,
(1− 20α)τ1 ≥ (1− 20α)(t1 − ξn) ≥ nB −αn as nB ≤ t1 − 201αn, so there exists p ∈ [0, 1− 20α] such that
pτ1 + (1 − 20α− p)τ2 = nB − αn.

Let R′
EM2b be the graph depicted on the right in Figure 20, which is a subgraph of the graph R′

in Lemma 4.2. Define a random homomorphism φ : T → R′
EM2a as follows. First, for vertices in

ϕ−1(X0 ∪ Y0), set φ(v) = i1 if ϕ(v) = X0, and set φ(v) = i2 if ϕ(v) = Y0.
For each j ∈ JX independently at random, with probability 1 − p, define φ on Kj by composing ϕ

with the map that sends Y1, X2, Y3 to i2, I2,1, I2,2, respectively; and with probability p define φ on Kj by
composing ϕ with the map that sends Y1, X2, Y3 to I1,1, I1,2, I1,1, respectively.

For each j ∈ JY independently at random, with probability 1 − p, define φ on Kj by composing ϕ
with the map that sends X1, Y2, X3 to I2,1, I2,2, I2,1, respectively; and with probability p define φ on Kj

by composing ϕ with the map that sends X1, Y2, X3 to i1, I1,1, I1,2, respectively.
Since |Kj | ≤ ξn for all j ∈ J and |ϕ−1(X0∪Y0∪X1∪Y1)| ≤ ξn, we can use Lemma 2.7 to conclude that

with strictly positive probability, |φ−1(I1,2∪I2,2)| = pτ1 +(1−p)τ2±αn ≤ nB +20ατ2 ≤ nB +nC −10αn,
and |φ−1(I1,1 ∪ I2,1)| = (1 − p)τ1 + pτ2 ± αn ≤ nA − αn. Therefore, like in the proof of Lemma 4.10, by
refining and using I2–I4, we can find i1, i2 ∈ IB such that i1i2 ∈ E(REM2b), along with two matchings of
refined clusters of suitable sizes forming (

√
ε, d−ε)-regular pairs attached to i1, i2 as depicted in Figure 20,

which allow us to apply Lemma 4.2 to find a copy of T in G.

4.9 EM2c Embedding Method
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Figure 21: On the left, the initial reduced graph REM2c transformed into the substructure used to embed
the tree in Lemma 4.12. On the right, the auxiliary graph R′

EM2c used when applying Lemma 4.2.

Lemma 4.12 (EM2c). Let 1/n ≪ 1/m ≪ c ≪ 1/k ≪ ε ≪ η ≪ α ≪ d ≤ 1. Let T be an n-vertex
tree with ∆(T ) ≤ cn and bipartition classes of sizes t1 and t2 with t2 ≤ t1 ≤ 2t2. Let G be a graph with
with a partition V (G) = V1 ∪ · · · ∪ Vk satisfying |V1| = · · · = |Vk| = m. Let REM2c be a graph with
vertex set [k], such that if ij ∈ E(REM2c) then G[Vi, Vj ] is (ε, d)-regular. Suppose there is a partition
[k] = IA ∪ IB ∪ IC ∪ ID such that the following properties hold (see Figure 21).

J1 | ∪i∈IA Vi| ≥ (1 − α)t2, | ∪i∈IB Vi| ≥ (1 − 11α)t1, | ∪i∈IC Vi| = 100αt2, and | ∪i∈ID Vi| = 10αt2.

J2 REM2c[IA, IB ] is an η-almost complete bipartite graph.

J3 REM2c[IA, IC ] contains a matching M1 covering IC .
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J4 REM2c[IB , ID] contains a matching M2 covering ID.

Then, G contains a copy of T .

Proof. Let ξ satisfy c ≪ ξ ≪ 1/k. Let S be the graph defined in Lemma 4.1. Using that lemma, take
a homomorphism ϕ : T → S such that each component of T − ϕ−1(X0 ∪ Y0) has size at most ξn and
|ϕ−1(X0 ∪ Y0 ∪ X1 ∪ Y1)| ≤ ξn. Without loss of generality, say |ϕ−1(X0 ∪ X1 ∪ X2 ∪ X3)| = t1 and
|ϕ−1(Y0 ∪ Y1 ∪ Y2 ∪ Y3)| = t2. Let the components of T − ϕ−1(X0 ∪ Y0) be {Kj : j ∈ J}, and partition J
as JX ∪ JY , so that NT (Kj) ⊂ ϕ−1(X0) for each j ∈ JX , and NT (Kj) ⊂ ϕ−1(Y0) for each j ∈ JY .

Let τ1 = |ϕ−1(X2 ∪X3)| and τ2 = |ϕ−1(Y2 ∪ Y3)|. For each ∗ ∈ {A,B,C,D}, let n∗ = | ∪i∈I∗ Vi|. Let
R′

EM2c be the graph depicted on the right in Figure 21, which is a subgraph of the graph R′ in Lemma 4.2.
Define a random homomorphism φ : T → R′

EM2c as follows. First, for vertices in ϕ−1(X0 ∪ Y0), set
φ(v) = i1 if ϕ(v) = X0, and set φ(v) = i2 if ϕ(v) = Y0.

For each j ∈ JX independently at random, with probability 4α, define φ on Kj by composing ϕ with
the map that sends Y1, X2, Y3 to i2, I2,1, I2,2, respectively; and with probability 1 − 4α define φ on Kj by
composing ϕ with the map that sends Y1, X2, Y3 to I1,1, I1,2, I1,1, respectively.

For each j ∈ JY independently at random, with probability 4α, define φ on Kj by composing ϕ with
the map that sends X1, Y2, X3 to I2,1, I2,2, I2,1, respectively; and with probability 1 − 4α define φ on Kj

by composing ϕ with the map that sends X1, Y2, X3 to i1, I1,1, I1,2, respectively.
By Lemma 2.7, with positive probability, |φ−1(I2,2)| = 4ατ2 ± ατ2/2 ≤ nD − αn/10, |φ−1(I2,1)| =

4ατ1±ατ1/2 ≤ 10αt2−αn/100, |φ−1(I1,2∪I2,1)| ≤ t1 ≤ nB+nC−2αn, and |φ−1(I1,1)| = (1−4α)τ2±ατ2 ≤
nA − αn/10. Therefore, like in Lemma 4.10, by J2–J4 and after refining, we can find i1 ∈ IB and
i2 ∈ IA such that i1i2 ∈ E(REM2c), along with two matchings of refined clusters of suitable sizes forming
(
√
ε, d − ε)-regular pairs attached to i1, i2 as depicted in Figure 21, which allow us to apply Lemma 4.2

to find a copy of T in G.

4.10 EM2d Embedding method
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Figure 22: On the left, the initial reduced graph REM2d transformed into the substructure used to embed
the tree in Lemma 4.13. On the right, the auxiliary graph R′

EM2d used when applying Lemma 4.2.

Lemma 4.13 (EM2d). Let 1/n ≪ 1/m ≪ c ≪ 1/k ≪ ε ≪ η ≪ α ≪ d ≤ 1. Let T be an n-vertex tree
with ∆(T ) ≤ cn and bipartition classes of sizes t1 and t2 with t2 ≤ t1 ≤ 2t2. Let G be a graph with with a
partition V (G) = V1 ∪ · · · ∪Vk satisfying |V1| = · · · = |Vk| = m. Let REM2d be a graph with vertex set [k],
such that if ij ∈ E(REM2d) then G[Vi, Vj ] is (ε, d)-regular. Suppose there is a partition [k] = IA ∪ IB ∪ IC
such that the following properties hold (see Figure 22).

K1 | ∪i∈IA Vi| ≥ | ∪i∈IB Vi| ≥ (1 − α)t2, | ∪i∈IA∪IB Vi| ≥ (1 − α)n, and | ∪i∈IA∪IB∪IC Vi| = (1 + 100α)n.

K2 REM2d[IA] and REM2d[IB ] are both η-almost complete graphs.

K3 REM2d[IA, IC ] contains a matching M covering IC , and a vertex in IA ∩ V (M) that is adjacent to
every vertex in IC ∩ V (M).

K4 REM2d[IB , IC ] contains a matching M ′ covering IC .
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Then, G contains a copy of T .

Proof. Let ξ satisfy c ≪ ξ ≪ 1/k. Let S be the graph defined in Lemma 4.1. Using that lemma, take
a homomorphism ϕ : T → S such that each component of T − ϕ−1(X0 ∪ Y0) has size at most ξn and
|ϕ−1(X0 ∪ Y0 ∪ X1 ∪ Y1)| ≤ ξn. Without loss of generality, say |ϕ−1(X0 ∪ X1 ∪ X2 ∪ X3)| = t1 and
|ϕ−1(Y0 ∪ Y1 ∪ Y2 ∪ Y3)| = t2. Let the components of T − ϕ−1(X0 ∪ Y0) be {Kj : j ∈ J}, and partition J
as JX ∪ JY , so that NT (Kj) ⊂ ϕ−1(X0) for each j ∈ JX , and NT (Kj) ⊂ ϕ−1(Y0) for each j ∈ JY .

Let τX = |ϕ−1(X2 ∪ Y3)| and τY = |ϕ−1(Y2 ∪X3)|. For each ∗ ∈ {A,B,C}, let n∗ = | ∪i∈I∗ Vi|. Let
R′

EM2d be the graph depicted on the right in Figure 22, which is a subgraph of the graph R′ in Lemma 4.2.
Since

τX + τY ≤ n ≤ nA + nB + 2nC − 20αn ≤ 2nA + 2nC − 20αn,

we can separate into the following two cases. I: τX ≤ nA + nC − 10αn. II: τY ≤ nA + nC − 10αn.

Case I. As τX +τY ≥ n−ξn ≥ nA+nC−10αn, there exists p ∈ [0, 1] such that τX +pτY = nA+nC−10αn.
It follows that (1− p)τY ≤ n− τX − pτY ≤ nB − 50αn. Define a random homomorphism φ : T → R′

EM2d

as follows. First, for vertices in ϕ−1(X0 ∪ Y0), set φ(v) = i1 if ϕ(v) = X0, and set φ(v) = i2 if ϕ(v) = Y0.
For each j ∈ JX , define φ on Kj by composing ϕ with the map that sends Y1, X2, Y3 to I1,1, I1,2, I1,1,
respectively. For each j ∈ JY independently at random, with probability p, define φ on Kj by composing
ϕ with the map that sends X1, Y2, X3 to i1, I1,1, I1,2, respectively; and with probability 1 − p define φ on
Kj by composing ϕ with the map that sends X1, Y2, X3 to i3, I3,1, I3,2, respectively.

By Lemma 2.7, with positive probability, |φ−1(I1,1 ∪ I1,2)| = τX + pτY ± αn ≤ nA + nC − 5αn and
|φ−1(I3,1 ∪ I3,2)| = (1 − p)τY ± αn ≤ nB − 10αn.

We now further transform the structure as depicted on the left of Figure 22. Let i1 ∈ IA ∩ V (M)
be the vertex given by K3 that is adjacent to every vertex in IC ∩ V (M), suppose it is matched with
i2 ∈ IC by M , and let i3 ∈ IB be the neighbour of i2 in M ′. By K2, we can find a matching M1 in
REM2d[IA ∪ IC ] containing the matching M − {i1, i2}, such that i1 is adjacent to every i ∈ V (M1) and∑

i∈V (M1)
|Vi| = nA + nC − αn. Since |φ−1(I1,1 ∪ I1,2)| + 4αn ≤ nA + nC − αn from above, we can

find m1,m2 ≥
√
εm such that m1 + m2 = m and |φ−1(I1,b)| + αn ≤ (nA + nC − αn)mb/m for each

b ∈ [2]. For each i ∈ V (M1), partition Vi as Vi,1 ∪ Vi,2, such that |Vi,1| = m1 and |Vi,2| = m2. Then, for
every edge ii′ in M1, both G[Vi,1, Vi′,2] and G[Vi,2, Vi′,1] are (

√
ε, d − ε)-regular by Lemma 2.19. Relabel

{Vi,1 : i ∈ V (M1)} and {Vi,2 : i ∈ V (M1)} as {V ′
i : i ∈ I1,1} and {V ′

i : i ∈ I1,2}, respectively. Note that∑
i∈I1,1

|V ′
i | ≥ |φ−1(I1,1)| + αn and

∑
i∈I1,2

|V ′
i | ≥ |φ−1(I1,2)| + αn.

Similarly, we can use K2 to find a matching M2 in REM2d[IB ] with all vertices in V (M2) adjacent
to i3, then refine them accordingly to obtain clusters {V ′

i : i ∈ I3,1} and {V ′
i : i ∈ I3,2} that can

be matched together to form (
√
ε, d − ε)-regular pairs, such that

∑
i∈I3,1

|V ′
i | ≥ |φ−1(I3,1)| + αn and∑

i∈I3,2
|V ′

i | ≥ |φ−1(I3,2)| + αn. Thus, we can apply Lemma 4.2 to find a copy of T in G.

Case II. In this case, we use essentially the same argument except that the role of X and Y are flipped,
so we omit the full details. That is, we set φ(v) = i1 if ϕ(v) = Y0, and φ(v) = i2 if ϕ(v) = X0. Then,
every component Kj with j ∈ JY will be embedded into IA ∪ IC , while every component Kj with j ∈ JX
will be embedded into IA ∪ IC with some suitable probability p, and into IB otherwise.

5 Proof of Theorem 2.2: Stability

In this section, we will prove Theorem 2.2 by following the 4-stage process outlined in Section 3 and
depicted in Figure 2, using the embedding methods developed in Section 4. As will be justified when
we put everything together in Section 5.7, we may assume that t1 ≤ 2t2 throughout these 4 stages. Our
starting point is the next result that easily follows from the proof of [21, Theorem 3] by Haxell,  Luczak,
and Tingley applied with α = t1/t2 and n = (1−ε)(t1 +2t2). The reason it follows from their proof rather
than directly from their theorem statement is that we need to ‘remember’, and later use, the remaining
regularity clusters in the graph that is not part of the structure found by Haxell,  Luczak, and Tingley,
and thus not included in the statement of their theorem.

Theorem 5.1. Let 1/n ≪ 1/m ≪ 1/k ≪ ε ≪ 1. Let t1 and t2 satisfy t1 + t2 = n and t2 ≤ t1 ≤ 2t2.
Let G be any red/blue coloured complete graph on at least (1 − ε)(t1 + 2t2) vertices. Then, there exist
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disjoint subsets V0, . . . , Vk ⊂ V (G) that form an ε-regular partition with corresponding red/blue coloured
(ε, 1/3)-reduced graph R, a partition [k] = IA∪IB∪IC , and a colour ∗ ∈ {red, blue} such that the following
hold (see A-situation in Figure 2).

• |Vi| = m for every i ∈ {0} ∪ IA ∪ IC , and |Vi| = t1m/t2 for every i ∈ IB.

• |IA| = |IB | = |IC | = k, with km ≥ (1 − 2ε)t2.

• In R∗, 0 is adjacent to every a ∈ IA.

• Rred[IA, IB ] contains a perfect matching.

To reduce repetition, we will carry out the 4 stages in reverse order in Sections 5.2–5.5. That is,
we start with Lemma 5.4 in Section 5.2 carrying out Stage 4, which states that given a D-situation
obtained in an earlier stage, we can either find a monochromatic copy of T or the reduced graph is
extremal (E-situation). Then, we similarly proceed through the other stages in reverse order, ending
with Lemma 5.9 in Section 5.5 carrying out Stage 1, which says that from the A-situation structure
given by Theorem 5.1, we can either find a monochromatic copy of T , or, combining with known results
about the later stages, conclude that the reduced graph is extremal (E-situation).

To finish the proof, we still need two further results. In Section 5.1, we formalise what it means for a
reduced graph to be extremal, and show in Lemma 5.3 that this implies the original graph is extremal as
well in the sense of Definition 2.1. The second is a technical ‘cascading lemma’ about maximum matchings,
which is needed in Stage 2 and proved separately in Section 5.6.

5.1 Extremal regular partitions

Recall from Definition 2.1 what it means for a red/blue coloured complete graph to be Type I (µ, t1, t2)-
extremal or Type II (µ, t1, t2)-extremal, and that if it is extremal of either type then we say it is (µ, t1, t2)-
extremal. Now, we similarly define a notion of being extremal for the reduced graph of a regular partition.

Definition 5.2. Let 1/n ≪ 1/k ≪ ε ≪ 1, let d, µ ∈ [0, 1], and let t1, t2 ∈ N satisfy t1 + t2 = n. We
say a red/blue-coloured graph G has a Type I (µ, t1, t2)-extremal (ε, d)-regular partition if there exists
an ε-regular partition V1 ∪ · · · ∪ Vk in V (G) with corresponding (ε, d)-reduced graph R, and a partition
[k] = IA ∪ IB such that the following hold.

• |Vi| = m for every i ∈ [k].

• |IA| ≥ (1 − µ)n/m and |IB | ≥ (1 − µ)t2/m.

• Both Rred[IA] and Rblue[IA, IB ] are µ-almost empty, or both Rblue[IA] and Rred[IA, IB ] are µ-almost
empty.

We say G has a Type II (µ, t1, t2)-extremal (ε, d)-regular partition if there exists an ε-regular partition
V1 ∪ · · · ∪ Vk in V (G) with corresponding (ε, d)-reduced graph R, and a partition [k] = IA ∪ IB such that
the following hold.

• |Vi| = m for every i ∈ [k].

• |IA|, |IB | ≥ (1 − µ)t1/m.

• All of Rred[IA], Rred[IB ], and Rblue[IA, IB ] are µ-almost empty, or all of Rblue[IA], Rblue[IB ], and
Rred[IA, IB ] are µ-almost empty.

With suitable choices of constants, if a red/blue coloured complete graph G has a Type I or Type II
(µ′, t1, t2)-extremal (ε, d)-regular partition, then it must be (µ, t1, t2)-extremal, by the following lemma.

Lemma 5.3. Let 1/n ≪ 1/k ≪ ε ≪ µ′ ≪ d ≪ µ ≪ 1, and let t1, t2 ∈ N satisfy t1 + t2 = n. If G is
a red/blue coloured complete graph on at most 2n vertices that contains a Type I or Type II (µ′, t1, t2)-
extremal (ε, d)-regular partition, then G is Type I or Type II (µ, t1, t2)-extremal, respectively.

34



Proof. Suppose G contains a Type I (µ′, t1, t2)-extremal (ε, d)-regular partition V1 ∪ · · · ∪ Vk satisfying
the conditions in Definition 5.2, where without loss of generality we assume that both Rred[IA] and
Rblue[IA, IB ] are µ′-almost empty. Let VA = ∪i∈IAVi and VB = ∪i∈IBVi. From assumptions and using
km ≤ |G| ≤ 2n, the number of red edges in VA is at most µ′|IA|2m2 + d|IA|2m2 + |IA|m2 ≤ µ′k2m2 +
dk2m2 + km2 ≤ 4(µ′ + d + 1/k)n2 ≤ 5dn2. Therefore, by removing at most

√
5dn vertices from VA, we

can obtain a subset V ′
A such that dred(u, V ′

A) ≤
√

5dn for every u ∈ V ′
A.

Similarly, the number of blue edges between V ′
A and VB is at most µ′|IA||IB |m2 + d|IA||IB |m2 ≤

4(µ′ + d)n2 ≤ 5dn2. Thus, we can remove at most
√

5dn vertices from each of V ′
A and VB to obtain

subsets U1 and U2, respectively, such that for every i ∈ [2] and every u ∈ Ui, dblue(u, U3−i) ≤
√

5dn. Since
µ≫

√
d, U1 and U2 show that G is Type I (µ, t1, t2)-extremal.

The case when G contains a Type II (µ′, t1, t2)-extremal (ε, d)-regular partition is similar and thus
omitted.

5.2 Stage 4

Lemma 5.4 (Stage 4). Let 1/n ≪ 1/m ≪ c ≪ 1/k ≪ ε ≪ η ≪ α ≪ d ≪ µ ≤ 1. Let T be an n-vertex
tree with ∆(T ) ≤ cn and bipartition classes of sizes t1 and t2 with t2 ≤ t1 ≤ 2t2. Let G be a red/blue
coloured graph that contains a coloured ε-regular partition V1 ∪ · · · ∪ Vk with |V1| = · · · = |Vk| = m and
corresponding red/blue coloured (ε, d)-reduced graph R. Suppose there is a partition [k] = IA ∪ IB such
that the following hold (see D-situation in Figure 2).

L1 |IA| = k1 and |IB | = k2, with k1m, k2m ≥ (1 − α)t2 and (k1 + k2)m ≥ (1 − α)(n+ t2).

L2 Rred[IA, IB ] is η-almost complete.

Then, G contains a monochromatic copy of T , or G is Type I (µ, t1, t2)-extremal, or t1 ≥ (2−µ)t2 and G
is Type II (µ, t1, t2)-extremal.

Proof. Without loss of generality, assume that k1 ≥ k2. Let A = ∪i∈IAVi and B = ∪i∈IBVi. Note that
from L1, |A| + |B| ≥ (1 + 200α)n and |A| = k1m ≥ (1 − α)(n+ t2)/2 ≥ t2 + 200αn.

Case I. k2m ≥ t2 + 100αn. If there exists an edge ij in Rred[IA], then we can use L2 to greedily find a
perfect matching between some I ′A ⊂ IA \ {i, j} of size 100αn/m and some I ′B ⊂ IB . This allows us to
apply Lemma 4.10 (EM2a) to IA, IB \ I ′B , and I ′B to embed T in red. Similarly, we can use Lemma 4.11
(EM2b) to embed T in red if there is an edge in Rred[IB ]. Thus, we may assume that both Rred[IA]
and Rred[IB ] are empty. This implies that both Rblue[IA] and Rblue[IB ] contain at most εk2 non-edges,
so we can find JA ⊂ IA and JB ⊂ IB , such that |JA| ≥ (1 − 10

√
ε)k1, |JB | ≥ (1 − 10

√
ε)k2, and both

Rblue[JA], Rblue[JB ] are 10
√
ε-almost complete.

If there is any edge ib in Rblue[JA, JB ] with i ∈ JA, then by moving i out of JA and finding an arbitrary
neighbour a of i in JA, we get the structure required to apply Lemma 4.13 (EM2d) to find a blue copy
of T in G. Therefore, we can assume that Rblue[JA, JB ] is empty.

If k1m ≥ t1 + 10αn, then after using Lemma 2.24 to refine the clusters indexed by JA and JB ,
we can embed T in red using Lemma 4.5 (H LT). If instead k1m < t1 + 10αn, then it follows from
k1m ≥ (1 − α)(n + t2)/2 that t1 ≥ (2 − 100α)t2. Also, we have k2m ≥ (1 − α)(n + t2) − k1m ≥
(2−50α)t2 ≥ (1−100α)t1. Therefore, G contains a Type II (200α, t1, t2)-extremal (ε, d)-regular partition,
and so G is Type II (µ, t1, t2)-extremal by Lemma 5.3.

Case II. k2m < t2 + 100αn. Then k1m ≥ (1 − α)(n+ t2) − k2m ≥ (1 − 102α)n > t2 + 500αn.
If the maximum matching M in Rred[IA] has size at least 101αn/m, then we can move one side of

a submatching of M with size 100αn/m out of IA to obtain the structure needed to apply Lemma 4.10
(EM2a) to find a red copy of T . Otherwise, let I ′A = IA\M , A′ = ∪i∈I′

A
Vi, and k′1 = |I ′A| ≥ k1−202αn/m.

Then, Rred[I ′A] is empty and so Rblue[I
′
A] contains at most εk2 non-edges.

Note that |A′| = k′1m ≥ (1 − 400α)n. If |A′| = k′1m ≥ (1 + 5α)n, then we can easily find the structure
to apply Lemma 4.12 (EM2c) to embed T in Gblue[A

′]. Thus, we may assume that |A′| ≤ (1 + 5α)n,
and so |B| ≥ (1 − α)(n + t2) − |A′| − 202αn ≥ (1 − 1000α)t2. Let α ≪ β ≪ d. If at least 2βn/m
vertices in I ′A have at least 2βn/m blue neighbours in IB , then we can greedily find the structure to apply
Lemma 4.12 (EM2c) to embed T in Gblue[A

′ ∪ B]. Otherwise, we can find JA ⊂ I ′A and JB ⊂ IB such
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that |JA| ≥ (1 − 3β)n/m, |JB | ≥ (1 − 10
√
β)t2/m, and Rblue[JA, JB ] is 10

√
β-almost empty. This shows

that G contains a Type I (10
√
β, t1, t2)-extremal (ε, d)-regular partition, so G is Type I (µ, t1, t2)-extremal

by Lemma 5.3.

5.3 Stage 3

Lemma 5.5 (Stage 3). Let 1/n ≪ 1/m ≪ c ≪ 1/k ≪ ε ≪ η ≪ α ≪ d ≪ µ ≪ 1. Let T be an n-vertex
tree with ∆(T ) ≤ cn and bipartition classes of sizes t1 and t2 with t2 ≤ t1 ≤ 2t2. Let G be a red/blue
coloured graph that contains a coloured ε-regular partition V1 ∪ · · · ∪ Vk with |V1| = · · · = |Vk| = m and
corresponding blue/red coloured (ε, d)-reduced graph R. Suppose there is a partition [k] = IA ∪ IB ∪ IC
such that the following hold (see C-situation in Figure 2).

M1 |IA| = k1, |IB | = k2, and |IC | = k3, with k1m, k2m, k3m ≥ (1 − α)t2 and (k1 + k2)m = (1 − α)n.

M2 Rred[IA, IB ] is η-almost complete.

Then, G contains a monochromatic copy of T , or G is Type I (µ, t1, t2)-extremal, or t1 ≥ (2−µ)t2 and G
is Type II (µ, t1, t2)-extremal.

Proof. Let α ≤ α′ ≪ β ≪ d. To avoid repetition, we first prove the following two claims dealing with two
commonly occuring structures.

Claim 5.6. Suppose there exist disjoint JA, JB , JC ⊂ [k], such that the following hold (see Figure 6).

N1 |JA| = (1 − α′)t1/m and |JB | = |JC | = (1 − α′)t2/m.

N2 Rred[JA, JB ] is η-almost complete.

N3 Rred[JB , JC ] contains a matching with size 100α′t2/m.

Then, G contains a monochromatic copy of T , or G is Type I (µ, t1, t2)-extremal, or t1 ≥ (2−µ)t2 and G
is Type II (µ, t1, t2)-extremal.

Proof of Claim 5.6. If at least 100α′t2/m vertices in JA have at least 200α′t2/m red neighbours in JC ,
then we can greedily find a matching of size 100α′t2/m in Rred[JA, JC ] disjoint from the matching given
by N3. This allows us to apply Lemma 4.12 (EM2c) to find a red copy of T in G. Otherwise, at
most 100α′t2/m vertices in JA have at least 200α′t2/m red neighbours in JC , so we can find J ′

A ⊂ JA
and J ′

C ⊂ JC with |J ′
A| ≥ (1 − 200α′)t1/m and |J ′

C | ≥ (1 − 20
√
α′)t2/m, such that Rblue[J

′
A, J

′
C ] is

20
√
α′-almost complete.

If at most 200βt2/m vertices in JB have at least 200βt2/m blue neighbours in J ′
C , then we can find

J ′
B ⊂ JB and J ′′

C ⊂ J ′
C , such that |J ′

B | ≥ (1 − 300β)t2/m, |J ′′
C | ≥ (1 − 20

√
β)t2/m, and Rred[JA ∪ J ′′

C , J
′
B ]

is 20
√
β-almost complete. This gives the required structure (D-situation) in red to apply Lemma 5.4

(Stage 4) with η = 20
√
β to finish the proof.

Thus, we may assume that at least 200βt2/m vertices in JB have at least 200βt2/m blue neighbours in
J ′
C , so we can find a blue matching of size 100βt2/m in Rblue[JB , J

′
C ] disjoint from the red matching given

by N3. Arbitrarily pick a matching of size 10(α′ + β)t2/m in R[JA]. By pigeonhole, it either contains a
red matching Mred of size 10α′t2/m or a blue matching Mblue of size 10βt2/m. In the former case, moving
vertices on one side of Mred out of JA, and using N2, N3, we have the structure to apply Lemma 4.12
(EM2c) to find a red copy of T in G. In the latter case, moving vertices on one side of Mblue out of JA,
and using that Rblue[JA, J

′
C ] is 20

√
α′-almost complete, we can again apply Lemma 4.12 (EM2c) to find

a blue copy of T in G. ⊡

Claim 5.7. Suppose there exist disjoint JA, JB , JC ⊂ [k], such that the following hold (see Figure 7).

O1 |JA| ≥ (t2 + 200α′n)/m, |JB | ≥ (t2 − α′n)/m, |JA| + |JB | = (1 − α′)n/m, and |JC | = (1 − α′)t2/m.

O2 Rred[JA, JB ] is η-almost complete.

O3 Rred[JA, JC ] contains a matching with size 100α′n/m.
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Then, G contains a monochromatic copy of T , or G is Type I (µ, t1, t2)-extremal, or t1 ≥ (2−µ)t2 and G
is Type II (µ, t1, t2)-extremal.

Proof of Claim 5.7. If there is an edge in either Rred[JA] or Rred[JB ], then we can apply Lemma 4.10
(EM2a) or Lemma 4.11 (EM2b), respectively, to find a red copy of T in G. Thus, by removing at
most 10

√
ε-fraction of vertices from JA and JB , we may assume that Rblue[JA] and Rblue[JB ] are both

10
√
ε-almost complete.

Suppose there exists a set of 10βt2/m vertices in JC , each of which has at least 10βt2/m blue neighbours
in both JA and JB . Then, using a similar argument to Claim 4.7, we can find a blue matching M1 of size
β2t2/m between JA and JC with a vertex in V (M1) ∩ JA adjacent to every vertex in J ′

C := V (M1) ∩ JC .
Greedily, we can also find another blue matching between J ′

C and JB covering J ′
C . This allows us to apply

Lemma 4.13 (EM2d) to find a blue copy of T in G.
Thus, we may now assume that there exist two disjoint subsets J+

A , J
+
B ⊂ JC containing all but at

most 10βt2/m vertices in JC , such that every vertex in J+
A has at most 10βt2/m blue neighbours in JB ,

and every vertex in J+
B has at most 10βt2/m blue neighbours in JA. Using O2, and by removing at most

5
√
βt2/m vertices from each of JA and JB to obtain J−

A and J−
B , respectively, we can ensure that both

Rred[J−
A , J

−
B ∪ J+

B ] and Rred[J−
B , J

−
A ∪ J+

A ] are 5
√
β-almost complete. Note that if |J+

A | ≤ 10βt2/m, then
|J−

A ∪J−
B ∪J+

B | ≥ (1−20β)(n+t2)/m, so J−
A and J−

B ∪J+
B form the required red structure (D-situation) to

apply Lemma 5.4 (Stage 4) with η = 5
√
β to finish the proof. Thus, we can assume that |J+

A | ≥ 10βt2/m,
and similarly |J+

B | ≥ 10βt2/m.
As in the beginning of this proof, we may further assume that Rblue[J

−
A ∪ J+

A ] and Rblue[J
−
B ∪ J+

B ]
are both 10

√
ε-almost complete, as the presence of any red edge within either of them allows us to apply

Lemma 4.10 (EM2a) or Lemma 4.11 (EM2b) to find a red copy of T in G. If there is any blue edge
between J−

A ∪ J+
A and J−

B ∪ J+
B , then we can move one end of this blue edge out and then find a blue

copy of T using Lemma 4.13 (EM2d). Therefore, Rred[J−
A ∪ J+

A , J
−
B ∪ J+

B ] contains the red structure
(D-situation) needed to apply Lemma 5.4 (Stage 4) to finish the proof. ⊡

Now we can carry out Stage 3. If at most 2βt2/m vertices in IA ∪ IB have at least 2βt2/m red
neighbours in IC , then we can find IAB ⊂ IA ∪ IB and I ′C ⊂ IC with |IAB | ≥ (1 − 2β)n/m and |I ′C | ≥
(1 − 5

√
β)t2/m, such that Gblue[IAB , I

′
C ] is 5

√
β-almost complete. Therefore, IAB and I ′C form the blue

structure (D-situation) required to apply Lemma 5.4 (Stage 4) to finish the proof. Thus, we may assume
that at least 2βt2/m vertices in IA ∪ IB have at least 2βt2/m red neighbours in IC , from which it follows
that there is a red matching of size βt2/m either between IA and IC , or between IB and IC .

Case I. |IA|, |IB | ≥ (t2 + 200αn)/m. Without loss of generality, assume that there is a red matching of
size βt2/m between IA and IC . Then, we can apply Claim 5.7 to to finish the proof.

Case II. Without loss of generality, assume that |IB | < (t2 + 200αn)/m, so |IA| ≥ (t1 − 201αn)/m ≥
(1− 500α)t1/m from M1. If there is a red matching of size βt2/m between IB and IC , then we can apply
Claim 5.6 with α′ = 500α to finish the proof.

Thus, we may assume that there is a red matching of size βt2/m between IA and IC . If t1 ≤ (1 +
1000α)t2, then |IB | ≥ (1 − α)t2/m ≥ (1 − 2000α)t1/m, so we can apply Claim 5.6 with α′ = 2000α to
finish the proof. If instead t1 > (1 + 1000α)t2, then |IA| ≥ (1 − 3α)t1/m ≥ (t2 + 200αn)/m, so we can
apply Claim 5.7 to finish the proof. □

5.4 Stage 2

Lemma 5.8 (Stage 2). Let 1/n ≪ 1/m ≪ c ≪ 1/k ≪ ε ≪ η ≪ α ≪ d ≪ µ ≪ 1. Let T be an n-vertex
tree with ∆(T ) ≤ cn and bipartition classes of sizes t1 and t2 with t2 ≤ t1 ≤ 2t2. Let G be a red/blue
coloured graph that contains a coloured ε-regular partition V0 ∪ V1 ∪ · · · ∪ Vk with |V0| = · · · = |Vk| = m
and corresponding red/blue coloured (ε, d)-reduced graph R. Suppose there is a partition [k] = IA∪ IB ∪ IC
such that the following hold (see B-situation in Figure 2).

P1 |IA| = |IB | = k1 with k1m = (1 − α)t2, and |IC | = k2 with k2m = (1 − α)t1.

P2 In Rred, 0 is adjacent to every i ∈ IA ∪ IB.
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P3 Rred[IA, IB ] is η-almost complete.

Then, G contains a monochromatic copy of T , or G is Type I (µ, t1, t2)-extremal, or t1 ≥ (2−µ)t2 and G
is Type II (µ, t1, t2)-extremal.

Proof. Let M be a maximum red matching in R between IA ∪ IB and IC . For any I ⊂ [k], for brevity we
use V (I) to denote ∪i∈IVi, the vertices covered by I. Let α≪ β ≪ d.

Case I.M contains at most (t1−t2+2βn)/m edges. Let X = (IA∪IB)∩V (M), X ′ = (IA∪IB)\V (M), Y =
IC ∩ V (M), and Y ′ = IC \ V (M). By Lemma 5.10, there are partitions X = X+ ∪ X− ∪ X and Y =
Y +∪Y −∪Y such thatM matchesX+ with Y −, X− with Y +, andX with Y , andRred[X ′∪X−, Y ′∪Y −∪Y ]
is empty. From assumption, |X| = |Y | ≤ (t1 − t2 + 2βn)/m, and the following hold.

|V (X ′ ∪X−)| ≥ |V (X ′)| ≥ (1 − α)2t2 − (t1 − t2 + 2βn) = (3 − 2α− 2β)t2 − (1 + 2β)t1 ≥ (1 − 10β)t2.

|V (Y ′ ∪ Y − ∪ Y )| = |V (IC)| − |V (Y +)| ≥ |V (IC)| − |V (Y )| ≥ (1 − α)t1 − (t1 − t2 + 2βn) ≥ (1 − 10β)t2.

|V (X ′ ∪X− ∪ Y ′ ∪ Y − ∪ Y )| = |V ([k] \X)| ≥ (1 − α)(t1 + 2t2) − (t1 − t2 + 2βn) ≥ (1 − 10β)n.

Hence, X ′ ∪X− and Y ′ ∪ Y − ∪ Y form the blue structure (C-situation) required to apply Lemma 5.5
(Stage 3) to finish the proof.

Case II. M contains at least (t1− t2 +2βn)/m edges. Let ε≪ γ ≪ α. Refine every cluster Vi with i ∈ IA
or i ∈ IB down to clusters of size γm, and label these new clusters as {V ′

i : i ∈ JA} and {V ′
i : i ∈ JB},

respectively. Refine every cluster Vi with i ∈ IC down to clusters of size γt1m/t2 and label the new
clusters as {V ′

i : i ∈ JC}. In this refinement process, at most O(γn) covered vertices are lost. Let R′

be the new reduced graph on JA ∪ JB ∪ JC , where for each ∗ ∈ {red,blue}, ij ∈ E(R′
∗) if and only if

G∗[V ′
i , V

′
j ] is (

√
ε, d− ε)-regular. Using P3, Lemma 2.19, and the matching M , we see that R′

red[JA, JB ]
is also η-almost complete, and we can find a matching M ′ in R′

red[JA∪JB , JC ] covering (t1− t2 +βn)t2/t1
vertices in ∪i∈JA∪JB

V ′
i and t1 − t2 + βn vertices in ∪i∈JC

V ′
i .

Case II.1. |V (M ′) ∩ JA|, |V (M ′) ∩ JB | ≥ 5βn/γm. Then, we can find disjoint subsets JA,1, JA,2 ⊂
JA \ V (M ′) and JB,1, JB,2 ⊂ JB \ V (M ′), such that |JA,1|/|JB,2| = |JB,1|/|JA,2| ∈ [t1/t2, (1 + α)t1/t2],
each of JA,1, JA,2, JB,1, JB,2 covers at least αn vertices, and together with V (M ′) ∩ (JA ∪ JB) they cover
at least (2 − 10α)t2 vertices. Moreover, since R′

red[JA, JB ] is η-almost complete, by choosing the subsets
above randomly and using Lemma 2.5, we can ensure that both R′

red[JA,1, JB,2] and R′
red[JA,1, JB,2] are

10η-almost complete. Therefore, for some ε ≪ γ′ ≪ γ, we can use Lemma 2.24 to further appropriately
refine these clusters along with those in M ′ into two sets of smaller clusters of sizes γ′m and γ′t1m/t2,
respectively, which can be paired up into ( 4

√
ε, d− 2

√
ε)-regular pairs. Together, these new clusters cover

at least
(1 − α)(2 − 10α)t2 + (1 − α)(t1 − t2 + βn) ≥ (1 + β/2)n

vertices. Finally, note that by P2, each new cluster of size γ′m forms an (
√
ε, d− ε)-regular pair with V0,

so we have the structure to apply Lemma 4.5 (H LT) to find a red copy of T .

Case II.2. One of |V (M ′) ∩ JA| and |V (M ′) ∩ JB | is at most 5βn/γm. Without loss of generality,
assume it is |V (M ′) ∩ JB |, and assume that M ′ is chosen so that |V (M ′) ∩ JB | is maximised. Let JD
be the vertices in JC matched by M ′ to the vertices in JB . Since M ′ maximises |V (M ′) ∩ JB |, there
is no red edge in R′ between JB \ V (M ′) and JC \ JD, as we can swap any such edge with an edge in
M ′ adjacent to JA to obtain a matching M ′′ with |V (M ′′) ∩ JB | > |V (M ′) ∩ JB |, a contradiction. Thus,
R′

blue[JB \V (M ′), JC \JD] contains at most ε(k+1)2 non-edges. Moreover, from |V (M ′)∩JB | ≤ 5βn/γm,
it follows that JB \ V (M ′) and JC \ JD cover at least (1 − 20β)t2 and (1 − 20β)t1 vertices, respectively.
Thus, after removing clusters with low degrees in R′

blue[JB \ V (M ′), JC \ JD] and refining all remaining
clusters down to a smaller common size, we get the required structure (C-situation) in blue to apply
Lemma 5.5 (Stage 3) to finish the proof.
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5.5 Stage 1

Lemma 5.9 (Stage 1). Let 1/n ≪ 1/m ≪ c ≪ 1/k ≪ ε ≪ α ≪ d ≪ µ ≪ 1. Let T be an n-vertex
tree with ∆(T ) ≤ cn and bipartition classes of sizes t1 and t2 with t2 ≤ t1 ≤ 2t2. Suppose G is a red/blue
coloured graph that contains an ε-regular partition V0 ∪ V1 ∪ · · · ∪ Vk with corresponding red/blue coloured
(ε, d)-reduced graph R, and a partition [k] = IA ∪ IB ∪ IC such that the following hold (see A-situation
in Figure 2).

Q1 |Vi| = m for every i ∈ {0} ∪ IA ∪ IC , and |Vi| = t1m/t2 for every i ∈ IB.

Q2 |IA| = |IB | = |IC | = k, with km = (1 − α)t2.

Q3 In Rred, 0 is adjacent to every a ∈ IA.

Q4 Rred[IA, IB ] contains a perfect matching M .

Then, G contains a monochromatic copy of T , or G is Type I (µ, t1, t2)-extremal, or t1 ≥ (2−µ)t2 and G
is Type II (µ, t1, t2)-extremal.

Proof. Let α≪ β ≪ d. Let X be the set of vertices in IA∪IB that have at least 20β|IC | red neighbours in
IC . Let IB,1 = IB∩X, and let IA,1 be the vertices matched with IB,1 by M . Let Let IA,3 = (IA∩X)\IA,1,
and let IB,3 be the vertices matched with IA,3 by M . Let IA,2 = IA \ (IA,1∪IA,3), IB,2 = IB \ (IB,1∪IB,3),
and note that M gives a perfect matching between IA,2 and IB,2.

If |IB,1| ≤ 2βk, then we can remove at most 5
√
β|IC | vertices from IC to obtain I ′C , such that

Rblue[IB \ IB,1, I
′
C ] is 5

√
β-almost complete, both IB \ IB,1 and I ′C cover at least (1 − 6

√
β)t2 vertices,

and they together cover at least (1 − 6
√
β)n vertices. Thus, after refining all clusters down to a common

smaller size, IB \ IB,1 and I ′C provide the blue structure (C-situation) required to apply Lemma 5.5
(Stage 3) with η = 5

√
β to finish the proof.

Now suppose |IB,1| ≥ 2βk. In this case, assuming there is no red copy of T in G, we make the following
four deductions.

i) |IA,1 ∩X| ≤ β|IA,1|.
If not, let I ′A,1 ⊂ IA,1 ∩ X have size β2k, and let I ′B,1 ⊂ IB,1 be the vertices in Rred matched with

I ′A,1 by M . From the definition of X, we can find a perfect matching between I ′A,1 and some IC,1 ⊂ IC ,

such that if I ′C = IC \ IC,1, then every vertex in I ′B,1 still has at least 10β2|I ′C | neighbours in I ′C . After
appropriate refinements, this structure allows us to apply Lemma 4.6 (EM1a) to find T in red.

ii) At most β2k vertices in IB,3 have at least β2k red neighbours in IA,1.
If not, we can find a perfect matching of size β2k between some I ′B,3 ⊂ IB,3 and I ′A,1 ⊂ IA,1. Let

I ′B,1 ⊂ IB,1 be the vertices matched with I ′A,1 by M , and let I ′A,3 ⊂ IA,3 be the vertices matched with
I ′B,3 by M . Since I ′A,3 ⊂ X, we can find a perfect matching between I ′A,3 and some IC,3 ⊂ IC , such that

if I ′C = IC \ IC,3, then every vertex in I ′B,1 still has at least 10β2|I ′C | neighbours in I ′C . After appropriate
refinements, this structure allows us to apply Lemma 4.6 (EM1a) to find T in red.

iii) At most β|IA,1| vertices in IA,1 have at least β|IA,1| red neighbours in IA,1.
If not, we can apply Lemma 4.8 (EM1b) to find T in red.

iv) At most βk edges in M [IA,2, IB,2] satisfy that both of their endpoints have at least β|IA,1| red
neighbours in IA,1.

If not, we can apply Lemma 4.9 (EM1c) to find T in red.

From iv), we can find a subset JAB,2 ⊂ IA,2 ∪ IB,2 containing a vertex in all but at most βk edges in
M [IA,2, IB,2], so that every vertex in JAB,2 has at most β|IA,1| red neighbours in IA,1. Similarly, using i),
ii), and iii), we can find JB,3 ⊂ IB,3 containing all but at most β2k vertices in IB,3, and JA,1 ⊂ IA,1 \X
containing all but at most 2β|IA,1| vertices in IA,1, such that every vertex in J := JAB,2 ∪ JB,3 ∪ JA,1

has at most 2β|JA,1| red neighbours in JA,1, and at most 20β|IC | red neighbours in IC . In particular, by
averaging and using that JA,1 is non-empty, we can find some j ∈ JA,1 with at most 2β|J | red neighbours
in J and at most 20β|IC | red neighbours in IC . Also, we have

|J | ≥ (1 − 2β)|IA,1| + |IA,2| − βk + |IA,3| − β2k ≥ (1 − 4β)|IA| ≥ (1 − 5β)t2/m.
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Therefore, we can find J ′ ⊂ NRblue
(j, J) and I ′C ⊂ NRblue

(j, IC) with |J ′| ≥ (1 − 2β)|J | ≥ (1 − 10β)t2/m
and |I ′C | ≥ (1 − 20β −

√
20β)|IC | ≥ (1 − 5

√
β)t2/m, such that Rblue[J

′, I ′C ] is 5
√
β-almost complete.

Therefore, after refining all clusters down to a smaller common size, J ′ and I ′C provide the blue structure
(B-situation) required to apply Lemma 5.8 (Stage 2) with η = 5

√
β to finish the proof.

5.6 Cascading lemma

Lemma 5.10 (Cascading lemma). Let G be a bipartite graph with bipartition classes A and B, and let M
be a maximum matching in G. Let AM = A∩ V (M), BM = B ∩ V (M), A′ = A \AM , and B′ = B \BM .
Then, AM and BM can be partitioned as AM = A+ ∪ A− ∪ A and BM = B+ ∪ B− ∪ B such that the
following hold.

• M matches vertices in A+ with vertices in B−, vertices in A− with vertices in B+, and vertices in
A with vertices in B.

• G[A′ ∪A−, B′ ∪B− ∪B] and G[A′ ∪A− ∪A,B′ ∪B−] are both empty graphs.

Proof. First, by maximality of M , G[A′, B′] must be an empty graph. Consider the following process. To
initialise, set A+

0 = A−
0 = B+

0 = B−
0 = ∅, A0 = AM , and B0 = BM . Throughout this process, we will

maintain the following conditions.

R1 A+
i ∪A−

i ∪Ai is a partition of AM and B+
i ∪B−

i ∪Bi is a partition of BM .

R2 M matches vertices in A+
i with vertices in B−

i , vertices in A−
i with vertices in B+

i , and vertices in
Ai with vertices in Bi.

R3 G[A′ ∪A−
i , B

′ ∪B−
i ] is the empty graph.

R4 For every a ∈ A′ ∪A−
i , there exists an M -alternating path, possibly of length 0, that connects a to

some vertex a′ ∈ A′, starts with an edge in M , and has all internal vertices in A−
i ∪B+

i . For every
b ∈ B′∪B−

i , there exists an M -alternating path, possibly of length 0, that connects b to some vertex
b′ ∈ B′, starts with an edge in M , and has all internal vertices in B−

i ∪A+
i .

Note that R1–R4 are all satisfied when i = 0. Suppose for some i ≥ 0 we have found A+
i , A

−
i , Ai and

B+
i , B

−
i , Bi satisfying R1–R4. If G[Ai, B

′ ∪B−
i ] and G[A′ ∪A−

i , Bi] are both empty graphs, then we are
done by letting A+ = A+

i , A
− = A−

i , A = Ai, B
+ = B+

i , B
− = B−

i , and B = Bi. Otherwise, we show that
we can continue this process.

Indeed, suppose there exists a ∈ Ai adjacent to some b1 ∈ B′ ∪B−
i . Let b ∈ Bi be the vertex matched

to a by M . We claim that b is not adjacent to any vertex in A′ ∪ A−
i . Indeed, suppose b is adjacent

to a1 ∈ A′ ∪ A−
i . Then by R4, there exists an M -alternating path P1 starting with an edge not in M

connecting some vertex a′1 ∈ A′ to a1, with its internal vertices in A−
i ∪B+

i . Also by R4, there exists some
M -alternating path P2 starting with an edge in M connecting b1 to some vertex b′1 ∈ B′, with its interval
vertices in B−

i ∪A+
i . In particular, P1 and P2 are disjoint. Then, the path P1a1bab1P2 is an M -augmenting

path beginning and ending with edges not in M connecting a′ ∈ A′ and b′ ∈ B′, contradicting that M
is a maximum matching. Let A+

i+1 = A+
i ∪ {a}, Ai+1 = Ai \ {a}, B−

i+1 = B−
i ∪ {b}, Bi+1 = Bi \ {b},

and keep A−
i+1, B

+
i+1 unchanged. Then G[A′ ∪ A−

i+1, B
′ ∪ B−

i+1] is still an empty graph, and bab1P2 is
an M -alternating path starting with an edge in M connecting b to b′1 ∈ B′, with internal vertices in
B−

i+1 ∪A
+
i+1. It follows that R1–R4 are all maintained.

If instead there exists b ∈ Bi adjacent to some a1 ∈ A′ ∪ A−
i , then let a ∈ Ai be the vertex matched

to b in M , set A−
i+1 = A−

i ∪ {a}, Ai+1 = Ai \ {a}, B+
i+1 = B+

i ∪ {b}, Bi+1 = Bi \ {b}, and keep A+
i+1, B

−
i+1

unchanged. Like above, R1–R4 are all maintained, which finishes the proof.

5.7 Proof of Theorem 2.2

Proof of Theorem 2.2. Let 1/n ≪ c ≪ ε ≪ µ ≪ 1 and let t1, t2 ∈ N satisfy t1 + t2 = n and t1 ≥ t2. Let
G be a red/blue coloured complete graph with max{t1 + 2t2, 2t1} − 1 vertices. Suppose that G is not
Type I (µ, t1, t2)-extremal, and either t1 < (2 − µ)t2 or G is not Type II (µ, t1, t2)-extremal. Let T be
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any n-vertex tree with ∆(T ) ≤ cn and bipartition class sizes t1 and t2, we need to show that G contains
a monochromatic copy of T .

If t1 ≤ 2t2, let T ′ = T , t′1 = t1 and t′2 = t2. If t1 ≥ 2t2 + 1, then by Lemma 2.10, T contains a set
L of 2/c leaves in V1. Let T ′ be a new tree obtained by attaching ⌈(t1 − 2t2)/2⌉ new leaves to vertices
in L, with no vertex in L receiving more than cn of these new leaves. Then, observe that ∆(T ′) ≤ c|T ′|,
and the bipartition classes of T ′ have sizes t′1 = t1 and t′2 = ⌈t1/2⌉. It follows that t′1 ≤ 2t′2 and
|G| = 2t1 − 1 = 2t′1 − 1 ≥ t′1 + 2t′2 − 2 ≥ (1 − ε)(t′1 + 2t′2). Therefore, Theorem 5.1 implies that we have
the structure required to apply Lemma 5.9, which then implies that one of the following is true.

S1 G contains a monochromatic copy of T ′.

S2 G is Type I (µ/2, t′1, t
′
2)-extremal.

S3 t′1 ≥ (2 − µ/2)t′2 and G is Type II (µ/2, t′1, t
′
2)-extremal.

Note that each of S2 and S3 implies that the same is true with t1, t2, µ in place of t′1, t
′
2, µ/2, respectively,

which contradicts our assumption. Therefore, it must be that S1 is true, which implies that G contains a
monochromatic copy of T as well, finishing the proof.

6 Proof of Theorem 2.3: Type I extremal graphs

In this section, we prove Theorem 2.3. We will start by outlining the proof in Section 6.1, breaking it
down into different cases that are then proved throughout the rest of the section.

6.1 Proof outline for Type I extremal graphs

We start by recapping the situation in Theorem 2.3, where we have parameters 1/n≪ c≪ µ≪ 1. Let T
be an n-vertex tree with ∆(T ) ≤ cn and bipartition classes of sizes t1 and t2 satisfying t1 ≥ t2. Let G be
a red/blue coloured complete graph on max{2t1, t1 + 2t2}− 1 vertices which is Type I (µ, t1, t2)-extremal.
This means that there are disjoint sets U1, U2 ⊂ V (G) such that |U1| ≥ (1 − µ)n, |U2| ≥ (1 − µ)t2,
dred(u, U1) ≤ µn for every u ∈ U1, and dblue(u, U3−i) ≤ µn for every i ∈ [2] and u ∈ Ui. We wish to find
a monochromatic copy of T in G. As mentioned at the end of Section 2.1, we can and will assume that
t1 ≤ 2t2 + 1, so |G| ∈ {n+ t2 − 1, n+ t2}.

Let us first partition the vertices outside of U1 ∪ U2. For some β with µ ≪ β ≪ 1, partition V (G) =
U+
1 ∪ U+

2 so that vertices in U+
2 have at least βn red neighbours in U1 and vertices in U+

1 do not. In
particular, U1 ⊂ U+

1 , U2 ⊂ U+
2 , and at least one of |U+

1 | ≥ n and |U+
2 | ≥ t2 must hold. Say |U+

1 | = n+ k
for some k satisfying |k| ≤ 2µn, from which it follows that |U+

2 | ∈ {t2 − k − 1, t2 − k}.
A first approach to proving Theorem 2.3 would be to embed T into Gblue[U

+
1 ] if |U+

1 | ≥ n, and into
Gred[U+

1 , U
+
2 ] if |U+

2 | ≥ t2. We will be able to do this when the tree has many, say n/100, vertex-disjoint
bare paths with length 5, which we call Case I.A. This is split into Case I.A.1 and Case I.A.2 depending
on whether k ≥ 0. To embed such a tree T , we first remove many suitable bare paths with length 4, so
that the remaining forest T ′ can be embedded greedily. Then, we find a collection of vertex-disjoint paths
with length 2 in G that will form the middle parts of the missing paths, and make sure that they cover
all the low degree vertices in G if necessary. Finally, we attach these length 2 paths to the image of T ′ to
complete a copy of T by verifying the appropriate Hall’s matching conditions. These proofs are carried
out in Section 6.2.

If T does not have n/100 vertex-disjoint bare paths with length 5, we call this Case I.B. Note that
by Lemma 2.11, T must then have at least n/20 leaves. Unlike in Case I.A above where no spare vertex
is required to embed T , it follows from a famous example of Komlós, Särkózy and Szemerédi [23] that we
cannot necessarily embed T into Gblue[U

+
1 ] even if |U+

1 | ≥ n, or into Gred[U+
1 , U

+
2 ] even if |U+

2 | ≥ t2. For
example, in our setting, it is easy to create an n-vertex tree T with ∆(T ) ≤ cn in which there is a set W
of at most 2/c vertices such that every edge of the tree contains a vertex in W . Thus, Gblue[U

+
1 ] can only

contain a blue copy of T if it has a set W ′ with size at most 2/c for which at most k = |U+
1 | − n vertices

in U+
1 \W ′ have no blue neighbour in W ′. An appropriate red sparse binomial random graph placed on

U+
1 can destroy this property, even when |U+

1 | = n + Θc(n), while having maximum degree at most cn
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(see [23] for a more detailed example). Thus, whether we embed the tree in red or blue will depend not
only on k, but also on the number of edges in Gred[U+

1 ] and Gblue[U
+
1 , U

+
2 ].

We divide Case I.B (where T has many leaves) into two further subcases, using a parameter D, which
is defined to be the 30µn-th biggest value of dblue(u, U

+
2 ) across all u ∈ U+

1 . The hope is that this could
allow us to embed D leaves of the tree T using the edges in Gblue[U

+
1 , U

+
2 ], thus creating more space to

embed the rest of the tree into Gblue[U
+
1 ]. With this reasoning, one might expect that if k +D ≥ 0, then

as |U+
1 | +D = n+ k +D ≥ n, we will be able to embed the tree in blue. However, an example similar to

the one mentioned above from [23] shows that simiply requiring k+D ≥ 0 is not enough, as comparatively
few red edges in G[U+

1 ] can spoil this embedding attempt in blue. However, in Section 6.3, we will show
that we can embed the tree in blue as long as G[U+

1 ] has at most 107(k + D + 1)n red edges, which we
call Case I.B.1.

Our final case, Case I.B.2, is when there are more than 107(k +D + 1)n red edges in G[U+
1 ]. These

red edges will allow us to embed into Gred[U+
1 ] some small subtree of T , which contains at least k+D+ 1

vertices from V2, the bipartition class of T with size t2. Note that to embed the remaining vertices of V2,
we now have at least k+D+ 1− k− 1 ≥ D spare vertices available in U+

2 . As most of the vertices in U+
1

have at most D blue neighbours in U+
2 , we will be able to embed the rest of the tree essentially greedily,

with some slight complications such as vertices in U+
2 \ U2 having fewer red neighbours in U+

1 .
In Section 6.2, we prove the embedding results used for both Case I.A.1 and Case I.A.2. In Sec-

tion 6.3, we prove the embedding result used for Case I.B.1, stated so that it will also be useful in
Section 7. In Section 6.4, we prove the embedding result used for Case I.B.2. Finally, we put all of these
together in Section 6.5 to prove Theorem 2.3. To finish this outline, we recap the different cases in the
proof of Theorem 2.3, noting the main result that takes care of each of them.

I G is Type I extremal.

I.A T has at least n/100 vertex-disjoint bare paths with length 5.

I.A.1 k ≥ 0: T embeds in blue. Lemma 6.1

I.A.2 k < 0: T embeds in red. Lemma 6.2

I.B T has at least n/20 leaves.

I.B.1 e(Gred[U+
1 ]) ≤ 107(k +D + 1)n: T embeds in blue. Lemma 6.3

I.B.2 e(Gred[U+
1 ]) > 107(k +D + 1)n: T embeds in red. Lemma 6.6

6.2 Case I.A: trees with many bare paths in Type I extremal graphs

In Case I.A.1, we will use the following result that allows us to embed spanning trees with many short
bare paths into an almost complete graph. A stronger version in which the degree condition is weakened
like in Lemma 6.2 also holds, though this is not needed in our proof.

Lemma 6.1. Let 1/n ≪ µ ≪ 1. Let H be an n-vertex graph with δ(H) ≥ (1 − µ)n, and let T be an
n-vertex tree that contains 10µn vertex-disjoint bare paths with length 4. Then, for any t ∈ V (T ) not on
any of these bare paths and any s ∈ V (H), there is a copy of T in H with t copied to s.

Proof. From assumption, there is a collection P = {P1, . . . , Pℓ} of ℓ = 10µn vertex-disjoint bare paths in
T with length 4, such that t is not on any of these bare paths. Let T ′ be the forest obtained by removing
all internal vertices of the paths in P from T , so that |T ′| = n− 3ℓ.

Since δ(H) ≥ (1 − µ)n ≥ |T ′|, by Lemma 2.17, we can greedily find a copy S′ of T ′ in H with t
copied to s. Let H ′ = H − V (S′). Note that |H ′| = 3ℓ = 30µn, so δ(H ′) ≥ |H ′| − µn ≥ |H ′|/2. Thus,
by Dirac’s theorem, H ′ contains a Hamilton cycle. In particular, we can label the vertices in H ′ as
w1, . . . , wℓ, x1, . . . , xℓ, y1, . . . , yℓ, so that for each i ∈ [ℓ], xiwiyi is a path in H ′.

For each i ∈ [ℓ], let ui, vi be the copies of the endpoints of Pi in S′. Let K be an auxiliary bipartite
graph with bipartition classes A = {a1, . . . , aℓ} and B = {b1, . . . , bℓ}, such that for any i, j ∈ [ℓ], there is
an edge aibj in K if and only if both uixj and viyj are edges in H. Since δ(H) ≥ (1−µ)n, for every i ∈ [ℓ],
dK(ai), dK(bi) ≥ ℓ−2µn. Then, for any I ⊂ A with 0 < |I| ≤ ℓ−2µn, we have |NK(I,B)| ≥ ℓ−2µn ≥ |I|,
while for any I ⊂ A with |I| > ℓ − 2µn, we have |NK(I,B)| = |B| ≥ |I|, as any b ∈ B \NK(I,B) would
satisfy dK(b) < 2µn < ℓ−2µn, a contradiction. Thus, by Lemma 2.8, there is a perfect matching in K, say
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matching ai with bσ(i) for every i ∈ [ℓ]. This then implies that S′ along with the paths uixσ(i)wσ(i)yσ(i)vi
for all i ∈ [ℓ] form a copy of T in H, as required.

In Case I.A.2, we will use the following bipartite version of Lemma 6.1. We prove it in a more flexible
form so that we may also use it later in the proof of Lemma 6.6.

Lemma 6.2. Let 1/n≪ µ≪ β ≪ 1. Let H be a bipartite graph with bipartition classes U1 and U2 such
that d(u, U2) ≥ |U2| − µn for every u ∈ U1, d(u, U1) ≥ βn for every u ∈ U2, and d(u, U1) ≥ |U1| − µn for
all but a set W of at most µn vertices in U2.

Let T be an n-vertex forest with bipartition classes V1 and V2 such that |Vj | ≤ |Uj | for each j ∈ [2]. Let
R be a subforest of T with |R| ≤ βn/2, such that T − R contains a collection P of 10µn vertex-disjoint
bare paths of length 4 whose endpoints are all in V2. Suppose that H −W contains a copy S of R with
vertices in V (R) ∩ Vj copied into Uj for each j ∈ [2], then S can be extended to a copy of T in H, such
that W is covered by the central vertices of the bare paths in P.

Proof. Let ℓ = 10µn, and label the paths in P as P1, . . . , Pℓ. Let T ′ be the forest obtained by removing
the internal vertices of P1, . . . , Pℓ from T , noting that |V (T ′)∩V1| = |V1| − 2ℓ and |V (T ′)∩V2| = |V2| − ℓ.

Let W = {w1, . . . , wr}, where r ≤ µn. Since d(w,U1 \ V (S)) ≥ βn − βn/2 ≥ 2µn for every w ∈ W ,
we can greedily find distinct vertices x1, . . . , xr, y1, . . . , yr ∈ U1 \ V (S), such that xi, yi ∈ N(wi) for every
i ∈ [r]. Let W+ = {wi, xi, yi : i ∈ [r]}, and H ′ = H −W+.

Note that every vertex in H ′ has at most µn non-neighbours in the opposite side of the bipartition.
Using ℓ = 10µn and Lemma 2.18, we can greedily extend the copy S of R to a copy S′ of T ′ in H ′, in
which V (T ′) ∩ Vj is copied into Uj \W+ for each j ∈ [2]. For every i ∈ [ℓ], let ui, vi ∈ U2 be the copies of
the two endpoints of Pi in S′. To complete a copy of T , it suffices to find, for every i ∈ [ℓ], a ui, vi-path
with length 4 using distinct new internal vertices.

Let H ′′ = H ′ −V (S′) = H −W+ −V (S′). Then |V (H ′′)∩U1| ≥ |V1| − 2r− (|V1| − 2ℓ) = 2(ℓ− r), and
similarly |V (H ′′)∩U2| ≥ |V2|−r−(|V2|−ℓ) ≥ ℓ−r ≥ 5µn. Moreover, every vertex inH ′′ has at most µn non-
neighbours in the opposite side. Arbitrarily pick distinct wr+1, . . . , wℓ ∈ V (H ′′)∩U2, we claim that there
exist distinct xr+1, . . . , xℓ, yr+1, . . . , yℓ ∈ V (H ′′)∩U1 such that xi, yi ∈ N(wi) for every i ∈ [ℓ]\ [r]. Indeed,
by Lemma 2.9, it suffices to show that for every ∅ ≠ I ⊂ [ℓ] \ [r], |N({wi : i ∈ I}, V (H ′′) ∩ U1)| ≥ 2|I|. If
0 < |I| ≤ ℓ− r − µn/2, then |N({wi : i ∈ I}, V (H ′′) ∩ U1)| ≥ |V (H ′′) ∩ U1| − µn ≥ 2(ℓ− r) − µn ≥ 2|I|.
If |I| > ℓ − r − µn/2, then |N({wi : i ∈ I}, V (H ′′) ∩ U1)| = |V (H ′′) ∩ U1| ≥ 2(ℓ − r) ≥ 2|I|, as any
u ∈ V (H ′′) ∩ U1 that is not adjacent to any wi with i ∈ I would have at least |I| ≥ 2µn non-neighbours
in V (H ′′) ∩ U2, a contradiction.

Therefore, together with W+, we have found distinct x1, . . . , xℓ, y1, . . . , yℓ, w1, . . . , wℓ ∈ V (H) \V (S′),
such that xi, yi ∈ N(wi) for every i ∈ [ℓ]. Let K be an auxiliary bipartite graph with bipartition classes
A = {a1, . . . , aℓ} and B = {b1, . . . , bℓ}, such that for any i, j ∈ [ℓ], aibj ∈ E(K) if and only if both uixj
and viyj are in E(H). From construction, for each i ∈ [ℓ], ui, vi ∈ U2 \W , so dK(ai) ≥ ℓ− 2µn. Similarly,
dK(bj) ≥ ℓ− 2µn for every j ∈ [ℓ]. Like in Lemma 6.1, we can now use these degree conditions to verify
that for every I ⊂ A, |NK(I,B)| ≥ |I|, so Lemma 2.8 gives a perfect matching in K, say matching ai with
bσ(i) for every i ∈ [ℓ]. Then, S′ together with the paths uixσ(i)wσ(i)yσ(i)vi for all i ∈ [ℓ] form a copy of T
in H, with vertices in W covered by the central vertices of the bare paths in P, as required.

6.3 Case I.B.1: embedding trees in almost complete graphs

We now prove the main result to be used in Case I.B.1. This is proved in a slightly stronger form so
that we may also use it in Section 7.

Lemma 6.3. Let 1/n ≪ c ≪ µ, β ≪ 1, let |k| ≤ µn and 0 ≤ D ≤ µn satisfy k + D ≥ 0. Let G be a
graph with a vertex partition U1∪U2 such that |U1| = n+k and δ(G[U1]) ≥ |U1|−βn. Let X ⊂ U1 satisfy
|X| ≤ µn and dG(u, U2) ≥ n/10 for each u ∈ X. Suppose e(G[U1 \X]) ≤ 107(k +D + 1)n, and there are
at least 10µn vertices in U1 with at least D neighbours in U2.

Let T be an n-vertex tree with ∆(T ) ≤ cn such that, if D > 0, then T has at least n/20 leaves. Then,
G contains a copy of T . Moreover, if D = 0 and X = ∅, then for any t ∈ T and s ∈ U1, there is a copy
of T in G with t copied to s.
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Proof. If D = 0 and T has fewer than n/20 leaves, then T has at least n/100 vertex-disjoint bare paths
with length 4 by Lemma 2.11. Since k ≥ −D = 0, the result follows by applying Lemma 6.1 to G[U1].

Therefore, we can assume that D ≥ 0 and T has at least n/20 leaves. If D ̸= 0 or X ̸= ∅, pick
t ∈ V (T ) arbitrarily. Then, there exists a set L′ of n/49 leaves in T , which does not contain t or any
neighbours of t, and either all belong to V1 or all belong to V2. Let P = NT (L′) be the set of parents of
L′ in T , and note that P is an independent set. Let P1 ⊂ P be a set of size at most D such that t /∈ P1

and D ≤ |NT (P1, L
′)| ≤ n/150, which is possible as ∆(T ) ≤ cn. Similarly, let P ′

2 ⊂ P \ P1 be a set of
size at most ⌈|X|/2⌉ such that t /∈ P ′

2 and ⌈|X|/2⌉ ≤ |NT (P ′
2, L

′)| ≤ n/150. Let P3 = P \ (P1 ∪ P ′
2), so

|NT (P3, L
′)| ≥ n/149. In particular, we can add a set L′

3 of ⌈|X|/2⌉− |P ′
2| leaves adjacent to P3 to the set

P ′
2 to obtain a set P2 of size ⌈|X|/2⌉. Note that P1∪P2 is still an independent set. Let L = L′ \L′

3 and let
m = |T − L|. Observe that n/50 ≤ |L| ≤ n/49 and |NT (P3, L)| ≥ n/150. Let t1 = t, and let t1, t2, . . . , tm
be an ordering of V (T − L) so that each vertex apart from t1 has exactly 1 neighbour in T to its left in
this ordering. Let di = dT (ti, L) for every i ∈ [m].

From assumption, we can take a set Y of 2D vertices in U1 \X, each having at least D neighbours in
U2. Let U−

1 = {u ∈ U1 : dG(u, Y ) ≥ D and dG(u,X) ≥ |X|/2}. Since δ(G[U1]) ≥ |U1| − βn, if D > 0,
by double counting there are at most 2Dβn/D = 2βn vertices u ∈ U1 with dG(u, Y ) < D, while there is
no such vertex if D = 0. Similarly there are at most 2βn vertices u ∈ U1 with dG(u,X) < |X|/2. Thus,
|U1 \ U−

1 | ≤ 4βn. If D = 0 and X = ∅, note that s ∈ U1 = U−
1 \ (X ∪ Y ) already. Otherwise, pick

s ∈ U−
1 \ (X ∪ Y ) arbitrarily.

Let s1 = s, so that s1 ∈ U−
1 \ (X ∪ Y ). For each 1 < i ≤ m in turn, embed ti as follows, where ji < i

is such that tjiti ∈ E(T − L).

T1 If ti ∈ P1, select si uniformly at random from NG(sji , Y \ {s1, . . . , si−1}).

T2 If ti ∈ P2, select si uniformly at random from NG(sji , X \ {s1, . . . , si−1}).

T3 If ti ̸∈ P1 ∪ P2, select si uniformly at random from NG(sji , U
−
1 \ (X ∪ Y ∪ {s1, . . . , si−1})).

Note that T1 is always possible as tji ̸∈ P1 ∪P2, so sji ∈ U−
1 has at least D neighbours in Y , and at most

|P1| − 1 ≤ D − 1 of them have been used. Similarly, T2 is always possible. T3 is always possible as

|NG(sji , U
−
1 \ (X ∪ Y ∪ {s1, . . . , si−1}))| ≥ |U−

1 | − βn− |X| − |Y | − |T − L|
≥ n+ k − 4βn− βn− µn− 2D − n+ |L| ≥ n/100 > 0.

Therefore, this random process always succeeds in producing a copy of T − L in G[U1]. Note that, in
particular, we have |X \ {s1, . . . , sm}| = |X| − |P2| = ⌊|X|/2⌋.

Now, let j∗ be the smallest integer so that 2j
∗
> cn. For each j ∈ [j∗], let Ij be the set of {i : ti ∈ P3}

with 2j−1 ≤ di < 2j , and say a vertex v is j-bad if

|{si : i ∈ Ij} ∩NG(v)| ≤ 2

3
|Ij | − 20(j∗ − j + 1).

If v is j-bad for some j ∈ [j∗], then say v is bad. For each v ∈ U1 \ X, let mv be the number of
non-neighbours of v in U1 \X, so that mv ≤ βn from assumption.

Claim 6.4. For each v ∈ U1 \X,

P(v is bad) ≤ mv

108n
.

Proof of Claim 6.4. Let j ∈ [j∗]. Note that if |Ij | < 30(j∗ − j + 1), then v cannot be j-bad, so
P(v is j-bad) = 0. Assume now that |Ij | ≥ 30(j∗ − j + 1). Note that for every i ∈ Ij , ti ̸∈ P1 ∪ P2,
so by T3 and conditioning on any choices of s1, . . . , si−1, we have

P(si ̸∈ NG(v) | s1, . . . , si−1) ≤ mv

|NG(sji , U
−
1 \ (X ∪ Y ∪ {s1, . . . , si−1}))|

≤ mv

n/100
.

Therefore, for each I ⊂ Ij , if Ev,j,I is the event that si /∈ NG(v) for each i ∈ I, then

P(Ev,j,I) =
∏
i∈I

P(si /∈ NG(v) | si′ /∈ NG(v) for each i′ ∈ I less than i) ≤
(

100mv

n

)|I|

.

44



Since v is j-bad implies that Ev,j,I holds for some I ⊂ Ij with size kj := ⌊|Ij |/3⌋ ≥ 10(j∗ − j + 1), we can
use a union bound to get

P(v is j-bad) ≤
(
|Ij |
kj

)(
100mv

n

)kj

≤
(

104mv

n

)kj

≤
(

104mv

n

)10(j∗−j+1)

≤
( mv

1010n

)(j∗−j+1)

,

where we used mv ≤ µn and 1/n≪ µ≪ 1. Thus,

P(v is bad) ≤
j∗∑
j=1

P(v is j-bad) ≤
j∗∑
j=1

( mv

1010n

)(j∗−j+1)

≤ mv

108n
,

as required. ⊡

By Claim 6.4, we have

E|{v ∈ U1 \X : v is bad}| ≤
∑

v∈U1\X

mv

108n
≤ 2e(Gc[U1 \X])

108n
≤ k +D + 1

5
,

so by Markov’s inequality, with probability at least 1/2 there are at most ⌊(k +D + 1)/2⌋ bad vertices in
U1 \X. Thus, we can take a realisation of this random embedding that has at most ⌊(k +D + 1)/2⌋ bad
vertices in U1 \X.

Let U ′
1 be the set of unused vertices in U1, noting that |U ′

1| = n + k − |T − L| = k + |L| and
|U ′

1∩X| = ⌊|X|/2⌋. To complete the embedding, we use Lemma 2.9 to embed the leaves in L into U ′
1∪U2.

It suffices to show that NG({si : ti ∈ J}, U ′
1 ∪ U2) ≥

∑
i:ti∈J di for every ∅ ≠ J ⊂ P .

First suppose that 0 <
∑

i:ti∈J di ≤ 999|L|/1000, then, as required,

|NG({si : ti ∈ J}, U ′
1)| ≥ |U ′

1| − βn = k + |L| − βn ≥ 999|L|/1000 ≥
∑

i:ti∈J

di.

Now suppose that
∑

i:ti∈J di > 999|L|/1000. Let L3 = NT (P3, L), recall that |L| ≤ n/49 and |L3| ≥
n/150. Thus,

∑
i:ti∈J∩P3

di ≥ |L3| − |L|/1000 ≥ 9|L3|/10. Then, for any v ∈ U1 \X which is not bad,

∑
i:ti∈P3,
si /∈NG(v)

di ≤
j∗∑
j=1

∑
i∈Ij :si /∈NG(v)

2j ≤
j∗∑
j=1

(
1

3
|Ij | + 20(j∗ − j + 1)

)
· 2j

≤ 1

3

j∗∑
j=1

∑
i∈Ij

2di +

j∗∑
j=1

20(j∗ − j + 1) · 2j

≤ 2|L3|
3

+ 80 · 2j
∗
≤ 2|L3|

3
+ 200cn <

9|L3|
10

≤
∑

i:ti∈J∩P3

di.

Thus, v is adjacent to some vertex in {si : ti ∈ J ∩ P3}. Since at most ⌊(k +D + 1)/2⌋ vertices in U1 \X
are bad, this implies that

|NG({si : ti ∈ J}, U ′
1)| ≥ |U ′

1| − |U ′
1 ∩X| − ⌊(k +D + 1)/2⌋

= |L| + k − ⌊|X|/2⌋ − ⌊(k +D + 1)/2⌋ ≥ |L| −D − ⌈|X|/2⌉ ,

so we are done if
∑

i:ti∈J di ≤ |L| −D − ⌈|X|/2⌉.
Suppose now that

∑
i:ti∈J di > |L| −D − ⌈|X|/2⌉. If J ∩ P2 = ∅, then

∑
i:ti∈J di ≤ |L| − ⌈|X|/2⌉ as∑

i:ti∈P2
di ≥ ⌈|X|/2⌉. Hence, J ∩ P1 ̸= ∅ as

∑
i:ti∈P1

di ≥ D, and thus

|NG({si : ti ∈ J}, U ′
1 ∪ U2)| = |NG({si : ti ∈ J}, U ′

1)| + |NG({si : ti ∈ J}, U2)|

≥ |L| −D − ⌈|X|/2⌉ +D = |L| − ⌈|X|/2⌉ ≥
∑

i:ti∈J

di,
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as required. If J ∩ P2 ̸= ∅, then we have

|NG({si : ti ∈ J}, U ′
1 ∪ U2)| = |NG({si : ti ∈ J}, U ′

1)| + |NG({si : ti ∈ J}, U2)|

≥ |L| −D − ⌈|X|/2⌉ + n/10 ≥ |L| ≥
∑

i:ti∈J

di.

Thus, by Lemma 2.9, we can embed L into U ′
1 ∪ U2 to finish a copy of T in G. □

6.4 Case I.B.2: embedding trees in almost complete bipartite graphs

In Case I.B.2, using the notations in Section 6.1, we want to embed a small subtree into Gred[U+
1 ], before

embedding the rest of T into Gred[U+
1 , U

+
2 ]. To find this small subtree, we use the following result.

Proposition 6.5. Let n,m ∈ N satisfy 1 ≤ m ≤ n/18. Let T be an n-vertex tree with bipartition classes
V1 and V2, where |V2| ≥ |V1|/3. Then, T contains a subtree T ′ with |T ′| ≤ 104m, such that it contains at
least m vertices in V2 and has at most 1 vertex in V2 with a neighbour outside of V (T ′) in T .

Proof. For any tree R on at least 18m vertices, by repeated applications of Corollary 2.14, we can find
subtrees R1 and R2 with a unique common vertex that decompose R, such that 6m ≤ |R1| ≤ 18m.
Iterating this in the tree T to find a subtree with size between 6m and 18m at a time, we obtain a
sequence T1, . . . , Tℓ of subtrees satisfying the following properties.

• E(T1), . . . , E(Tℓ) partition E(T ).

• For every j ∈ [ℓ], 6m ≤ |Tj | ≤ 18m.

• For every j ∈ [ℓ], ∪j
i=1Ti is a tree.

• For every 2 ≤ j ≤ ℓ, Tj shares a unique vertex with ∪j−1
i=1Ti.

Note that ℓ ≤ n/(6m− 1). We claim that |V (Ti)∩ V2| ≥ m for at least ℓ/100 indices i ∈ [ℓ]. Indeed, if
not, then there would be at most ℓm+ (ℓ/100) · 18m < n/4 vertices in V2, contradicting the assumption
that |V2| ≥ |V1|/3. Let I = {i ∈ [ℓ] : |V (Ti) ∩ V2| ≥ m}.

Consider the auxiliary graph K with vertex set [ℓ], where for any i < j in [ℓ], ij ∈ E(K) if and only if
i is the smallest index such that V (Ti) ∩ V (Tj) ̸= ∅. Note that every 1 < j ≤ ℓ has a unique neighbour in
[j − 1] in K, so K is a tree and e(K) = ℓ− 1. It follows that there exists i ∈ I with dK(i) ≤ 200.

Let ti be the unique vertex shared by Ti and ∪j<iTj . Then, NT (V (Ti) \ {ti},∪j>iV (Tj)) ≤ 200 · 18m.
Let T ′ be the subtree of T induced by V (Ti) and NT (V (Ti) \ {ti},∪j>iV (Tj)) ∩ V1. Then |T ′| ≤ 104m,
|V (T ′) ∩ V2| ≥ |V (Ti) ∩ V2| ≥ m, and every vertex in V (T ′) ∩ V2, except possibly ti, has no neighbour in
T outside of V (T ′).

Using Proposition 6.5, we can now prove the main result used for Case I.B.2.

Lemma 6.6. Let 1/n ≪ c ≪ µ ≪ β ≪ 1, let 0 ≤ D ≤ µn, and let |k| ≤ µn. Let T be any n-vertex
tree with ∆(T ) ≤ cn and bipartition classes V1 and V2 with sizes t1 and t2, respectively, that satisfy
t2 ≤ t1 ≤ 2t2 + 1. Let G be a graph with a vertex partition U1 ∪ U2 such that 1.1t1 ≤ |U1| ≤ 2n,
|U2| = t2 − k − 1, and the following hold.

• dG(u, U1) ≥ βn for each u ∈ U2, and dG(u, U1) ≥ |U1| − µn for all but at most µn vertices u ∈ U2.

• dG(u, U2) ≥ |U2| −D for all but at most 10µn vertices u ∈ U1.

• There exists X ⊂ U1 with |X| ≤ 2µn such that dG(u, U2) ≥ |U2| − µn for each u ∈ U1 \ X and
e(G[U1 \X]) ≥ 107(k +D + 1)n.

Then, G contains a copy of T .
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Proof. First observe that it suffices to prove this in the case when k + D ≥ −1. Indeed, if k + D < −1,
then let k′ = −D−1 and remove −k−D−1 vertices from U2 to obtain U ′

2 with size t2−k′−1. Note that
trivially e(G[U1 \X]) ≥ 107(k′ +D + 1)n, and all other assumptions still hold with U ′

2 and k′ in place of
U2 and k, so G contains a copy of T . Thus, we assume that k +D ≥ −1 from now on.

Let Y1 = {u ∈ U1 : dG(u, U2) < |U2| − D} and Y2 = {u ∈ U2 : dG(u, U1) < |U1| − µn}, so that
|Y1| ≤ 10µn and |Y2| ≤ µn. For each i ∈ [2], let U−

i = Ui \ Yi. Let Z ⊂ U−
1 be a random subset chosen by

including each vertex independently at random with probability β. By Lemma 2.5, with high probability,
we have |Z| ≤ 3βn, dG(u, Z) ≥ β2n/2 for each u ∈ U2, and e(G[U1 \ (X ∪ Z)]) ≥ 107(k + D + 1)n/2,
noting that the last condition is trivial when k +D = −1. Fix a choice of Z with all of these properties.

As e(G[U1\(X∪Z)]) ≥ 107(k+D+1)n/2, we can find a subgraph H ′ ⊂ G[U1\(X∪Z)] with minimum
degree at least 107(k + D + 1)/4. Since each vertex u ∈ U1 \ (X ∪ Z) satisfies dG(u, U−

2 ) ≥ |U−
2 | − µn,

there are at least |H ′||U−
2 |/2 edges in G between H ′ and U−

2 . Hence, there exists v ∈ U−
2 with at least

|H ′|/2 ≥ 106(k +D + 1) neighbours in V (H ′).
By Proposition 6.5, there is a subtree T ′ of T with |T ′| ≤ 105(k + D + 1) that contains at least

10(k+D+ 1) vertices in V2, and has at most 1 vertex in V (T ′)∩ V2 with a neighbour in T −E(T ′). Call
such a vertex t if it exists. Let F be the tree obtained from T by contracting T ′ to a single vertex r.
Let L1 be the set of leaves in F that are in V1 \ {r}, observing that they are also leaves in T . Note that
|F −L1| ≥ |V2|−105(k+D+1) ≥ n/4, so by Lemma 2.11, F −L1 either has at least n/100 vertex-disjoint
bare paths of length 5 or at least n/100 leaves excluding r. Note that any such leaf in F −L1 must be in
V2, and is also a leaf in T − L1. We now separate into several cases.

Case I. F −L1 contains at least n/100 vertex-disjoint bare paths with length 5, then T −T ′−L1 contains
n/200 vertex-disjoint bare paths with length 4 with both endpoints in V2. Since there are at n/200 central
vertices on these paths, and |L1| ≤ n, by averaging, we can find a set L2 of 10µn such central vertices
that are adjacent to at most 200 · 10µn ≤ β2n/10 vertices in L1. Embed t to v if t exists, then in any
case embed the rest of T ′ greedily into H ′. Note that this embeds at least max{0, 10k+ 10D+ 9} vertices
in V2 into U1, so we now have enough room to apply Lemma 6.2 to extend this embedding of T ′ to an
embedding of T − L1, with T − T ′ − L1 embedded into the rest of G[U−

1 \ Z,U2] such that Y2 is covered
by vertices in L2. To finish, greedily embed leaves in L1 not adjacent to L2 into U−

1 \ Z, possible as the
parents of these leaves are embedded into U−

2 , and greedily embed leaves in L1 adjacent to L2 into Z,
using that every vertex in U2 has at least β2n/2 ≥ |NT (L2, L1)| neighbours in Z.

Case II. F −L1 contains a set L′
2 of n/200 leaves not in NT (V (T ′)). Then, we can find a set L2 ⊂ L′

2 of
size 10µn with |NT (L2, L1)| ≤ 200 · 10µn ≤ β2n/10. Embed t to v if t exists, then in any case embed the
rest of T ′ greedily into H ′. Note that this embeds at least max{0, 10k + 10D + 9} vertices in V2 into U1.
Next, greedily extend this to embed the rest of T − L1 − L2 into the rest of G[U−

1 \ Z,U−
2 ] with vertices

in Vi going into U−
i for each i ∈ [2], which is possible as |L2| = 10µn and d(u, U−

2 ) ≥ |U−
2 | −D ≥ t2 − |L2|

for every u ∈ U−
1 . We can then greedily embed L2 into the rest of U2, which is possible as there are at

least t2 − k − 1 − (t2 − max{0, 10k + 10D + 9} − |L2|) ≥ |L2| +D vertices left in U2, and every vertex in
U−
1 is adjacent to all but at most D of them. Finally, greedily embed the leaves in L1 not adjacent to L2

into U−
1 \Z, and greedily embed the leaves in L1 adjacent to L2 into Z, using that every vertex in U2 has

at least β2n/2 ≥ |NT (L2, L1)| neighbours in Z.

Case III. F − L1 contains a set L′
2 of at least n/200 leaves in NT (V (T ′)). By Lemma 2.13, there

exists subtrees T1, T2 decomposing T ′ with a unique common vertex t′, such that |V (T1) ∩ V2|, |V (T2) ∩
V2| ≥ 3(k + D + 1). Without loss of generality, suppose that NT (V (T2), L′

2) ≥ n/500, and pick a set
L2 ⊂ NT (V (T2), L′

2) of size 10µn, with none of them adjacent to t′, such that NT (L2, L1) ≤ β2n/10. Note
that at most two vertices in V (T1) ∩ V2 can have a neighbour in V (T ) \ V (T1), namely t if it exists, and
t′ if it is in V2.

If t exists and t′ ∈ V2, then view T1 as rooted at t, let the parent of t′ in T1 be p, and let the parent
of p be p′. Embed t to v, then greedily embed the rest of T1 into H ′ with the following exception. Let
W be the set of neighbours of the image of p′ in H ′ that are still unused. If p′ is embedded into H ′, then
|W | ≥ 107(k +D + 1)/4 − |T1| ≥ 2 · 105(k +D + 1), while if p′ coincides with t then it is embedded to v,
so |W | ≥ 106(k+D+ 1)− |T1| ≥ 2 · 105(k+D+ 1) as well. Like before, there exists v′ ∈ U−

2 with at least
|W |/2 ≥ 105(k +D + 1) neighbours in W . Embed t′ to v′, p and NT1(t′) into W , then carry on greedily
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to finish the embedding of the rest of T1 inside H ′. If t does not exist or t′ ̸∈ V2, we can greedily embed
T1 into G[V (H ′) ∪ {v}] such that t is embedded to v if it exists, and the same for t′ if it is in V2.

In any case, we have an embedding of T1 into G, with all but at most two vertices embedded into
H ′, and every vertex in V (T1) ∩ V2 that has any neighbour outside of T1 is embedded into U−

2 . In
particular, at least 3(k +D + 1) − 2 ≥ k +D + 1 vertices in V2 are embedded into U1 if k +D ≥ 0, while
the same holds trivially if k + D = −1. Next, greedily embed the rest of T − L1 − L2 into the rest of
G[U−

1 \Z,U−
2 ]. We can then greedily embed L2 into the rest of U2, which is possible as there are at least

t2 − k− 1− (t2 − k−D− 1− |L2|) = |L2|+D vertices left in U2 and every vertex in U−
1 is adjacent to all

but at most D of them. Finally, greedily embed leaves in L1 not adjacent to L2 into U−
1 \Z, and greedily

embed leaves in L1 adjacent to L2 into Z, using that every vertex in U2 has at least β2n/2 ≥ |NT (L2, L1)|
neighbours in Z.

6.5 Proof of Theorem 2.3

Having proved all of the embedding results necessary for the Type I extremal case, we can now put them
together to prove Theorem 2.3, following the outline in Section 6.1.

Proof of Theorem 2.3. Let 1/n ≪ c ≪ µ ≪ 1 and let t1, t2 ∈ N satisfy t1 + t2 = n and t1 ≥ t2. Let G be
a Type I (µ, t1, t2)-extremal graph on max{2t1, t1 + 2t2} − 1 vertices, and let T be an n-vertex tree with
∆(T ) ≤ cn and bipartition classes V1, V2 of sizes t1 and t2, respectively. From definition, there are disjoint
subsets U1, U2 ⊂ V (G) such that |U1| ≥ (1−µ)n, |U2| ≥ (1−µ)t2, dred(u, U1) ≤ µn for every u ∈ U1, and
dblue(u, U3−i) ≤ µn for every i ∈ [2] and every u ∈ Ui.

First assume that t1 ≤ 2t2 + 1, so |G| ∈ {n + t2 − 1, n + t2}. Let β be such that µ ≪ β ≪ 1. Let
U+
2 = {v ∈ V (G) : dred(u, U1) ≥ βn}, U+

1 = V (G) \ U+
2 , and note that U1 ⊂ U+

1 and U2 ⊂ U+
2 . Let

k = |U+
1 | − n, so |k| ≤ 2µn and |U+

2 | ∈ {t2 − k − 1, t2 − k}. If T has at least n/100 vertex-disjoint bare
paths with length 5, then T has n/100 vertex-disjoint bare paths with length 4 whose endpoints are all in
V2. Thus, there is a blue copy of T in G if k ≥ 0 by Lemma 6.1, and there is red copy of T in G if k < 0
by Lemma 6.2.

Suppose, then, that T does not have at least n/100 vertex-disjoint bare paths with length 5, then, by
Lemma 2.11, T has at least n/20 leaves. Let D ≥ 0 be the 30µn-th biggest value of dblue(u, U

+
2 ) across all

u ∈ U+
1 , and note that D ≤ 3µn. Let X = {u ∈ U+

1 : dblue(u, U
+
2 ) ≥ n/10}, and note that X ⊂ U+

1 \ U1,
so |X| ≤ 2µn. If e(Gred[U+

1 \X]) < 107(k+D+ 1)n, then k+D ≥ 0, so there is a blue copy of T in G by
Lemma 6.3, while if e(Gred[U+

1 \X]) ≥ 107(k+D+ 1)n, then there is a red copy of T in G by Lemma 6.6.
Finally, if t1 ≥ 2t2 + 2, then we can take 2/c leaves of T in V1, which are guaranteed to exist by

Lemma 2.10, and attach ⌊(t1 − 2t2)/2⌋ new leaves to them, with none of them receiving more than cn
new leaves. Let T ′ be the new tree obtained in this way, and note that the bipartition classes of T ′ have
sizes t′1 = t1 and t′2 = ⌊t1/2⌋, with t′1 ≤ 2t′2 + 1 and max{t′1 + 2t′2, 2t

′
1} − 1 = 2t′1 − 1 = 2t1 − 1 =

max{t1 + 2t2, 2t1} − 1. Therefore, G contains a monochromatic copy of T ′ from above, and thus also
contains a monochromatic copy of T .

7 Proof of Theorem 2.4: Type II extremal graphs

In this section, we prove Theorem 2.4. We will start by outlining the proof in Section 7.1, breaking it
down into different cases that are then proved throughout the rest of this section.

7.1 Proof outline for Type II extremal graphs

We start by recapping the situation in Theorem 2.4, where we have parameters 1/n≪ c≪ µ≪ 1. Suppose
n = t1+t2 with t1 ≥ (2−µ)t2. Let T be an n-vertex tree with ∆(T ) ≤ cn and bipartition classes V1 and V2
of sizes t1 and t2, respectively. Let G be a red/blue coloured complete graph on max{2t1− 1, t1 + 2t2− 1}
vertices which is Type II (µ, t1, t2)-extremal, which means that there are disjoint sets U1, U2 ⊂ V (G) such
that |U1|, |U2| ≥ (1 − µ)t1, and for every i ∈ [2] and u ∈ Ui, dred(u, Ui) ≤ µn and dblue(u, U3−i) ≤ µn.
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For some β with µ ≪ β ≪ 1, we will start by taking maximal disjoint sets U+
1 , U

+
2 ⊂ V (G) with

U1 ⊂ U+
1 and U2 ⊂ U+

2 , such that for every i ∈ [2] and u ∈ U+
i , dred(u, U3−i) ≥ βn. By relabelling if

necessary, we can assume that |U+
1 | ≥ |U+

2 |.
Our first two cases are reasonably easy. First, in Case II.A, we assume that there exist two vertices

v1, v2 with mostly blue neighbours in both U+
1 and U+

2 . This will allow us to embed part of T into
Gblue[U

+
1 ] and the rest of T , apart from at most 2 vertices, into Gblue[U

+
2 ], then connect them together

appropriately using v1 and v2. Using two vertices in this way is optimal, as T may have a vertex whose
removal creates exactly three subtrees of roughly equal sizes, so we could not easily fit two of them together
into one of Gblue[U

+
1 ] or Gblue[U

+
2 ].

Next, in Case II.B, we assume that there is a vertex w that has at least βn red neighbours in both U+
1

and U+
2 . Then, we decompose T into subtrees T1 and T2 with a common neighbour t, so that T1 is a small

subtree containing suitably more vertices in V1 than in V2 (see Proposition 7.4). We embed t to w, then
embed the rest of T1, T2 greedily into Gred[U+

1 , U
+
2 ] by embedding vertices in V (T1) ∩ V2 and V (T2) ∩ V1

into U+
1 , and vertices in V (T1) ∩ V1 and V (T2) ∩ V2 into U+

2 . Observe that T1 and T2 are embedded in
opposite ways, which ‘rebalances’ the vertices in T across U+

1 and U+
2 , so that there is enough room in

each side for this embedding to be completed greedily.
Assuming neither of these cases hold, then U+

1 and U+
2 together cover all but at most one vertex of

G, and δ(Gblue[U
+
i ]) ≥ |U+

i | − βn for each i ∈ [2]. Assume without loss of generality that |U+
1 | ≥ |U+

2 |.
If there is a vertex v not in U+

1 ∪ U+
2 , then it has mostly blue neighbours in both U+

1 and U+
2 , and we

can use Corollary 2.14 to decompose T into subtrees T1 and T2 with a unique common vertex t such that
|U+

1 ∪ {v}| ≥ |T1| and |U+
2 | ≥ |T2| + n/100. In Case II.C, we assume that there are at most 106n red

edges in G[U+
1 ]. Using our work in Section 6.3, we can embed T1 into Gblue[U

+
1 ∪ {v}] with t embedded

to v. Then, as v has plenty of blue neighbours in U+
2 and |U+

2 | is comfortably larger than |T2|, we can
greedily embed T2 into Gblue[U

+
2 ∪ {v}] to complete a blue copy of T .

Suppose now that we are not in Cases II.A–II.C. Let k = t1 − |U+
1 |, and note that k ≤ 1 as

|U+
1 | ≥ |U+

2 |. Moreover, if k = 1, then there exists v ∈ V (G) \ (U+
1 ∪ U+

2 ), and so G[U+
1 ] contain at least

106n red edges since we are not in Case II.C. In theory, we have enough space while attempting to embed
T in red to embed all but at most 1 vertex of V1 into U+

1 , and V2 into U+
2 . While this can always be

done when T has many vertex-disjoint bare paths, if T has many leaves instead, then similar to Case I.B
discussed before, a small number of blue edges in G[U+

1 , U
+
2 ] can prevent this embedding for some trees.

Therefore, we will first try to embed T in blue again, using the following sparse cut structure.

Definition 7.1. Let T be an n-vertex tree. An (ε, d)-sparse cut in T is a partition V (T ) = A ∪ B such
that the following hold.

• T [A] is a tree and |A|, |B| ≤ (2/3 − ε)n.

• For each v ∈ A, dT (v,B) ≤ d.

• {v ∈ A : dT (v,B) > 0} is an independent set in T with size at most 2∆(T ).

Such a sparse cut with ε≫ µ and d =
√
n will be found later using Proposition 7.10, and we will also

need some additional properties guaranteed by Proposition 7.11. In Case II.D, we assume that T [A,B]
can be embedded into Gblue[U

+
1 , U

+
2 ], with, say A embedded into U+

1 and B embedded into U+
2 . Then, we

use the high minimum degree condition to find an embedding of T [A] in Gblue[U
+
1 ] that matches enough

of the embedding of T [A,B]. Using the part that matches, we can greedily extend the embedding of T [A]
to embed most of the vertices in B into U+

2 . The number of remaining vertices in B will be small enough
that they can be greedily embedded into the remaining part of Gblue[U

+
1 ].

Finally, in Case II.E, we assume that T [A,B] cannot be embedded into Gblue[U
+
1 , U

+
2 ] as described

above. The fact that we failed to do so will imply that there exist UA ⊂ U+
1 and UB ⊂ U+

2 of suitable
sizes, such that every vertex in U+

1 \ UA has at most
√
n blue neighbours in U+

2 \ UB . Here, we focus
on a specific case where |U+

1 | ≥ t1 and T has a set L of many leaves in V1, the other case is handled
similarly. First, we embed T − L essentially randomly into Gred[U+

1 , U
+
2 ], with vertices in Vi embedded

into U+
i for each i ∈ [2], while ensuring that leaves in L have their parents embedded into U+

2 \ UB .
Similar to Case I.B.1, in U+

1 we may have some ‘bad’ vertices to which it is hard to embed the vertices
in L. However, it will be likely that there is no bad vertex in U+

1 \UA as all these vertices have very high
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red degrees into U+
2 \ UB from assumption. To make sure that we have no uncovered bad vertices in UA,

we use that the size of UA is related to the sparse cut V (T ) = A ∪ B. Roughly speaking, there will be
enough components in T [NT (B,A) ∪ B] that contains a vertex in V1 ∩ B for us to use these vertices to
cover UA. Finally, having ensured that there is no bad vertex, we can embed the leaves in L to complete
the embedding of T .

In Sections 7.2–7.6, we will prove the main embedding results used for Cases II.A–II.E, respectively,
before putting these all together in Section 7.7 to prove Theorem 2.4. To finish this outline, we recap the
different cases in the proof of Theorem 2.4, noting the main result that takes care of each of them. In
what follows, by ‘otherwise’ we mean that none of the previous cases hold.

II G is Type II extremal.

II.A Two vertices have mostly blue neighbours in U+
1 and U+

2 : T embeds in blue. Lemma 7.3

II.B Some vertex has βn red neighbours in both U+
1 and U+

2 : T embeds in red. Lemma 7.5

II.C Otherwise, but one vertex has mostly blue neighbours in U+
1 and U+

2 , and G[U+
1 ] contains at

most 106n red edges: T embeds in blue. Lemma 7.6

II.D Otherwise, but T [A,B] embeds into Gblue[U
+
1 , U

+
2 ]: T embeds in blue. Lemma 7.7

II.E Otherwise, either |U+
1 | ≥ t1, or |U+

1 | = t1 − 1 and there are at least 106n red edges in G[U+
1 ]:

T embeds in red. Lemma 7.8

7.2 Case II.A

For Case II.A, we first use the following result to find a large subtree of T that contains at most two
vertices that have neighbours in the rest of the tree. Moreover, if there are two such vertices, then they
are not adjacent.

Proposition 7.2. Let 1/n≪ ε≪ 1. Let T be an n-vertex tree. Then, there is a partition V (T ) = A∪B
with |A|, |B| ≤ (2/3 − ε)n such that T [A] is a tree and {v ∈ A : dT (v,B) > 0} is an independent set in T
with size at most 2.

Proof. Using Corollary 2.14, let T1 and T2 be subtrees decomposing T with a unique common vertex t,
such that n

3 ≤ |T1| ≤ |T2| ≤ 1 + 2n
3 . Furthermore, assume that T1 and T2 are chosen so that |T2| is

minimised subject to these conditions. If |T2| ≤ (2/3 − ε)n, then set A = V (T2) and B = V (T ) \ A, and
note that the conditions in the lemma hold.

Suppose now that |T2| > (2/3 − ε)n. If t has only one neighbour, say t′, in T2, then adding tt′ to T1
and removing t from T2 gives two trees that contradict the minimality of |T2|. If T2 − t has a component
S with size at most (1/3 − 2ε)n, then, letting T ′

1 = T [{t} ∪ V (S)] ∪ T1 and T ′
2 = T2 − V (S) gives a

pair of trees (T ′
1, T

′
2) that again contradicts the minimality of |T2|, as max{|T ′

1|, |T ′
2|} < |T2|. Thus, t

must have exactly two neighbours in T2, and T2 − t is the disjoint union of two trees S1 and S2 with
(1/3 − 2ε)n ≤ |S1|, |S2| ≤ (1/3 + 2ε)n. For each i ∈ [2], let ti be the neighbour of t in Si.

Using Corollary 2.14 again, let S′
1 and S′

2 be subtrees decomposing S1 with a unique common vertex
t′1, such that (1− 6ε)n/9 ≤ |S′

1|, |S′
2| ≤ 1 + (2 + 12ε)n/9. Relabelling if necessary, assume that S′

1 contains
t1. Let A = V (T1) ∪ V (S′

1) ∪ {t2} and note that T [A] is the tree made by connecting T1 and S′
1 with the

edge tt1 and adding the edge tt2. Let B = V (T ) \A, and note that the only vertices in A with neighbours
in B in T are t2 and t′1, and they are not adjacent in T because they are in different components of T2− t.
Thus, A and B satisfy the required conditions.

Using Proposition 7.2, it is now straightforward to prove the following result used in Case II.A.

Lemma 7.3. Let 1/n ≪ c ≪ µ ≪ 1. Let T be an n-vertex tree with ∆(T ) ≤ cn. Let G be a graph that
contains two disjoint vertex sets U1 and U2 such that |Ui| ≥ (2/3− µ)n and δ(G[Ui]) ≥ |Ui| − µn for each
i ∈ [2]. Suppose there exist v1, v2 ∈ V (G) \ (U1 ∪ U2) such that dG(vi, Uj) ≥ |Uj | − µn for each i, j ∈ [2].
Then, G contains a copy of T .
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Proof. Using Proposition 7.2, let V (T ) = A ∪ B be a partition with |A|, |B| ≤ (2/3 − 10µ)n, such that
T [A] is a tree and A′ := {v ∈ A : dT (v,B) > 0} is an independent set in T with |A′| ≤ 2. For each
i ∈ [2], let U−

i = NG(v1, Ui) ∩NG(v2, Ui), then |U−
i | ≥ (2/3 − 3µ)n and δ(G[U−

i ]) ≥ |U−
i | − µn. Embed

one vertex in A′ to v1. Then, greedily extend this to an embedding of the tree T [A] in G[U−
1 ∪ {v1, v2}],

such that if there is another vertex in A′, then it is embedded to v2. We can then extend this to copy of
T by embedding T [A′ ∪B] greedily in G[U−

2 ∪ {v1, v2}].

7.3 Case II.B

For Case II.B, we need to find a subtree which has suitably more vertices in V1 than in V2, which we do
with the following result.

Proposition 7.4. Let 1/n ≪ µ ≪ 1, and let T be an n-vertex tree with bipartition classes V1 and V2
such that |V1| ≥ 1.1|V2|. Then, there exists a decomposition of T into subtrees T1 and T2 with a unique
common vertex v, such that 10µn ≤ |V (T1) ∩ V1| − |V (T1) ∩ V2| ≤ 25µn.

Proof. Among all v ∈ T and all subtrees T1 and T2 decomposing T with a unique common vertex v that
satisfy |V (T1) ∩ V1| − |V (T1) ∩ V2| ≥ 12µn, pick the combination that minimises |T1|. Note that such
v, T1, T2 exist as |V1| ≥ 1.1|V2| implies that |V1| − |V2| ≥ 12µn, so picking an arbitrary v ∈ V (T ), letting
T1 = T and T2 = T [{v}] would satisfy these conditions.

First, consider the case when deg(v, T1) ≥ 2. If there is a component S of T1 − v that satisfies
|V (S)∩ V2| − |V (S)∩ V1| > 0, then, transferring S and the edge between v and S from T1 to T2 gives two
subtrees T ′

1, T
′
2 that still satisfy the required conditions but with |T ′

1| < |T1|, a contradiction. Thus, we
can assume that every component of T1− v has at least as many vertices in V1 as in V2. Then, since there
are at least 2 such components, at least one of them, say S′, satisfies 0 ≤ |V (S′) ∩ V1| − |V (S′) ∩ V2| ≤
(|V (T1)∩V1| − |V (T1)∩V2|+ 1)/2. In order for transferring S′ and the edge between v and S′ from T1 to
T2 to not contradict the minimality of |T1|, we must have that (|V (T1) ∩ V1| − |V (T1) ∩ V2|) − (|V (S′) ∩
V1| − |V (S′) ∩ V2|) < 12µn, and hence, |V (T1) ∩ V1| − |V (T1) ∩ V2| ≤ 25µn, as required.

Suppose, then, that deg(v, T1) = 1. Let v′ be the neighbour of v in T1. Let T ′
1 = T1−v and T ′

2 = T2+vv′.
Note that, in order to not get a contradiction, we must have |V (T ′

1) ∩ V1| − |V (T ′
1) ∩ V2| < 12µn, so

|V (T1) ∩ V1| − |V (T1) ∩ V2| < µn+ 1 ≤ 25µn, as required.

Using Proposition 7.4, we can now prove the following lemma required in Case II.B.

Lemma 7.5. Let 1/n ≪ c ≪ µ ≪ 1. Let T be an n-vertex tree with ∆(T ) ≤ cn and bipartition classes
of sizes t1 and t2 satisfying t1 ≥ 1.1t2. Let G be a graph containing two disjoint subsets U1, U2 and
an additional vertex w, such that for each i ∈ [2], |Ui| ≥ t1 − µn, dG(w,Ui) ≥ µn, and dG(u, U3−i) ≥
|U3−i| − µn for every u ∈ Ui. Then, G contains a copy of T .

Proof. By Proposition 7.4, we can find subtrees T1 and T2 decomposing T with a unique common vertex
v, such that 10µn ≤ |V (T1) ∩ V1| − |V (T1) ∩ V2| ≤ 25µn. Embed v to w, then we can greedily embed
both T1 and T2 so that vertices in V (T2) ∩ V1 and V (T1) ∩ V2 go into U1 and vertices in V (T1) ∩ V1 and
V (T2) ∩ V2 go into U2. This is possible because

|V (T1) ∩ V2| + |V (T2) ∩ V1| ≤ |V (T1) ∩ V1| + |V (T2) ∩ V1| − 10µn ≤ t1 + 1 − 10µn ≤ |U1| − µn,

|V (T1) ∩ V1| + |V (T2) ∩ V2| ≤ |V (T1) ∩ V2| + |V (T2) ∩ V2| + 25µn ≤ t2 + 1 + 25µn ≤ |U2| − µn,

and w has µn ≥ ∆(T ) neighbours in both U1 and U2.

7.4 Case II.C

The embedding result for Case II.C follows easily from Lemma 6.3 proved earlier for Case I.B.1.

Lemma 7.6. Let 1/n ≪ c ≪ µ ≪ 1. Let T be an n-vertex tree with ∆(T ) ≤ cn. Let G be a graph that
contains two disjoint vertex sets U1, U2 such that |U1| ≥ ⌈2n/3⌉ − 1, |U2| ≥ (2/3 − µ)n, and δ(G[Ui]) ≥
|Ui| − µn for each i ∈ [2]. Suppose G[U1] contains at most 106n non-edges, and that there exists v ∈
V (G) \ (U1 ∪ U2) with dG(v, Ui) ≥ |Ui| − µn for each i ∈ [2]. Then, G contains a copy of T .
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Proof. Using Corollary 2.14, let T1 and T2 be a decomposition of T into subtrees with a unique common
vertex t, so that ⌈n/3⌉ ≤ |T1| ≤ |T2| ≤ ⌈2n/3⌉. Let D = 0 and k = |U1 ∪ {v}| − |T2|, so that k ≥ 0 and
thus G[U1∪{v}] has at most 106n+µn ≤ 107(k+D+1)|T2| non-edges. Then, by Lemma 6.3, G[U1∪{v}]
contains a copy of T2, in which t is copied to v. Since |T1| ≤ 1 + n/2 ≤ |U2| − µn, we can complete the
embedding of T by greedily finding a copy of T1 in G[U2 ∪ {v}] with t copied to v.

7.5 Case II.D

We now give the embedding in Case II.D, where there are enough blue edges between U1 and U2 to
embed a large subtree of the tree in U2 and connect this across to embed the rest into U1.

Lemma 7.7. Let 1/n ≪ c ≪ µ ≪ ε ≪ 1. Let G be a graph that contains two disjoint vertex sets U1, U2

such that |Ui| ≥ (2/3 − ε/3)n and δ(G[Ui]) ≥ |Ui| − µn for each i ∈ [2]. Let T be an n-vertex tree with
∆(T ) ≤ cn. Suppose T has an (ε,

√
n)-sparse cut V (T ) = A ∪B, such that T [A,B] can be embedded into

G[U1, U2] with A embedded into U1 and B embedded into U2. Then, G contains a copy of T .

Proof. Let A′ = {v ∈ A : dT (v,B) > 0} and let t1 ∈ A \ A′, so dT (t1, B) = 0. Let m = |A| and extend t1
to an ordering t1, . . . , tm of the vertices in A so that each vertex tj except t1 has exactly one neighbour
to its left in T [A] in this ordering.

Let I = {i ∈ [m] : ti ∈ A′}, so |I| ≤ 2cn from the definition of sparse cuts. From assumption, there
is an embedding ϕ′ of T [A,B] into G[U1, U2] with A embedded into U1 and B embedded into U2. Let
s′i = ϕ′(ti) for each i ∈ I.

Pick s1 ∈ U1 \ {s′i : i ∈ I} uniformly at random. Then, for each 1 < i ≤ m, let ji < i satisfy
tjiti ∈ E(T [A]), and embed ti to some si ∈ U1 randomly as follows.

U1 If i ∈ I, then let si = s′i if sjis
′
i ∈ E(G), otherwise pick si uniformly at random from NG(sji , U1) \

({sj : j < i} ∪ {s′j : j ∈ I}).

U2 If i /∈ I, then pick si uniformly at random from NG(sji , U1) \ ({sj : j < i} ∪ {s′j : j ∈ I}).

For each i ∈ I, let Ti be the component containing ti in T [A′ ∪B], let Xi = |Ti| − 1 if si ̸= s′i and let
Xi = 0 otherwise. For each i ∈ I, the probability that sji is not in NG(s′i) is at most µn/(|U1|−|A|−µn) ≤
3µ/ε ≤ √

µ. Thus, ∑
i∈I

E(Xi) ≤
√
µ ·
∑
i∈I

|Ti| ≤
√
µn,

so there is a realisation of s1, . . . , sm for which
∑

i∈I Xi ≤
√
µn. Take such a realisation, and let I ′ ⊂ I

be the set of i ∈ I for which si = s′i, so that
∑

i∈I\I′(|Ti| − 1) =
∑

i∈I Xi ≤
√
µn.

Let ϕ(ti) = si for each i ∈ [m] and note that this is an embedding of T [A] in G[U1]. Extend this to an
embedding of T [A∪ (∪i∈I′NT (ti))] using the embedding ϕ′ of T [A,B]. Using δ(G[U2]) ≥ |U2| −µn ≥ |B|,
we can greedily extend ϕ to an embedding of T [A∪(∪i∈I′Ti)] by embedding the vertices in ∪i∈I′(V (Ti)∩B)
into U2. Then, using

∑
i∈I\I′(|Ti| − 1) ≤ √

µn,

δ(G[U1]) ≥ |U1| − µn ≥ (2/3 − ε/3)n− µn ≥ |A| +
∑

i∈I\I′

(|Ti| − 1),

so we can extend ϕ to an embedding of T by greedily embedding the vertices in ∪i∈I\I′(V (Ti) ∩ B) into
U1. Thus, G contains a copy of T .

7.6 Case II.E

In the last case, Case II.E, we aim to embed the tree T into Gred[U+
1 , U

+
2 ]. Our embedding method here

is the most involved, but it shares some similarities with Case I.B.1. We will remove some leaves in V1
from the tree T , and aim to embed the rest of the tree so that each remaining vertex in G in the correct
side has plenty of neighbours among the vertices that need leaves attached to them, which would allow
us to complete the embedding using Lemma 2.9. As mentioned before, the key difficulty is to ensure that
the lower degree vertices in G are covered, either in the initial stage by some carefully chosen vertices in
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T , or in the last stage by the leaves. An additional complication is that if |U+
1 | ≥ t1, then we will embed

vertices in Vi into U+
i for each i ∈ [2], but if |U+

1 | = t1 − 1, which implies that |U+
2 | = t1 − 1 as well, we

will instead embed vertices in Vi into U+
3−i for each i ∈ [2], except for one leaf in V1 which needs to be

embedded into U+
1 . The last part is possible as there will be some red edges in G[U+

1 ] in this case. To
avoid repetition, we will prove the following embedding lemma that will later be applied to (U+

1 , U
+
2 ) in

the former case, and to (U+
2 , U

+
1 ) in the latter case.

Lemma 7.8. Let 1/n≪ c≪ µ≪ α≪ β ≪ ε≪ 1. Let G be a graph on at most 2n vertices that contains
two disjoint vertex sets U1, U2 with |U1| ≥ t1 − 1 and |U2| ≥ (1 − µ)t1. Moreover, if |U1| = t1 − 1 then
e(G[U2]) ≥ 106n. Suppose δ(G[U1, U2]) ≥ βn and, for each i ∈ [2], all but at most µn vertices u ∈ Ui

satisfy dG(u, U3−i) ≥ |U3−i| − µn.
Let 0 ≤ ℓ ≤ 2cn. Suppose there exist subsets UA ⊂ U1 and UB ⊂ U2 with |UA| < ℓ and |UB | ≤

(2/3 − ε)n, such that |NG(u, U2 \ UB)| ≥ |U2 \ UB | −
√
n for each u ∈ U1 \ UA.

Let T be an n-vertex tree with ∆(T ) ≤ cn and bipartition classes V1 and V2 of sizes t1 and t2,
respectively, such that t1 ≥ (2 − µ)t2, and one of the following holds.

V1 There is a set L of αn leaves of T in V1 such that dT (u, L) ≤
√
n for each u ∈ NT (L).

V2 T contains a set V ′
1 of ℓ vertices in V1 and a disjoint set L of αn leaves in V1 such that vertices in

V ′
1 have no common neighbour, |NT (V ′

1)| ≤ εn, and NT (V ′
1) ∩NT (L) = ∅.

Then, G contains a copy of T .

Proof. Let V ′
1 = ∅ if T does not satisfy V2. In both cases, let s1 be a leaf of T in V1 \ V ′

1 , which exists by
Lemma 2.10 using t1 ≥ (2 − µ)t2. Let s2 be the neighbour of s1 in T , and view T as being rooted at s1.

Let L′ = L \ NT (s2), and let P be the set of parents of L′. Note that |L′| ≥ αn/2 ≫ µn. Partition
P = P1 ∪ P2, so that for each j ∈ [2], Lj := NT (Pj , L

′) has size at least αn/10. If V2 holds, then take an
injection ϕ : UA → V ′

1 such that no vertex in ϕ(UA) is adjacent to s2, which is possible as |UA| < ℓ = |V ′
1 |

and vertices in V ′
1 share no common neighbour. For every u ∈ UA, let ϕ′(u) be the parent of ϕ(u) in the

rooted tree T , and let P ′ = {ϕ′(u) : u ∈ UA}. Note that from the assumption in V2, P ′ ∩ P = ∅. If V2
does not hold then let both ϕ and ϕ′ be the empty function, and let P ′ = ∅.

For each j ∈ [2], let U−
j = {u ∈ Uj : dG(u, U3−j) ≥ |U3−j | − µn}, so that |Uj \ U−

j | ≤ µn. Select

a random subset Z ⊂ U−
2 by including each vertex independently at random with probability β. Using

Lemma 2.5, with positive probability we have |Z| ≤ 2βn, dG(u, Z) ≥ β2n/2 for each u ∈ U1, and
e(G[U2] − Z) > 0 if |U1| = t1 − 1. Fix a choice of Z with these properties. Note that

|U−
2 \ (UB ∪ Z)| ≥ (1 − µ)t1 − µn− (2/3 − ε)n− 2βn ≥ 2αn.

By adding vertices to UB if necessary, we may assume that |U−
2 \ (UB ∪ Z)| = 2αn.

Let T ′ = T − L′ and m = |T ′|. Extend s1, s2 to an ordering s1, . . . , sm of the vertices in T ′, such that
for every 2 ≤ i ≤ m, si has a unique neighbour in T ′ to its left in this ordering. If |U1| = t1 − 1, pick
v1v2 ∈ E(G[U2] − Z) arbitrarily. Otherwise, arbitrarily pick v1v2 ∈ E(G[U1, U2] − Z) with v1 ∈ U1 and
v2 ∈ U2. Embed s1 to v1 and s2 to v2. For each 3 ≤ i ≤ m, suppose sj has been embedded to vj for
all j < i with only vertices in V ′

1 embedded into UA, and let ji < i satisfy sjisi ∈ E(T ′). Note that if
si ∈ V2 and vji ∈ UA, then sji ∈ V ′

1 , so si ̸∈ P ∪ P ′ as vertices in V ′
1 share no common neighbour and

NT (V ′
1) ∩NT (L′) = ∅. Embed si randomly to some vi as follows.

W1 If si ∈ P1, then randomly select vi from NG(vji , U
−
2 \ (UB ∪ Z ∪ {v1, . . . , vi−1})).

W2 If si ∈ P2, then randomly select vi from NG(vji , Z \ {v1, . . . , vi−1}).

W3 If si ∈ P ′, say si = ϕ′(u), then randomly select vi from NG(vji , NG(u, Z) \ {v1, . . . , vi−1}).

W4 If si ∈ V2 \ (P ∪ P ′) and vji ̸∈ UA, then randomly select vi from NG(vji , (U
−
2 ∩ UB) \ (Z ∪

{v1, . . . , vi−1})).

W5 If si ∈ V2 \ (P ∪ P ′) and vji ∈ UA, then randomly select vi from NG(vji , Z \ {v1, . . . , vi−1}).

W6 If si ∈ V1 and there is some u ∈ UA such that ϕ(u) = si, then let vi = u.
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W7 If si ∈ V1 and there is no u ∈ UA such that ϕ(u) = si, randomly select vi from NG(vji , U
−
1 \ (UA ∪

{v1, . . . , vi−1})).

Note that W1–W7 can always be carried out to obtain an embedding of T ′. Moreover, from W6, UA is
covered by this embedding if V2 holds.

For each i ∈ [m], let di,1 = dT (si, L1), di,2 = dT (si, L2), and di = di,1 + di,2.

Claim 7.9. With high probability, for every vertex v ∈ U1 not yet covered by the embedding of T ′,∑
i∈[m]:vi∈NG(v)

di ≥ 10µn.

Proof of Claim 7.9. Note that d1 = d2 = 0. For each v ∈ U1 \UA and i ∈ [m], let Xv,i = di,1 if vi ∈ NG(v)
and Xv,i = 0 otherwise. For each v ∈ UA and i ∈ [m], let Xv,i = di,2 if vi ∈ NG(v) and Xv,i = 0 otherwise.

Regardless of whether V1 or V2 holds, for each v ∈ U1\UA and i ∈ [m], let sji be the unique neighbour
of si to its left, then, using W1 and |U−

2 \ (UB ∪ Z)| = 2αn,

P(Xv,i ̸= di,1 | Xv,1, . . . , Xv,i−1) ≤ |NG(vji , U
−
2 \ (NG(v) ∪ UB ∪ Z ∪ {v1, . . . , vi−1}))|

|NG(vji , U
−
2 \ (UB ∪ Z ∪ {v1, . . . , vi−1}))|

≤
√
n

2αn− αn− µn
≤ 1

n1/3
.

Let ℓ1 = |L1| =
∑

i:si∈P1
di,1 ≥ αn/10. Let P ′

1 = {si ∈ P1 : di,1 ≤ n/ log2 n}. By Lemma 2.6, if∑
i:si∈P ′

1
di,1 ≥ ℓ1/2, then for every v ∈ U1 \ UA,

P

 ∑
i:si∈P ′

1

Xv,i < αn/40

 ≤ exp

(
− ℓ21

104
∑

i:si∈P ′
1
d2i,1

)
≤ exp

(
− ℓ21

104( ℓ1 log2 n
n )( n

log2 n
)2

)
≤ 1

n2
. (7.1)

Otherwise,
∑

i:si∈P1\P ′
1
di,1 ≥ ℓ1/2. Since |P1 \ P ′

1| ≤ log2 n, for each v ∈ U1 \ UA, the probability that

there is some J ⊂ P1 \ P ′
1 with |J | ≥ 10 and Xv,i ̸= di,1 for each i ∈ J is at most

(log2 n)10 ·
(

1

n1/3

)10

≤ 1

n2
,

so with probability at least 1 − 1/n2,
∑

i:si∈P1\P ′
1
Xv,i ≥ ℓ1/2 − 10cn ≥ αn/40. Combined with (7.1) and

using a union bound, we have with high probability that
∑

i∈[m]:vi∈NG(v) di ≥
∑

i:si∈P1
Xv,i ≥ αn/40 ≥

10µn for all v ∈ U1 \ UA.
Now let v ∈ UA. If V2 holds, then v is covered by the embedding of T ′ so there is nothing to prove.

Suppose now that V1 holds. For every i ∈ [m], note that di,2 ≤ di ≤
√
n, and let sji be the unique

neighbour of si to its left. Then, using W2,

P(Xv,i = di,2 | Xv,1, . . . , Xv,i−1) ≥ |NG(vji , (Z ∩NG(v)) \ {v1, . . . , vi−1})|
|NG(vji , Z \ {v1, . . . , vi−1})|

≥ β2n/2 − αn− µn

2βn
≥ β/10.

Let ℓ2 = |L2| =
∑

i:si∈P2
di,2 ≥ αn/10, then by Lemma 2.6,

P

( ∑
i:si∈P2

Xv,i < αβn/200

)
≤ exp

(
− β2ℓ22

104
∑

i:si∈P2
d2i,2

)
≤ exp

(
− β2ℓ22

104(ℓ2/
√
n) · (

√
n)2

)
≤ 1

n2
.

By a union bound, with high probability, all v ∈ UA satisfy
∑

i∈[m]:vi∈NG(v) di ≥
∑

i:si∈P2
Xv,i ≥

αβn/200 ≥ 10µn. ⊡
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Finally, it remains to embed L′. Let U be the set of unused vertices in U1, note that |U | ≥ |L′|,
and every v ∈ U satisfies

∑
i∈[m]:vi∈NG(v) di ≥ 10µn by Claim 7.9. We verify that Hall’s condition holds

between the set {vi : si ∈ P} of images of parents of L′ and U . Indeed, for any non-empty J ⊂ P , if
0 <

∑
i:si∈J di ≤ |L′| − µn, then as vi ∈ U−

2 for each i ∈ J by W1 and W2, we have

|NG({vi : si ∈ J}, U)| ≥ |U | − µn ≥ |L′| − µn ≥
∑

i:si∈J

di.

If instead
∑

i:si∈J di > |L′| − µn, then |NG({vi : si ∈ J}, U)| = |U | ≥ |L′| ≥
∑

i:si∈J di, as any v ∈
U \NG({vi : si ∈ J}) would satisfy

∑
i∈[m]:vi∈NG(v) di ≤ µn, a contradiction. Therefore, by Lemma 2.9,

we can embed L′ into U to finish a copy of T in G. □

7.7 Proof of Theorem 2.4

Our final step before we can prove Theorem 2.4 is to prove the following results which give the desired
sparse cut (see Definition 7.1) used in Case II.D and Case II.E.

Proposition 7.10. Let 1/n≪ c≪ µ≪ ε≪ 1. Let T be an n-vertex tree with ∆(T ) ≤ cn and bipartition
classes V1 and V2 satisfying |V1| ≥ (2 − µ)|V2|. Then, T has an (ε,

√
n)-sparse cut V (T ) = A ∪ B, such

that at most two vertices in {v ∈ A : dT (v,B) > 0} are adjacent to leaves of T in A.

Proof. By Lemma 2.15, there is a vertex v ∈ V (T ) such that each component of T − v has size at most
n/2. Let ℓ ≤ cn be the number of components in T − v and let T1, . . . , Tℓ be these components in order
of decreasing size. Let r be maximal subject to

∑r
i=1 |Ti| ≤ (2/3 − 2ε)n, and note that r ≥ 1.

If |Tr| ≤
√
n, then as |Ti| ≤

√
n for all i ≥ r, there exists r′ > r such that (1/3+3ε/2)n ≤

∑ℓ
i=r′ |Ti| ≤

(1/3 + 3ε/2)n+
√
n, so A = {v} ∪NT (v) ∪ (∪i<r′V (Ti)) and B = V (G) \A form an (ε,

√
n)-sparse cut.

Assume now that |Tr| >
√
n, then as |Ti| >

√
n for all i ∈ [r], we have r ≤

√
n. If, moreover,∑

i∈[r] |Ti| ≥ (1/3 + ε)n, then A = {v} ∪ (∪ℓ
i=r+1V (Ti)) and B = V (G) \ A form an (ε,

√
n)-sparse cut.

Thus, we can assume that
∑

i∈[r] |Ti| < (1/3 + ε)n.

Now, by the maximality of r, we have |Tr+1| ≥ (2/3− 2ε)n− (1/3 + ε)n = (1/3− 3ε)n. As |T1|, |Tr| ≥
|Tr+1| ≥ (1/3−3ε)n, we must have r = 1, and (1/3−3ε)n ≤ |T2| ≤ |T1| ≤ (1/3+ε)n. For each j ∈ [2], let
vj be the unique neighbour of v in Tj , and view Tj as a tree rooted at vj . Let v′j be a vertex farthest away
from vj in Tj subject to the condition that the subtree T ′

j ⊂ Tj containing v′j and all of its descendents in
Tj has size at least (1/3 − 10ε)n.

Let {Si : i ∈ I1} be the components of T ′
1 − v′1 and let {Si : i ∈ I2} be the components of T ′

2 − v′2.
If
∑

i∈I1:|Si|<
√
n |Si| ≥ 5εn, then we can find I ′1 ⊂ I1 such that |Si| ≤

√
n for each i ∈ I ′1 and 5εn ≤∑

i∈I′
1
|Si| ≤ 6εn. Then, B = V (T2) ∪ (∪i∈I′

1
V (Si) \ NT (v′1)) and A = V (G) \ B form an (ε,

√
n)-

sparse cut. Similarly, an (ε,
√
n)-sparse cut exists if

∑
i∈I2:|Si|<

√
n |Si| ≥ 5εn. Thus, we can assume that∑

i∈I1:|Si|≥
√
n |Si| and

∑
i∈I2:|Si|≥

√
n |Si| are both at least (1/3 − 20ε)n. Let I ⊂ {i ∈ I1 ∪ I2 : |Si| ≥

√
n}

be minimal subject to
∑

i∈I |Si| ≥ (1/3 + ε)n. Then, minimality and the choices of v′1, v
′
2 imply that∑

i∈I |Si| < (1/3 + ε)n + (1/3 − 10ε)n = (2/3 − 9ε)n, so B = ∪i∈IV (Si) and A = V (T ) \ B form an
(ε,

√
n)-sparse cut.

Therefore, T always contains an (ε,
√
n)-sparse cut A∪B. Finally, it is easy to verify that in all cases

above, there are at most two vertices in {v ∈ A : dT (v,B) > 0} that are adjacent to leaves of T in A.

Proposition 7.11. Let 1/n ≪ c ≪ µ ≪ α ≪ ε ≪ 1. Let T be an n-vertex tree with ∆(T ) ≤ cn and
bipartition classes V1 and V2 satisfying |V1| ≥ (2−µ)|V2|. Then, T has an (ε,

√
n)-sparse cut V (T ) = A∪B

such that at least one of the following holds.

X1 There is a set L of at least αn leaves of T in V1 such that dT (u, L) ≤
√
n for each u ∈ NT (L).

X2 T contains a set V ′
1 of |{v ∈ A : dT (v,B) > 0}| vertices in V1, and a disjoint set L′ of αn leaves in

V1, such that vertices in V ′
1 have no common neighbour, |NT (V ′

1)| ≤ εn, and NT (V ′
1) ∩NT (L′) = ∅.

Proof. Let c≪ γ ≪ ε. We begin with the following claim.
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Claim 7.12. Let L be a set of leaves of T in V1. Suppose that V (T ) = A′ ∪ B′ is a (2ε,
√
n)-sparse cut

of T , and let A1 = {a ∈ A′ : dT (a,B′) > 0}. For each a ∈ A1, let Ra be the component of T − (A′ \ A1)
containing a, and suppose there exists ra ∈ V (Ra − a) ∩ V1 with dT (ra) ≤ 1/γ. Moreover, assume that at
least 1/3 of the vertices in ∪a∈A1

Ra are in L, then T has an (ε,
√
n)-sparse cut V (T ) = A ∪B and some

corresponding L′, V ′
1 such that X2 holds.

Proof of Claim 7.12. Arrange the components Ra, a ∈ A1, in decreasing order of |V (Ra)∩L|/|Ra|. Take a
minimal collection A′

1 ⊂ A1, starting from the elements with the highest ratio, such that
∑

a∈A′
1
|V (Ra)∩

L| ≥ 2αn.
Suppose first that

∑
a∈A′

1
|V (Ra) ∩ L| ≤ 4αn. Noting that (

∑
a∈A1

|V (Ra) ∩ L|)/(
∑

a∈A1
|Ra|) ≤

maxa∈A1 |V (Ra) ∩ L|/|Ra|, we have
∑

a∈A′
1
|Ra| ≤ 12αn ≪ εn. Let L′ ⊂ ∪a∈A′

1
(V (Ra) ∩ L) have size

αn, B = ∪a∈A1\A′
1
V (Ra − a), A = V (G) \ B, V ′

1 = {ra : a ∈ A1 \ A′
1}. Note that |NT (V ′

1)| ≤ |A1|/γ ≤
2cn/γ ≪ εn and NT (V ′

1) is disjoint from NT (L′), so X2 holds with respect to the (ε,
√
n)-sparse cut

V (T ) = A ∪B, L′, and V ′
1 .

If
∑

a∈A′
1
|V (Ra) ∩ L| > 4αn, then the minimality of A′

1 implies that there exists a∗ ∈ A′
1 ⊂ A1

satisfying |V (Ra∗) ∩ L| ≥ 2αn. In particular, we can find a set L′ ⊂ V (Ra∗) ∩ L of size αn, and some
r′a∗ ∈ V (Ra∗)∩ (L\L′), such that NT (r′a∗)∩NT (L′) = ∅. Then, let A = A′ and B = B′, and note that X2
holds with respect to the (ε,

√
n)-sparse cut V (T ) = A ∪ B, L′, and V ′

1 = {ra : a ∈ A1 \ {a∗}} ∪ {r′a∗}.
⊡

Now, Proposition 7.10 gives a (100ε,
√
n)-sparse cut V (T ) = A′ ∪ B′, such that at most two vertices

in {v ∈ A′ : dT (v,B′) > 0} are adjacent to leaves of T in A′. Let A1 = {v ∈ A′ : dT (v,B′) > 0}. For each
a ∈ A1, let Ra be the component of T − (A′ \ A1) containing a. Let A2 be the set of a ∈ A1 such that
Ra−a contains at least γ|Ra| vertices in V1. Then, for each a ∈ A2, there exists ra ∈ V (Ra−a)∩V1 such
that dT (ra) ≤ 1/γ.

Case I.
∑

a∈A2
|Ra − a| ≥ (1/3 + 2ε)n. By Lemma 2.10, T contains at least t1 − t2 ≥ (1/3− 10µ)n leaves

in V1. If A′ \ A1 contains at least 10αn ≥ αn + 2cn leaves of T in V1, then there is a set L′ of αn such
leaves in A′ \ A1 with their parents not in A1. Then, let B = ∪a∈A2

V (Ra − a), A = V (G) \ B, and note
that A and B form an (ε,

√
n)-sparse cut. Set V ′

1 = {ra : a ∈ A2}, then X2 holds with respect to A, B,
L′, and V ′

1 .
If instead A′ \ A1 contains at most 10αn leaves of T in V1, then at least (1/3 − ε)n leaves of T in V1

are in ∪a∈A1
Ra, so ∪a∈A2

Ra contains a set L1 of at least (1/3−10ε)n of leaves of T in V1, as ∪a∈A1\A2
Ra

contains at most γn vertices in V1. In particular, at least 1/3 of the vertices in ∪a∈A2
Ra are in L1. Let

B′′ = ∪a∈A2
V (Ra − a) and A′′ = V (G) \ B′′, then we can apply Claim 7.12 to the (2ε,

√
n)-sparse cut

V (T ) = A′′ ∪B′′ to finish the proof.

Case II.
∑

a∈A2
|Ra−a| < (1/3+2ε)n, so

∑
a∈A1\A2

|Ra−a| ≥ 97εn. Then,
∑

a∈A1\A2
(|V (Ra−a)∩V2|−

|V (Ra − a) ∩ V1|) ≥
∑

a∈A1\A2
((1 − 2γ)|Ra| − 1) ≥ 95εn. Consider the subtree T ′ obtained by removing

Ra − a from T for each a ∈ A1 \ A2, and note that at most |A1 \ A2| ≪ εn leaves in T ′ are not leaves in
T . By Lemma 2.10, T ′ contains at least |V (T ′)∩V1| − |V (T ′)∩V2| ≥ t1 − t2 + 95εn ≥ (1/3 + 92ε)n leaves
in V1. Thus, T contains at least (1/3 + 91ε)n leaves in V1.

If there is a set L of at least αn leaves of T in V1 whose parents are all adjacent to at most
√
n leaves

of T , then X1 holds and we are done, so suppose otherwise. By Lemma 2.15, there is a vertex v in T such
that every component of T − v has size at most n/2. View T as being rooted at v. Then, there is a set
L2 of at least (1/3 + 90ε)n leaves in V1, each of whose parent in T is adjacent to at least

√
n leaves in T ,

and no leaf in L2 or parent of leaf in L2 is equal to v. Let p1, . . . , pk be the parents of L2 in T , and note
that k ≤

√
n. Then, for every i ∈ [k], let Pi be the subtree of T induced by pi and all of its descendants

in T , and note that |Pi| ≤ n/2 as pi ̸= v. Let I ⊂ [k] be the set of indices i ∈ [k], such that pi is not a
descendant of any pj with j ̸= i. Let I ′ ⊂ I be minimal subject to

∑
i∈I′ |Pi| ≥ (1/3 + 2ε)n.

Case II.1.
∑

i∈I′ |Pi| ≤ (2/3 − 2ε)n. Let B = ∪i∈I′V (Pi) and A = V (T ) \ B. Note that T [A] is a tree,

and V (T ) = A∪B is a (2ε,
√
n)-sparse cut. Let A1 = {a ∈ A : dT (a,B) > 0}. For each a ∈ A1, let Ra be

the component of T − (A \A1) containing a, pick any pi ∈ NT (a,B), and then pick ra to be any children
of pi in L2.
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If |B ∩ L2| ≤ (1/3 + 3ε)n, then at least εn leaves in L2 are in A, so we can pick a set L′ of αn such
leaves. Then, A, B, L′, and V ′

1 = {ra : a ∈ A1} satisfy X2.
If |B ∩L2| > (1/3 + 3ε)n, then at least 1/3 of the vertices in ∪a∈A1

Ra are leaves in L2, so we are done
by Claim 7.12.

Case II.2.
∑

i∈I′ |Pi| > (2/3− 2ε)n. Then, by minimality, |Pi| ≥ (1/3− 4ε)n for each i ∈ I, so |I| = 2 as
|Pi| ≤ n/2. Without loss of generality, say I = {1, 2}, and note that |P1|, |P2| ≤ (1/3+2ε)n by minimality.
Since at most (1/3 + 2ε)n vertices in T are outside of P1 ∪P2, P1 ∪P2 contains at least 80εn leaves in L2,
so we may assume that, say, P1 contains at least 40εn such leaves.

Let {q1, . . . , qm} ⊂ {p3, . . . , pk} be the set of descendants of p1 in T , and assume they are ordered
so that if qi is a descendant of qj in T , then i ≤ j. Let Qi be the subtree of T induced by qi and all

of its descendants in T , and let m′ ∈ [m] be minimal subject to |L2 ∩ (∪m′

i=1V (Qi))| ≥ 20εn. Note that

by minimality and ∆(T ) ≤ cn, |L2 ∩ (∪m′

i=1V (Qi))| ≤ 21εn, and so |(L2 ∩ V (P1)) \ (∪m′

i=1V (Qi))| ≥ 19εn.

Let B = V (P2) ∪ (∪m′

i=1V (Qi)), and observe that (1/3 − 4ε)n + 20εn ≤ |B| ≤ (2/3 + 4ε)n − 19εn. Let
A = V (G) \ B, and note that V (T ) = A ∪ B form a (2ε,

√
n)-sparse cut. Thus, we are now in the same

situation as in Case II.1, and can finish the proof in the same way. □

Finally, we can put all the work of this section together to prove Theorem 2.4, following the outline in
Section 7.1.

Proof of Theorem 2.4. Let 1/n ≪ c ≪ µ ≪ 1 and let t1, t2 ∈ N satisfy t1 + t2 = n and t1 ≥ (2 − µ)t2.
Let G be a Type II (µ, t1, t2)-extremal graph on max{2t1, t1 + 2t2} − 1 vertices, so from definition there
are disjoint subsets U1, U2 ⊂ V (G) such that |U1|, |U2| ≥ (1 − µ)t1, and for each i ∈ [2] and u ∈ Ui,
dred(u, Ui) ≤ µn and dblue(u, U3−i) ≤ µn. Let T be an n-vertex tree with ∆(T ) ≤ cn and bipartition
classes V1 and V2 with |Vi| = ti for each i ∈ [2]. We need to find a monochromatic copy of T in G.

Let µ ≪ β ≪ 1. Let U+
1 , U

+
2 ⊂ V (G) be maximal disjoint sets with U1 ⊂ U+

1 , U2 ⊂ U+
2 , and

dred(u, U3−i) ≥ βn for every i ∈ [2] and u ∈ U+
i . Note that |U+

i \Ui| ≤ 2µn for each i ∈ [2]. By relabelling
if necessary, we can assume that |U+

1 | ≥ |U+
2 |.

First (for Case II.A), suppose that there are distinct vertices v1, v2 ∈ V (G) \ (U+
1 ∪ U+

2 ). By the
maximality of U+

1 and U+
2 , we have that dblue(vi, Uj) ≥ |Uj | − βn for each i, j ∈ [2]. As t1 ≥ (2 − µ)t2,

we have |Ui| ≥ t1 − µn ≥ (2/3 − 10µ)n for each i ∈ [2]. Since δ(Gblue[Ui]) ≥ |Ui| − µn for each i ∈ [2], we
can apply Lemma 7.3 to find a copy of T in Gblue.

Thus, we can assume that |V (G) \ (U+
1 ∪U+

2 )| ≤ 1. It follows that |U+
1 | ≥ ⌈(|G| − 1)/2⌉ ≥ ⌈2n/3⌉− 1,

and |U+
1 | ≥ t1 − 1. Next (for Case II.B), suppose there is some vertex v ∈ V (G) with at least βn red

neighbours in both U+
1 and U+

2 . Then, v has at least βn − 2µn ≥ µn red neighbour in both U1 and U2.
Therefore, by Lemma 7.5, G contains a red copy of T .

Hence, we can assume there is no such vertex v, from which we get δ(Gblue[U
+
i ]) ≥ |U+

i | − βn for each
i ∈ [2]. Next (for Case II.C), suppose G[U+

1 ] contains at most 106n red edges and there is exactly one
vertex w in V (G) \ (U+

1 ∪ U+
2 ). Using the maximality like above, dblue(w,U

+
i ) ≥ |U+

i | − 2βn for each
i ∈ [2], so we can find a blue copy of T in G using Lemma 7.6.

Thus, we can assume that either G[U+
1 ] has more than 106n red edges, or V (G) \ (U+

1 ∪ U+
2 ) = ∅.

Let β ≪ ε ≪ 1. Let V (T ) = A ∪ B be an (ε,
√
n)-sparse cut given by Proposition 7.11. Suppose (for

Case II.D) that T [A,B] can be embedded into Gblue[U
+
1 , U

+
2 ], either with A embedded into U+

1 and B
embedded into U+

2 , or the other way around, then G contains a blue copy of T by Lemma 7.7.
Finally, suppose (for Case II.E) that T [A,B] cannot be embedded into Gblue[U

+
1 , U

+
2 ]. Let ℓ = |{v ∈

A : dT (v,B) > 0}| and list the elements in {v ∈ A : dT (v,B) > 0} as a1, . . . , aℓ. For each i ∈ [ℓ], let
di = dT (ai, B) ≤

√
n.

If |U+
1 | ≥ t1, let I ⊂ [ℓ] be a maximal set for which there are distinct vertices {wi : i ∈ I} ⊂ U+

1 and
disjoint subsets {Wi ⊂ U+

2 : i ∈ I}, such that Wi ⊂ Nblue(wi) and |Wi| = di for each i ∈ I. As we are
not in Case II.D, |I| < ℓ. Let UA = {wi : i ∈ I} and UB = ∪i∈IWi. Then, the maximality of I implies
that every vertex in U+

1 \ UA has at most
√
n blue neighbours in U+

2 \ UB . Therefore, by Lemma 7.8, G
contains a copy of T in red.

If |U+
1 | = t1 − 1, then we must have |V (G) \ (U+

1 ∪ U+
2 )| = 1 and |U+

2 | = t1 − 1. Since we are not in
Case II.C, G[U+

1 ] has at least 106n red edges. We now proceed as above but swapping the role of U+
1

and U+
2 . Let I ⊂ [ℓ] be a maximal set for which there are distinct vertices {wi : i ∈ I} ⊂ U+

2 and disjoint
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subsets {Wi ⊂ U+
1 : i ∈ I}, such that Wi ⊂ Nblue(wi) and |Wi| = di for each i ∈ I. Let UA = {wi : i ∈ I}

and UB = ∪i∈IWi. Then, |I| < ℓ and the maximality of I implies that every vertex in U+
2 \ UA has at

most
√
n blue neighbours in U+

1 \ UB . Therefore, by Lemma 7.8, G contains a copy of T in red. This
completes the proof of Theorem 2.4.
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[9] V. Chvátal, V. Rödl, E. Szemerédi, and W. T. Trotter Jr. The Ramsey number of a graph with
bounded maximum degree. Journal of Combinatorial Theory, Series B, 34(3):239–243, 1983.
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