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Abstract

We show that there exists a constant ¢ > 0 such that every n-vertex tree T' with A(T") < c¢n has
Ramsey number R(T) = max{2t1,¢1 + 2t2} — 1, where t1 > t2 are the sizes of the bipartition classes
of T. This improves an asymptotic result of Haxell, Luczak, and Tingley from 2002, and shows that,
though Burr’s 1974 conjecture on the Ramsey numbers of trees has long been known to be false for
certain ‘double stars’, it is true for trees with up to small linear maximum degrees.

1 Introduction

The Ramsey number of a graph G, denoted by R(G), is the smallest positive integer N such that every
red/blue edge colouring of the complete N-vertex graph K contains a monochromatic copy of G. The
existence of R(G) follows from Ramsey’s foundational result in 1930 [32], but determining good bounds on
Ramsey numbers has since proved extremely challenging. The most notorious and natural case is where
G is the complete n-vertex graph K,,. The famous upper bound by Erdds and Szekeres [14] in 1935 and
lower bound by Erdds [11] in 1947 showed that the rate of growth of R(K,,) is exponential in n. Since
then, these bounds saw only modest improvements until the recent remarkable breakthrough of Campos,
Griffiths, Morris, and Sahasrabudhe [8] finally gave an exponential improvement to the upper bound of
Erdés and Szekeres (see also [11 [18]).

Away from complete graphs, the sparser G is, the more ambitious we can reasonably be in bounding
R(G). For example, a classical result of Chvatal, R6dl, Szemerédi, and Trotter [9] from 1983 states that
the Ramsey number of every n-vertex graph with bounded maximum degree is linear in n. That is, for
every A, there is some ca such that any n-vertex graph G with maximum degree at most A satisfies
R(G) < can. Burr and Erdds [6] had conjectured in 1975 that, moreover, this should hold with maximum
degree replaced by degeneracy, and this was proved by Lee [26] in 2017.

There are not many graphs G for which we can muster any hope of determining R(G) exactly. Aside
from the smallest of graphs, the main candidates are trees and cycles. In 1967, Gerencsér and Gyéarfas [16]
determined the Ramsey number of the n-vertex path P,_;, showing that R(P,_1) = |3n/2| — 1. For
the n-vertex star Ki,—_1, note that R(K;,—1) — 1 is the size of the largest graph such that both it
and its complement have maximum degree at most n — 2. Thus, as shown by Harary [20] in 1972,
R(K1,-1) =2n—2if nis even, and R(K; ,,—1) = 2n—3 if n is odd. The Ramsey number of the n-vertex
cycle C,, is known due to independent work in the early 1970’s by Bondy and Erdés [4], Faudree and
Schelp [15], and Rosta [33], where we have R(C3) = R(Cy) = 6, R(C,) = 2n — 1 for odd n > 5, and
R(C,) =3n/2 —1 for even n > 6.
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For a general tree T, two constructions of Burr [5] in 1974 (see Figure show that if 7" has bipartition
classes of sizes t; and to, where t1 > to, then

R(T) Z max{t1 + 2t2, 2t1} — 1. (11)

From the results quoted above, this bound is tight when T is a path or a star of odd size, and Burr
conjectured [5] that this bound is tight for every tree T' with ¢; > t5 > 2. However, this was disproved
in 1979 by Grossman, Harary, and Klawe [I7] for certain trees called double stars. For each t; >ty > 2,
let St, +, be the tree formed by joining the central vertices of the stars K+, 1 and Kj ¢, with an edge,
noting that Sy, 4, has bipartition classes with sizes t; and t;. Grossman, Harary, and Klawe [17] showed
that if ¢; > 3ty — 2, then R(St, +,) = 2t1, and thus the bound at is off by 1 in this case. In 1982,
Erd6s, Faudree, Rousseau, and Schelp [12] attempted to rescue Burr’s conjecture by conjecturing that the
bound at is tight when ¢, = 2to. However, this was strongly disproved by Norin, Sun, and Zhao [29)
in 2016, who showed in particular that R(S2; ) > (4.2 —0(1))t (see also [I0]), and thus the bound at
can be off by a multiplicative factor.

1I:
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Figure 1: Burr’s extremal constructions for R(T) when T is a tree with bipartition classes of sizes t1 > ts.
I: Disjoint blue cliques on Uy and Us, with |Uy| = t1 +t2 — 1, |Us| = t2 — 1, and every edge between U; and
Us coloured red. Any connected blue subgraph has at most ¢; +t2 — 1 < |T'| vertices, and any connected
red subgraph is bipartite with fewer than ¢; vertices in one class.

IT: Disjoint blue cliques on Uy and Us, with |Uy| = |Us| = t; — 1, and every edge between U; and Us
coloured red. Any connected blue subgraph has at most t; — 1 < |T| vertices, and any connected red
subgraph is bipartite with fewer than ¢; vertices in each class.

Thus, in both I and II there is no monochromatic copy of 7'

All the known counterexamples to Burr’s conjecture, however, have large maximum degree, and thus
the bound at may still be tight for trees with small maximum degree. Towards this, Haxell, Luczak,
and Tingley [21] showed in 2002 that the bound at is approximately tight for trees with up to small
linear maximum degree. That is, they showed that, for every € > 0, there exists some ¢ > 0 such that
any n-vertex tree T with maximum degree A(T) < c¢n and bipartition classes of sizes t; > to satisfies
R(T) < (1 + E) max{t1 + 2t2, 2t1}

In this paper, we will show that Burr’s bound at is tight for all trees with up to small linear
maximum degree, as follows.

Theorem 1.1. There exists a constant ¢ > 0 such that the following holds. Any n-vertex tree T with
A(T) < cn and bipartition classes of sizes t1 > to satisfies R(T) = max{2ty,t1 + 2to} — 1.

The existence of such a constant ¢ in Theorem answers in the positive a question asked explicitly
by Stein [34] in 2020. Our value of ¢ is very small due to the use of regularity methods, and is likely
very far from optimal. It follows from the double star examples given in [29] that ¢ cannot be improved
beyond 7/11 + o(1). For a tree T' with large maximum degree we do not have a good conjecture for
the exact value of R(T'), though Burr and Erdds [7] conjectured in 1976 that for any n-vertex tree T,
R(T) <2n — 2 when n is even and R(T) < 2n — 3 when n is odd, or in other words R(T") < R(K7 p_1).
In 2011, Zhao [36] showed that this is true for all large even n, as a consequence of his resolution for
large n of Loebl’s n/2 — n/2 — n/2 conjecture [13]. Burr and Erdés’s conjecture follows directly from the
Erd6s-Sés conjecture, and thus for large n follows from the proof of the Erd&s-Sés conjecture for large trees
announced by Ajtai, Komlds, Simonovits, and Szemerédi in the early 1990s (see [30] for a discussion of
this result). A wide-ranging discussion of further results on Ramsey numbers can be found in the dynamic
survey by Radziszowski [31].



To prove Theorem [1.1] we will conduct what is known as a stability analysis. When the red/blue
coloured host graph is not close to one of the extremal constructions in Figure [I we will develop the
work of Haxell, Luczak, and Tingley [21], and find a monochromatic copy of our tree T using methods
involving Szemerédi’s regularity lemma. If instead the colouring is close to an extremal construction, then
we will analyse the structure more closely to still find a monochromatic copy of T, often using randomised
embeddings. We call these two parts of the proof the ‘stability part’” and ‘extremal part’, and both of
them will be rather involved. For the stability part of the argument, we will be able to start from a certain
monochromatic structure found by Haxell, Luczak, and Tingley [21] in the reduced graph, but will still
need to do much more work to cover all the non-extremal cases, with the main problem to overcome being
a deficit of vertices in this initial structure. For the extremal part, proving Theorem [I.1]when the colouring
approximates either extremal construction turns out to be surprisingly delicate. For instance, looking at
the first extremal construction in Figure [T} one might expect that a blue copy of an n-vertex tree T' with
A(T) < ¢n would appear once U; contains one more vertex, even if a small linear proportion of the edges
within U; are red. However, a famous example of Komlés, Sarkézy and Szemerédi [23] shows that this is
not true. As such, proving Theorem in the extremal part will require a careful consideration of both
the structure of the tree T" and the presence of edges of the ‘wrong’ colour in the extremal colouring, to
decide to where, and in which colour, the tree should be embedded in different cases.

This paper is organised as follows. In Section[2]we first give a brief overview of our proof of Theorem[I.1]
focusing on how it can be divided into the stability part (Sections and and the extremal part (Sections@
and 7 then collect all the basic notations and preliminary results. Then, in Section [3| we give a detailed
outline of the stability part of our proof of Theorem In Section [l we prove a series of technical
regularity embedding lemmas, each of which allows us to embed a monochromatic copy of the tree T" into
a red/blue coloured reduced graph that contains a certain suitable structure. In Section [5, we use these
embedding lemmas to move through 4 stages of embedding attempts, and eventually conclude either that
we can find a monochromatic copy of T using regularity, or that the reduced graph and thus the original
graph are both extremal, in the sense that they approximate one of the extremal constructions. Depending
on which of the two extremal constructions our original graph approximates, we show in Section [ and
Section [7] respectively that a monochromatic copy of T' can still be found.

2 Proof overview and preliminaries

In this section, we begin by giving a short overview of our proof of Theorem in Section specifically
on how it divides into the stability part and the extremal part, and formalising what it means for a colouring
to approximate an extremal construction. Then, we record the basic notations we use in Section and
collect a series of preliminary results in Sections to

2.1 Division of the proof of Theorem [1.1] into stability and extremal parts

We start by recapping the situation in Theorem Let t1,t5 be positive integers so that n = t; +t5 and
t1 > ta. Let T be an n-vertex tree with A(T") < en and bipartition classes V4 and Vs, such that |Vi]| = ¢
and |Va| = t5. Note that A(T) < cn implies to > ¢~ 1. Let N = max{t; + 2t5,2t;} — 1 and let G be a
red/blue coloured complete graph on N vertices. Our aim, then, is to find a monochromatic copy of T in
G.

Our proof of Theorem consists of two main parts, the stability part (Sections [4| and [5)) and the
extremal part (Sections |§| and @ In the stability part, we show that either G contains a monochromatic
copy of T, or G is close to one of the two extremal constructions in Figure[I[] Then in the extremal part we
show that a monochromatic copy of T still exists even if G approximates an extremal construction. These
parts are quite separate, and both are quite involved, so we will sketch their proofs later (in Section |3| for
the stability part, and in Sections and for the two different cases of the extremal part). Here, we
state the main results for both parts, and put them together to prove Theorem We start with the
following definition of what it means for G to be close to one of the extremal constructions.

Definition 2.1. Let 0 < p < 1 and let G be a red/blue coloured complete graph. We say G is Type T
(, t1,to)-extremal if with n = t1 4 to, there are disjoint subsets Uy, Uy C V(G) such that



o |01 > (1— ) and [Ua] > (1 — po)ta,
e for every u € Uy, dyeq(u,Ur) < un, and
e for every i € [2] and every u € U;, dpe(u, Us—;) < un,

or with red and blue swapped. On the other hand, we say G is Type II (i, t1,t2)-extremal if with n = t1+to,
there are disjoint subsets Uy, Uz C V(G) such that

o |Ui],|Uz| = (1 — p)ta, and
e for each i € [2] and u € U;, dyea(u,U;) < pn and dpiue(u, Us—;) < un,

or with red and blue swapped. If G is either or Type I or Type II (u,t1,ts)-extremal, we say it is
(w, 1, to)-extremal.

Using this, we can now state the main result of the stability part of our proof, as follows.

Theorem 2.2. Let 1/n € ¢ < p < 1 and let t1,t2 € N satisfy t1 +ta = n and t1 > to. Let G be a
red/blue coloured complete graph with max{t; + 2t5,2t1} — 1 vertices. Then, at least one of the following
18 true.

e G contains a monochromatic copy of every n-vertex tree T with A(T) < cn and bipartition class
sizes t1 and ts.

o G is Type I (u,t1,t2)-extremal.
o t1 > (2— )t and G is Type II (u,t1,t2)-extremal.

Theorem will be proved in Section [5] and reduces the proof of Theorem to the following two
results, which find a monochromatic copy of T even when G is close to one of the extremal constructions.
We will prove them in Sections [6] and [7] respectively.

Theorem 2.3. Let 1/n < ¢ < p < 1 and let t1,to € N satisfy t1 +ta =n and t1 > to. If G is a Type
I (p,t1,ta)-extremal graph with max{t, + 2ta, 2t1} — 1 vertices, then G contains a monochromatic copy of
every n-vertez tree T with A(T) < en and bipartition class sizes t1 and to.

Theorem 2.4. Let 1/n < ¢ < p < 1 and let t1,t2 € N satisfy t1 +ta =n and t1 > (2 — p)te. If G is a
Type II (u,t1,t2)-extremal graph with max{t, + 2t2,2t1} — 1 vertices, then G contains a monochromatic
copy of every n-vertex tree T with A(T') < cn and bipartition class sizes t1 and ts.

Given Theorems 2.4 Theorem follows essentially immediately, but we will conclude this
overview by formally making this deduction, as follows.

Proof of Theorem[I_1] Let u satisfy ¢ < p < 1. If G is not (u,t1,t2)-extremal, then G contains a
monochromatic copy of T' by Theorem If G is Type I (u, t1, to)-extremal, then G contains a monochro-
matic copy of T' by Theorem while if ¢; > (2 — )t and G is Type II (p,t1,t2)-extremal, then G
contains a monochromatic copy of T' by Theorem O

Finally, we remark that in these proofs, we can often assume that t; < 2t5 + 1. Indeed, if t; > 2t5 + 2,
then we can take 2/c vertices in V; with degree 1, which are guaranteed to exist by Lemma and
attach [(t1 — 2t2)/2] new leaves to them, with none of them receiving more than cn new leaves. Let T’
be the new tree obtained in this way, and note that the bipartition classes of T” have sizes t] = ¢; and
th = |t1/2], satisfying t] < 2t}, +1 and max{t] +2t}, 2t} — 1 = 2t] — 1 = 2¢t; — 1 = max{t; + 2t2,2t1 } — 1.
Thus, the number of vertices in G remains unchanged, and it is clear that if G contains a monochromatic
copy of T, then G also contains a monochromatic copy of T.



2.2 Notation

For a positive integer n € N, we write [n] = {1,...,n} and [n]o = [n] U {0}. We will use the standard
hierarchy notation, that is, for a,b € (0, 1], we will use a < b to mean that there exists a non-decreasing
function f : (0,1] — (0,1] such that if a < f(b) then the following statement holds. For a,b > 1, we write
a < bif 1/b < 1/a. Hierarchies with more constants are defined in a similar way. For simplicity we will
sometimes ignore floor and ceiling signs when doing so does not affect the argument.

Given a graph G, we use V(G) and E(G) to denote the set of vertices and edges of G, respectively,
and write |G| = |V(G)| and e(G) = |E(G)|. For not necessarily disjoint subsets A, B C V(G), we denote
the number of edges in G with one endpoint in A and one in B by e(A, B). For a subset S C V(G), we
use G[S] to denote the graph with vertex set S and all the edges from G with both endpoints in S, and
we write G — S for the graph G[V(G) \ S]. Given two disjoint subsets S, 5" C V(G), we use G[S,S’] to
denote the bipartite graph with parts S and S’, and all edges of the form ss’ € E(G) with s € S and
s es.

For a vertex v € V(G), the set of neighbours of v is denoted by N(v), and d(v) = |N(v)| denotes
the degree of v. The maximum degree and the minimum degree of G are denoted by A(G) and 0(G),
respectively. Given a subset S C V(G), its external neighbourhood is N(S) = (UsesN(s)) \ S. For
a vertex v € V(G) and subsets S,U C V(G), we write N(v,S) = N(v) NS, d(v,S) = |[N(v,S)|, and
N(U,S)= N(U)NS. When working with more than one graph, we add subscripts to denote which graph
we are working with. For example, dg(x) refers to the degree of z in the graph G.

Say G is a red/blue coloured graph if every edge in E(G) is coloured with either red or blue. We let
Greq and Gpye denote the graphs spanned by the red edges and the blue edges, respectively. For brevity,
we write dred () instead of dg,_, () and dpie(x) instead of dg,,,. (%), and use similar notations for the red
and blue neighbourhoods of a vertex or a set of vertices.

For p € [0,1], a graph G is p-almost complete if §(G) > (1 — p)|G|, and is p-almost empty if A(G) <
p|G|. A bipartite graph H with bipartition classes A, B is p-almost complete if d(a) > (1 — p)|B| for every
a € A and d(b) > (1 — u)|A| for every b € B, and is p-almost empty if d(a) < p|B] for every a € A and
d(b) < u|A] for every b € B.

2.3 Concentration results

We will need the following well-known concentration results.

Lemma 2.5 (Chernoff’s Bound [22] Corollary 2.3, Theorem 2.10]). Let X be either a binomial random
variable or a hypergeometric random variable. Then, for all 0 < ¢ < 3/2,

P (|X — E[X]| > eE[X]) < 2exp(—cE[X]/3).

Lemma 2.6 (Azuma’s Inequality [35, Lemma 4.2]). Let X1,...,X,, be a sequence of random variables
such that for each i € [m], there exist constants a; € R and ¢; > 0 with | X; — a;] < ¢;.

o IfE[X; | X1,...,X;_1] > a; for every i € [m], then for every t > 0,
m 2
P32 (X —a;) < —t) <exp (_72 Zgil Cf) .
o IfE[X; | X1,...,Xi—1] < a; for every i € [m], then for every t > 0,

P(STL (X — i) 2 ) S exp (~ 55— )

Lemma 2.7 (McDiarmid’s Inequality [27, Lemma 1.2]). Let X1,...,X,, be independent random variables
taking values in a set Q. Let c1,...,¢n > 0 and suppose f : Q™ — R is a function such that for every
i € [m] and every x1,...,xm,x; € Q, we have |f(x1,...,Ti. ., Tm) — f(xl,...,x;,...,xm)‘ < c¢;. Then,
for allt >0,

]P)(‘f(Xl,...,Xm) —]E[f(Xl,...,Xm)]’ > t) < 2exp (i%i;) .



2.4 Matchings in bipartite graphs

In many of our later tree embedding arguments, we will first embed all but a small set of vertices in T
with degrees 1 or 2. To finish the embedding, the following well-known Hall’s matching theorem and its
generalisation are useful.

Lemma 2.8 (Hall’s matching theorem [19, Theorem 1]). Let G be a bipartite graph with bipartition classes
A and B. If IN(S)| > |S| for every S C A, then G contains a matching covering all vertices in A.

Lemma 2.9 ([3, Corollary 11]). Let G be a bipartite graph with bipartition classes A and B, and let
(fa)aca be a tuple of non-negative integers indexed by elements of A. Suppose that |[N(S)| > > cg fa
for every S C A. Then, there exists a collection of vertex-disjoint stars (Sq)aca in G, such that for each
a€ A, S, is centred at a and has exactly f, leaves.

The conditions in Lemma and Lemma [2.9) will both be referred as Hall’s matching condition.

2.5 Trees
We now record several useful results on tree embeddings and tree decompositions.

Lemma 2.10. If T is an n-vertex tree with bipartition classes Vi and Vo such that |V1| = t1, |Va| = ta,
and t1 > to, then T contains at least t1 — to + 1 leaves in V7.

Proof. Let L be the set of leaves of T in V;. Then

n—1l=e(Vi,Vo) = > d(v) > |L| +2[Vi \ L| = 2t; — |L],
veVy

from which it follows that |L| > 2t; —n+1 =14 —ty + 1. O

A path P in a tree T is a bare path if all of its internal vertices have degree 2 in T. By the following
well-known result, every tree has either many leaves or many bare paths.

Lemma 2.11 ([25, Lemma 2.1]). Let k,¢,n € N and let T be an n-vertex tree with at most ¢ leaves. Then

T contains a collection of at least i (2¢ — 2) vertez-disjoint bare paths, each of length k.

In many of our tree embeddings, we will first divide the tree into two parts that are then embedded
with different methods and different aims. For this, we use the following definition.

Definition 2.12. For a tree T, we say that subgraphs 77,75 of T form a decomposition of T if they are
edge-disjoint subforests of T' such that E(T) = E(T1) U E(T3).

We will use the following result to decompose a tree into two subtrees so that each subtree in the
decomposition contains a large proportion of a set chosen in advance.

Lemma 2.13 ([28, Proposition 3.19]). Let T be a tree and let Q@ C V(T'). Then, T has a decomposition into
subtrees Ty and Ty with a unique common vertex such that |Q NV (T1)| > |Q|/3 and |Q NV (T2)| > |Q|/3.

The following almost immediate corollary is obtained by taking @ = V(T) in Lemma[2.13]

Corollary 2.14. FEvery n-vertex tree T decomposes into subtrees Ty and Ts with a unique common vertex
such that [n/3] < |Th| < |Ts] < [2n/3].

Proof. Apply Lemma with @ = V(T'), we get a decomposition of T into subtrees 77 and T5 with a
unique common vertex v such that [n/3] < |Ty| < |Tz| < n—[n/3]+1. If n is congruent to 1 or 2 modulo
3, then n — [n/3] + 1 = [2n/3], so we are done. If n = 3k for some integer k > 1, then the only situation
where the result does not follow immediately is when |Tj| = k and |T2| = 2k + 1. Assume that this holds.

If dr(v,To) = 1, let v' be the unique neighbour of v in T3, then T7 4+ vv’ and T» — v are subtrees
decomposing T" with a unique common vertex v’, and contains k + 1 and 2k vertices, respectively, as
required. If dp(v,T2) > 2, let S be the smallest component in 7o — v, so 1 < |S| < k. Then V(T1)U S
and V(T3) \ S induce two subtrees decomposing 7" with a unique common vertex v, and contain k + 1 <
kE+1S| <2k and k+1<2k+1—|S5| < 2k vertices, respectively, finishing the proof. O



The following results show that we can cut a tree into smaller subtrees using few vertices.

Lemma 2.15. For every n-vertex tree T, there exists a vertex v € T so that each component of T —v has
size at most n/2.

Proof. Choose an arbitrary vertex as the root of T. Let v be a vertex at a maximal distance from the
root subject to the condition that the tree 7" induced by v and all of its descendents has size at least n/2.
By the choice of v, each component of 77 — v has size less than n/2. The only component of 7' — v that
is not a component of 77 — v is T'— T”, which has size at most n/2 as |T'| > n/2. O

Lemma 2.16 ([2, Proposition 4.1]). Let 1/n < £ < 1 and let T be an n-vertex tree. Then, there exists
a subset X C V(T) with | X| < 2671, such that every component of T — X has size at most &n.

The following two results state that trees can be greedily embedded into graphs with large minimum
degrees, and will be used throughout the paper without any further reference.

Lemma 2.17. Let T be an n-vertex tree containing a verter t. If G is a graph with §(G) > n — 1, then,
for any vertex v € G, there is a copy of T in G with t copied to v.

Lemma 2.18. Let T be a tree with bipartition classes Vi and Vo of sizes t1 and to, respectively. Suppose
that G is a bipartite graph with bipartition classes Uy and Us, such that

o cvery vertex in Uy has at least to neighbours in Us, and
o cvery vertex in Uz has at least t1 neighbours in Uy.

Then, for any i € [2] and any vertices t € V; and u € U;, there exists a copy of T in G such that Vi is
copied to Uy, Va is copied to Us, and t is copied to u.

2.6 Szemerédi’s regularity lemma

Let G be a bipartite graph with bipartition classes A and B. For sets X C A and Y C B, the density

between X and Y is defined as
e(X,Y)

XY

We say G is e-regular if for every X C A and every Y C B with |X| > ¢|A| and |Y| > ¢|B|, we have
|[d(X,Y) — d(A, B)| < e. Furthermore, we say G is (e, d)-regular if G is e-regular and d(A, B) > d. The
following results are standard.

d(X,Y)

Lemma 2.19. Let ¢ < 1/4, and let G be a bipartite graph with bipartition classes A and B that is
(e,d)-regular. Suppose X C A and Y C B satisfy |X| > +/¢|A| and |Y| > /e|B|, then G[X,Y] is
(v, d — g)-regular.

Lemma 2.20. Let G be a bipartite graph with bipartition classes A and B that is (e, d)-regular. Suppose
Y C B satisfies |Y| > €| B|, then there are less than €|A| vertices v € A for which d(v,Y) < (d — ¢)|Y].

Lemma 2.21. Let G be a graph containing disjoint subsets Vo, Vi,..., V. C V(G), such that G[Vo, V;] is
(e,d)-regular for each i € [r]. Let U; C V; have size |U;| > €|V;] for each i € [r]. Then, there are less than
VEIVo| vertices v € Vy such that d(v,U;) < (d — €)|U;| for at least v/er indices i € [r].

The following colourful variant of Szemerédi’s Regularity Lemma is well-known, and is the starting
point of the stability part of our proof.

Theorem 2.22 (Coloured Regularity Lemma [24, Theorem 1.18]). Let 1/ks < 1/k1 < e. Every red/blue
coloured graph G on n > ky vertices contains disjoint subsets Vq,..., Vi C V(Q) with ky < k < ko that
satisfy the following.

@) [V(G)\ (ViU---UVi)| < en.
(i) Vi =+ = |Vil.



(iii) For all but at most ek? indices 1 <i < j <k, both Gyea[Vi, V;] and Guue[Vi, V;] are e-regular.

For technical reasons, we sometimes require the sets V; to have different sizes, but do not necessarily
need them to cover all but en vertices in G. As this is a minor point, we do not introduce more notation
and instead use the standard term e-regular partition under the following more relaxed definition.

Definition 2.23. Let 1/n < ¢ < d < 1, and let G be a red/blue coloured graph on n vertices. An
e-regular partition in G is a collection of disjoint subsets Vi, ...,V C V(G), such that for all but at most
ek? pairs of indices 1 < i < j < k, both Gyea[Vi, V;] and Gpue|Vi, V;] are e-regular. Each set V; is called a
cluster.

Given an e-regular partition V3 U--- UV in G, its corresponding (e, d)-reduced graph R is a red/blue
coloured graph with vertex set [k], such that for each * € {red, blue} and any distinct 4, j € [k], there is
an ij edge of colour * in R if and only if G.[V;, V] is (e, d)-regular.

Note that if V1, ...,V form an e-regular partition in a red/blue coloured complete graph and ¢ < d <
1/2, then for all but at most ek? pairs of indices 1 <4 < j < k, there is either a red edge ij or a blue edge
ij (or both) in the corresponding (e, d)-reduced graph R.

Finally, we prove the following refinement result that will be used later.

Lemma 2.24. Let 1/k,1/m < e < n < a < d < 1. Suppose G is a graph containing disjoint subsets
Vi,...,Vie C V(G), each of size m. Let R be a graph on [k] such that for every ij € E(R), G[V;,V;] is
(e,d)-regular. Suppose there exists a partition (k] = Iy U I, with |I1| = k1, |I2| = ke, and ki, ke > ak,
such that R[Iy,I5] is n-almost complete. Then, there exist two collections of disjoint sets {U; : i € J} and
{W; :i € J} such that

o Uil = [Uj] and [Wi| = |W;| for any i,j € J,
b Zie] Uil > (1 - ) Zie[l |Vil, ZieJ Wil > (1-«a) EiEIQ |Vil, and
o G[U;, W, is (Ve,d — €)-regular for every i € J.

Proof. Let n < v < a. For each i € Ij, pick a largest collection of disjoint subsets of V; of size
~vkim/ (k1 + k2). For each i € I, pick a largest collection of disjoint subsets of V; of size vkam/ (k1 + k2).
Let {U; : i € J1} and {W; : i € Ja} be the collections of refined subsets coming from {V; : i € I}
and {V; : i € Iy}, respectively. Note that at most a ~-proportion of vertices are lost from each V; in
this refinement process. Let R’ be a graph with vertex set J; U J,, such that ¢j € E(R') if G[U;, W]
is (y/e,d — e)-regular. Then, as R[[1, I2] is n-almost complete, R'[J1, Ja] is n-almost complete as well by
Lemma m Therefore, we can greedily find a matching M of size (1 — n) min{|J1|, |J2|} in R[]y, J3].
To finish, observe that >, ; v (Uil = (1 =n)(1 =) Xier, Vil = (1 — @) X4, [Vil, and similarly

Yicnovan Uil = (1 =a) e, Vil O

3 Outline of the proof of Theorem [2.2} Stability

Simplifications for the discussion. The main technical tool for the stability part of the proof of
Theorem [1.1} i.e. the proof of Theorem is Szemerédi’s regularity lemma. The following outline of the
proof of Theorem [2.2] assumes a working knowledge of the regularity lemma and simple embeddings using
it, and further surpresses two technical details that we will explain momentarily. Readers less familiar
with regularity techniques may find it useful to start with Section [2.6] and readers finding this outline too
scant in detail may find it valuable instead as a blueprint when reading the formal proofs in Section [d] and
Section Bl

There are two main technicalities that we will suppress in the following outline. Most notably, due to
the imbalance in the sizes t; and t5 of the bipartition classes of the tree T', we will sometimes work with
regularity partitions whose clusters have different sizes. In several cases, clusters will have two different
sizes that are in the ratio ¢; : to. Moreover, in many of our more intricate arguments, the same cluster
may change its role throughout the proof, having vertices from either the larger or the smaller side of the
bipartition embedded into it. To facilitate this, we sometimes need to refine the regularity partition that



we started with, partitioning all clusters into smaller clusters of suitable sizes, before pairing them up
again to form regular pairs with the right size ratio (see e.g. Lemma . In this outline, we will skim
over this aspect of the proof. That is, we will only work with a fixed regularity partition here and not
worry about the technicalities regarding cluster sizes and refinements. The crucial point we focus on in
the outline here is the number of vertices in the original graph that are covered by a certain set of clusters,
where for any set I C [k], we say that I covers the vertices U;erV;.

The other technicality is one common to many uses of the regularity lemma: we will need to have
many constants of decreasing sizes in some hierarchy. To avoid this burden here, we will informally use
m™T or m~ to denote a number equal to m + an or m — an, respectively, for some small and suitable
constant a > 0. In particular, 07 will represent an for some o > 0. The constants « involved in different
instances of these notations are all different and will be chosen later carefully in the formal proofs. To
give a rough idea of the relation of parameters, we can expect these a to satisfy ¢ < a < 1, where ¢ is
the regularity parameter.

Set-up in the proof of Theorem In Theorem we have an n-vertex tree T satisfying A(T) < ¢n
that has bipartition classes U; and Us with sizes t; and ¢y respectively, where t; > t5. We also have
a red/blue coloured complete graph G with max{t; + 2¢2,2t1} — 1 vertices, and wish to either find a
monochromatic copy of T' in G or show that the colouring of G is close to one of the two extremal
constructions, where this proximity is controlled with the parameter p. As mentioned in Section by
adding leaves to the to-side of the tree if necessary, we may assume that t; < 2t + 1. In fact, as will be
justified in Section we can even assume that ¢; < 2t in the proof of Theorem which we will do
from now on. In particular then, the graph G has t; + 2t5 — 1 vertices.

Stages, situations and embedding methods. Let ¢ be a suitable regularity parameter satisfying
1/n € ¢ < e < < 1. We begin by applying a result (Theorem of Haxell, Luczak, and Tingley [21]
to find an e-regular partition in V(G) that contains a certain monochromatic structure in the reduced
graph (see the top left of Figure . Having found this, we say we have an A-situation. We then work
through a sequence of 4 stages. At each stage, we either find a monochromatic copy of the tree, or deduce
that G must be close to an extremal construction, or find more useful structure in the reduced graph. If
the last of these is true at the end of a stage, we reach another named situation (see Figure , and if we
reach the end of these 4 stages, then we have an E-situation (see the right of Figure , which will imply
that G is close to an extremal construction.

At each stage, our deductions will often say that if there is a certain structure in the reduced graph
R, then we can find a monochromatic copy of the tree T' in G using a named embedding method. These
embedding methods include one due to Haxell, Luczak, and Tingley [21] that we will refer to as HLT,
as well as a series of new ones denoted by EM1a-c and EM2a-d that we will prove in Section [ The
structure required for each of these methods is depicted in either Figure [3] or Figure ] marked with
relevant references to the corresponding lemmas and the sections they are proved in. Formal definitions
of the required structures can be found in the relevant sections, though informal descriptions of these
structures are provided in the captions. Which embedding methods are used for which stages are noted in
Figure [2l To give a rough idea of how these embedding lemmas are proved, we will discuss and sketch a
proof of simplest embedding method HLT below, and briefly relate it to the other methods. All of these
proofs use the same general framework relying on a technical embedding lemma using regularity proved
in Section

Embedding method HET. As shown by Haxell, Luczak, and Tingley [21], if the left-most structure in
Figure [3| can be found in the reduced graph R in red, say, then we can find a red copy of T' in G. More
precisely, the structure is defined as follows. There is an e-regular partition V3 U --- U Vg1 in G with a
corresponding (g, d)-reduced graph R, an index i € [2k + 1] and a partition [2k + 1]\ {i} = I4 U Ip, such
that ia is an edge in Ryeq for each a € 14, and there is a perfect matching M in R,.q between I4 and Ip.
Furthermore, I4 covers t§ vertices of G while I covers t] vertices of G, and the ratio between the sizes
of the clusters indexed by I and by 4 is around ¢ : ts.

Observe that the structure described here is a bipartite subgraph of the reduced graph, so if we are to
embed the tree T into the e-regular pairs corresponding to edges in this structure, it is necessary that I
covers t3 vertices of G’ so that there is enough room for vertices in Uy to be embedded among them, and
similarly that Ip covers tf vertices of G for the embedding of vertices in U;. To prove their approximate
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Figure 2: The different situations we find in the reduced graph, and the stages we use to work through
them, along with the sections they are carried out in and the corresponding lemmas. Which embedding
methods are used at which stages is recorded underneath. The numbers n~ and (n + t2)~ on top refer to
the total number of vertices in G covered by I4 U Ig, while the numbers beneath refer to the number of
vertices of G covered by I4 or Ig as appropriate. The shaded areas indicate that the corresponding edges
in the reduced graph are mostly that colour.
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Figure 3: The structure in the reduced graph required for embedding methods HLT and EM1a-c, along
with their corresponding sections, names, and lemmas. On the left, t; and tf refer to the number of
vertices in GG covered by I4 and Ig. In each other structure, HLT™ refers to the same structure as HLT
attached to ¢ but covering ¢ and t] vertices, and comprises the majority of the required structure, while
the remaining structure pictured covers 07 vertices in G. In EM1a-c, each vertex in Iz or Iz has some
red neighbours in I¢. In EM1b there are some red edges within I’y, while in EM1c there are sets I4 2
and Ip > matched together in red and every vertex in these sets has some red neighbours in 14 ;.
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Figure 4: The structure in the reduced graph required for EM2a-d, along the corresponding sections,
names, and lemmas. In all cases 14 and Ip together cover n™ vertices, and lower bounds or sizes for the
number of vertices covered by I4 and by Ip are given in each case. In EM2a-c, almost all of the edges in
R between 14 and Ip are red. In EM2a and EM2b, there is a red edge in R[I4] and R[Ig], respectively.
In EM2d almost all edges in R within I4 and within I are red.
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version of Theorem in [21], Haxell, Luczak, and Tingley started with a red/blue coloured complete
graph on (1 + 2t3)™ vertices, and showed that its reduced graph will always contain, in red or blue, the
structure required to apply HLT. However, as our graph G has only t; 4 2t5 — 1 vertices, we cannot find
this structure in full. Instead, we use their result to show that we can find a slightly scaled down version of
HLT with the corresponding sets I4 and Ip covering t; and t] vertices respectively (see Theorem |5.1)).
This is the A-situation depicted in Figure |2} and we denote this structure by HLT .

Roughly speaking, in each of our other embedding methods we will be able to embed most of the tree
relatively easily, but need to somehow make up for a lack of vertices in both I4 and Ig in the HLT~
structure. This can be seen in the structures required for EM1la-c depicted in Figure [3] where part
of the structure in each case is HLT~, and we need to find some additional structure to complete the
embedding. A major driver of the complexity in our embedding is that the tree T' could have a linear
maximum degree, so the diameter of T' could be as small as 5. This means that structures in the reduced
graph with larger diameters are often not very useful for us.

As an example, we now give a sketch of how to embed T into the structure HLT described above. We
start by finding a constant-sized set of vertices X C V(T) such that T'— X has only small components
(see Lemma and Lemma . These components could be linear-sized, but must be much smaller
compared to the regularity clusters. Let ¢; = ¢. Remove an arbitrary edge from M, let 72 be the endpoint
of this edge in I4, and note that i1i5 is an edge in R,eq. This small modification is depicted in Figure @

Our aim is to embed T into Greq so that vertices in X N U are embedded into V;,, vertices in
(X NU;) U Np(X NUs) are embedded into V;,, and for each component K of T — X, we can assign to
it some edge ab in M with a € I4 and b € Ip, such that all vertices in K not mentioned so far are
embedded into either V, or V}, depending on if they are in Us or Uy, respectively. As X is constant-sized,
by choosing the maximum degree parameter ¢ to be small enough, N (X N Us) will be a linear-sized set
small enough to be embedded along with X N U; into the regularity cluster V;,. We are only embedding
X NUs into the cluster V;,, so there is plenty of room there. To make sure that we have enough room for
the rest of the embedding, for each component of T'— X we will decide which clusters to embed it into by
picking an edge ab in M independently and uniformly at random. As each component of 7" — X is small,
with high probability this will distribute the components of T" — X across the edges of M without too
many vertices assigned to any one edge. This ensures we have enough room in each cluster, so standard
regularity techniques now apply to find a red copy of T.

Overview of the 4 stages in the proof of Theorem We start the 4-stage proof of Theorem [2:2]
by applying the aforementioned Haxell, Luczak, and Tingley [21] result (see Theorem to our red/blue
coloured complete graph G to find a monochromatic HET™ structure in the reduced graph R. This is
the A-situation depicted in the left of Figure 2| and we can now proceed to Stage 1.

Stage 1
Given an A-situation in R, say in red, I4 and Ip each does not cover enough vertices to let us use
the embedding method HLT. Let Ic = V(R)\ (IaUIgU{i}), so that I covers (n+t2)” —ty —t; =t5
vertices. If almost all of the edges in R between Iz and Io are blue, then we would have a C-situation
in blue with I& in place of I, and can skip ahead to Stage 3. Suppose, then, that there are at least
some red edges between Ip and Ic. In particular, if I, is the set of vertices in Ip with at least some
red neighbours in I¢, then Ip; is non-empty. Let 141 be the set of vertices matched with Ip; by the
matching M. Then, take I4 3 to be the set of vertices in I4 \ T4 with at least some red neighbours in
Ic, and let I 3 be the set of vertices matched with T4 3 by M. Finally, let T4ao = I4\ (a1 UIa3) and
Ipo=1p\(Ip1UlIpgs). See the left of Figure |5 for a depiction of these vertex sets.

Suppose there is no copy of 7" in red, and thus the structure required to use any of EM1a-c does not
exist in red. We will be able to show, then, that i) the edges between I 41 and I are almost all blue, ii)
the edges between 141 and Ip 3 are almost all blue, iii) most of the edges in I4 1 are blue, and iv) for
most of the edges iaip € M[Ia2,Ip 2], one of i4 or ig will have mostly blue neighbours in I4 ;. These
deductions are commented on below, but assuming i)-iv) hold, we find a B-stituation as follows.

From iv), we can find a subset Iapo C Ia2 U Ipo containing a vertex in almost every edge in
MI42,1pB,2], so that the edges between I4p 2 and I are mostly blue. Combined with ii) and iii), the
edges between Ip := Iap2UIp3Ul4 1 and I4,; are mostly blue. Furthermore, since Ip contains a vertex
in almost every edge in M, and every cluster indexed by I contains more vertices than one indexed by
14, we see that Ip covers at least close to the same number of vertices as I4 does, and thus Ip covers
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Figure 5: On the left, the main structure in Stage 1. On the right, the main structure in Stage 2.

at least t; vertices. Moreover, as I4 1 is non-empty and i) holds, the edges from Ic to Ip are almost all
blue, and we can select some j € 141 with almost all blue edges to Ic UIp. Thus, j, Ic and Ip\ {j} give
the structure required for a B-situation in blue.

We finish this discussion of Stage 1 by commenting briefly on the four deductions mentioned above
and the embedding methods required for them, using the same labels as in Figure [3| where possible.

i) R[Ia1,1Ic] is almost all blue. If this does not hold, then let If4 1 be a small set of vertices in 14 ;
with some red neighbours in /¢, and let I ; be the vertices matched with Iy ; by M. We can then find
a perfect red matching between I’y ; and some I, C Ic, and set I, = Ic \ Ig ; to obtain the structure
required for EM1a.

ii) R[la1,Ip 3] is almost all blue. If this does not hold, then, similar to i), let I/ ; be a small set of
vertices in I4 ; with some red neighbours in Ip 3, let I B be the vertices matched with I’ a1 by M, and
find a perfect red matching between I ; and some Iz, C Ip3. Unlike i), using Iz, for the structure
in EM1a will ‘orphan’ the vertices in 14 .3 matched to Ijg’ 1 by M, say those in I; ;. However, from the
definition of 14 3, we can find a perfect red matching between I’ 71,3 and some I 3C Ic, which can be used
to replace [ g,l to complete the structure required for EM1a.

iii) R[I4.] is almost all blue. If this does not hold, then we have the structure required for EM1b —
some red edges within a set I4,; whose neighbours under M (i.e., the vertices in Ip 1) all have some red
neighbours in I¢.

iv) For most edges in M[I42,Ip 2], one endpoint has mostly blue edges to I4 . If this does not
hold, then we have the structure required for EM1c — a small red submatching of M[I4 2,Ip 2] whose
vertices all have some neighbours within I4 ;.

Stage 2

Suppose, now, we have a blue B-situation in R: a vertex j with blue edges to almost every vertex
in two disjoint sets I4 and Ip, with both I4 and Ip covering ¢, vertices of G, and almost every edge
between them being blue. Let M be a maximum blue matching between I4 U Ip and I (see the right
of Figure . If Ic N V(M) covers more than (1 — t2)" vertices in G, then using this matching and the
B-situation structure, we can find the structure required to embed 7" in blue using HLT, where we use
J as the vertex ¢ in the HET structure and use that I, UIp U (Ic NV (M)) covers 2t5 + (t1 —t2)T =n™
vertices in G.

Therefore, we can assume that Ic NV (M) covers at most (t; — to)* vertices, so Ic \ V(M) covers at
least (n +t2)™ — 2t; — (t1 — t2)™ = t5 vertices. If almost all edges between a subset I C I4 U I and
Ic \ V(M) are red, with T U (I \ V(M)) covering n~ vertices in G, then we have a red C-situation.
Unfortunately, the maximality of M only immediately gives that almost all edges between (I4UIg)\V (M)
and I\ V(M) are red, and they might cover only (n +t2)~ —2(t; —t2)T = (4t2 — t1)~ vertices together,
which could be as small as 2t; if ¢; ~ 2ts.

To combat this, we exploit the maximality of the matching M in a more sophisticated way using what
we call a ‘cascading argument’ (see Lemma . Note that any blue edge between some ¢ € I \ V(M)
and (I4 UIp)N V(M) would allow us to exchange that edge into the matching M to create a matching
M’ that has the same intersection with 4 UIg as M, but whose intersection with I includes ¢ and omits
some vertex ¢ € IcNV(M). The maximality of M then implies the edges between ¢’ and (I4UIg)\V (M)
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are mostly red. Iterating such an argument will eventually allow us to find two large subsets X and Y
with (JoUIp)\ V(M) C X CIaUIgand Ic\ V(M) CY C I¢, such that the edges between X and YV
are mostly red, X and Y both cover at least ¢, vertices in GG, and X UY cover at least n~ vertices in G.
This gives a red C-situation.

Stage 3
Suppose then we have a red C-situation in R, which consists of two disjoint vertex sets I4 and Ip,

each covering at least ¢; vertices and together covering n~ vertices, such that R[I4,Ip] is mostly red.
Let Ic = V(R)\ (14 U Ip), which covers (n+t2)” —n~ =t; vertices. In the rest of Stage 3 we will use
two different sequences of deductions (Claim A and Claim B) several times. Before continuing then, we
state roughly what they are and summarise the arguments for them.

10 O
=
or

_ EM2¢
t2

Figure 6: The deductions for Claim A, before finally EM2c is applied to get a red copy of T.

Claim A: If I4 and Ip cover t| and t, vertices respectively, and there are some red edges between Ip
and Ic, then we can either find a monochromatic copy of T or reach a D-situation.

Argument for Claim A: If there are some red edges between I4 and I then EM2c applies. Thus, we
can assume R[I4, I¢] is almost all blue. If R[Ip, I¢] is mostly red, then we have a D-situation in red
using 4 U I and Ip, so there must be some blue edges between Ip and I, as well as some red edges as
part of the assumption. If there are some red edges in I4, then we can find a small red matching in 4
and move one side of this matching out of I4 to get the structure required for EM2c in red. Finally, if
there are some blue edges in 14 then we can similarly apply EM2c in blue.

Figure 7: The deductions for Claim B, before finally either EM2d applies or we have a D-situation.

Claim B: Suppose I4 and Ig cover at least t;r and t;, wvertices respectively, and n~ vertices in total. If
there are some red edges between I4 and Ic, then we can either find a monochromatic copy of T or reach
a D-situation.

Argument for Claim B: If there are some red edges in R[I4] or R[Ig], then EM2a or EM2b applies
respectively, so assume that R[I4] and R[Ip] are both mostly blue. If some vertices in I~ have some blue
neighbours in both 74 and I, then we can use EM2d. Thus, we can partition most of I¢ into Iy U I},
such that R[l4, ] and R[I);, Ig] are both mostly red.

Like above, if there are some red edges in R[I4 U I}] or R[Ip U Ig], then EM2a or EM2b applies
respectively, so we can assume that both R[I4UI’}] and R[IpUIj] are mostly blue. If there is some vertex
in I’y with some blue neighbours in Ip U I}, or if there is some vertex in Iz with some blue neighbours in
I, UT), then we can apply EM2d. Thus, we can assume that R[I4 U Iy, Ip U Ij] is mostly red, which
gives a D-situation.

Stage 3 using Claim A and B. Using these two claims, we can now carry out Stage 3. Note first that
if R[I4 UIg, o] is mostly blue, then they form a D-situation, so assume that there are some red edges
either between I4 and I or between Ig and Io. If both 14 and Ig cover at least t;r vertices, then we
can use Claim B to find a monochromatic copy of T" or reach a D-situation.
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Thus, we can assume without loss of generality that Ip covers at most t;‘ vertices, so I4 covers at
least t] vertices. If there are some red edges between Ip and Ic, then we can use Claim A to find a
monochromatic copy of T' or reach a D-situation. Otherwise, there must be some red edges between 4
and Io. If t1 < t2+, then we can apply Claim A with I4 and Ig swapped as t1 ~ to, while if t; > t;r,
then we can apply Claim B.

Stage 4

Suppose finally that we have a blue D-situation in R, which consists of two disjoint vertex sets I4
and Ip, each covering at least ¢, vertices and together covering (n + t2)~ vertices, such that R[I4, Ig] is
mostly blue. First, suppose in addition that both I4 and Ip cover at least t;r vertices. Then, if there is
a blue edge in either R[I4] or R[Ig], we can take some vertices out of I to form I, which allows us to
apply EM2a or EM2Db, respectively, to find a blue copy of T'. Thus, we can assume that R[I4] and R[Ig]
are both mostly red. If the larger of I4 and I, which we can assume is I4, covers at least tf‘ vertices,
then we can take some vertices out of I4 to form Ip and some vertices out of Ig to form Io, so that we
can apply EM2c to get a blue copy of T. If I4 covers at most tf vertices, then we have (n+t3)~ < 2tf,
and so t; = 2ty and both I4 and Ip must cover at least t] vertices in G. This gives an E-situation, and
will imply that G is close to a Type II extremal construction.

Now suppose that the smaller of I, and Ig, which we can assume is Ig, covers at most t; vertices.
Then, I4 covers (n +ty)~ —t5 = n~ vertices in G. If there are some blue edges in R[I4], then we can
use them to take some vertices out of I4 to form I, and then apply EM2a. Thus, we can assume that
R[I4] is mostly red. If I4 covers at least nt vertices, then we can easily find the structure required to
apply EM2c in R[I4]. Therefore, we can assume that I4 covers at most n' vertices, and so we have an
E-situation that will imply that G is close to a Type I extremal construction.

4 Embedding methods for the proof of Theorem [2.2} Stability

In this section, we prove a series of embedding lemmas using regularity, each of which says that if a certain
structure exists in the reduced graph R, then we can embed T into G. In Section [{:I} we prove a tree
decomposition lemma phrased in terms of graph homomorphisms, which cuts the tree T" into small pieces by
removing very few vertices. Then, in Section[£.2] we prove our main technical lemma, Lemmal[f.2] Roughly
speaking, it says that given a suitable structure in the reduced graph and an appropriate assignment of
each small piece of the tree T to a part of the structure, we can find a copy of T' by embedding each piece
between a randomly chosen regular pair within the part it is assigned to. This is then applied to prove
embedding methods HLT in Section [£.3] EM1a-c in Sections[4.4] and EM2a-d in Sections 4.10
In each application, the structure in the reduced graph provided by the assumption is transformed into a
substructure of the one used in Lemma then we find a proper assignment of each piece of the tree T’
to a part of this structure, so that on average no cluster has too many vertices assigned to it.

As mentioned at the end of Section by adding leaves to the ts-side of the tree if necessary, we can
assume that t; < 2ty + 1. In fact, as we will show later in Section |§| when we prove Theorem @ it can
even be assumed that t; < 2¢5. As such, all of the embedding methods we prove below in this section will
have the assumption that to <t; < 2t,.

4.1 Tree decomposition

In this subsection, we prove the following lemma phrased in terms of graph homomorphisms that cuts
the tree T into small pieces by removing very few vertices. Recall that for graphs H; and Hs, a function
¢ : Hy — Hy is a graph homomorphism if for any edge uv in Hy, ¢(u)d(v) is also an edge in Hs.

Lemma 4.1. Let 1/n < ¢ < €. Let S be the following graph:

Y3 X5 Y, Xo Yy Xy Yo X3
S : ¢ o

Let T be an n-vertex tree. Then, there is a homomorphism ¢ : T — S such that each component of
T — ¢~ XoUYp) has size at most £n and [¢~H(Xo U Yo U X7 UY7)| < én.
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Proof. Let the bipartition classes of T be V; and V,. By Lemma there exists Z C V(T') such that
each component of T — Z has size at most &n and |Z] < 2671 Tt follows that T — Z contains at most
|Z] - A(T) < 2cné~t < €n/10 components. Arbitrarily pick t; € Z, view T as being rooted at t;, and
extend ¢; to an ordering tq,to,...,t, of the vertices of T, such that for each 2 < i < n, ¢; has a unique
neighbour, namely its parent in 7', to its left in this ordering, and vertices in the same component of T — Z
appear consecutively.

Let A C V(T — Z) be the set consisting of each vertex in a component of T'— Z that appears first in
the ordering. Let B be the set of parents of vertices in Z, and let C' be the set of parents and children
of vertices in B. Note that the sets A, B,C could overlap. For each x € {A,B,C,Z} and j € [2], let

We now define a homomorphism ¢ : T"— S, so that the following conditions are maintained.

A1l ¢(t) = X, for each ¢t € Z; and ¢(t) =Y} for each t € Z5.
A2 $(t) € {Xo, X1} for each t € By and ¢(t) € {Yp, Y1} for each t € Bs.
A3 d)_l({Xo,Xl,Yo,Yl}) CAUBUCULZ.

To initialise, let ¢(t1) = Xo if t; € Z1 and ¢(t1) = Yy if t1 € Z5. Suppose we have just finished defining ¢
for a vertex in Z or a component in T — Z.

Suppose first that the next vertex in the ordering is a vertex t; € Z. If t; € Z;, then we can define
o(t;) = Xo as the image of its parent in 7' under ¢ is adjacent to Xy in S by Similarly, if t; € Zs,
then we can safely define ¢(t1) = Y.

Now suppose the next vertex in the ordering is a vertex t; € A within a component K of T — Z.
Assume that ¢; € A;, then ¢ sends its parent to Yy by so we can define ¢(t;) = X;. Note that is
also maintained if ¢; happens to be in B;. Define ¢ on the remaining vertices t € K as follows.

te Ay | By | By | Ci | W \ (Al UuBiU Cl) Vs \B2
pt)=| X1 | X1 | Yo | Xy X3 Yo

One can check that this defines a valid homomorphism using the definitions of A, B, C. For example, if
t € BoN K, then ¢(t) is defined to be Y. The parent and children of ¢ are in C from definition, and are
sent by ¢ to X, which is valid. Moreover, both and are maintained. The case when t; € A, is
symmetric so is omitted.

Therefore, we can define a homomorphism ¢ : T — S satisfying Every component of
T — ¢~ 1({Xo,Yp}) has size at most &n as it is contained in a component of T — Z. Finally, by
|6~ ({Xo, X1, Yo, Yi})| < |A|+|B|+|C|+|Z] < &n/10+ 2671+ 2671 A(T) + 2671 < €n, as required. [

4.2 Main technical embedding lemma

In this subsection, we prove our main technical embedding lemma. Roughly speaking, it says that given
a reduced graph structure R and a tree T cut into many small pieces, if each piece can be assigned
appropriately into a part of R (represented below as a homomorphism ¢ : T'— R’), so that on average no
cluster has too many vertices assigned to it (see , then we can find a copy of T in G.

Lemma 4.2. Let 0 < 1/n K c K { K 1k < e K a < d < 1. Let iy,i9,13 € [k] be distinct and let
Ini,loo,Ios, i, I, 1us, 1o, 1o, T2, 13,1, I3 2, 13,3 partition (k] \ {i1, 42,13} such that |Io
Hosl, [Tia| = [Ti2] = [T1,3], [121] = 22| = [I2,3], and [I31] = |I32] = |I5,3

As depicted in Figure@ let R be a graph with vertex set [k] and edge set consisting of the edges in

= |lo2| =

{i1i27i2i3} U {ili 11 E 10’1} U {iai a € [3],2 S Ia,l}y

along with a perfect matching between each of the eight pairs of vertex sets (Ig1,la2) and (Ig2,143) for
every a € [3]o. Let R’ be the graph with vertex set {i1,i2,i3} U {lap : a € [3]o,b € [3]} and edge set

{192, d2t3, 01001, 01111, 12021, 13131} U{Llg1la2 :a € [Blo} U{ly2la3:a € [3]o}.
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Figure 8: Auxiliary graphs R and R’ used in the statement of Lemma [4.2

Let G be a graph on at most 2n vertices with a vertex partition Vi U Vo U --- U Vg, such that for each
ij € E(R), G|V;,V;] is (g,d)-reqular, and for each I € V(R')\ {i1,12,i3}, the sets V; with i € I all have
the same size. Assume also that n/10k < |V;| < en for each i € {i1,i2,i3}.

Let T be an n-vertex tree with A(T) < en. Suppose ¢ : T — R’ is a homomorphism such that the
following hold.

B1 ¢ t({i1,i2,i3}) # 0, and every component of T — o~ ({i1,ia,i3}) has size at most &n.
B2 For each I € V(R')\ {i1,iz,i3} with o= (1) # 0, o ' (I)|+an < 3,/ |Vil.
B3 For each i € {i1,i2,i3}, |7 1(i)| < én.

Then, G contains a copy of T'.

Proof. Since ¢ is a homomorphism, the image of every component of T — ¢~ *({iy,i2,43}) under ¢ is
entirely contained in I, := I,1 U I, 2 U I, 3 for some a € [3]g. For each a € [3]y then, let 7, be the
number of components of T — ¢~ ({i1,i2,i3}) whose images are contained in I, U I, 2 U I, 3, and label
these components as Ty 1, ..., Ty, . Let 21 € ¢~ 1({i1,ia,43}), view T’ as being rooted at x1, and extend
it to an ordering z1,...,z, of V(T) so that T[x1,...,x;] is a tree for each j € [n], and vertices in the
same component of T — ¢~1({iy,i2,43}) appear consecutively. Moreover, we can ensure that for every
x € p 1 ({i1,i2,i3}), the components of T — ¢~1({i1,i2,43}) that directly descends from z appear right
after = in this ordering. For each a € [3]p and £ € [r,], let p, ¢ be the smallest index such that z,, , is a
vertex in T;, o. By relabelling if necessary, assume that p, 1 < pa2 < -+ < pq,r, for each a € [3]o.

We now provide a random algorithm that, with positive probability, produces an assignment function
o :V(T) — V(R) consistent with ¢ that guides an embedding ¢ : T — G. To initialise, let o(z) = i for
every x € ¢ 1(i) and i € {i1,42,i3}, and let 1 be the empty function. Now, for each s € [n] in turn, if
§ = pq,¢ for some a € [3]p and £ € [r,], then we extend the definition of ¢ to include all vertices in T, ¢ in
a random manner defined below, while we do nothing to o otherwise. Then, if possible, we extend 1 by
embedding zs into G so that the following properties hold, otherwise we stop this process. For notational
convenience, let ig = i1, and let k, = |1, 1] for every a € [3]o.

C1 ¢(z;) € V(s for each j € [s].

C2 For every j € [s] and j' > j satisfying j’ ¢ {pa,e : a € [3]o,¢ € [r,]} and z;x; € E(T), we have
da(¥(%), Vo, \ {1, 25-1}) 2 dVo,)|/4 if o(zy) € {i1, iz, i3}, and da (¥ (), Vo, \
Y({z1,...,2j-1})) > dan/4k, if o(z;) € I, for some a € [3]o.

C3 For every a € [3]p and j € [s], if ¢(z;) = {4, then for all but at most ak,/100 values of i € I, 1,
there exists a set W; ; C N(¥(z;), Vi \ ¥ ({z1,...,z;-1})) with size dan/8k,, such that if j < j' <'s
and xj is a vertex in a component that directly descends from x;, then ¢ (z ;) avoids these sets W ;
unless zj; € Np(z;).

First, we show how ¢ is randomly extended when s = p, for some a € [3]p and ¢ € [r,]. Note that
s> 1asx € p t({i1,ia,i3}). Let 1 < s’ < s be the unique index satisfying xyxs € E(T), and observe
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that as T, is a component of T — ¢~ ({i1,i2,i3}), we have p(zs) = I, 1, and thus o(zs) = i,. By

. there exists Io 10 C Ip1 with |I,1¢ > (1 — «/100)k,, such that for every i € I, 1., there exists

Wis C NW(zs), Vi \w({xl, .. Ter—1})) with size dan/8k,. Pick ig1,¢ € Iy 1,0 uniformly at random.

Let ig24 € Iy and iq3¢ € I3 be such that ig.1.00a,2,0,%.2,.00a,30 € E(R). For each b € [3] and each

x €V (Tue) N~ (Iap), set o(z) =iqpe. This extends the definition of o to include vertices in V (T, ;).
Now, for each a € [3]o, b € [3], i € I, and £ € [r,], if 440 = 4, then let

Zapie = V(Tae) V™ Lap)l,
otherwise, including if the process above stops early, let Z, 4, = 0.

Claim 4.3. For each a € [3)o, b € [3], and i € I, with probability at least 1 — 1/20k, we have

> Zupse < E a0l o

LE[ry]

Proof of Claim[{.3, Fix a € [3]o, b € [3], and i € I, . For each £ € [r,], we have

V(Ta) Vo™ o)l _ [V(Tare) Vo™ (o)l

E(Zovio| Zavits o s ZLabio—1) <
( a,b,z,€| a,b,i,1s s La,b,il 1) > |Ia,1,£| = (1—0[/100)k‘a )

§ : v | 1( )|

1 _ 2 Ia b an
L A~ 1—‘(1 QD 1 Ia < - + .
(1 — ()é/lOO)k‘a (€lra] | ( 7Z) ( ’b)| - kia 4k’a

Furthermore, as [T, ¢| < &n for each £ € [r,], we have Z, 4 ;¢ < |T, 0| < &n. Thus, using Zée[ra] [Tl < m,

we have
> Tusl? < o € &n)? = &n’.
LE[ra)

Therefore, applying Lemma with ¢t = an/4k,, we have that

(I b)) an (an/4k,)? a? 1
P Zap,i = | < —— ] < s ) S5
é;} it > ke ok, | =P " P\ "32e87 ) = 20k

as required, where we have used that k, < k and £ < 1/k,a < 1. B

Claim 4.4. Suppose for some 0 < s <n, ¥(x1),...,¥(xs) satisfy and for every a € [3]g, b € [3]
and i € 1o, we have

lo™ (Iap)] an
Za i < /" . 4.1
> ERNAS T (4.1)
@E[m]ipa,zﬁs

Then, we can extend the embedding v to include x541 so that still hold with s + 1 in place of s.

Proof of Claim[{.f} Let s’ € [s] be such that zgxs41 € E(T).

If s+1 = pg ¢ for some a € [3]p and ¢ € [r,], then from above we have o(z41) = i for some i € Ia 1, and
by [C3] there exists Wi o C N(¢(xs),Vi \ ¥({1,...,x9_1})) with size dan/8k,. Using[C3| A(T) < cn,
and that components directly descending from x4 appear right after xy in the ordering, we see that at
most cn vertices in W; o have been used, thus the set Y41 := W, o \ ¥({z1,...,2,}) has size at least
dan/10k,.

Ifs4+1¢& {pae:a€ 3ol € [rd}, then o(zs) & {i1,42,i3}. If o(xs41) = i for some a € [3],
then by we have dG(w(xs’)7 ‘/ia \ w({xh cee 71'5’71})) > d“/;a|/4 By Yot1 = NG(w(‘rS’)7 V;a \
({x1,...,xs})) has size at least d|V;, |/4 — &n > d|Via|/5. If instead o(zs41) =7 € I, for some a € [3]o,
then zy and z, are in the same component of T — ¢~ 1({i1,i2,i3}). Say this component is directly
descended from xs € ¢! ({i1,i2,43}). By|[C2] . we have dg(Y(xy), Vi \ v({z1,...,25-1})) > dan/4k,.
Since vertices in the same component appear consecutively in the ordering, by at most &n vertices
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are embedded between zy and xs. Thus, the set Y11 := Ng(¥(zs), Vi \ (W({z1,...,2:}) UW, ¢)) has
size at least dan/4k, — &n — dan/8k, > dan/10k,.

We now embed 511 to a suitable vertex in Y1 by splitting into the following two cases, depending
on whether o(xsy1) € {i1,142,43}.

Case L 0(z441) = iq for some a € [3]. For every i € Ng(iq) \ {i1,i2,i3} C Io1, by [C1] (4.1) and [B2] we

have > \
o~ (Ia1)|  an i€lg 1V an
: S T Yt ST T
Vinv({zy,.. e < == 4 e < —— 2kq
Since [Vi| = & Yic;. , IVirl, we have [Vi\¢:({w1, ..., 2.})| > an/2k, > e[Vi|. Since izi € E(R), G[Vi,, Vi]

is (g, d)-regular, so by Lemma for all but at most /2|V;, | vertices y € Y41,
d(y7 ‘/’L \ 1/’({171a v 7$S})) > d“/l \1/}({1‘1, o aIS})‘/2 > dan/4ka > dan/Bka

for all but at most v/ek, < «|I,,1|/100 indices ¢ € I, ;. Similarly, when a = 1, for all but at most /¢|V;, |
vertices y € Yoi1, d(y, Vi \v({z1,...,2s})) > dan/8kg for all but at most |l 1|/100 indices i € Iy 1.
Furthermore, for each i € Ng(iq) N {i1,i2,43}, by using and Lemma @ instead of and
Lemma [2.21] we have that for all but at most |V;, | vertices y € Y1, d(y, Vi \v({z1,...,2s})) > d|V;|/4.
As |Yii1| > d|V4,1/5 > 104/€| V4, |, we can pick ¢(zs41) € Yst1 such that all of the above hold, so

hold with s + 1 in place of s, as required.

Case II. o(2541) € I, for some a € [3]p. Similar to Case I, we can deduce from Lemma [@3),
and either or that for every i € Ngr(o(2s11),1a), all but at most €|V, )| vertices y € Y44
satisfy d(y, V; \ v({z1,...,2s})) > dan/4k,, and for every i € Nr(o(xs+1), {i1,12,73}), all but at most
€|V (z,s)| vertices y € Yy satisfy d(y, Vi\v({z1,...,2:})) > d|V;|/4. Then, using that dr(o(zs11)) < 2,
and Y 11| > dan/10k, > 20en/ky > 10€|Vy (s, )|, we can pick ¢(w441) € Ysq1 such that all of the above
hold, so hold with s + 1 in place of s, as required. O

Finally, note that by a union bound over all a € [3]o,b € [3], and i € I,, Claim [4.3] and Claim
combine to show that the process above embeds T into G with strictly positive probability, and thus G
contains a copy of T. O

4.3 Embedding method HLT

The following result appeared in the work of Haxell, Luczak, and Tingley [21I]. For completion and to
illustrate our method, we include a proof using our framework.

RHLT : IA IB

Figure 9: On the left, the slight refinement of the initial reduced graph RyggT used in the proof of
Lemma [4.50 On the right, a depiction of the rule of the embedding used at (4.3)), condensing S from
Lemma [4.1|into a subgraph Ry of R’ from Figure

Lemma 4.5 (HLT). Letl/n < e 1/k<e << a<kd<1. Let T be an n-vertex tree with A(T) < cn
and bipartition classes of sizes t1 and to satisfying to < t1 < 2ts. Let G be a graph on at most 2n
vertices with a partition V(G) = V4 U --- U Vory1. Let Rgrt be a graph with vertex set [2k + 1], such
that if ij € E(Ruwrt) then G[V;,V}] is (e,d)-reqular. Let i € [2k + 1] and suppose there is a partition
[2k+1]\{i} = 1aUIp, with |I4| = |Ig| = k, such that the following hold for some ma, mp (see Figure[).

D1 |V,| =my4 for each a € I4, |V3| = mp for each b € Ig, and |V;| > n/10k.
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D2 kmy >ty +an and kmp > t1 + an.
D3 In Ruwr, i is adjacent to each vertex in I 4, and there is a perfect matching M between I4 and Ig.
Then, there is a copy of T in G.

Proof. Let & satisfy ¢ < £ < 1/k. Let S be the graph defined in Lemma Using this lemma, we can
take a homomorphism ¢ : T — S such that each component of T'— ¢~!(Xo U Yy) has size at most &én and
|6~ (Xo U Yy U X3 UY7)| < &n. Assume, by relabelling if necessary, that |¢=1(Xo U X3 U Xo U X3)| =t
and [~ 1(YoUY, UYa UY3)| = to.

Let 41 = 4. Pick some iy € T4 and suppose it is matched with i5 € Ip by M. Let Iy 1 = I4 \ {i2} and
I = Ip \ {i3} (see Figure E[) Let Ryyr be the graph on the right in Figure |§|7 and note that it is a
subgraph of R’ in Figure 8| Then, for each v € V(T), as depicted in Figure |§|, let

i if qbgv; € {Xo, X1}
) s if ¢(v
p(v) = L, ifo(v) € {Yl,Yz,YS}
Lo if ¢(v) € {Xo, X3}

so that ¢ is a homomorphism from 7" to Ry, and thus to R/, with |~ ({i1,i2})] < &n, [~ (111)] < to,
and |¢~ ! (L1 2)] < t1.

We will now check the conditions required for an application of Lemma [£.2} First, [BI] holds as every
component of T — ¢~ 1({iy,i2,43}) is contained in a component of T — ¢~ (XO U YO) which has size at
most &n. Next, using and 1/n < 1/k < a, we have

o™ (i)l +an/2 <tz +an/2 < (k= Dma = Y |V,

j€lia

and similarly [~ (I12)| + an/2 < 3., [Vjl, so holds as ¢~ 1(I) = 0 for each I € V(R')\
{i1,02, 111, I1 2}, Finally, for each j € {i1,i2, i3}, [¢7 (j)] < [¢71(Xo U Yo U X1 UY1)| < én, s0
holds. Therefore, we can apply Lemma to find a copy of T in G, as required. O

4.4 EM1la Embedding Method

Figure 10: On the left, the initial reduced graph Rgnpi1a transformed into the subgraph used to embed
the tree in Lemma On the right, the auxiliary graph Rgppq, Used when applying Lemma

Lemma 4.6 (EM1la). Let I/n < I/m < c < 1/k < e K a < d<1. Let T be an n-vertex tree with
A(T) < cn and bipartition classes of sizes t1 and to satisfying to < t1 < 2ty. Let G be a graph with with a
partition V(G) = VoUWV U---UVy. Let Rgnmaia be a graph with vertex set [klo, such that if ij € E(REM1a)
then G[V;,V;] is (e,d)-regqular. Suppose there is a partition [k| = 14 UI, Ul UIz UIL U Ic, such that
the following properties hold (see Figure @)

El |V =m for alli e {0} UI4 U, Ulc and |Vi| = tim/ty for alli € Ip U Iz UIL.
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E2 |Uier,ur, Vil 2 (1—=a®)t2, [Uier,ur, Vil 2 (1=a®)ty, |Uier, Vil = ata, |Uier, Vil = |Uiery Vil = aty,
and I Uie[c Vl| Z %tg.

E3 In Remia, 0 is adjacent to every vertex in I4UI,.

E4 In Rgmia, there is a perfect matching between Ia and Ip, a perfect matching between I'y and If,
and a perfect matching between I'y and If.

E5 In Rgmia, every vertex in I is adjacent to at least 10a|lc| vertices in Ic.
Then, G contains a copy of T'.

Proof. We begin with a claim that will also be used later in the proofs of Lemma [4.8 and Lemma [4.9]

Claim 4.7. For any Z C I} with a=2 < |Z| < 5allg|, there exists z € Z and Z' C Z \ {2} with
|Z'| = 5a|Z|, and a matching M in RemialZ’, Ic] covering Z', with z adjacent to every i € Ic NV (M).

Proof of Claim[{.73 By [E5] e(RemialZ. Ic]) > 10a|Z||I¢|, so there exists a set Ii, C I¢ with size 5a|l¢|
such that every i € I/, has at least 5a|Z| + 1 neighbours in Z, as otherwise

e(Rem1alZ, Ic]) < 5allc| - |Z] + (1 = 5a)|Ic| - (5a]Z] + 1) < 100]Z||Ic],

a contradiction. Then, since e(RemialZ,I5]) > ba|Z||If|, by averaging, there exists z € Z with at least
5a|I| neighbours in If,. Let I be a set of ba|If;| neighbours of z in I}.. Greedily, and using 5| Z| < |I/],
we can find a matching M between 1% and Z \ {z} with size 5&|Z|, which proves the claim. O

Let i1 = 0. Since |[Ij;| = ata/m < 10atz/3m < 5a|lc|, we can apply Claim [4.7] to find Zg C Ij; with
|Zg| = 5allg| = 5a’ta/m, i3 € Iy \ Zp, and a perfect matching M between Zp and some Z¢ C I, such
that i3 is adjacent to all ¢ € Z¢. Suppose that in the matchings given by i3 is matched with iy € Iy,
and iy is matched with i € I3.

Let V/ =V, forall i € IgUILUZp U ZcU{i1,i9,i3}. For every i € (I4UIy)\ {iz}, let V/ C V; have
size (1—a?/2)|Vi|. Let Iy 1 = (IaUTI’)\{i2} and I o = (IgUI}5)\{i5}. Partition Zp as evenly as possible
into two sets Iy 2 and I3, and say they are matched by M with subsets Iy 3 and I3 of Z¢, respectively.
Note that i3 is adjacent to every vertex in I3 ;. Finally, take a new index set Iy 1 with size |Ip 2|, say o2
is matched with I, C Iy in the matching given by and relabel the collection {V; \ V/ :i € Ij} as
{Vj’ :j € In1}. Note that by Lemmam if 45 is an edge in the graph depicted in the middle of Figure
then G[V/,V]] is (V/€,d — ¢)-regular.

Let & satisfy ¢ < & <« 1/k. Let S be the graph defined in Lemma Using that lemma, take
a homomorphism ¢ : ' — S such that each component of T — ¢~ !(Xo U Yp) has size at most £n and
|6~ (Xo U Yy U X; UYy)| < &n. Without loss of generality, say [¢~(Xo U X3 U Xo U X3)| = t; and
|p7 (Yo UY1 UYoUY3)| = to. Let the components of T — ¢~ (X U Yy) be {K; : j € J}, and note that
each of these component has neighbours in exactly one of ¢$~1(Xg) and ¢=1(Yy). Thus, we can partition
J as Jx U Jy, such that Np(K;) C ¢~1(Xp) for each j € Jx, and Ny (K;) C ¢~ 1(Yp) for each j € Jy.

Let J% C Jx and Ji, C Jy both be random sets with each element being included independently with
probability 2a?. Then, by Lemma with positive probability we have both of the following, so fix such
a choice of J%, Ji.

> KN (Y1 UY, UYs)| = 20%t; + a’n/100. (4.2)
JETLUT,

> KN (X1 U Xy U Xy)| = 20t £ a®n/100. (4.3)
JETLUT,

Let Rgphpia Pe the graph on the right of Figure Define a homomorphism ¢ : T" — Rgpp1a 88
follows. Let ¢(v) = i1 for every v € ¢~ 1(Xy), and let p(v) = iy for every v € ¢~ 1(Yp). For every
K; with j € J%, define ¢ on K; by composing ¢ with the function sending Y1, Xs,Y3 to Io 1, o2, 103,
respectively; while if j € Jx \ J%, define ¢ on K; by composing ¢ with the function sending Y7, Xo, Y3 to
I1,1h2, 1 1, respectively. For every K; with j € Ji, define ¢ on K; by composing ¢ with the function
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sending Xi,Y5, X3 to i3, I31, I3 2, respectively; while for every K; with j € Jy \ Jy-, define ¢ on K, by
composing ¢ with the function sending X1, Y2, X3 to i1, 11,1, 11,2, respectively.

Since [¢71(Xo U Yo U X; UY])| < én and € < 1/k < «, we have |¢~1(I)] < &n for each I €
{i1,i2,43}, and |~ (lo1)| + an/100 < >iery, |Vi |- From definition, 7,0 (VY| 3 e, V] 2 2.40%t,

and 3 VI D ier,  VE > 2.402ty. Thus, by (4.2)), ([4.3)), and we have [~ 1(I)| + a3n/100 <
> icr Vi for each I € {I11,11 2,102,103, 131,132} Therefore, we can apply Lemmato find a copy
of T in G. g

4.5 EM1b Embedding Method

111

Figure 11: The initial reduced graph Rgnip in Lemma[4.8 on the left, and the three substructures within
that we use to embed the tree in Cases I & II, Case III, and Case IV, respectively.

Lemma 4.8 (EM1b). Let I/n K I/m < ¢ K 1/k K e K v < a < d < 1. Let T be an n-vertex
tree with A(T) < en and bipartition classes of sizes t1 and to satisfying to < t; < 2ty. Let G be a graph
with with a partition V(G) = Vo UV U---U V. Let REmab be a graph with vertex set [k]o, such that if
ij € E(Rgmib) then G[V;,V;] is (e,d)-regular. Suppose there is a partition [k] = I4UI, UIpUI U I¢,
such that the following properties hold (see Figure .

F1 |Vi|=m foralli € {0} Ul UI Ulc and |V;| =tim/ty for alli € IpUIj.

F2 [Uier,ur, Vil 2 (1 = 9)t2, | Uierzury, Vil 2 (1 =)t |Uier, Vil = 10ats, | Uiery, Vil = 10aty, and
| Uiere Vil > 3ta.

F3 In Remib, 0 is adjacent to every vertex in 14 UI).

F4 In Remab, there exists a perfect matching between 14 and Ig, and a perfect matching between I’y
and 1.

F5 In Remib, every vertex in I is adjacent to at least 10a|Ic| vertices in Ic.
F6 In Remib, there exist at least a|I'y| vertices with at least «|Iy| neighbours in I;.
Then, G contains a copy of T'.

Proof. Let ¢ satisfy ¢ < £ < 1/k. Let S be the graph defined in Lemma Using that lemma, take
a homomorphism ¢ : T — S such that each component of T — ¢~(Xo U Yy) has size at most £n and
|67 (Xo U Yy U Xy UYy)| < én. Without loss of generality, say [¢~(Xo U X3 U Xo U X3)| = ¢; and
o= (Yo UY; UYoUY3)| = ta. Let the components of T — ¢~1(Xo U Yp) be {K; : j € J}. Moreover,
partition J as Jx U Jy, so that Np(K;) C ¢~ (Xp) for each j € Jx, and Np(K;) C ¢~ '(Yy) for each
jeJy.

Let 71.x = [¢7H(X2)], To.x = |07 (Ya)], T,y = |67 (X3)|, and 7oy = |¢7(Y2)]. Let v < 8 < «, and
consider the following four cases. It 7o x > 38t II: T x < 3fBta, 71, x < 1008t1, and t1 < (1 + 2008)ts.
I11: T2, x < S/BtQ, T1,x < ].OOﬁtl, and t; > (1 + 2006)t2 IV: To,.x < 36t2 and T1,X > 100ﬂt1
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Figure 12: On the left, the transformation of the reduced graph structure used in Cases I and II to
embed the tree. On the right, the auxiliary graph Rgpg1p1 used when applying Lemma

Cases I & II1. By we can greedily find a matching in Renmaip[Iy] with size a|l’y|/2 = 5oty /m. Let
Za C Iy be the set of vertices covered by this matching, and let Zg C If; be the vertices matched with
Za. By we can greedily find a perfect matching in Rgnvip between Zp and some Zo C Io.

Now, as depicted on the left of Figure we further transform this structure into what we need to
apply Lemma Set i1 = 0, pick i arbitrarily from I’y \ Z4, and say it is matched with i, € I \ Zp.
For each a € Z4, let @’ € Z4 be its neighbour in the matching above. Let n >  be a constant to be
chosen later depending on whether we are in Case I or Case II. Pick disjoint subsets Vg 1,V, 2 C V, and
Va1, Vara C Vo such that |V 1| = |V 1| = ntim/n, |Va 2| = |Var 2| = ntam/n. By Lemma we can
refine each of these new clusters, along with each cluster V; with index i in (I4 UT’)\ (Z4 U {i2}) and
(IpUIp)\ (Zp U {is}), into a maximum disjoint collection of smaller clusters with sizes ym or vt;m/ts
accordingly, then pair them up so that they form (y/e,d — €)-regular pairs. Note that at most O(yn)
covered vertices are lost in this refinement process. Relabel these new refined clusters as {V/ : ¢ € I 1}
and {V/ :i € I o} with I ; indexing those with the smaller size. Then, we have

tom
S Iz Y Wl-m - jzal (m- ) - Ofm)

i€l 1 1€lAUT,

t
> (1 —O(7))t2 — 100ty (1 - "nz> > (1 — 1002 + 3a2n)ts,

and similarly >, ., [Vi] > (1 - 1002 + 3an)t.

Then, relabel the subsets {V;\ (V;1UV;2) 11 € Za} as {V/ :i € Iy}, and relabel the subsets V; with
in Zp and Z¢ as {V/ :i € Iy} and {V/ : i € Iy 3}, respectively. Note that > V| =1Zal(1 =n)m =
(1002 = 10an)t2, Yicq,, Vi1 = 1002ty and Y-, |V = 10a°t,.

Let Rgpipy be the graph on the right of Figuré If we are in Case I, so 75, x > 38ts, set n = 3
and define a homomorphism ¢ : T — Ry i1 as follows. Let o(v) = iy for every v € ¢~1(Xp), and let
©(v) = ig for every v € ¢~ 1(Yy). For every K; with j € Jy, independently with probability 10a? — 28,
define ¢ on K; by composing ¢ with the function sending Y7, X9, Y3 to Iy 1, fo,2, lo,3, Tespectively; and
with probability 1 — 10a? + a2, define ¢ on K ; by composing ¢ with the function sending Y7, X2, Y3
to In,1, 11,2, 11,1, respectively. For every K; with j € Jy, independently with probability 10a? — o3,
define ¢ on K; by composing ¢ with the function sending X, Y2, X3 to i1, o1, /0,2, respectively; and
with probability 1 — 10a? + o8, define ¢ on K; by composing ¢ with the function sending X1, Y2, X3 to
1, 11,1, 11,2, respectively.

By Lemmal[2.7] with positive probability we have |~ (Io,1Ulo3)| = (1002 —a?B+a’B)tz, [~ (Io,3)| >
2002 Bty using that 7 x > 3Bta, and |~ 1(Ip2)| = (10a? — a?B £+ a3B)t;. Thus, |~ (lp1)| < (100 —
2002 B)ty < Zz‘elo‘l |V/| — 10a®Bt2, and similarly for Iy and I 3. It also follows that

i€lo,1

o (Ta)| <t — |0~ (To1 U Tog)| < (1—100% +20°B)ty < > |V/| — a®Bta,
i€ly,1

and similarly for I 2. Therefore, we can apply Lemma to find a copy of T in G.
If we are in Case II instead, so 72 x < 30t2, 71, x < 1008t1, and t1 < (1 + 20083)t2, then we proceed
similarly to above with the role of X and Y swapped, and with n = 1/2. More specifically, we define a
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homomorphism ¢ : T — Rgppy as follows. Let ¢(v) = 41 for every v € ¢71(Yp), and let p(v) = iy
for every v € ¢~1(Xy). For every K; with j € Jx, independently with probability 9a2, define ¢ on K;
by composing ¢ with the function sending Y7, Xo,Y3 to i1, o1, lo,2, respectively; and with probability
1 — 9a?, define ¢ on K; by composing ¢ with the function sending Y7, X, Y3 to i1, 11 1, I1,2, respectively.
For every K; with j € Jy, independently with probability 9a?, define ¢ on K; by composing ¢ with the
function sending X7, Ya, X3 to I 1, o2, Io 3, respectively; and with probability 1 — 9a?, define ¢ on K;
by composing ¢ with the function sending X, Y>, X3 to Iy 1, 112, [1,1, respectively.

By Lemma with positive probability we have |~ (Io3)| < |¢ 1 (Io1 U Ios)| = (9 £ 0.1)a?ty,
lo™ (Io1)] < &n + 100008ty using 71, x < 1008t1, and |¢~1(Ip2)| = (9 £ 0.1)a’ty. It follows using
t1 < (1+42008)ts that [~ 1(I)| < Diel |V/|—a?n/100 for each I € {Iy1, 102,103} Usingt; < (14+2008)t2
again, we also get |~ (I11)] < (1 = 8.8a%)t; < (1 —8.7a%)ty < 3.y [V/| — a®*n/100, and similarly for
I 2. Therefore, we can apply Lemma@ to find a copy of T in G.

I

I

| ' i I

| 31
. Remipe Iy Ino I
| _ 21 Ia2 Ins
| 19
|

Figure 13: On the left, the transformation of the reduced graph structure used in Case III to embed the
tree. On the right, the auxiliary graph Rgppqpe used when applying Lemma

Case III. In this case, we have 7 x < 3ft2, T1,x < 1005t1, and t; > (1 + 2008)t. Thus, oy >
to—To,x —&n > (1 —4p)ts, and similarly 7y > (1—1018)t;. Set iy = 0. By we can find 5 € I’y such
that is is adjacent to a set Z4 of a|I’y] = 10a?ty/m vertices in I';. Let i, € Iy be the vertex matched with
i2, and let Zp C I be the vertices matched with Z4. By we can greedily find a perfect matching
between Zp and some subset Z¢ of Io.

For convenience, denote t1/ta by p, so 142008 < p < 2 from assumptions. We now further transform
this structure as depicted on the left of Figure For each a € Z 4, suppose it is matched with b € Zp,
which is in turn matched with ¢ € Zx. Take U, C V, with size 2y/em, take U, C V}, with size m/p, and
let U. = V.. Then, G[U,, Up], G[Us, U.] are both (y/e,d — ¢)-regular by Lemma Relabel {U, : a €
ZaYAUp b€ Zp}t,{Uc:c€ Ze} as {V/ 1i € In1},{V} 1i € I 2},{V} : i € I5 3}, respectively. Note that
Yicn,, [Vi] = 2002 /ety > &n, Dien, Vil= 100%ta/p, and 3, V]| = 10ats.

Next, again for each a € Z4, suppose it is matched with b € Zp. Let Wy, = Vi \Uy, so |Wy| = (p—1/p)m.
Let W, C V, \ U, have size (1 —1/p?)m, possible as ¢ < 1/p. Observe that |W,| > (1 — (1+2008)"2)m >
2008m. Refine the collections of clusters {W, : a € Z4} and {W}, : b € Z,} above, and the clusters in
{Vivie (JaUI)\ (ZaU{iz})} and {V; : i € (Ip U Ip)\ (Zg U{iLt})} down to clusters with sizes ym
and ypm respectively. In the process, we lose O(yn) covered vertices, and the resulting refined clusters
can be paired together again as (1/g,d — ¢)-regular pairs by Lemma Relabel these refined clusters
as {V/ i€ 1} and {V/ :i € I o}, with I1 ; indexing the smaller clusters. Note that

SV D> Wil= YD i+ D> Wl - O(ym)

1€l1,1 1€laUly 1€ZU{ia} a€Zy

> (1 — )ty — 1002ty — m 4 10ata(1 — 1/p%) — O(yn) > (1 — (14 B)10a2/p*)ts,

and

YW= Y Vil= ) 1G] - 0(m)

i€l ie(IpUTp)\{iy} beZp
> (1 —9)t1 —m — 1002ty /p — O(yn) > (1 — (1 + B)10a2/p*)t;.
Since p > 14 2008, we have p(1 —108)(1 — 1013) > 1 + 108, so we can find p € [0,1] such that

100%(1+108) _ _ 10a%(1 - 108)
(1-1018)p2 ~ "> b
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Let Rgprip2 Pe the graph on the right of Figure Define a homomorphism ¢ : T — Rgp1pe s follows.
Let ¢(v) =i for every v € ¢71(Xy), and let p(v) = iy for every v € ¢~ (V). For every K; with j € Jy,
define ¢ on K; by composing ¢ with the function sending Y1, X»,Ys to Iy1, 11,2, 11,1, respectively. For
every K; with j € Jy, independently with probability p, define ¢ on K; by composing ¢ with the function
sending X1, Ys, X3 to Iz 1, I2,2, I2 3, respectively; and with probability 1 — p, define ¢ on K; by composing
¢ with the function sending X1,Y>, X3 to i1, [1,1, [1,2, respectively.

Using 1oy > (1 — 48)ta, 71y > (1 — 1015)¢1, and Lemma with positive probability we have
o™ (T2,1)| < &n,

(1+58)10a2t2/p* < p(1 — 4B)ty — 5a2Bty < |¢  (I22)| = pray £ 5a?Bta < (1 — 58)10a%t2/p,

and similarly (1 4+ 53)10a%t1/p* < |¢7'(I23)] < (1 — 58)10a%t1/p. It follows that |~ !(I)] is suit-
ably smaller than Y., |V/| for each I € {I51,155,I53}. Moreover, we have |~ !(I11)] < (1 — (1 +
58)10a2/p?)ty < Sien, Vil- 4002 Bty /p?, and similarly for I; 5. Thus, we can apply Lemmato find
a copy of T in G.

Figure 14: On the left, the transformation of the reduced graph structure used in Case IV to embed the
tree. On the right, the auxiliary graph Rgppqps used when applying Lemma

Case IV. In this case, we assume that 7 x < 38ty and 7 _x > 1008t;. Then, 7oy > (1 — 45)t, and
Ty < (1 —1008)t1. Let py = 71y /72y, and observe that py < (1 —408)t1/t2.

Let i; = 0. By we can greedily find a matching M in Remin[l’y] with size a|I’|/2 = 5a%ty/m.
Let Z/; C I’ be the set of vertices covered by this matching, so |Z/;| = 10a2ts/m, and let Z}; C I}; be the
vertices matched with Z/,. By and as in Claim we can find a matching M’ in Remib|[Zg, Ic] with
size 5a|Z};| = 50a3ts/m, and a vertex i3 € Z; \ V(M') that is adjacent to every vertex in Ic NV (M').
At the cost of halving the size, we can restrict M’ to a perfect matching between some Zp C Zj and
Zc C Io with |Zg| = | Zc| = 2503ty /m, such that if Z4 C Z/; is the set matched with Zp, then vertices
in Z4 all belong to the same side of the matching M. Let iy € Z', \ Z4 be the vertex matched with is.

We now further transform this structure as depicted on the left of Figure For every a € Zyu,
suppose it is matched with a’ € Z/; \ Z4 by M and with b € Zg. Say b is matched with ¢ € Z¢ by
M’ and o’ is matched with b’ € Z};. Let U, = V,, and pick U, C V,, with size (py + 2y/¢)m. Note that
G[Uy, U.] is (v/€,d—¢)-regular by Lemma Relabel {U, : c € Z¢} and {Uy : b€ Zp}as{V/:i e I3}
and {V; :i € I35}, respectively. Note that >, ., [V/| = 2503ty and Dier, Vil = 2503 (py + 24/2)ta >
250371 y + 50a3/Ets.

Since py < (1 — 408)t1/ta, we have |V, \ Up| > 398t1m/ts, so V, \ U, can be partitioned as Wy, U Sy
with |Wy| = 208t1m/t2 and

ISy = (1 —208)tam/ts — (py + 2v/e)m > 196tym/ts.

Partition V, into W, U S, U L, with |W,| = 208m, |S,| = 58m, and |L,| = (1 — 258)m. Recall that a’
is the vertex in I’y matched with a by M, and it is matched with b’ € I;. Take L, C Vs and Ly C Vi
with sizes 58m and 55t1m/te, respectively. By shrinking exactly one of S, and L, if necessary, we can
ensure |Lq|/|Lar| = |Sp|/|Sa|, max{|La|,|Sal} = 58m, and min{|L.|,|Sa|} > B*m.

Refine all pairs of clusters of the forms (W,, W) and (Vy/ \ Lo/, Vi \ Ly ), and all other matched clusters
in{Vi:ie (Tauly)\(ZaU{i2})} and {V; : i € (Ip UIp)\ (Zp U {is})} down to clusters with sizes
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~m and vty m/ty accordingly. In the refinement process, we lose O(yn) covered vertices, and the resulting
refined clusters can still be paired together as (y/g,d — ¢)-regular pairs by Lemma m Relabel these
refined clusters as {V/ : i € I1 1} and {V : i € I; o}, with I; ; indexing the smaller clusters. Note that

Doz Y Wil Y AH5B)IViIl+ Y [Wal = O(yn)

i€l1,1 i€l Ul 1€Z4U{iz} a€Za

> (1 — O())ta — 25a3(1 4 58)t2 + 50003 Bty > (1 — 2503 + 37005 B)t,,

and similarly >, [V/| = (1 - 2503 + 37003 ).

By Lemma we can also refine all pairs of clusters of the forms (S, Sp) and (Lg/, L,) down to
clusters with sizes ym and 7|Lq|m/|Lq|, then pair the new clusters into (1/¢, d — )-regular pairs. Relabel
the refined clusters as {V/ : i € Iy1} and {V : i € Iy 2}, with I ; indexing the smaller clusters. Note that
Eielm |V/| > 56m - 25a3ty/m — O(yn) > 1000 Bty. Moreover, using py = 71y /7oy < (t1 — T1.x) /T2y,
we have

YoV Y0 Ld+ Y 1S = O(m)

i€y o a€Z4 beEZp
t —
> 250° ((1 — 258)ty + (1 — 208)t — X4, 2\@2) —O(yn)
T2,Y
tq

> 2503 ((1 —268)ts + (1 — 208)t; — + n,x) > 250°T x.

1—4p

Let Rgyips be the graph on the right of Figure Define a homomorphism ¢ : T' = Rgpiips 88
follows. Let ¢(v) = iy for every v € ¢~ 1(Xy), and let p(v) = iy for every v € ¢~ (Yp). For every K;
with j € Jx, independently with probability p = 25a® — o®83, define ¢ on K; by composing ¢ with the
function sending Y7, X5, Y3 to Iy 1, lo,2, 10,1, respectively; and with probability 1 — p, define ¢ on K; by
composing ¢ with the function sending Y7, X2, Y3 to Iy 1, [1 2, I1,1, respectively. For every K; with j € Jy,
independently with probability p = 25a3 — a?3, define ¢ on K j by composing ¢ with the function sending
X1,Ys, X3 to i3,131, I32, respectively; and with probability 1 — p, define ¢ on K; by composing ¢ with
the function sending X1, Y2, X3 to i1, I 1, I1 2, respectively.

By Lemma [2.7} with positive probability we have

(2502 — 15003 B)ty < 2503(1 — 2B)(1 — 4B)ts < | (I31)]| = proy £ a®Bta/2 < (2502 — a®B/2)ty,

|(,0_1(IO’2 U 1372)‘ = p(Tl,X + Tl’y) + a3ﬁt1 2 (250[3 - Oésﬁ)(tl - §n) - a3ﬂt1 2 (25043 — 30[35)151,

as well as [p ' (lo2)| < prix + @®B71,x/2 < (250 — &3B/2)11 x, |¢ ' (I32)] < priy + oty <
(2503 — a3B)1y + a\/eta, and |~ (Ip1)| < pre.x + a3Bta < 9003 Bts.

It also follows that |~ (I11)] < ta — |7 (I51)| < (1 — 2503 + 150a3B)ty and |~ ([12)| < t1 —
lo~ (T2 Uls2)| < (1 — 2503 + 3a3B)t;. Therefore, [¢~*(I)| is suitably smaller than Y-, , [V/| for each
Ie{lh,Th2,101,102,131,132}. Thus, we can apply Lemma to find a copy of T in G. O

4.6 EM1lc Embedding Method

Lemma 4.9 (EMlc). Let l/n < 1/m < c K 1/k < e <y < a<xd<1. Let T be an n-vertex tree
with A(T) < en and bipartition classes of sizes t1 and ty with to < t1 < 2ty. Let G be a graph with with a
partition V(G) = VoUVIU---UVg. Let Remic be a graph with vertex set [k]o, such that if ij € E(REmic)
then G[V;,V;] is (e,d)-regular. Suppose there is a partition [k] = IaUIayzUIaoUIpUIp 1 UlpaUlc,
such that the following properties hold (see Figure .

Gl |Vi|=m foralli € {0} UIaUIs1 UIap Ul and |Vi| =tim/ty for alli € Ig UIp 1 Ulps.

G2 | UiGIAUIA,1UIA,2 Vv1| > (1 _’7)t2v | UiGIBUIB,1UIB,2 Vvll > (]- _7)t17 | UiGIA,l V;| 2 | UiGIA,z ‘/2| = 10ato,
| Uiers, Vil = | Uierg,, Vil = 10aty, and | Uicr. Vi| > 3ts.

G3 In Remic, 0 is adjacent to every vertex in T4 Ula1 U g .
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ReMic I&1I 111

Figure 15: The initial reduced graph Rgmic in Lemmalf4.9|on the left, and the three substructures within
used to embed the tree in Cases I & II, Case III, and Case IV, respectively.

G4 In Rgmaic, there exist perfect matchings between each of the three pairs of sets (Ia,Ig), (Ia1,1IB1),
and (IAQ, IB72).

G5 In Rgmic, every vertex in Ip 1 is adjacent to at least 10a|lc| vertices in Ic.

G6 In Remic, for everya € Iao and b € Ig o with ab € E(Remic), both a and b have at least o|la 1|
neighbours in I ;.

Then, G contains a copy of T'.

Proof. We proceed similarly to the proof of Lemma Let € satisfy ¢ < € < 1/k. Let S be the graph
defined in Lemma [4.1] and, using that lemma, take a homomorphism ¢ : T — S such that each component
of T— ¢~ 1(XoUYp) has size at most én and |¢~1(XoUYyUX; UY7)| < En. Without loss of generality, say
|6~ (XoUX; UXoUX3)| =t and |~ (YoU Y, UY2UY3)| = to. Let the components of T — ¢~ (Xo UYy)
be {K; : j € J}. Moreover, partition J as Jx U Jy, so that Np(K;) C ¢~(Xo) for each j € Jx, and
Nr(K;) C ¢! (Yp) for each j € Jy.

Let 71.x = [¢7 1 (Xo)], 7o,x = [0 (YV3)|, T,y = [¢71(X3), and 72y = ¢~ (Y2)]. Let v < 8 < «, and
consider the following four cases. It 7o x > 35ts. II: 7o x < 30t2, 7, x < 1005t1, and t; < (1 4 2005)ts.
I11: To.x < 30t,, T1,x < 1005t1, and t; > (1 + QOOB)tQ. IV: T2, x < 38ty and T1,X > 10008t;.

Ioqn Ipo Ips

l - /ha L

Figure 16: On the left, the transformation of the reduced graph structure used in Cases I and II to
embed the tree. On the right, the auxiliary graph Rgpri.; used when applying Lemma

Cases I & II. Fix a submatching in Remic[la2, I 2] with size a|l42|/2 = 5a’ta/m, say between
Zazand Zp 3. By we can greedily find two disjoint matchings M; and My in Remiclla1, Zp 3] and
Remiclla1, Za 3] covering Zp 5 and Z4 3, respectively. Let Z41 = V(M1)NIa1 and Zao =V (M2)NI4 .
Let Zp1,Zp,2 C Ip,1 be the vertices matched with Z4, and Z4 o, respectively. By we can greedily
find disjoint perfect matchings in Remic[Zp,1UZB 2, Ic] between Zp 1 and some Z¢ 1 C I¢, and between
Zp,2 and some Zco C Ic. Let Zp = Z41UZa2UZy3 and Zp = Zp 1 U Zp2U Zp 3.

We now further transform this structure as depicted on the left of Figure Set i1 = 0, pick iq
arbitrarily from T4 2\ Z 4 3, and let i5 be the vertex in Ig o\ Zp 3 that iz is matched with. For each az € Z4 3
matched with b3 € Zp 3, say ag is matched with as € Z4 2 under M,, and bs is matched with a1 € Z4 1
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under M;. Let n > 8 be a constant to be chosen later depending on whether we are in Case I or Case
IT. Pick disjoint subsets Vo, 1, Vag,2 C Vo, and Vo, 1, Ve, 2 C Vo, such that |V, 1| = |Va,.1| = ntim/n and
[Vas 2| = [Vas.2| = ntem/n. Partition V,, as V,, 1UV,, o with |V, 1| = nm and |V,, 2| = (1—n)m. Partition
Vig a8 Vig1 U Vi, 2 with |Vi, 1| = ntim/te and |Vp, 2] = (1 — n)tim/te. By Lemmau we can refine
all pairs of clusters of the forms (Vi, 2, Vas.1), (Vas.2s Vas,1), (Var 15 Vs 1)s Vas \ (Vay,1 U Ve, 2), Vi, 2), along
with all pairs of matched clusters indexed by (I4UI41Ul42)\(ZaU{iz}) and (IgUIp1Ulp2)\(ZpU{is})
into smaller clusters with sizes ym or «yt1m/t accordingly, then pair them up again into (1/¢, d—e¢)-regular
pairs. Note that O(yn) covered vertices are lost in this refinement process. Relabel these new clusters as
{V/: i€l 1} and {V/ : i € I o} with I1 ; indexing those with the smaller size. Then, we have

tom
Sz X Wlem -2zl (m -T2 - oom)

i€l1,1 1€1AUIA1UTA 2

t
> (1-0(1)t> — 10021, (1 - ”n> > (11002 + 3a%n)ts,

and similarly >, [Vi] > (1 - 1002 + 3an)t;.

Then, let U; = Vo for every i € Z4 1 and let U; = V; \ (V;1 UV, o) for every i € Za 2. Relabel the
subsets {U 10 € Za1UZap} as {V/ 11 € Iy}, and similarly use Iy o and Iy 3 to relabel the subsets
Vi with ¢ € Zp1 U Zps and i € Zc 1 U Zc o, respectively. Note that Zielo,l V| = (1—n)m =
(100 —10a2n)t2, 3cp, , V7] = 10a%ts, and 37, |V/| = 10a’ts. We are now in the same situation as
Cases I & II in the proof of Lemma [£:8 so we can proceed in the same way to find a copy of T in G.

i I
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/ )
Remies © Ir1 Iz Ioj3
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Figure 17: On the left, the transformation of the reduced graph structure used in Case III to embed the
tree. On the right, the auxiliary graph Rigpriep used when applying Lemma

Case III. 75 x < 3ft2, T1,x < 1008t1, and t1 > (1 4 2008)t2. Set i1 = 0 and pick i € I4 o arbitrarily.
By there is a set Za4 C Ngrgyy,. (i2, La1) with size a|l4 1| = 10a?ty/m. Let Zp C Ip 1 be the indices
matched with Z4, and use to greedily find a perfect matching between Zp and some Z¢o C I¢. This
is the same structure used in Case III of the proof of Lemma so we can proceed in the same way to
find an embedding of T in G.

Figure 18: On the left, the transformation of the reduced graph structure used in Case IV to embed the
tree. On the right, the auxiliary graph Rgprie3 used when applying Lemma

Case IV. 1, x < 30ty and 7 x > 1005t1. Let py = 71y /T2y, and observe that py < (1—-408)t1/t2. Fix
a submatching in Remic|la,2, I 2] with size a|la1]/2 = 5a2t2/m say between Z’y sand Z 3 ByE

can greedily find two disjoint matchings M7 and M in Remic[la1,Z5 3] and REMlc[IA 1 ZA 3] covering
ZB,3 and ZA’S, respectively. Let ZA’1 =V (M) ﬁIA’l and ZA,2 = V(Mg) ﬁIA,lv and let ZB’17 Z B2 ClBa
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be the vertices matched with Z/, ; and Z/, ,, respectively. Using and as in Claim we can find a
matching M in Remic|Z} 1, [o] with size 5a|Zp || = 25a°t2/m, and a vertex iz € Zp; \ V(M) that is
adjacent to every vertex in Ic N V(M). Say M matches Zp 1 C Zp with Zc C I, let Za1 C Z)y | be
the set matched with Zp 1, and let iz € Zil,l \ Za, be the vertex matched with i3. Let Zp 3 C ZJ'B,3 be
matched with Z4 1 by M, and suppose Zp 3 is matched with Z4 3 C Z;L37 which is in turn matched with
Zaa C Zj’4’2 by M. Finally, let Zg o C Zj3’2 be matched with Z4 o, set Za = Za1UZ42UZ4 3, and set
Zg = ZB,l @] ZB72 U ZB,g.

We now further transform this structure as depicted on the left of Figure Set i1 = 0. For each
az € Za,3 matched with b3 € Zp 3, say ag is matched with as € Z4 2 by M, which is matched with
by € Zp . Say bz is matched with a; € Z4,; by M;, which is matched with b; € Zp ;, which is in turn
matched with ¢ € Z¢ by M. Let U, = V., and pick Uy, C V3, with size (py +2+/€)m. Note that G[Us,, U]
is (y/e,d — ¢)-regular by Lemmam Relabel {U; : ¢ € Z¢} and {Uy, : b1 € Zp1} as {V] 1 i € I3}
and {V} 14 € I3}, respectively. Note that 37, [V/| = 25a’t and 30, | [V/| = 250° (py + 2v/E)t2 >
250[37'17}/ + 500[3\@@.

Since py < (1—408)t1/t2, we have |V3, \ Uy, | > 398t1m/ta, so Vi, \ Uy, can be partitioned as Wy, U Ly,
with |Wy, | = 208t;m/te and

| Ly, | = (1 —208)tym/ty — (py +2V/e)m > 196tym/ts.

Partition V,, into W,, UW/ U L, with [Wy,| = 208m, W] | = (1—-258)m, and |Ly, | = 58m. Partition
Viy as Wy, U Wy with [Wy,| = 258tim/tz and W | = (1 — 258)t1m/ta. Partition Vi, as Wy, U Lq,
with |[We,| = 258m and |L.,| = (1 — 258)m. Partition V,, as Wy, U L,, with [W,,| = (1 — 58)m and
|La,| = 58m. Partition V4, as Wy, U Ly, with |[Wy,| = (1 —58)t1m/t2 and |Ly,| = 58t1m/te. By shrinking
exactly one of L,, or L,, if necessary, we can ensure |Ly,|/|La,| = |Lag|/|Las|s max{|Lq,|,|La,|} = 508m,
and min{|Ly, |, |La,|} > B°m.

Refine all pairs of clusters of the forms (Wa,, Ws, ), (W,,, W), (Wa,, Why), (Wa,, Wi, ), and all matched
clusters in {VZ RS (IA UIAJ UIA,Q) \ (ZA U {22})} and {VZ RS (IB UIBJ UIBQ) \ (ZB U {7,3})} down to
clusters with sizes ym or vt1m/ty accordingly. In the refinement process, we lose O(yn) covered vertices,
and the resulting refined clusters can be paired together again as (1/¢,d — ¢)-regular pairs by Lemma
Relabel these refined clusters as {V/ : i € I1 1} and {V : i € I; 2}, with I ; indexing the smaller clusters.
Note that

i€ls,

V= DY Vil=m—=12aal(58 458+ (1 - 258))m — O(yn)

1€l 1 1€1AUTA,1UT4 2
> (1 —O0()ta — 25a3(1 — 158)t2 > (1 — 25a° + 370a° B)t2,

and similarly >,  [Vi] > (1 - 250 + 37003 B)t.

Next, by Lemma [2.19] we can refine all pairs of clusters of the forms (Lq,, Lq,) and (Lq, , Ly, ) down to
clusters with sizes ym and v|Lp, |m/|La, |, and pair them up again into (1/£,d — €)-regular pairs. Relabel
the refined clusters as {V/ : 4 € Ip1} and {V : i € Iy 2}, with Iy ; indexing the smaller clusters. Note that
Eielm |V/| > 56m - 25a3ty/m — O(yn) > 10003 Bta. Moreover, using py = 71y /7oy < (t1 — T1.x)/T2 v,

we have
YWz Y NLal+ D ILul-O(m)
i€1p,2 a3€Z A3 b1€ZB1
t —
> 250° ((1 — 25B)ts + (1 — 208)t; — L —T1Xy, 2\@1&2> — O(vn)
T2,Y
t
> 2507 ((1 —268)ts + (1 —208)t; — ] 14ﬁ + n,x) > 250’7 x.
We are now in the same situation as Case IV in the proof of Lemma so we can proceed in the same
way to find an embedding of T" in G. O

4.7 EM2a Embedding Method

Lemma 4.10 (EM2a). Let 1/n €« c < 1/k < e K n < a < d < 1. Let T be an n-vertex tree with
A(T) < en and bipartition classes of sizes t1 and to with to < t1 < 2ts. Let G be a graph with at most
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Figure 19: On the left, the initial reduced graph Rgm2a transformed into the substructure used to embed
the tree in Lemma On the right, the auxiliary graph Rgpo. used when applying Lemma

2n wvertices and a vertex partition Vi U--- UV such that |[Vi| = |Va| = -+ = |Vk| = m. Let Rgmaa be a
graph with vertex set [k|, such that if ij € E(Rgmza) then G[V;,V;] is (e,d)-regular. Suppose there is a
partition [k] = I4 U Ig U Ic such that the following properties hold (see Figure @)

H1 |Uier, Vil > ta +200an, | Uier, Vil = ta — an, | Uier,urg Vil = n — an, and | Uier, Vi| = 100an.
H2 Rgmazalla,IB] is an n-almost complete bipartite graph.

H3 Remzalla,lc| contains a matching M covering Ic.

H4 E(Renzalla] — V(M) £ 0.

Then, G contains a copy of T'.

Proof. Let £ satisfy ¢ < € < 1/k. Let S be the graph defined in Lemma and, using that lemma,
take a homomorphism ¢ : T — S such that each component of T — ¢~ 1(Xo U Yp) has size at most &n
and ¢~ 1(Xo U Yy U X7 UY7)| < én. Without loss of generality, say |¢~(Xo U X3 U X U X3)| = t; and
|p7 (Yo UY; UYa UYs)| = to. Let the components of T — ¢~ (Xo U Yy) be {K; : j € J}. Moreover,
partition J as Jx U Jy, so that Np(K;) C ¢~!(Xp) for each j € Jx, and Np(K;) C ¢~ (Yp) for each
j € Jy.

Let 71 x = [0~ (X2)|, o, x = [07 (V3)|, Ty = [¢7'(X3)| and 7oy = |¢7' (Y2)|. Let na = |Uier, Vil,
ng = | User, Vil and ne = | User, Vi|- We now separate into the following two cases. It 71 x + 72y >
np + 20an. II: 71 x + 72y < np + 20an.

Case I. 7y x + 7oy > np + 20an. Then, (1 — 20a)(m,x + T2,v) > np — an. Note that 7o x + Ty <
ts < np + an, so (1 — 20a)(12,x + 72,y) < ng — an. Thus, we can find p € [0,1 — 20a] such that
(1 -20a)72,y + (1 — 20 — p)72 x + pT1,x = Np — an.

Let Rgpnpea be the graph depicted on the right in Figure which is a subgraph of the graph R’
in Lemma Define a random homomorphism ¢ : T' = Rgpnm, as follows. First, for vertices in
¢ H(Xo UYp), set p(v) = iz if ¢p(v) = Yy, and set p(v) = iy if ¢(v) = X.

For each j € Jx independently at random, with probability 20c, define ¢ on K; by composing ¢ with
the map that sends Y1, Xo, Y3 to 73, I3 1, I3,2, respectively; with probability p define ¢ on K; by composing
¢ with the map that sends Y7, Xa, Y3 to 41, 1 1, I1 2, respectively; and with probability 1 — 20a — p define
¢ on K; by composing ¢ with the map that sends Y7, X5,Y3 to 131, I3 2, I2,1, respectively.

For each j € Jy independently at random, with probability 20«, define ¢ on K; by composing ¢ with
the map that sends X1, Y2, X3 to I5 1, I3 2, I3 1, respectively; and with probability 1 — 20« define ¢ on K;
by composing ¢ with the map that sends X, Ys, X3 to is, I3 1, I2 2, respectively.

Since |K;| < &n for all j € J, and ¢~ (Xo U Yy U X; UY])| < &n, we can use Lemmato conclude
that with strictly positive probability, |~ (I51)| = 20at; £ aty, [~ (I3,2)| = 20ats aty < ne —an, and
o™ (111 UIz1)| = np —an+an/2. It follows that [~ ({112, [2,2, I3,1})] < n—19aty — (ng —3an/2) <
na + 3an — 19ats < ng — an.

Using we can find i1,i5 € I4 \ V(M) and i3 € Ipg, such that i1is,i2i3 € E(REMz2a), and i3 is
adjacent to all but at most nk vertices in T4 NV (M). Thus, we can find Is1 C Ngpyo. (i3, 1a N V(M)
covering |~ (I51)| + an/10 vertices. Let I3 C I denote the set of vertices matched with I by M,
then [0~ (I3p)| < Xiep, , Vil — an/10 for each b € [2].
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Let I'y =I5\ (I3,1U{i1,42}) and Iy = (Nrgpsa (41, I8) N NRgasa (22, I8)) \ {i3}. Note that from above,
o™ ({112, 22} < na —an — [0~ (Is1)] < ey, [Vil — an/5, and |0~ (111 U I21)] < np — an/2, so
we can find partitions I’y = I] y U I35 and Iz = I7; U I, such that Ziel[l , Vil > |l (1o p)| + an/20
for each a,b € [2]. Moreover, as |}, ,| > an/20m by construction for each ab € [2], and Remz2alla, IB]
is p-almost complete, by choosing these two partitions randomly and applying Lemma we can find a
realisation such that both Remzall] 1, I] o] and Remzalls 1, I5 5] are 10n-almost complete. This allows us
to apply Lemmag to refine the clusters V; with i € I ; UI{ , U I3 1 U5, to obtain, for each a,b € [2],
aset {V/1i € Io,} of clusters of the same size, such that 37, [V = |~ (I4)| + an/100. Moreover,
for each a € [2], the refined clusters indexed by I, and I, can be matched up, so that each pair is
(VE,d — ¢)-regular (see Figure[19). This allows us to use Lemma[4.2] to find a copy of T in G.

Case IL. 7 x + 7oy < ng + 20an. Then, (1 — 70a)(m1,x + T2,v) < np — an. Note that 7 x + 71y >
t1 —&n > npg + 100an, so (1 — 70a)(71,x + 71,y) > np — an. Therefore, there exists p € [0,1 — 70«] such
that (1 — 70a)m x + (1 — 700 — p)71,y + pT2,y = np — an.

Similar to above, we define a random homomorphism ¢ : T' — Rgppe, as follows. First, for vertices in
¢ H(XoUYp), set p(v) = iq if ¢(v) = Yy, and set p(v) = iz if ¢p(v) = Xo.

For each j € Jx independently at random, with probability 70c, define ¢ on K; by composing ¢ with
the map that sends Y1, Xo, Y3 to I31, 52, I31, respectively; and with probability 1 — 70« define ¢ on K;
by composing ¢ with the map that sends Y7, Xo,Y3 to i, I 1, I22, respectively.

For each j € Jy independently at random, with probability 70c, define ¢ on K; by composing ¢ with
the map that sends X1, Y5, X3 to i3, I3 1, I3,2, respectively; with probability p define ¢ on K; by composing
¢ with the map that sends X, Y3, X3 to i1, I1 1, I1 2, respectively; and with probability 1 — 70cc — p define
¢ on K; by composing ¢ with the map that sends X1,Y5, X3 to I 1,122, I2 1, respectively.

Again, we can use Lemma to conclude that with positive probability, |p~!(I51)| = T0ats & ata,
o~ (I32)] = T0at; + aty < nc — an, and |p~1(I11 U ls1)| = np — an £ an/2. It follows that
o™ ({12, L2})| + |7 (I3,2)] < n—69ats — (np — 3an/2) < na + 3an — 69aty < ny — an.

Similar to Case I above, by [H2HH4] and after refining, we can find i1,i2 € I4 and i3 € I, along with
three matchings of refined clusters of suitable sizes in G attached to 1,142,153 respectively, as depicted in
Figure [19] which allow us to apply Lemma [£.2] to find a copy of T in G. O

4.8 EM2b Embedding Method

Remoab @ _
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Figure 20: On the left, the initial reduced graph Rgnmeop transformed into the substructure used to embed
the tree in Lemma On the right, the auxiliary graph Rgp;e, used when applying Lemma

Lemma 4.11 (EM2b). Letl/n < 1/m < c<k1l/k<e < n<a<d<1. LetT be an n-vertex tree
with A(T) < en and bipartition classes of sizes t1 and ty with to < t1 < 2ty. Let G be a graph with at
most 2n vertices and a vertex partition V4 U ---UVy with |Vi| = -+ = |Vi| = m. Let Remab be a graph
with vertex set [k], such that if ij € E(Remab) then G[V;,V;] is (e, d)-reqular. Suppose there is a partition
[k] = 14 U Ip U lc such that the following properties hold (see Figure @)

I1 |User, Vil > ta 4 200an, | Uier, Vil > ta — an, | Uier,ur Vil = (1 — a)n, and | Uier, Vi| = 100an.

12 Remablla, IB] is an n-almost complete bipartite graph.
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13 Remablla, Ic] contains a matching M covering Ic.

14 E(Rema2bllB]) # 0.
Then, G contains a copy of T.

Proof. Let ¢ satisfy ¢ < £ < 1/k. Let S be the graph defined in Lemma Using that lemma, take
a homomorphism ¢ : ' — S such that each component of T — ¢~ 1(Xo U Yp) has size at most £n and
o~ 1(Xo U Yy U X7 UY7)| < &n. Without loss of generality, say [¢~(Xo U X3 U Xo U X3)| = t; and
|p~ (Yo UY; UYa UYs)| = ts. Let the components of T — ¢! (Xo UYy) be {K; : j € J}, and partition J
as Jx U Jy, so that Np(K;) C ¢~(Xp) for each j € Jx, and Ny (K;) C ¢~ (Yp) for each j € Jy.

Let m = |¢71(X2 @] X3)| and 7 = |¢71(Y2 @] Y3)| Let ng = |Ui€IA V;‘, ngp = |Ui€IB ‘/1|, and
ne = | Ujer, Vi|. Note that » < to < np + an, so (1 — 20a)s < np — an. On the other hand,
(1—-20a)m > (1 —20a)(t;1 —&n) > np —an as ng < t; —201an, so there exists p € [0,1 — 20a] such that
pr1 + (1 — 20 — p)72 = np — an.

Let Rgphap be the graph depicted on the right in Figure which is a subgraph of the graph R’
in Lemma Define a random homomorphism ¢ : T' — Ry, as follows. First, for vertices in
¢ 1(Xo UYp), set p(v) = iy if ¢(v) = Xo, and set ¢(v) = iy if ¢(v) = Y.

For each j € Jx independently at random, with probability 1 — p, define ¢ on K; by composing ¢
with the map that sends Y7, Xo,Y3 to i, I5 1, I2 2, respectively; and with probability p define ¢ on K; by
composing ¢ with the map that sends Y7, X2, Y3 to Iy 1,11 2, I1,1, respectively.

For each j € Jy independently at random, with probability 1 — p, define ¢ on K; by composing ¢
with the map that sends X, Y5, X3 to I5 1, 22, I 1, respectively; and with probability p define ¢ on Kj
by composing ¢ with the map that sends X7, Ys, X3 to i1, 1,1, I1 2, respectively.

Since |K;| < énforall j € J and |¢~H(XoUYoUX;UY7)| < €n, we can use Lemmato conclude that
with strictly positive probability, |~ (I1 2Uls )| = pT1 + (1 —p)ra £ an < np+20am: < ng+nc —10an,
and |~ 1(I; 1 U I>1)| = (1 —p)m +pr2 £ an < ng — an. Therefore, like in the proof of Lemma by
refining and using we can find i1,y € Ip such that i1i2 € F(RgMmab), along with two matchings of
refined clusters of suitable sizes forming (1/e,d—¢)-regular pairs attached to i1, is as depicted in Figure
which allow us to apply Lemma to find a copy of T in G. O

4.9 EM2c Embedding Method

Remac :

h Ill Ill A 0t
+ @ 0+

Figure 21: On the left, the initial reduced graph Rgmac transformed into the substructure used to embed
the tree in Lemma On the right, the auxiliary graph Rpgpo. used when applying Lemma

Lemma 4.12 (EM2c). Let I/n < I/m <K< c < 1/k <K e < n <K a<xd<1. LetT be an n-vertex
tree with A(T) < en and bipartition classes of sizes t1 and to with to < t; < 2ty. Let G be a graph with
with a partition V(G) = V3 U--- UV satisfying |Vi| = -+ = |Vk| = m. Let REmac be a graph with
vertex set [k], such that if ij € E(Regmac) then G[V;,V;] is (g,d)-regular. Suppose there is a partition
[k] = T4 UIpUlIc UIp such that the following properties hold (see Figure .

J1 | UiEIA Vvl| Z (1 — Oé)tg, I UiEIB ‘/Zl Z (1 — lloz)tl, | Uielc Vz‘ = 100()ét2, and | UiEID Vzl = 1004752.
J2 Remaclla, IB] is an n-almost complete bipartite graph.

J3 Remazc[la, Ic] contains a matching My covering Ic.
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J4 RemoeclIs, Ip] contains a matching Ms covering Ip.
Then, G contains a copy of T.

Proof. Let & satisfy ¢ < £ < 1/k. Let S be the graph defined in Lemma Using that lemma, take
a homomorphism ¢ : T — S such that each component of T'— ¢~(Xy U Yy) has size at most £n and
o~ (Xo U Yy U X, UYy)| < én. Without loss of generality, say [¢~(Xo U X3 U Xp U X3)| = t; and
o~ (Yo UY; UYo UY3)| = ts. Let the components of T — ¢~ *(Xo UY;) be {K; : j € J}, and partition .J
as Jx U Jy, so that Np(K;) C ¢~(Xp) for each j € Jx, and Ny (K;) C ¢~ (Yp) for each j € Jy.

Let 71 = [0~ (X2 U X3)| and 75 = |¢~ (Y2 U Y3)|. For each * € {A, B,C, D}, let n, = | Ujer, Vi|. Let
Rignze be the graph depicted on the right in Figure which is a subgraph of the graph R’ in Lemma
Define a random homomorphism ¢ : T — Rlgrae as follows. First, for vertices in ¢~1(Xo U Yp), set
p(v) =1 if ¢(v) = Xy, and set p(v) = iy if ¢(v) =Y.

For each j € Jx independently at random, with probability 4c, define ¢ on K; by composing ¢ with
the map that sends Y7, X, Y3 to 49, I2 1, 2,2, respectively; and with probability 1 — 4« define ¢ on K; by
composing ¢ with the map that sends Y7, X2, Y3 to Iy 1,11 2, 11,1, respectively.

For each j € Jy independently at random, with probability 4c, define ¢ on K; by composing ¢ with
the map that sends X1, Y2, X3 to Is1, 12,2, I2,1, respectively; and with probability 1 — 4o define ¢ on Kj
by composing ¢ with the map that sends X7, Ys, X3 to i1, 11,1, I1 2, respectively.

By Lemma with positive probability, [p~(l22)| = 4am + ara/2 < np —an/10, |¢~(I21)] =
4ar tar /2 < 10aty—an/100, |~ (112Ul 1)| < t1 < np+nc—2an, and |~ (11 1)| = (1—4a)retar <
na — an/10. Therefore, like in Lemma by and after refining, we can find ¢y € Ip and
i9 € I4 such that i1is € E(RgMmac), along with two matchings of refined clusters of suitable sizes forming
(v/&,d — €)-regular pairs attached to i1,i2 as depicted in Figure which allow us to apply Lemma
to find a copy of T in G. O

4.10 EM2d Embedding method
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Figure 22: On the left, the initial reduced graph Rgmaq transformed into the substructure used to embed
the tree in Lemma On the right, the auxiliary graph Rpgppoq used when applying Lemma

Lemma 4.13 (EM2d). Let I/n < 1/m < c<<1/k<e<g<n<K<a<d<1. LetT be an n-vertex tree
with A(T) < en and bipartition classes of sizes t1 and ty with ta < t; < 2ty. Let G be a graph with with a
partition V(G) = V1 U--- UV}, satisfying |Vi| = -+ = |Vi| = m. Let Remad be a graph with vertex set [k],
such that if ij € E(Remza) then G[V;,V;] is (e, d)-regular. Suppose there is a partition [k] = I, UIgUI¢
such that the following properties hold (see Figure @)

K1 |Uier, Vil 2 |Uier, Vil > (1 = a)ta, | Uier,urs Vil > (1 — a)n, and | Uier,urgure Vil = (14 100a)n.
K2 Rgmzdalla] and Remz4dllB] are both n-almost complete graphs.

K3 Remozalla, Ic] contains a matching M covering I, and a vertex in Iy NV (M) that is adjacent to
every vertex in Ic NV (M).

K4 RgmzdllB,Ic] contains a matching M’ covering Ic.

32



Then, G contains a copy of T'.

Proof. Let ¢ satisfy ¢ < £ < 1/k. Let S be the graph defined in Lemma Using that lemma, take
a homomorphism ¢ : ' — S such that each component of T — ¢~ 1(Xo U Yp) has size at most £n and
|6~ 1(Xo U Yy U Xy UY7)| < &n. Without loss of generality, say [¢~(Xo U X3 U Xo U X3)| = t; and
|p~ (Yo UY; UYa UY3)| = ts. Let the components of T — ¢! (X UYy) be {K; : j € J}, and partition J
as Jx U Jy, so that Np(K;) C ¢~(Xp) for each j € Jx, and Ny (K;) C ¢~ (Yp) for each j € Jy.

Let 7x = [0~ (X2 U Y3)| and 7y = [¢~ (Y2 U X3)|. For each * € {A, B,C}, let n, = | User, Vi|. Let
REniaq De the graph depicted on the right in Figure which is a subgraph of the graph R’ in Lemma
Since

Tx + v <n<nyg+np+2nc —20an < 2ny + 2ne — 20an,

we can separate into the following two cases. It 7x < na +nc — 10an. Il: 7v < n4 + nc — 10an.

Case I. As 7x+7y > n—&n > na+nec—10an, there exists p € [0, 1] such that 7x +pry = ng+nc—10an.
It follows that (1 —p)7y <n—7x —pry < np — 50an. Define a random homomorphism ¢ : T — Rgpr2q
as follows. First, for vertices in ¢~1(Xo U Yp), set o(v) = iy if ¢(v) = Xo, and set p(v) = iq if ¢p(v) = Yp.
For each j € Jx, define ¢ on K; by composing ¢ with the map that sends Y7, X2,Y3 to 111,112,111,
respectively. For each j € Jy independently at random, with probability p, define ¢ on K; by composing
¢ with the map that sends X1, Y2, X3 to i1, 11,1, I1,2, respectively; and with probability 1 — p define ¢ on
K; by composing ¢ with the map that sends X, Y2, X3 to i3, I3 1, [32, respectively.

By Lemma with positive probability, o~ ([11 U I12)| = 7x + pry £ an < nag + nc — 5an and
o= (I31 UI32)| = (1 — p)1y £ an < np — 10an.

We now further transform the structure as depicted on the left of Figure Let i1 € IaNV(M)
be the vertex given by that is adjacent to every vertex in I NV (M), suppose it is matched with
19 € Ic by M, and let i3 € Ig be the neighbour of i, in M’. By we can find a matching M; in
Remz2d[la U I¢] containing the matching M — {i1,42}, such that 4; is adjacent to every i € V(M;) and
>ievu Vil = na +nc — an. Since o™ (I 1 U I 2)| + 4an < nyg + ne — an from above, we can
find mq,ma > y/em such that m; +ma = m and |p 1 (I13)| + an < (na + nc — an)my/m for each
b € [2]. For each i € V(M), partition V; as V; 1 UV, o, such that |V; 1| = my and |V 2| = mq. Then, for
every edge i’ in My, both G[V;1,Vir 2] and G[V; 2, Vir 1] are (y/g,d — €)-regular by Lemma Relabel
{Vii:ieV(My)}and {Vio:i € V(My)} as {V/ i€ 11} and {V] : i € I 2}, respectively. Note that
Dien, Vil =l )l +anand 3.0 VY] 2 o7 (T12)] + an.

Similarly, we can use to find a matching My in Rgmad[lp] with all vertices in V(M) adjacent
to i3, then refine them accordingly to obtain clusters {V/ : i € I31} and {V/ : ¢ € I35} that can
be matched together to form (y/,d — €)-regular pairs, such that >, [V]| = lo~1(I31)] + an and

ZieIm |V/| > |p~ (I5,2)| + an. Thus, we can apply Lemmato find a copy of T in G.

Case II. In this case, we use essentially the same argument except that the role of X and Y are flipped,
so we omit the full details. That is, we set p(v) = i1 if ¢(v) = Yy, and @(v) = iy if ¢(v) = Xo. Then,
every component K; with j € Jy will be embedded into 14 U I, while every component K; with j € Jx
will be embedded into I4 U I with some suitable probability p, and into Ip otherwise. O

5 Proof of Theorem [2.2; Stability

In this section, we will prove Theorem [2:2] by following the 4-stage process outlined in Section [3] and
depicted in Figure [2] using the embedding methods developed in Section As will be justified when
we put everything together in Section [5.7] we may assume that t; < 2t throughout these 4 stages. Our
starting point is the next result that easily follows from the proof of [2I, Theorem 3] by Haxell, Luczak,
and Tingley applied with oo = ¢1 /t2 and n = (1 —¢)(¢1 +2t2). The reason it follows from their proof rather
than directly from their theorem statement is that we need to ‘remember’, and later use, the remaining
regularity clusters in the graph that is not part of the structure found by Haxell, Luczak, and Tingley,
and thus not included in the statement of their theorem.

Theorem 5.1. Let 1/n < 1/m < 1/k < e < 1. Let t; and ty satisfy t; +t2 = n and ta < t; < 2ts.
Let G be any red/blue coloured complete graph on at least (1 — €)(t1 + 2t2) vertices. Then, there exist

33



disjoint subsets Vo, ..., Vi, C V(G) that form an e-regular partition with corresponding red/blue coloured
(e,1/3)-reduced graph R, a partition [k] = [4UIgUI¢, and a colour x € {red, blue} such that the following
hold (see A-situation in Figure @)

o |Vi|=m for everyi € {0} UIsUlc, and |Vi| = tym/ty for every i € Ip.
o |I4] = |Ig| = |Ic| =k, with km > (1 — 2¢)ts.

e In R,, 0 1is adjacent to every a € I4.

® R.cilla, Ig] contains a perfect matching.

To reduce repetition, we will carry out the 4 stages in reverse order in Sections That is,
we start with Lemma in Section [5.2| carrying out Stage 4, which states that given a D-situation
obtained in an earlier stage, we can either find a monochromatic copy of T or the reduced graph is
extremal (E-situation). Then, we similarly proceed through the other stages in reverse order, ending
with Lemma [5.9] in Section [5.5] carrying out Stage 1, which says that from the A-situation structure
given by Theorem we can either find a monochromatic copy of T, or, combining with known results
about the later stages, conclude that the reduced graph is extremal (E-situation).

To finish the proof, we still need two further results. In Section [5.1] we formalise what it means for a
reduced graph to be extremal, and show in Lemma that this implies the original graph is extremal as
well in the sense of Definition[2:1] The second is a technical ‘cascading lemma’ about maximum matchings,
which is needed in Stage 2 and proved separately in Section |5.6

5.1 Extremal regular partitions

Recall from Definition what it means for a red/blue coloured complete graph to be Type I (u,t1,t2)-
extremal or Type IT (u, t1, t2)-extremal, and that if it is extremal of either type then we say it is (u, t1, t2)-
extremal. Now, we similarly define a notion of being extremal for the reduced graph of a regular partition.

Definition 5.2. Let 1/n < 1/k < ¢ < 1, let d,u € [0,1], and let t1,t5 € N satisfy ¢; +t2 = n. We
say a red/blue-coloured graph G has a Type I (u,t1,t2)-extremal (e,d)-regular partition if there exists
an e-regular partition V3 U --- U Vg in V(G) with corresponding (e, d)-reduced graph R, and a partition
[k] = I4 U Ip such that the following hold.

o |V;| =m for every i € [k].
o |14 > (1 —p)n/mand |Ig| > (1 — p)ta/m.

e Both Ryeq[la] and Ryiue[la, IB] are p-almost empty, or both Rpue[la] and Ryea[l4, 5] are u-almost
empty.

We say G has a Type II (u,t1,t2)-extremal (g,d)-reqular partition if there exists an e-regular partition
Vi1 U---UV, in V(G) with corresponding (e, d)-reduced graph R, and a partition [k] = T4 U Ip such that
the following hold.

e |V;| = m for every i € [k].
o |Lal,[IB| = (1 = pt:/m.

o All of Ryea[l4], Rrea[IB], and Rpe[la, I5] are p-almost empty, or all of Rpjue[la], Rbwmell5], and
Rrealla, Ig] are p-almost empty.

With suitable choices of constants, if a red/blue coloured complete graph G has a Type I or Type II
(1, t1, t2)-extremal (e, d)-regular partition, then it must be (u,t1, t2)-extremal, by the following lemma.

Lemma 5.3. Let I/n < l/k e <y <€ d < p <1, and let t1,t2 € N satisfy t1 +to = n. If G is
a red/blue coloured complete graph on at most 2n vertices that contains a Type I or Type II (1 t1,t2)-
extremal (e, d)-regular partition, then G is Type I or Type II (u,t1,ts)-extremal, respectively.
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Proof. Suppose G contains a Type I (1, ¢1,ta)-extremal (g, d)-regular partition V; U --- U Vj satisfying
the conditions in Definition where without loss of generality we assume that both Ryeq[la] and
Riwella, IB] are p'-almost empty. Let V4 = U;er, Vi and Vg = U;er, Vi. From assumptions and using
km < |G| < 2n, the number of red edges in Vya is at most u'|14]?>m? + d|1a|?>m? + |I4|m? < p'k*m? +
dk®>m? + km? < 4(¢' + d + 1/k)n? < 5dn?. Therefore, by removing at most v/5dn vertices from Vy, we
can obtain a subset V} such that dyeq(u, V}) < V/5dn for every u € Vi

Similarly, the number of blue edges between V) and Vg is at most u'|I4||Ig|m? + d|1a||Ip|m? <
4(p' + d)n? < 5dn?. Thus, we can remove at most v/5dn vertices from each of V4 and Vg to obtain
subsets U; and Us, respectively, such that for every i € [2] and every u € U;, dpe(u, Us—;) < V/5dn. Since
1> \/d, Uy and U, show that G is Type I (u, t1,ts)-extremal.

The case when G contains a Type II (i, t1,ts)-extremal (g, d)-regular partition is similar and thus
omitted. O

5.2 Stage 4

Lemma 5.4 (Stage 4). Let l/n < 1/m<K e l/k<e<g<n<Kad<< u<1. Let T be an n-vertex
tree with A(T) < cn and bipartition classes of sizes t1 and ta with to < t1 < 2ty. Let G be a red/blue
coloured graph that contains a coloured e-regular partition Vi U --- U Vy, with |Vi| = -+ = |Vi| = m and
corresponding red/blue coloured (e,d)-reduced graph R. Suppose there is a partition [k] = 14 U Ip such
that the following hold (see D-situation in Figure @)

L1 |I4| = k1 and |Ig| = ka, with kym,kam > (1 — a)ta and (k1 + k2)m > (1 — a)(n + t2).
L2 R,cqlla, Ip] is n-almost complete.

Then, G contains a monochromatic copy of T, or G is Type I (u,t1,t2)-extremal, ort1 > (2 — p)ts and G
is Type II (p,11,t)-extremal.

Proof. Without loss of generality, assume that k1 > ks. Let A = U, Vi and B = U;er, Vi. Note that
from [L1] |A| +|B| > (1 +200a)n and |A| = kiym > (1 — a)(n + t2)/2 > to + 200an.

Case I. kom > to + 100an. If there exists an edge ij in Ryeq[l4], then we can use to greedily find a
perfect matching between some I’y C I4 \ {4,7} of size 100an/m and some Iz C Ip. This allows us to
apply Lemma (EM2a) to Ia,Ip \ I, and I to embed T in red. Similarly, we can use Lemma [£.11]
(EM2b) to embed T in red if there is an edge in Ryeq[Ip]. Thus, we may assume that both Ryeq[l4]
and Ryeq[I5] are empty. This implies that both Ryjue[la] and Rpjue[Is] contain at most ek? non-edges,
so we can find J4 C I4 and Jg C Ipg, such that |J4| > (1 — 10\/€)ks1,|J| > (1 — 104/2)ke, and both
RiuelJ 4], Rolue[JB] are 10y/z-almost complete.

If there is any edge ib in Rylue[Ja, Jp] with ¢ € J4, then by moving ¢ out of J4 and finding an arbitrary
neighbour a of 7 in Ja, we get the structure required to apply Lemma (EM2d) to find a blue copy
of T in G. Therefore, we can assume that Rye[Ja, Jp] is empty.

If kym > t; + 10an, then after using Lemma [2:24] to refine the clusters indexed by Ja and Jg,
we can embed 7' in red using Lemma (HLT). If instead kym < t1 + 10an, then it follows from
kim > (1 — a)(n + t2)/2 that ¢t; > (2 — 100a)ts. Also, we have kam > (1 — a)(n + t3) — kym >
(2—50a)ta > (1—100c)t;. Therefore, G contains a Type II (200« t1, t2)-extremal (g, d)-regular partition,
and so G is Type II (u, t1, t2)-extremal by Lemma

Case II. kom < to + 100an. Then kym > (1 — a)(n + t2) — kam > (1 — 102a)n > t2 + 500an.

If the maximum matching M in Ryq[l4] has size at least 10lan/m, then we can move one side of
a submatching of M with size 100an/m out of I4 to obtain the structure needed to apply Lemma
(EM2a) to find ared copy of T'. Otherwise, let Iy = I4\M, A" = Ujcp, Vi, and ki = |I}4| > k1 —202an/m.
Then, Ryed[l)4] is empty and so Rpiue[l’4] contains at most ek? non-edges.

Note that |A’'| = k{m > (1 —400a)n. If |A'| = kim > (1 + 5a)n, then we can easily find the structure
to apply Lemma (EM2c) to embed T in Gpye[A’]. Thus, we may assume that |A'| < (1 4 5a)n,
and so |B| > (1 — a)(n + t2) — |A| — 202an > (1 — 1000a)ts. Let @ < B <« d. If at least 28n/m
vertices in I’y have at least 28n/m blue neighbours in I, then we can greedily find the structure to apply
Lemma (EMZ2c) to embed T in Gpue[A’ U B]. Otherwise, we can find J4 C I’y and Jg C Ip such
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that |Ja| > (1 —3B8)n/m, |Jg| > (1 — 10y/B)ta/m, and Rye[Ja, Jp] is 10y/B-almost empty. This shows
that G contains a Type I (10+/3, 11, t2)-extremal (g, d)-regular partition, so G is Type I (u, t1, t2)-extremal
by Lemma [5.3] [

5.3 Stage 3

Lemma 5.5 (Stage 3). Letl/n <1/ m< ek l/k<egn<Ka<<d<< u<k]l. Let T be an n-vertex
tree with A(T) < cn and bipartition classes of sizes t; and to with to < t1 < 2ty. Let G be a red/blue
coloured graph that contains a coloured e-reqular partition Vi U --- U Vi with |Vi| = -+ = |Vx| = m and
corresponding blue/red coloured (e,d)-reduced graph R. Suppose there is a partition [k] = 14 U Ig U I¢
such that the following hold (see C-situation in Figure @)

M1 |14 = k1, |IB| = k2, and |Ic| = ks, with kym, kam,ksm > (1 — a)ts and (k1 + k2)m = (1 — a)n.
M2 R,eqlla, IB] is n-almost complete.

Then, G contains a monochromatic copy of T, or G is Type I (u,t1,t2)-extremal, or t1 > (2 — p)ts and G
is Type II (p,11,to)-extremal.

Proof. Let a < o/ < 8 < d. To avoid repetition, we first prove the following two claims dealing with two
commonly occuring structures.

Claim 5.6. Suppose there exist disjoint Ja, Jp, Jo C [k], such that the following hold (see Figure @
N1 |Ja|l= (1 —a)t1/m and |Jp| = |Jc| = (1 — a)ta/m.
N2 R,cq[Ja, JB] is n-almost complete.
N3 R,ci[JB, Jc| contains a matching with size 100a/ts/m.

Then, G contains a monochromatic copy of T, or G is Type I (u,t1,t2)-extremal, ort1 > (2 — p)ts and G
is Type II (p,t1,t2)-extremal.

Proof of Claim[5.6 If at least 100a/ts/m vertices in J4 have at least 200ty /m red neighbours in J¢,
then we can greedily find a matching of size 100a/ts/m in Ryeq|Ja, Jo| disjoint from the matching given
by This allows us to apply Lemma (EM2c) to find a red copy of T in G. Otherwise, at
most 100a’ta/m vertices in J4 have at least 200a/ta/m red neighbours in J¢, so we can find J C Jyu
and J, C Jo with [J4] > (1 —200a’)t;/m and |J5| > (1 — 20v/a/)ta/m, such that Rypel[JY, J5] is
20v/a/-almost complete.

If at most 2005ty/m vertices in Jp have at least 2005tz /m blue neighbours in J/, then we can find
Ji C Jp and J{ C J{, such that |J5| > (1 —3008)tz/m, [JL| > (1 —20y/B)ta/m, and Ryea[Ja U JG, Jj
is 204/B-almost complete. This gives the required structure (D-situation) in red to apply Lemma
(Stage 4) with n = 204/3 to finish the proof.

Thus, we may assume that at least 2008ty /m vertices in Jp have at least 2008t5/m blue neighbours in
J¢&, so we can find a blue matching of size 1005ty /m in Ryie[JB, J§| disjoint from the red matching given
by Arbitrarily pick a matching of size 10(a’ + 8)t2/m in R[J4]. By pigeonhole, it either contains a
red matching M,eq of size 10a’ts/m or a blue matching My of size 108t2/m. In the former case, moving
vertices on one side of M,eq out of Jy4, and using [N2] we have the structure to apply Lemma
(EM2c) to find a red copy of T in G. In the latter case, moving vertices on one side of Mpjue out of Ja,
and using that Ryie[Ja, J&] is 20v/o/-almost complete, we can again apply Lemma (EM2c) to find
a blue copy of T in G. U

Claim 5.7. Suppose there exist disjoint Ja,Jg, Jo C [k], such that the following hold (see Figure @)
O1 |Ja| > (t2 +200a'n)/m, |Jg| > (ta —a'n)/m, |Ja| +|Jg] = (1 — &' )n/m, and |Jc| = (1 — o/)ta/m.
02 R,ci[Ja, JB] is n-almost complete.

03 Ri,ei[Ja, Jo] contains a matching with size 100a’n/m.
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Then, G contains a monochromatic copy of T, or G is Type I (u,t1,t2)-extremal, or t; > (2 — p)ts and G
is Type II (p, 11, t2)-extremal.

Proof of Claim[5.7 1If there is an edge in either Ryeq[Ja] or Ryed[/5], then we can apply Lemma m
(EM2a) or Lemma (EM2b), respectively, to find a red copy of T' in G. Thus, by removing at
most 104/e-fraction of vertices from J4 and Jp, we may assume that Rpue[Ja] and Rpiue[Jp] are both
104/e-almost complete.

Suppose there exists a set of 105t2/m vertices in J¢, each of which has at least 108t5/m blue neighbours
in both J4 and Jp. Then, using a similar argument to Claim [4.7] we can find a blue matching M; of size
%ta/m between J4 and Jo with a vertex in V(M;) N J4 adjacent to every vertex in J¢ := V(M;) N Je.
Greedily, we can also find another blue matching between J(, and Jp covering J. This allows us to apply
Lemma (EM2d) to find a blue copy of T in G.

Thus, we may now assume that there exist two disjoint subsets JZ, JE C Je containing all but at
most 108ty /m vertices in J¢, such that every vertex in JX has at most 105t5/m blue neighbours in Jp,
and every vertex in JE;L has at most 108t2/m blue neighbours in J4. Using , and by removing at most
5v/Bta/m vertices from each of J4 and Jp to obtain J, and Jg, respectively, we can ensure that both
Reea[Jx, J5 U J3] and Ryea[Jg, J4 U J4] are 5¢/B-almost complete. Note that if [J}| < 108t2/m, then
| Ty UJg UJE| > (1-208)(n+t2)/m, so J; and J5UJ} form the required red structure (D-situation) to
apply Lemma (Stage 4) with 7 = 5,/8 to finish the proof. Thus, we can assume that |J 1| > 108t2/m,
and similarly |J7| > 108t2/m.

As in the beginning of this proof, we may further assume that Rpiue[J, U J:{] and Rpe[J5 U J;f]
are both 10+/e-almost complete, as the presence of any red edge within either of them allows us to apply
Lemma (EM2a) or Lemma (EM2Db) to find a red copy of T in G. If there is any blue edge
between J; U JI and J; U J3, then we can move one end of this blue edge out and then find a blue
copy of T using Lemma (EM2d). Therefore, Ryeq[Jy U J},JJ5 U J3] contains the red structure
(D-situation) needed to apply Lemma (Stage 4) to finish the proof. CJ

Now we can carry out Stage 3. If at most 25ty/m vertices in Iy U Ip have at least 28ty/m red
neighbours in ¢, then we can find Iap C Iy U Ip and I, C I¢ with [Iag| > (1 —28)n/m and |I/| >
(1 — 5y/B)t2/m, such that Gue[lan, I is 5y/B-almost complete. Therefore, I45 and I}, form the blue
structure (D-situation) required to apply Lemmal5.4] (Stage 4) to finish the proof. Thus, we may assume
that at least 208ty /m vertices in I4 U Ig have at least 28t5/m red neighbours in I, from which it follows
that there is a red matching of size Sta/m either between I4 and I, or between Ig and I¢.

Case L. |14],|Ig| > (t2 + 200an)/m. Without loss of generality, assume that there is a red matching of
size Bta/m between I4 and Ic. Then, we can apply Claim to to finish the proof.

Case II. Without loss of generality, assume that |Ig| < (t2 + 200an)/m, so |Ia] > (t1 — 201lan)/m >
(1—=500a)t1/m from If there is a red matching of size Sta/m between I and I, then we can apply
Claim with o/ = 500« to finish the proof.

Thus, we may assume that there is a red matching of size Sta/m between I4 and Io. If ¢t < (1 +
1000a)ta, then |Ig| > (1 — a)ta/m > (1 — 2000a)t1/m, so we can apply Claim with o/ = 2000« to
finish the proof. If instead ¢; > (1 + 1000«)ts, then [I4| > (1 — 3a)t;/m > (t2 + 200an)/m, so we can
apply Claim [5.7] to finish the proof. O

5.4 Stage 2

Lemma 5.8 (Stage 2). Let l/n < 1/m<K e l/k<e<g<n<Ka<<d< p<]l. Let T be an n-vertex
tree with A(T) < cn and bipartition classes of sizes t1 and ty with to < ¢t < 2ts. Let G be a red/blue
coloured graph that contains a coloured e-reqular partition Vo UVy U--- UV with |[Vo| = -+ = |V =m
and corresponding red/blue coloured (g,d)-reduced graph R. Suppose there is a partition [k] = IaUIpUI¢
such that the following hold (see B-situation in Figure @)

P1 |I4] = |Ig| = k1 with kym = (1 — a)ta, and |Ic| = ko with kem = (1 — a)ty.

P2 In R,eq, 0 is adjacent to every i € I4 U Ip.
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P3 Ryed[la, I5] is n-almost complete.

Then, G contains a monochromatic copy of T, or G is Type I (u,t1,t2)-extremal, or t; > (2 — p)te and G
is Type II (p, 11, t2)-extremal.

Proof. Let M be a maximum red matching in R between I4 U Ig and I¢. For any I C [k], for brevity we
use V(I) to denote U;c;V;, the vertices covered by I. Let a < f < d.

Case I. M contains at most (t; —t2+20n)/m edges. Let X = (I4UIp)NV (M), X' = (I4UIg)\V(M),Y =
IcNV(M), and Y’ = I\ V(M). By Lemma there are partitions X = Xt UX - UX and Y =
YUY ~UY such that M matches X+ with Y=, X~ with YT, and X with Y, and R,eq[X'UX ~, YUY ~UY]
is empty. From assumption, |X| = |Y| < (t1 — t2 + 26n)/m, and the following hold.

VX'UXT) > V(X)) > (1 —a)2ty — (t1 —t2 +2Bn) = (3 — 2a — 2B)ta — (1 + 28)t1 > (1 — 108)t».

VYUY~ UY)| = |VIe)| - VY )| > V)| = [V(Y)| > (1 — a)ty — (1 — b2 + 28n) > (1 — 108)ts.
[V X'UX UY'UY - uY)| = V(K \X)| > (1 —a)ts +2ts) — (t — ta +26n) > (1 —108)n.

Hence, X’ U X~ and Y/ UY~ UY form the blue structure (C-situation) required to apply Lemma
(Stage 3) to finish the proof.

Case II. M contains at least (t; —ta+28n)/m edges. Let ¢ < v < «. Refine every cluster V; with i € T4
or i € I down to clusters of size ym, and label these new clusters as {V/ : i € J4} and {V/ : i € Jp},
respectively. Refine every cluster V; with ¢ € Ic down to clusters of size ytym/te and label the new
clusters as {V/ : i € Jo}. In this refinement process, at most O(yn) covered vertices are lost. Let R’
be the new reduced graph on J4 U Jp U Jo, where for each * € {red,blue}, ij € E(R.) if and only if
G.[V!,V]] is (\/e,d — g)-regular. Using Lemma and the matching M, we see that R 4[Ja, JB]
is also n-almost complete, and we can find a matching M" in R!_;[Ja U Jg, Jc| covering (t1 —ta + fn)ta/t
vertices in Ujey,us, Vi and t1 — to + Bn vertices in U;e . VY.

Case IL.1. |[V(M')N Jal|,|V(M') N Jg| > 56n/ym. Then, we can find disjoint subsets Ja 1, Ja2 C
Ja \ V(M’) and JB,l) JB’Q Cc Jp \ V(M/), such that |JA¢1|/|JB’2| = |JBA,1|/|JA,2| S [tl/tQ, (1 + Ol)tl/tz],
each of Ja1,Ja2,JB.1, B2 covers at least an vertices, and together with V(M') N (J4 U Jg) they cover
at least (2 — 10a)ty vertices. Moreover, since R._,[Ja, Jp] is n-almost complete, by choosing the subsets
above randomly and using Lemma we can ensure that both Rl _ [Ja 1, B2] and R, 4[Ja1, B,2] are
10n-almost complete. Therefore, for some ¢ <« 7' <« 7, we can use Lemma @ to further appropriately
refine these clusters along with those in M’ into two sets of smaller clusters of sizes v'm and v'tym/ts,
respectively, which can be paired up into ({/¢,d — 2/¢)-regular pairs. Together, these new clusters cover
at least

(1—a)(2 = 10a)ts + (1 — a)(t1 —ts + fn) > (1 + B/2)n

vertices. Finally, note that by each new cluster of size v'm forms an (y/¢,d — ¢)-regular pair with Vj,
so we have the structure to apply Lemma (HLET) to find a red copy of T.

Case I1.2. One of |[V(M') N Ja| and |[V(M’') N Jp| is at most 58n/ym. Without loss of generality,
assume it is |V(M') N Jp|, and assume that M’ is chosen so that |V (M’) N Jp| is maximised. Let Jp
be the vertices in Jo matched by M’ to the vertices in Jp. Since M’ maximises |V (M’) N Jg|, there
is no red edge in R’ between Jp \ V(M') and Jo \ Jp, as we can swap any such edge with an edge in
M’ adjacent to J4 to obtain a matching M" with |V (M") N Jg| > |V(M') N Jg|, a contradiction. Thus,
Ri,.[JB\V (M), Jc\ Jp] contains at most (k+1)? non-edges. Moreover, from |V (M')NJg| < 58n/ym,
it follows that Jp \ V(M) and Je \ Jp cover at least (1 — 208)t2 and (1 — 2083)t; vertices, respectively.
Thus, after removing clusters with low degrees in Ry, [/ \ V(M'), Jc \ Jp| and refining all remaining
clusters down to a smaller common size, we get the required structure (C-situation) in blue to apply
Lemma [5.5] (Stage 3) to finish the proof. O
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5.5 Stage 1l

Lemma 5.9 (Stage 1). Let l/n < 1/m < c <K 1l/k < e K a < d < pu 1. Let T be an n-vertex
tree with A(T) < en and bipartition classes of sizes t1 and to with to < t; < 2ty. Suppose G is a red/blue
coloured graph that contains an e-regular partition Vo UVy U--- UV with corresponding red/blue coloured
(e,d)-reduced graph R, and a partition [k] = 14 U Ig U Ic such that the following hold (see A-situation
i Figure @)

Q1 |Vi| =m for every i € {0} U4 Ule, and |V;| =tim/te for everyi € Ip.
Q2 |I14] = |Ip| = |Ic| = k, with km = (1 — a)ts.

Q3 In R,eq, 0 is adjacent to every a € 4.

Q4 R.,cq[la,Ig] contains a perfect matching M.

Then, G contains a monochromatic copy of T, or G is Type I (u,t1,t2)-extremal, or t; > (2 — p)te and G
is Type II (p,11,t)-extremal.

Proof. Let a < 8 < d. Let X be the set of vertices in T4 UIg that have at least 208|I¢| red neighbours in
Ic. Let Ipy = IpNX, and let I 41 be the vertices matched with Ip 1 by M. Let Let T4 3 = (IaNX)\1a1,
and let Ip 3 be the vertices matched with 143 by M. Let Ig 0 =14\ ({a,1Ula3),Ip2=1Ip\(Up1UIlp3),
and note that M gives a perfect matching between 142 and Ip 2.

If |Ip1| < 2Bk, then we can remove at most 5v/B|I¢| vertices from Ic to obtain If,, such that
RuwelI \ Ip,1,1}] is 5v/B-almost complete, both Ip \ Ip 1 and I}, cover at least (1 — 6+/B)t2 vertices,
and they together cover at least (1 — 64/3)n vertices. Thus, after refining all clusters down to a common
smaller size, Ip \ Ip1 and I/, provide the blue structure (C-situation) required to apply Lemma
(Stage 3) with n = 51/F to finish the proof.

Now suppose |Ip,1]| > 28k. In this case, assuming there is no red copy of T' in G, we make the following
four deductions.

i) La1NX| < B[Lanl

If not, let Iy | C Ia1 N X have size 8%k, and let I, C Ip; be the vertices in Ryq matched with
I’y ; by M. From the definition of X, we can find a perfect matching between I, ; and some Ic C Ic,
such that if I, = Io \ Ic,1, then every vertex in Ig ;) still has at least 105?|I¢| neighbours in Iy,. After
appropriate refinements, this structure allows us to apply Lemma (EM1a) to find T in red.

ii) At most 32k vertices in I 3 have at least 3k red neighbours in 14 .

If not, we can find a perfect matching of size 32k between some Ips ClIpsand Iy C Ia;. Let
I, C Ip,1 be the vertices matched with I’y ; by M, and let I’y 3 C I3 be the vertices matched with
Ip 3 by M. Since I’y ; C X, we can find a perfect matching between Iy ; and some I¢ 3 C Ic, such that
if I; = Ic \ Ic 3, then every vertex in Iz ; still has at least 108%|1| neighbours in If,. After appropriate
refinements, this structure allows us to apply Lemma (EM1a) to find T in red.

iii) At most B|14,1| vertices in I4,; have at least §|I4,1| red neighbours in I4 ;.
If not, we can apply Lemma (EM1b) to find T in red.

iv) At most Sk edges in M[I42,Ip 2] satisfy that both of their endpoints have at least 8|14, red
neighbours in I'4 ;.
If not, we can apply Lemma (EM1c) to find T in red.

From iv), we can find a subset Jap o C 42U Ip 2 containing a vertex in all but at most Sk edges in
MI42,1p 2], so that every vertex in J4p 2 has at most 8]I4 1] red neighbours in I4 ;. Similarly, using i),
ii), and iii), we can find Jp 3 C Ip 3 containing all but at most 3%k vertices in Ig 3, and Ja1 C Ia1\ X
containing all but at most 28|14 1| vertices in I4 1, such that every vertex in J := Jap2 U Jp3 U Ja1
has at most 28|J4,1| red neighbours in Jy4 1, and at most 205|I¢| red neighbours in I¢. In particular, by
averaging and using that J4 1 is non-empty, we can find some j € J4 1 with at most 25|J| red neighbours
in J and at most 208|I¢| red neighbours in I¢. Also, we have

[J] > (1 =28)Lanl + [Lazl — Bk + [Las| — 8%k > (1 — 48)[1a] > (1 — 58)t2/m.
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Therefore, we can find J' C Ng,,..(j,J) and I, C Ng,..(4,Ic) with |J'| > (1 —28)|J| > (1 — 108)t2/m
and [I/| > (1 — 208 — 208)|Ic] > (1 — 5/B)ta/m, such that RpielJ’, I(] is 5/F-almost complete.
Therefore, after refining all clusters down to a smaller common size, J" and I(, provide the blue structure
(B-situation) required to apply Lemma (Stage 2) with n = 5+/f to finish the proof. O

5.6 Cascading lemma

Lemma 5.10 (Cascading lemma). Let G be a bipartite graph with bipartition classes A and B, and let M
be a maximum matching in G. Let Ayy = ANV (M), Byy = BNV(M), A’ = A\ Ay, and B' = B\ By.
Then, Ay and By can be partitioned as Ay = AT UA~ U A and Byy = BT U B~ U B such that the
following hold.

o M matches vertices in AT with vertices in B~ , vertices in A~ with vertices in BT, and vertices in
A with vertices in B.

e GIAAUA-,B'"UB~ UB] and G[A’ UA~ U A, B' U B~] are both empty graphs.

Proof. First, by maximality of M, G[A’, B'] must be an empty graph. Consider the following process. To
initialise, set ASF = A, = BO+ =By =0, Ay = Ay, and By = Byy. Throughout this process, we will
maintain the following conditions.

: ~ U A; is a partition of Ay; and B; ~ U B, is a partition of Byy.
R1 AT UA; UA tition of A d BfuB; UB tition of B

R2 M matches vertices in A with vertices in B; , vertices in A; with vertices in B;' , and vertices in
A; with vertices in B;.

R3 G[A'UA;, B’ UB;] is the empty graph.

R4 For every a € A’ U A7, there exists an M-alternating path, possibly of length 0, that connects a to
some vertex a’ € A’, starts with an edge in M, and has all internal vertices in A; U B;‘ . For every
b€ B'UB; , there exists an M-alternating path, possibly of length 0, that connects b to some vertex
V' € B', starts with an edge in M, and has all internal vertices in B; U A}.

Note tha are all satisfied when i = 0. Suppose for some i > 0 we have found A;, A7, A; and
B, B, B; satisfying If G[A;, B'U B; ] and G[A' U A7, B;] are both empty graphs, then we are
done by letting A* = AT, A~ = A7, A= A;, Bt = B, B~ = B;, and B = B;. Otherwise, we show that
we can continue this process.

Indeed, suppose there exists a € A; adjacent to some b; € B’ U B . Letbe B; be the vertex matched
to a by M. We claim that b is not adjacent to any vertex in A’ U A; . Indeed, suppose b is adjacent
toa; € AU A;. Then by there exists an M-alternating path P, starting with an edge not in M
connecting some vertex aj € A’ to a1, with its internal vertices in A; UB;". Also by there exists some
M-alternating path P, starting with an edge in M connecting b; to some vertex b] € B’, with its interval
vertices in B, UA;'. In particular, P, and P, are disjoint. Then, the path Pja;bab, P; is an M-augmenting
path beginning and ending with edges not in M connecting a’ € A’ and b’ € B’, contradicting that M
is a maximum matching. Let A, = A} U{a},4;y1 = 4;\ {a}, B, = B; U{b},Bi11 = B; \ {b},
and keep A7, |, B | unchanged. Then G[A’ U A7, B’ U B ] is still an empty graph, and bab P; is
an M-alternating path starting with an edge in M connecting b to by € B’, with internal vertices in
B, U A;:l. It follows that are all maintained.

If instead there exists b € B; adjacent to some a; € A’ U A7, then let a € A; be the vertex matched
to bin M, set A, = A7 U{a}, Aiy1 = 4\ {a}, B}, = B U{b}, Biy1 = B; \ {b}, and keep A}, |, B/},

O

7

unchanged. Like above, are all maintained, which finishes the proof.

5.7 Proof of Theorem [2.2]

Proof of Theorem[2.3 Let 1/n < ¢ < ¢ < p < 1 and let t1,t2 € N satisfy 1 +to = n and t; > to. Let
G be a red/blue coloured complete graph with max{t; + 2t5,2t;} — 1 vertices. Suppose that G is not
Type I (u,t1,t2)-extremal, and either ¢; < (2 — )ty or G is not Type II (u,t1,ts)-extremal. Let T be
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any n-vertex tree with A(T) < cn and bipartition class sizes t; and t2, we need to show that G contains
a monochromatic copy of T

Ift) <2y, let T/ =T, t) =t; and t) = to. If t; > 2t + 1, then by Lemma T contains a set
L of 2/c leaves in V;. Let T” be a new tree obtained by attaching [(t; — 2t2)/2] new leaves to vertices
in L, with no vertex in L receiving more than cn of these new leaves. Then, observe that A(T") < ¢|T”|,
and the bipartition classes of T have sizes ¢} = t; and t;, = [t1/2]. It follows that ¢; < 2¢, and
|G| =2t1 —1=2t] —1>t) +2th, —2 > (1 —¢)(t] + 2t}). Therefore, Theorem implies that we have
the structure required to apply Lemma [5.9) which then implies that one of the following is true.

S1 G contains a monochromatic copy of T”.
S2 G is Type I (u/2,t},th)-extremal.
S3 t) > (2 — u/2)th and G is Type II (u/2, ¢}, th)-extremal.

Note that each of and implies that the same is true with ¢1, t2,  in place of |, t}, 1/2, respectively,
which contradicts our assumption. Therefore, it must be that is true, which implies that G contains a
monochromatic copy of T" as well, finishing the proof. O

6 Proof of Theorem 2.3 Type I extremal graphs

In this section, we prove Theorem We will start by outlining the proof in Section breaking it
down into different cases that are then proved throughout the rest of the section.

6.1 Proof outline for Type I extremal graphs

We start by recapping the situation in Theorem where we have parameters 1/n < ¢ < p < 1. Let T
be an n-vertex tree with A(T') < cn and bipartition classes of sizes ¢1 and ¢y satisfying ¢; > to. Let G be
a red/blue coloured complete graph on max{2t1,t; + 2to} — 1 vertices which is Type I (u, t1, t2)-extremal.
This means that there are disjoint sets Uy, Uz C V(G) such that |Ui| > (1 — p)n, |Us] > (1 — p)te,
drea(u, Ur) < pn for every u € Uy, and dpue(u, Us—;) < un for every i € [2] and u € U;. We wish to find
a monochromatic copy of 7" in G. As mentioned at the end of Section [2.1} we can and will assume that
t1 <2ty 4+ 1, so |G‘ S {’I”L—th — 1,7’L+t2}.

Let us first partition the vertices outside of Uy U Uy. For some  with p < 8 < 1, partition V(G) =
Ur UUS so that vertices in U™ have at least 8n red neighbours in U; and vertices in U; do not. In
particular, Uy C U;t, Uy C Uy, and at least one of |U;| > n and |U)| > ¢, must hold. Say |U; | =n+k
for some k satisfying |k| < 2un, from which it follows that |U, | € {to — k — 1,t5 — k}.

A first approach to proving Theorem ﬁ would be to embed T into Gyue[U;'] if |U;7| > n, and into
GrealU;, U] if |US| > t2. We will be able to do this when the tree has many, say n/100, vertex-disjoint
bare paths with length 5, which we call Case[[.A] This is split into Case[[.A.1]and Case[[.A.2]depending
on whether £ > 0. To embed such a tree T, we first remove many suitable bare paths with length 4, so
that the remaining forest 7" can be embedded greedily. Then, we find a collection of vertex-disjoint paths
with length 2 in G that will form the middle parts of the missing paths, and make sure that they cover
all the low degree vertices in G if necessary. Finally, we attach these length 2 paths to the image of T” to
complete a copy of T by verifying the appropriate Hall’s matching conditions. These proofs are carried
out in Section

If T does not have n/100 vertex-disjoint bare paths with length 5, we call this Case Note that
by Lemma T must then have at least n/20 leaves. Unlike in Case above where no spare vertex
is required to embed T, it follows from a famous example of Komlés, Sarkézy and Szemerédi [23] that we
cannot necessarily embed T' into Gblue[Ul’L] even if |U1+| > n, or into Gred[Uf', U;'] even if |U2+| > ty. For
example, in our setting, it is easy to create an n-vertex tree T with A(T') < ¢n in which there is a set W
of at most 2/c vertices such that every edge of the tree contains a vertex in W. Thus, Gpye|U- 1+ | can only
contain a blue copy of T if it has a set W’ with size at most 2/c for which at most k = |U;"| — n vertices
in U;” \ W’ have no blue neighbour in W’. An appropriate red sparse binomial random graph placed on
U;t can destroy this property, even when |U;"| = n + ©.(n), while having maximum degree at most cn
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(see [23] for a more detailed example). Thus, whether we embed the tree in red or blue will depend not
only on k, but also on the number of edges in Grcd[Uf’] and Gplue [U1+, U2+]

We divide Case (where T has many leaves) into two further subcases, using a parameter D, which
is defined to be the 30un-th biggest value of dpjye(u, U2+ ) across all u € U1+ . The hope is that this could
allow us to embed D leaves of the tree T using the edges in Gpue[U;", Us'], thus creating more space to
embed the rest of the tree into Gue[U;]. With this reasoning, one might expect that if k£ + D > 0, then
as |U1+| + D =n+k+ D > n, we will be able to embed the tree in blue. However, an example similar to
the one mentioned above from [23] shows that simiply requiring £+ D > 0 is not enough, as comparatively
few red edges in G [Ufr ] can spoil this embedding attempt in blue. However, in Section we will show
that we can embed the tree in blue as long as G[U;"] has at most 107(k + D + 1)n red edges, which we
call Case[[LB.1l

Our final case, Case is when there are more than 107(k + D + 1)n red edges in G[U;"]. These
red edges will allow us to embed into G,eq [Ul+ | some small subtree of T', which contains at least k+ D + 1
vertices from V5, the bipartition class of T' with size to. Note that to embed the remaining vertices of V5,
we now have at least k+ D +1—k —1 > D spare vertices available in U, . As most of the vertices in U;"
have at most D blue neighbours in U, we will be able to embed the rest of the tree essentially greedily,
with some slight complications such as vertices in U, \ Us having fewer red neighbours in U;'.

In Section [6.2] we prove the embedding results used for both Case and Case [[LA.2] In Sec-
tion we prove the embedding result used for Case stated so that it will also be useful in
Section [7] In Section we prove the embedding result used for Case Finally, we put all of these
together in Section to prove Theorem To finish this outline, we recap the different cases in the
proof of Theorem [2.3] noting the main result that takes care of each of them.

I G is Type I extremal.

I.A T has at least n/100 vertex-disjoint bare paths with length 5.

I.A.1 k > 0: T embeds in blue. Lemma [6-1]

I.LA.2 k < 0: T embeds in red. Lemma[6.2
I.B T has at least n/20 leaves.

I.B.1 ¢(Grea[UfT]) < 107(k + D + 1)n: T embeds in blue. Lemma

I.B.2 ¢(Grea[UfT]) > 107(k 4+ D + 1)n: T embeds in red. Lemma

6.2 Case [[.A} trees with many bare paths in Type I extremal graphs

In Case we will use the following result that allows us to embed spanning trees with many short
bare paths into an almost complete graph. A stronger version in which the degree condition is weakened
like in Lemma [6.2] also holds, though this is not needed in our proof.

Lemma 6.1. Let 1/n < p < 1. Let H be an n-vertex graph with 6(H) > (1 — p)n, and let T be an
n-vertez tree that contains 10un vertex-disjoint bare paths with length 4. Then, for any t € V(T) not on
any of these bare paths and any s € V(H), there is a copy of T in H with t copied to s.

Proof. From assumption, there is a collection P = {Py,..., Py} of £ = 10un vertex-disjoint bare paths in
T with length 4, such that ¢ is not on any of these bare paths. Let T” be the forest obtained by removing
all internal vertices of the paths in P from T, so that |T"| = n — 3¢.

Since §(H) > (1 — p)n > |T’|, by Lemma we can greedily find a copy S’ of 7" in H with ¢
copied to s. Let H' = H — V(S’). Note that |H'| = 3¢ = 30un, so 6(H') > |H'| — un > |H'|/2. Thus,
by Dirac’s theorem, H’ contains a Hamilton cycle. In particular, we can label the vertices in H' as
Wiy vy Wey XLy ey Loy Y1, - - -5 Yo, SO that for each i € [¢], z;w;y; is a path in H'.

For each i € [¢], let u;,v; be the copies of the endpoints of P; in S’. Let K be an auxiliary bipartite
graph with bipartition classes A = {a1,...,a,} and B = {by,...,bs}, such that for any 4, j € [¢], there is
an edge a;b; in K if and only if both u;x; and v;y; are edges in H. Since 6(H) > (1— p)n, for every i € [{],
dg(a;),dg(b;) > £—2un. Then, for any I C A with 0 < |I| < ¢—2un, we have [Nk (I, B)| > {—2un > |I|,
while for any I C A with |I| > £ — 2un, we have [Nk (I, B)| = |B| > |I|, as any b € B\ Nk (I, B) would
satisty di (b) < 2un < £—2pn, a contradiction. Thus, by Lemma there is a perfect matching in K, say
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matching a; with b,(;) for every i € [f]. This then implies that S” along with the paths u; 2, (i) We (i)Yo (i) Vi
for all i € [¢] form a copy of T in H, as required. O

In Case we will use the following bipartite version of Lemma[6.I] We prove it in a more flexible
form so that we may also use it later in the proof of Lemma

Lemma 6.2. Let 1/n < p < < 1. Let H be a bipartite graph with bipartition classes Uy and Uy such
that d(u,Us) > |Us| — un for every uw € Uy, d(u,Ur) > fn for every u € Us, and d(u,Uy) > |Uz| — pn for
all but a set W of at most un vertices in Us.

Let T be an n-vertex forest with bipartition classes Vi and Va such that |V;| < |Uj| for each j € [2]. Let
R be a subforest of T with |R| < Bn/2, such that T — R contains a collection P of 10un vertex-disjoint
bare paths of length 4 whose endpoints are all in Vy. Suppose that H — W contains a copy S of R with
vertices in V(R) NV} copied into U; for each j € [2], then S can be extended to a copy of T in H, such
that W is covered by the central vertices of the bare paths in P.

Proof. Let £ = 10un, and label the paths in P as Pp,...,P,. Let T’ be the forest obtained by removing
the internal vertices of Py, ..., Py from T, noting that [V (T")NVi| = [Vi| —2¢ and |[V(T")N V3| = |Va] — L.

Let W = {wy,...,w,}, where r < un. Since d(w,U; \ V(S)) > pn — Bn/2 > 2un for every w € W,
we can greedily find distinct vertices 1, ..., %, y1,...,4- € U1 \ V(S), such that z;,y; € N(w;) for every
i €[r]. Let Wt ={w;,2,y; :i €[r]},and H = H—-WH.

Note that every vertex in H’ has at most un non-neighbours in the opposite side of the bipartition.
Using ¢ = 10un and Lemma we can greedily extend the copy S of R to a copy S’ of T/ in H’, in
which V(T") NVj is copied into U; \ W for each j € [2]. For every i € [], let u;,v; € Us be the copies of
the two endpoints of P; in S’. To complete a copy of T, it suffices to find, for every i € [{], a u;, v;-path
with length 4 using distinct new internal vertices.

Let H' = H' —V(S")=H—-WT —V(8"). Then |V(H")NU;| > |Vi| —2r — (|V1]| — 20) = 2({ — 1), and
similarly |V (H")NUs| > |Va|—r—(|Va|—£) > £—r > 5un. Moreover, every vertex in H” has at most pn non-
neighbours in the opposite side. Arbitrarily pick distinct wy41,...,we € V(H")NUs, we claim that there
exist distinct @41, ..., %o, Yprt1,- .-,y € V(H")NU; such that z;,y; € N(w;) for every i € [¢]\[r]. Indeed,
by Lemma [2.9] it suffices to show that for every 0 # I C [{]\ [r], IN({w; : i € I}, V(H")NUy)| > 2|I]. If
O0<|I|<l—r—pun/2, then IN{w; : i € I},2V(H")NUL)| > |[V(H")NU1| — pn > 2(£ — r) — un > 2|I].
If|I| > ¢—r—pun/2, then IN({w; : i € I},2W(H")NU)| = |V(H")NU| > 2(¢ —r) > 2|I], as any
u € V(H")NU; that is not adjacent to any w; with ¢ € I would have at least |I| > 2un non-neighbours
in V(H") N Us, a contradiction.

Therefore, together with W, we have found distinct z1, ..., Ze, Y1, .-, Yo, w1, ..., we € V(H)\ V(5),
such that z;,y; € N(w;) for every i € [{]. Let K be an auxiliary bipartite graph with bipartition classes
A={ai,...,ar} and B = {by,...,bs}, such that for any ¢,j € [¢], a;b; € E(K) if and only if both u;x;
and v;y; are in E(H). From construction, for each i € [¢], u;,v; € Us \ W, so dk (a;) > £ —2un. Similarly,
dg(bj) > ¢ —2un for every j € [¢]. Like in Lemma [6.1} we can now use these degree conditions to verify
that for every I C A, [Nk (I, B)| > |I|, so Lemma ves a perfect matching in K, say matching a; with
bo(iy for every i € [(]. Then, S’ together with the paths w;2,(;)Ws(;)Ys(s)vi for all i € [¢] form a copy of T
in H, with vertices in W covered by the central vertices of the bare paths in P, as required. O

6.3 Case embedding trees in almost complete graphs

We now prove the main result to be used in Case This is proved in a slightly stronger form so
that we may also use it in Section [7]

Lemma 6.3. Let 1/n < ¢ < 1,8 < 1, let |k| < pun and 0 < D < pn satisfy k+ D > 0. Let G be a
graph with a vertezx partition Uy UUs such that |Ur| = n+k and 6(G[U1]) > |U1r| — Bn. Let X C Uy satisfy
|X| < pn and dg(u,Us) > n/10 for each u € X. Suppose e(G[Uy \ X]) < 107(k + D + 1)n, and there are
at least 10un vertices in Uy with at least D neighbours in Us.

Let T be an n-vertex tree with A(T) < en such that, if D > 0, then T has at least n/20 leaves. Then,
G contains a copy of T. Moreover, if D =0 and X = 0, then for any t € T and s € Uy, there is a copy
of T in G with t copied to s.
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Proof. If D = 0 and T has fewer than n/20 leaves, then T has at least n/100 vertex-disjoint bare paths
with length 4 by Lemma Since k > —D = 0, the result follows by applying Lemma to G[Uq].

Therefore, we can assume that D > 0 and T has at least n/20 leaves. If D # 0 or X # (), pick
t € V(T) arbitrarily. Then, there exists a set L’ of n/49 leaves in T, which does not contain ¢ or any
neighbours of ¢, and either all belong to Vi or all belong to V5. Let P = Np(L') be the set of parents of
L' in T, and note that P is an independent set. Let P; C P be a set of size at most D such that ¢ ¢ P,
and D < |Np(Py,L")| < n/150, which is possible as A(T) < ¢n. Similarly, let P, C P\ P; be a set of
size at most [|X|/2] such that ¢ ¢ P} and [|X|/2] < |[Np(P, L") < n/150. Let P3 = P\ (P UP}), so
N7 (Ps, L')| > n/149. In particular, we can add a set L% of [|X|/2] — | P3| leaves adjacent to P3 to the set
P} to obtain a set P» of size [|X|/2]. Note that P; UP; is still an independent set. Let L = L'\ L% and let
m = |T — L|. Observe that n/50 < |L| < n/49 and |Np(P3, L)| > n/150. Let t; = t, and let ¢1,ta,. ..ty
be an ordering of V(T — L) so that each vertex apart from ¢; has exactly 1 neighbour in T to its left in
this ordering. Let d; = dr(¢;, L) for every i € [m].

From assumption, we can take a set Y of 2D vertices in Uy \ X, each having at least D neighbours in
Us. Let Uy ={u € U; :dg(v,Y) > D and dg(u, X) > |X|/2}. Since §(G[U1]) > |U1| — Bn, if D > 0,
by double counting there are at most 2DSn/D = 20n vertices u € Uy with dg(u,Y) < D, while there is
no such vertex if D = 0. Similarly there are at most 20n vertices u € Uy with dg(u, X) < |X|/2. Thus,
[Uy\U;| <48n. If D = 0 and X = 0, note that s € Uy = U; \ (X UY) already. Otherwise, pick
s e U \ (X UY) arbitrarily.

Let s1 = s, so that s € U] \ (X UY). For each 1 < i < m in turn, embed ¢, as follows, where j; < i
is such that ¢;,t; € E(T — L).

T1 If t; € Py, select s; uniformly at random from Ng(s;,, Y \ {s1,...,8i—1})-
T2 If t; € P, select s; uniformly at random from Ng(s;,, X \ {s1,...,8i-1}).
T3 If t; ¢ P1 U Ps, select s; uniformly at random from Ng(sj,, Uy \ (X UY U{s1,...,si-1})).
Note that is always possible as t;, € P1 U P», so sj, € U; has at least D neighbours in Y, and at most
|Py] —1 < D —1 of them have been used. Similarly, is always possible. is always possible as
[Na(s, Up \(XUY U{s1,....si0}) 2 Uy [ = Bn— [X| = [Y]—|T - L]
>n+k—4pn— pn—pn—2D —n+ |L| > n/100 > 0.
Therefore, this random process always succeeds in producing a copy of T' — L in G[U;]. Note that, in
particular, we have | X \ {s1,...,sm}| = |X| — |P2| = || X]/2].

Now, let j* be the smallest integer so that 27 > cn. For each j € [j*], let I; be the set of {i : t; € P3}
with 2771 < d; < 27, and say a vertex v is j-bad if

_ 2 .
[{si s € LN No()l < 511 =207 = j +1).

If v is j-bad for some j € [j*], then say v is bad. For each v € U; \ X, let m, be the number of
non-neighbours of v in Uy \ X, so that m, < fn from assumption.

Claim 6.4. For each v € Uy \ X,
My
P(v is bad) < .
(v is bad) < 105
Proof of Claim[6]} Let j € [j*]. Note that if |I;| < 30(j* — j + 1), then v cannot be j-bad, so
P(v is j-bad) = 0. Assume now that |I;| > 30(j* — j + 1). Note that for every ¢ € I;, t; ¢ P1 U P,
so by and conditioning on any choices of s1,...,s;_1, we have

My m

P i N, yer ey Oi— < — < “ .
(s & No(v) | 51, 8i-1) INa(s;, Ur \ (X UY U{s1,...,51})| — n/100

Therefore, for each I C I, if E, ;1 is the event that s; ¢ N (v) for each i € I, then

100m, \ !
- .

P(E, ;1) = I_IIP’(SZ ¢ Ng(v) | sy ¢ Ng(v) for each i’ € I less than i) < <
iel
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Since v is j-bad implies that E, ; ; holds for some I C I; with size k; := ||I;|/3] > 10(j* —j + 1), we can
use a union bound to get

; k; 10(5* —j+1) .

o LN (100m,\* _ /10*m,\" _ [10%m, my \ G =i+

P - < —) < < < ( ) ,
(v is j-bad) < (kj n - n - n ~ \10'%

where we used m,, < un and 1/n < p < 1. Thus,

J" J*

L m, U =i+ My
P(v is bad) E (v is j-bad) < E (101071) < 1080
i=1 j=1

as required. ]
By Claim we have

My 2¢(G°[UL\X]) _k+D+1
< < ,
108n — 108n - 5

E|{v € U; \ X : v is bad}| < Z
veUI\ X

so by Markov’s inequality, with probability at least 1/2 there are at most |(k + D + 1)/2] bad vertices in
Ui \ X. Thus, we can take a realisation of this random embedding that has at most |(k + D + 1)/2] bad
vertices in Uy \ X.

Let U; be the set of unused vertices in Uy, noting that |Uj| = n+k —|T — L| = k + |L| and
|U{NX| = ||X]|/2]. To complete the embedding, we use Lemma 2.9 to embed the leaves in L into U{ UUs.
It suffices to show that Ng({s; : t; € J},UjUUa) > 37, ;d; for every § # J C P.

First suppose that 0 < ), - ;d; < 999|L[/1000, then, as required,
INa({si : t; € J},Up)| > |Uj| — Bn =k +|L| — Bn > 999|L[ /1000 > > d.
wt; €J

Now suppose that ., ;d; > 999|L[/1000. Let L3 = Nr(Ps, L), recall that [L| < n/49 and |L3| >
n/150. Thus, > ., c ;np, di > |La| — |L[/1000 > 9|L3|/10. Then, for any v € U; \ X which is not bad,

> disi > i_:(|1’|+20 —j+1)>-2j

i:t,€P3, jzliEIj:sqyéNc(v)
si¢Ng(v)
1 J* J*
ngzw +) 20 —j+1)- 2
j=14i€l; j=1
2|L \ 2|Ls| < L]
< 21" < 2 < d;.
< 802/ < —o= 4200cn < == < >

i:t;€JNP3

Thus, v is adjacent to some vertex in {s; : t; € J N P3}. Since at most | (k + D + 1)/2] vertices in U \ X
are bad, this implies that

INa({si : t: € J}, UD| = U] = [UT N X| = [(k+ D +1)/2]
=[Ll+ k= [[X]/2) = [(k+ D+ 1)/2) > |L| - D = [|X]/2],

so we are done if ., ., di < |L[— D — [|X]|/2].
Suppose now that »_,, - ;d; > |L| — D — [|X|/2]. It JN Py =0, then 37, -, d; < [L| - [|X][/2] as
> it,ep, i > [|X1/2]. Hence, JN P # 0 as 3, p di > D, and thus
|Ng({51' 1t € J},U{ U U2)| = |Ng({51 1t € J},U{)‘ + |Ng({8i 1t € J} U2)|
> |L| =D —[|X|/2]+ D =|L| - [IX|/2]1 = ) d;

it €J
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as required. If J N Py # (), then we have

|Ng({81 it € J},U{ U U2)| = |Ng({8i it € J},U{)| + |Ng({81 it € J},Ug)l
> (L= D [IX]/2] +0/10> 2] = ¥ di

it €J

Thus, by Lemma we can embed L into Uj U Us to finish a copy of T in G. O

6.4 Case embedding trees in almost complete bipartite graphs

In Case using the notations in Section[6.1] we want to embed a small subtree into Gyea[U;], before
embedding the rest of T' into Geq [U1+ , U2+ ]. To find this small subtree, we use the following result.

Proposition 6.5. Let n,m € N satisfy 1 < m < n/18. Let T be an n-vertex tree with bipartition classes
Vi and Va, where |Va| > |V1|/3. Then, T contains a subtree T' with |T’| < 10*m, such that it contains at
least m vertices in Vo and has at most 1 vertex in Va with a neighbour outside of V(T") in T.

Proof. For any tree R on at least 18m vertices, by repeated applications of Corollary we can find
subtrees R; and Ry with a unique common vertex that decompose R, such that 6m < |R;| < 18m.
Iterating this in the tree T" to find a subtree with size between 6m and 18m at a time, we obtain a
sequence 17, ..., Ty of subtrees satisfying the following properties.

e E(TY),...,E(Ty) partition E(T).

e For every j € [{], 6m < |Tj| < 18m.

e For every j € [{], nglTi is a tree.

e For every 2 < j < /{, T shares a unique vertex with Uz;ll T;.

Note that ¢ < n/(6m —1). We claim that |V (T;) N V| > m for at least £/100 indices i € [¢]. Indeed, if
not, then there would be at most ¢m + (¢/100) - 18m < n/4 vertices in Vs, contradicting the assumption
that |Vo| > |V1]/3. Let I = {i € [¢] : |V(T;) N V2| > m}.

Consider the auxiliary graph K with vertex set [¢], where for any ¢ < j in [¢], ij € E(K) if and only if
i is the smallest index such that V(T;) N V(T}) # 0. Note that every 1 < j < ¢ has a unique neighbour in
[ —1]in K, so K is a tree and e(K) = £ — 1. It follows that there exists ¢ € I with dg (7) < 200.

Let ¢; be the unique vertex shared by T; and U;;T;. Then, Np(V(T;) \ {t:},U;>:V(T;)) < 200 - 18m.
Let 7" be the subtree of T induced by V(T;) and Np(V(T}) \ {t:},U;=:V(T;)) N V4. Then |T| < 10%m,
V(T NVa| > |V(T;) N Va| > m, and every vertex in V(T') N Va, except possibly ¢;, has no neighbour in
T outside of V(T7). O

Using Proposition [6.5], we can now prove the main result used for Case

Lemma 6.6. Let I/n < c < p < K1, let 0 < D < pun, and let |k| < pn. Let T be any n-vertex
tree with A(T) < cn and bipartition classes Vi and Vo with sizes t1 and to, respectively, that satisfy
to < t; < 2ts + 1. Let G be a graph with a vertex partition Uy U Uy such that 1.1t < |Up| < 2n,
|Us| = ta — k — 1, and the following hold.

e dg(u,Uy) > Bn for each u € Us, and dg(u,Uy) > |Ur| — pn for all but at most un vertices u € Us.
o dg(u,Us) > |Uz| — D for all but at most 10un vertices u € Uy.

o There exists X C Uy with |X| < 2un such that dg(u,Us) > |Us| — un for each uw € Uy \ X and
e(GlUy \ X]) > 107(k + D + 1)n.

Then, G contains a copy of T'.
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Proof. First observe that it suffices to prove this in the case when k + D > —1. Indeed, if K+ D < —1,
then let ' = —D —1 and remove —k — D — 1 vertices from Us to obtain Uj with size to — k' — 1. Note that
trivially e(G[U; \ X]) > 107(k’ + D + 1)n, and all other assumptions still hold with U} and &’ in place of
Us and k, so G contains a copy of T. Thus, we assume that k + D > —1 from now on.

Let Y1 = {u € Uy : dg(u,Us) < |Uz2| — D} and Yo = {u € Uy : dg(u,Uy) < |Ui| — pn}, so that
|Y1| < 10pn and |Ya| < un. For each i € [2], let U =U; \'Y;. Let Z C Uy be a random subset chosen by
including each vertex independently at random with probability 5. By Lemma[2.5] with high probability,
we have |Z| < 36n, dg(u,Z) > ?n/2 for each u € Us, and e(G[U; \ (X U Z)]) > 107(k + D + 1)n/2,
noting that the last condition is trivial when k + D = —1. Fix a choice of Z with all of these properties.

As e(GIUL\(XUZ)]) > 107 (k+D+1)n/2, we can find a subgraph H' C G[U; \ (X UZ)] with minimum
degree at least 107(k + D + 1)/4. Since each vertex u € Uy \ (X U Z) satisfies dg(u, Uy ) > |Uy | — pn,
there are at least |H'||U; |/2 edges in G between H' and U, . Hence, there exists v € U, with at least
|H'|/2 > 105(k + D + 1) neighbours in V(H').

By Proposition there is a subtree T’ of T with |T'| < 105(k + D + 1) that contains at least
10(k 4+ D + 1) vertices in Vs, and has at most 1 vertex in V(T") NV, with a neighbour in T'— E(T"). Call
such a vertex ¢ if it exists. Let F be the tree obtained from T by contracting 77 to a single vertex 7.
Let L; be the set of leaves in F that are in V7 \ {r}, observing that they are also leaves in T. Note that
|F—Ly| > |Va| —10°(k+ D+1) > n/4, so by Lemma F — L, either has at least n/100 vertex-disjoint
bare paths of length 5 or at least n/100 leaves excluding r. Note that any such leaf in F' — L; must be in
V5, and is also a leaf in T'— L;. We now separate into several cases.

Case I. F — L contains at least n/100 vertex-disjoint bare paths with length 5, then T'—T" — L; contains
n/200 vertex-disjoint bare paths with length 4 with both endpoints in V5. Since there are at n/200 central
vertices on these paths, and |L1| < n, by averaging, we can find a set Lo of 10un such central vertices
that are adjacent to at most 200 - 10un < 3?n/10 vertices in L;. Embed ¢ to v if ¢ exists, then in any
case embed the rest of 7" greedily into H'. Note that this embeds at least max{0, 10k + 10D + 9} vertices
in V5 into Uy, so we now have enough room to apply Lemma to extend this embedding of T” to an
embedding of T'— Ly, with T'— T" — Ly embedded into the rest of G[U; \ Z, U] such that Y3 is covered
by vertices in Lg. To finish, greedily embed leaves in L; not adjacent to Ly into U; \ Z, possible as the
parents of these leaves are embedded into U, , and greedily embed leaves in L; adjacent to Lo into Z,
using that every vertex in U, has at least 3%n/2 > | Ny (La, L1)| neighbours in Z.

Case II. F'— L, contains a set L), of n/200 leaves not in Np(V(T")). Then, we can find a set Ly C L} of
size 10un with |[Np(Lz, L1)] < 200 - 10un < 32n/10. Embed ¢ to v if ¢ exists, then in any case embed the
rest of T” greedily into H'. Note that this embeds at least max{0, 10k + 10D + 9} vertices in V5 into Uj.
Next, greedily extend this to embed the rest of T'— Ly — Lo into the rest of G[U; \ Z, Uy | with vertices
in V; going into U, for each i € [2], which is possible as |La| = 10un and d(u, Uy ) > |Uy | =D > to — | Lo
for every w € U; . We can then greedily embed Ly into the rest of Us, which is possible as there are at
least to — k — 1 — (to — max{0, 10k + 10D + 9} — |Ls|) > |L2| + D vertices left in Uy, and every vertex in
U, is adjacent to all but at most D of them. Finally, greedily embed the leaves in L; not adjacent to Lo
into Uy \ Z, and greedily embed the leaves in L, adjacent to Ly into Z, using that every vertex in U, has
at least 32n/2 > |Nr(Lz, L1)| neighbours in Z.

Case III. F' — Ly contains a set L} of at least n/200 leaves in Nr(V(T")). By Lemma there
exists subtrees T, Ty decomposing 7" with a unique common vertex ¢, such that |V (T1) N Va|, |V (T2) N
Va| > 3(k + D + 1). Without loss of generality, suppose that Np(V(T3),L5) > n/500, and pick a set
Ly C Np(V(Ty), L) of size 10un, with none of them adjacent to #', such that Np(Ls, L1) < 4%n/10. Note
that at most two vertices in V(T7) N Va2 can have a neighbour in V(T) \ V(T}), namely ¢ if it exists, and
t'if it is in V5.

If ¢ exists and ' € V5, then view T} as rooted at t, let the parent of ¢ in T} be p, and let the parent
of p be p’. Embed ¢ to v, then greedily embed the rest of T into H’ with the following exception. Let
W be the set of neighbours of the image of p’ in H’ that are still unused. If p’ is embedded into H’, then
[W|>107(k+ D +1)/4 —|Ty| > 2-10°(k + D + 1), while if p’ coincides with ¢ then it is embedded to v,
so |[W|>10%(k+D+1)—|T1| > 2-10°(k+ D + 1) as well. Like before, there exists v’ € U, with at least
|[W|/2 > 10%(k + D + 1) neighbours in W. Embed ' to v/, p and N, (') into W, then carry on greedily
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to finish the embedding of the rest of T} inside H'. If ¢ does not exist or t’ & V5, we can greedily embed
Ty into G[V(H') U {v}] such that ¢ is embedded to v if it exists, and the same for ¢’ if it is in V5.

In any case, we have an embedding of 77 into G, with all but at most two vertices embedded into
H', and every vertex in V(Ty) N V, that has any neighbour outside of T3 is embedded into Uy . In
particular, at least 3(k + D + 1) —2 > k + D + 1 vertices in V5 are embedded into U; if k + D > 0, while
the same holds trivially if K + D = —1. Next, greedily embed the rest of T'— L; — Ly into the rest of
G[U; \ Z,U; |. We can then greedily embed Ly into the rest of Us, which is possible as there are at least
to—k—1—(ta—k—D—1—|Ly|) = |La| + D vertices left in Uy and every vertex in U; is adjacent to all
but at most D of them. Finally, greedily embed leaves in L; not adjacent to Ly into Uy \ Z, and greedily
embed leaves in L; adjacent to Ly into Z, using that every vertex in U has at least 32n/2 > |N¢(Lz, L1)]
neighbours in Z. U

6.5 Proof of Theorem [2.3]

Having proved all of the embedding results necessary for the Type I extremal case, we can now put them
together to prove Theorem following the outline in Section [6.1

Proof of Theorem[2.3 Let 1/n < ¢ < p < 1 and let t1,t2 € N satisfy ¢4 +t2 = n and ¢; > to. Let G be
a Type I (u,t1,t2)-extremal graph on max{2t;,t; + 2ta} — 1 vertices, and let T be an n-vertex tree with
A(T) < cn and bipartition classes Vi, Vs of sizes t; and to, respectively. From definition, there are disjoint
subsets Uy, Uz C V(QG) such that |Uy]| > (1 — p)n, |Us| > (1 — p)ta, dreda(u, Ur) < un for every u € Uy, and
dpue(u, Us—;) < pn for every i € [2] and every u € U;.

First assume that t; < 2to + 1, so |G| € {n +t2 — 1,n + t2}. Let 8 be such that 4 <« 8 <« 1. Let
US = {v € V(G) : drea(u,Uy) > Bn}, U = V(G)\ U, and note that Uy C U;” and Uy C U,. Let
k= |U{| —n, so |k| <2un and |Uy| € {ta —k — 1,t2 — k}. If T has at least n/100 vertex-disjoint bare
paths with length 5, then T" has n/100 vertex-disjoint bare paths with length 4 whose endpoints are all in
V. Thus, there is a blue copy of T in G if £ > 0 by Lemma[6.1] and there is red copy of T in G if k < 0
by Lemma 6.2

Suppose, then, that 7" does not have at least n/100 vertex-disjoint bare paths with length 5, then, by
Lemma T has at least n/20 leaves. Let D > 0 be the 30un-th biggest value of dpjye(u, U2+) across all
u € U;", and note that D < 3un. Let X = {u € U} : dpjue(u, Uy ) > n/10}, and note that X C U;" \ Uy,
0 | X| < 2un. If e(Grea[U; \ X]) < 107(k + D + 1)n, then k4 D > 0, so there is a blue copy of T in G by
Lemma while if e(Grea[U;" \ X]) > 107(k + D+ 1)n, then there is a red copy of T in G by Lemma

Finally, if t; > 2ty + 2, then we can take 2/c leaves of T in Vj, which are guaranteed to exist by
Lemma and attach |(t; — 2t2)/2] new leaves to them, with none of them receiving more than cn
new leaves. Let T be the new tree obtained in this way, and note that the bipartition classes of T” have
sizes t) = t; and th = |¢1/2], with ¢] < 2¢, + 1 and max{t] + 2¢,,2t/} -1 =2t —1 =2t; — 1 =
max{t; + 2t9,2t1} — 1. Therefore, G contains a monochromatic copy of 77 from above, and thus also
contains a monochromatic copy of T'. O

7 Proof of Theorem 2.4: Type Il extremal graphs

In this section, we prove Theorem [2.4] We will start by outlining the proof in Section [7.1] breaking it
down into different cases that are then proved throughout the rest of this section.

7.1 Proof outline for Type II extremal graphs

We start by recapping the situation in Theorem where we have parameters 1/n < ¢ < p < 1. Suppose
n =t 4ty with t; > (2—pu)te. Let T be an n-vertex tree with A(T') < en and bipartition classes V; and V3
of sizes t; and t9, respectively. Let G be a red/blue coloured complete graph on max{2t; —1,t; + 2to — 1}
vertices which is Type IT (u, t1, t2)-extremal, which means that there are disjoint sets Uy, Uy C V(G) such
that |Uy],|Uz| > (1 — p)t1, and for every i € [2] and u € U;, dreda(u, U;) < pun and dpye (4, Us—;) < un.
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For some 3 with 4 < 8 < 1, we will start by taking maximal disjoint sets U;",Us” € V(G) with
Ui C Uy and Us C Uy, such that for every i € [2] and u € U, dyea(u,Us—;) > Bn. By relabelling if
necessary, we can assume that |U;"| > |U,F|.

Our first two cases are reasonably easy. First, in Case [[I.A] we assume that there exist two vertices
v1,ve with mostly blue neighbours in both U;" and U)". This will allow us to embed part of T into
Grwe|U;] and the rest of T, apart from at most 2 vertices, into Gpjue[U5], then connect them together
appropriately using v; and vs. Using two vertices in this way is optimal, as 7' may have a vertex whose
removal creates exactly three subtrees of roughly equal sizes, so we could not easily fit two of them together

into one of Gplue[U; ] or Ghiue[Us' -

Next, in Case we assume that there is a vertex w that has at least An red neighbours in both U;"
and U2Jr . Then, we decompose T into subtrees T and T5 with a common neighbour ¢, so that 77 is a small
subtree containing suitably more vertices in V; than in V5 (see Proposition . We embed t to w, then
embed the rest of T, T, greedily into Gred[Ufr, U2+] by embedding vertices in V(T1) NV, and V(T3) N V3
into U;", and vertices in V(Ty) N V4 and V(Ty) N Va into U,". Observe that T and T are embedded in
opposite ways, which ‘rebalances’ the vertices in T" across Ufr and U; , so that there is enough room in
each side for this embedding to be completed greedily.

Assuming neither of these cases hold, then U;" and U, together cover all but at most one vertex of
G, and §(GywelU;T]) > |U;7| — Bn for each i € [2]. Assume without loss of generality that |U;"| > |US|.
If there is a vertex v not in U;” U U7, then it has mostly blue neighbours in both U;" and Uy, and we
can use Corollary to decompose T into subtrees T7 and 75 with a unique common vertex ¢ such that
|UF U {v}| > |T1| and |Uy| > |T| 4+ n/100. In Case E we assume that there are at most 10%n red
edges in G[U;']. Using our work in Section we can embed T} into Gpiue[U; U {v}] with ¢ embedded
to v. Then, as v has plenty of blue neighbours in U, and |U, | is comfortably larger than |T3|, we can
greedily embed Ty into Gpiue[Us” U {v}] to complete a blue copy of T

Suppose now that we are not in Cases Let k = t; — |U;"|, and note that k < 1 as
|U;"| > |U5"|. Moreover, if k = 1, then there exists v € V(G) \ (U;” UU,), and so G[U;"] contain at least
10%n red edges since we are not in Case In theory, we have enough space while attempting to embed
T in red to embed all but at most 1 vertex of V; into U;", and V5 into U, . While this can always be
done when T has many vertex-disjoint bare paths, if 7' has many leaves instead, then similar to Case [[.B]
discussed before, a small number of blue edges in G [Ufr , U2+ | can prevent this embedding for some trees.

Therefore, we will first try to embed T in blue again, using the following sparse cut structure.

Definition 7.1. Let T be an n-vertex tree. An (g,d)-sparse cut in T is a partition V(T) = AU B such
that the following hold.

o T[A] is a tree and |A|, |B| < (2/3 — e)n.
e For each v € A, dr(v, B) <d.
e {veE A:dr(v,B) >0} is an independent set in T with size at most 2A(T).

Such a sparse cut with € > p and d = y/n will be found later using Proposition and we will also
need some additional properties guaranteed by Proposition In Case we assume that T[A, B|
can be embedded into Guie[U;, Us'], with, say A embedded into U;™ and B embedded into U;". Then, we
use the high minimum degree condition to find an embedding of T[A] in Gpue[U;"] that matches enough
of the embedding of T[A, B]. Using the part that matches, we can greedily extend the embedding of T'[A]
to embed most of the vertices in B into U, . The number of remaining vertices in B will be small enough
that they can be greedily embedded into the remaining part of Gpjue[U;].

Finally, in Case we assume that T[A, B] cannot be embedded into Gue[U;, Uy ] as described
above. The fact that we failed to do so will imply that there exist Us C U;" and Up C U of suitable
sizes, such that every vertex in U;” \ Ua has at most /n blue neighbours in U)" \ Up. Here, we focus
on a specific case where |U;"| > t; and T has a set L of many leaves in V;, the other case is handled
similarly. First, we embed T' — L essentially randomly into Greq[U;", U], with vertices in V; embedded
into U;" for each i € [2], while ensuring that leaves in L have their parents embedded into U; \ Up.
Similar to Case in U;" we may have some ‘bad’ vertices to which it is hard to embed the vertices
in L. However, it will be likely that there is no bad vertex in Ufr \ Uy, as all these vertices have very high
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red degrees into U2Jr \ Up from assumption. To make sure that we have no uncovered bad vertices in Uy,
we use that the size of Uy is related to the sparse cut V(T) = AU B. Roughly speaking, there will be
enough components in T[Ny (B, A) U B] that contains a vertex in V3 N B for us to use these vertices to
cover U,. Finally, having ensured that there is no bad vertex, we can embed the leaves in L to complete
the embedding of T'.

In Sections[7.2}7.6] we will prove the main embedding results used for Cases [[T.AHIT.E] respectively,
before putting these all together in Section to prove Theorem To finish this outline, we recap the
different cases in the proof of Theorem [2.4] noting the main result that takes care of each of them. In
what follows, by ‘otherwise’ we mean that none of the previous cases hold.

IT G is Type II extremal.

II.A Two vertices have mostly blue neighbours in U;" and Uy : T embeds in blue. Lemma
I1.B Some vertex has An red neighbours in both U;" and U, : T embeds in red. Lemma
I1.C Otherwise, but one vertex has mostly blue neighbours in U;” and Uy, and G[U;"] contains at

most 10°n red edges: T' embeds in blue. Lemma
I1.D Otherwise, but T[A, B] embeds into Gue[U;, Uy ]: T embeds in blue. Lemma
II.E Otherwise, either |U;"| > t;, or |U;"| = ¢; — 1 and there are at least 10n red edges in G[U;']:

T embeds in red. Lemma[7.§

7.2 Case [L.Al

For Case [[I.A] we first use the following result to find a large subtree of T' that contains at most two
vertices that have neighbours in the rest of the tree. Moreover, if there are two such vertices, then they
are not adjacent.

Proposition 7.2. Let 1/n < e < 1. Let T be an n-vertex tree. Then, there is a partition V(T) = AU B
with |Al,|B| < (2/3 — &)n such that T[A] is a tree and {v € A : dr(v, B) > 0} is an independent set in T
with size at most 2.

Proof. Using Corollary let 71 and T5 be subtrees decomposing 7" with a unique common vertex ¢,
such that § < [Th] < [Tp] < 1+ 2?” Furthermore, assume that T} and T are chosen so that |Ts| is
minimised subject to these conditions. If |T5| < (2/3 — €)n, then set A = V(Tz) and B = V(T) \ 4, and
note that the conditions in the lemma hold.

Suppose now that |Tz| > (2/3 — €)n. If ¢ has only one neighbour, say ¢', in T, then adding tt’ to Ty
and removing t from T5 gives two trees that contradict the minimality of |T|. If 75 — ¢ has a component
S with size at most (1/3 — 2¢)n, then, letting 7] = T[{t} UV (S)|UT) and Ty = To — V(S) gives a
pair of trees (T7,T3) that again contradicts the minimality of |T3|, as max{|T}|,|T5|} < |Tz|. Thus, t
must have exactly two neighbours in T5, and T5 — ¢ is the disjoint union of two trees S; and Sy with
(1/3 = 2e)n < |S1|,|S2] < (1/3 + 2¢)n. For each i € [2], let ¢; be the neighbour of ¢ in S;.

Using Corollary again, let S and S be subtrees decomposing .57 with a unique common vertex
1, such that (1 —6e)n/9 < |S1], 154 < 14 (2+12¢)n/9. Relabelling if necessary, assume that S; contains
t1. Let A=V (T1)UV(S]) U {t2} and note that T[A] is the tree made by connecting 77 and S7 with the
edge tt; and adding the edge tto. Let B = V(T') \ A, and note that the only vertices in A with neighbours
in B in T are to and ¢}, and they are not adjacent in T' because they are in different components of Tp —t.
Thus, A and B satisfy the required conditions. O

Using Proposition it is now straightforward to prove the following result used in Case [[I.A]

Lemma 7.3. Let 1/n < ¢ < pp < 1. Let T be an n-vertezx tree with A(T) < en. Let G be a graph that
contains two disjoint vertex sets Uy and Uy such that |U;| > (2/3 — p)n and 6(G[U;]) > |U;| — pun for each
i € [2]. Suppose there exist v1,v2 € V(G) \ (U1 UUs) such that dg(vi, Uj) > |U;| — un for each i,j € [2].
Then, G contains a copy of T'.
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Proof. Using Proposition let V(T) = AU B be a partition with |A|,|B| < (2/3 — 10u)n, such that
T[A] is a tree and A’ := {v € A : dr(v,B) > 0} is an independent set in T" with |A’| < 2. For each
i € [2], let U, = Ng(v1,U;) N Ng(ve,U;), then |U; | > (2/3 — 3u)n and 6(G[U;]) > |U; | — pn. Embed
one vertex in A’ to v;. Then, greedily extend this to an embedding of the tree T[A] in G[U; U {v1,va}],
such that if there is another vertex in A’, then it is embedded to v2. We can then extend this to copy of
T by embedding T[A’ U B] greedily in G[U;y U {v1, va}]. O

7.3 Case IL.B

For Case [[T.B] we need to find a subtree which has suitably more vertices in V; than in Va2, which we do
with the following result.

Proposition 7.4. Let 1/n < p < 1, and let T be an n-vertex tree with bipartition classes Vi and Vs
such that |Vi| > 1.1|Va|. Then, there exists a decomposition of T into subtrees Ty and To with a unique
common vertex v, such that 10un < |V (Ty) NV4| — |V (T1) N Va| < 25un.

Proof. Among all v € T and all subtrees 77 and T3 decomposing 7' with a unique common vertex v that
satisfy |V(T1) N Vi| — |[V(T1) N Va| > 12pn, pick the combination that minimises |T7|. Note that such
v,T1, Ty exist as |V4| > 1.1|V,| implies that |Vi| — [V2| > 12un, so picking an arbitrary v € V(T), letting
Ty =T and Ty = T[{v}] would satisfy these conditions.

First, consider the case when deg(v,T7) > 2. If there is a component S of 77 — v that satisfies
[V (S)N V| —|V(S)NVi| > 0, then, transferring S and the edge between v and S from T; to T gives two
subtrees T7, Ty that still satisfy the required conditions but with |T7| < |T3|, a contradiction. Thus, we
can assume that every component of 77 — v has at least as many vertices in V7 as in V5. Then, since there
are at least 2 such components, at least one of them, say S, satisfies 0 < |[V(S") N Vy| — |[V(8) N V3| <
(IV(Ty) N V4| = |[V(T1) N Vo] + 1) /2. In order for transferring S’ and the edge between v and S’ from T} to
T3 to not contradict the minimality of |71, we must have that (|[V(T1) N V1| — [V(T1) N Va]) = (|V(S") N
Vi| = [V (S") N Va|) < 12un, and hence, |V (T1) N V1| — |V (T1) N Va| < 25un, as required.

Suppose, then, that deg(v,T1) = 1. Let v’ be the neighbour of v in Ty. Let T = Th —v and T4 = To+vv'.
Note that, in order to not get a contradiction, we must have |V(77) N V4| — |V(T]) N V2| < 12un, so
[V(T1) N V4| = |[V(T1) N V] < pn + 1 < 25un, as required. O

Using Proposition [7.4] we can now prove the following lemma required in Case [[I.B]

Lemma 7.5. Let 1/n < ¢ < p < 1. Let T be an n-vertex tree with A(T) < cn and bipartition classes
of sizes t1 and to satisfying t1 > 1.1t5. Let G be a graph containing two disjoint subsets Uy, Us and
an additional vertex w, such that for each i € [2], |U;| > t1 — un, dg(w,U;) > pn, and dg(u,Us_;) >
|Us_;| — un for every u € U;. Then, G contains a copy of T.

Proof. By Proposition [7.4] we can find subtrees 77 and T» decomposing 17" with a unique common vertex
v, such that 10un < |V(T1) N Vi| = |V(T1) N V| < 25un. Embed v to w, then we can greedily embed
both T and Ts so that vertices in V(T2) N V3 and V(T1) NV, go into Uy and vertices in V(T7) N V4 and
V(Tz) NV go into Us. This is possible because

V(T1) N Vol + [V(T2) nVa| < [V(Th) nVA| + [V (T2) N V1] = 10pn <ty + 1 — 10pn < [Us] — pn,

[V (Ty) N Vi + [V (T2) N Va| < [V(Th) N Va| + [V (T2) N Va| 4+ 25un < to + 1 + 25un < |Us| — un,
and w has un > A(T) neighbours in both U; and Us. O

7.4 Case [L.C
The embedding result for Case [IL.C]| follows easily from Lemma [6.3] proved earlier for Case

Lemma 7.6. Let 1/n < ¢ <t < 1. Let T be an n-vertezx tree with A(T) < en. Let G be a graph that
contains two disjoint vertex sets Uy, Uy such that |Ur| > [2n/3] — 1, |Us| > (2/3 — w)n, and §(G[U;]) >
|Ui| — pun for each i € [2]. Suppose G[Up] contains at most 10n non-edges, and that there exists v €
V(G)\ (U1 UUs) with dg(v,U;) > |U;| — un for each i € [2]. Then, G contains a copy of T
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Proof. Using Corollary 2.14] let T; and T be a decomposition of T' into subtrees with a unique common
vertex ¢, so that [n/3] < |T1| < |Tz| < [2n/3]. Let D =0 and k = |Uy U {v}| — |T3|, so that k > 0 and
thus G[U; U{v}] has at most 10°n + un < 107(k+ D +1)|T3| non-edges. Then, by Lemma GlU; U{v}]
contains a copy of T5, in which ¢ is copied to v. Since |T1| < 14 n/2 < |Us| — un, we can complete the
embedding of T by greedily finding a copy of T} in G[Uz U {v}] with ¢ copied to v. O

7.5 Case [1.DI

We now give the embedding in Case [I.D] where there are enough blue edges between U; and Us to
embed a large subtree of the tree in Us and connect this across to embed the rest into U;.

Lemma 7.7. Let 1/n < ¢ < p < e € 1. Let G be a graph that contains two disjoint vertex sets Uy, Us
such that |U;| > (2/3 — ¢/3)n and 6(G[U;]) > |Ui| — pn for each i € [2]. Let T be an n-vertex tree with
A(T) < cn. Suppose T has an (e,+/n)-sparse cut V(T) = AU B, such that T[A, B] can be embedded into
G|U1, Us] with A embedded into Uy and B embedded into Uy. Then, G contains a copy of T.

Proof. Let A" ={ve A:dr(v,B) >0} and let t € A\ A’, so dr(t1,B) = 0. Let m = |A| and extend ¢;
to an ordering t1,...,%,, of the vertices in A so that each vertex ¢; except ¢; has exactly one neighbour
to its left in T'[A] in this ordering.

Let I = {i € [m]:t; € A'}, so |I| < 2c¢n from the definition of sparse cuts. From assumption, there
is an embedding ¢’ of T[A, B] into G[Uy,Us] with A embedded into U; and B embedded into Us. Let
s; = ¢'(t;) for each i € I.

Pick sy € Uy \ {s; : i € I} uniformly at random. Then, for each 1 < i < m, let j; < i satisfy
tj,t; € E(T[A]), and embed ¢; to some s; € Uy randomly as follows.

U1l If i € I, then let s; = 5] if 5;, 5, € E(G), otherwise pick s; uniformly at random from N¢g(s;,, Ur) \
({sj:j<itu{sj:jel}).
U2 If i ¢ I, then pick s; uniformly at random from Ng(s;,,U1) \ ({s; : j <i}U{s}:j € I}).

For each i € I, let T; be the component containing ¢; in T[A" U B], let X; = |T;| — 1 if s; # s, and let
X; = 0 otherwise. For each i € I, the probability that sj, is not in Ng(s}) is at most un/(|Ui|—|A|—pn) <
3u/e < /p. Thus,

STE(X) < vii- ST < i,

iel iel
so there is a realisation of sq,...,s,, for which Zie] X; < /pn. Take such a realisation, and let I'cIr
be the set of i € I for which s; = s7, so that 37, (IT5] — 1) = 3>2,c; Xi < /un.

Let ¢(t;) = s; for each i € [m] and note that this is an embedding of T'[A] in G[U;]. Extend this to an
embedding of T[AU (U;ep Nr(t;))] using the embedding ¢’ of T[A, B]. Using §(G[Uz]) > |Ua| — pn > | B,
we can greedily extend ¢ to an embedding of T[AU(U;e - T;)] by embedding the vertices in U;e ;- (V(T;) N B)
into Us. Then, using >, p (T3] = 1) < /1in,

§(GIUh]) > [Uh] = pm > (2/3 —¢/3)n — pun > |A[+ Y (T3] = 1),
ie\I’

so we can extend ¢ to an embedding of T' by greedily embedding the vertices in U;ep ;-(V (13) N B) into
U;. Thus, G contains a copy of T O

7.6 Case ILE

In the last case, Case [IL.E| we aim to embed the tree T into Gyrea[U;, Us]. Our embedding method here
is the most involved, but it shares some similarities with Case We will remove some leaves in
from the tree T, and aim to embed the rest of the tree so that each remaining vertex in GG in the correct
side has plenty of neighbours among the vertices that need leaves attached to them, which would allow
us to complete the embedding using Lemma As mentioned before, the key difficulty is to ensure that
the lower degree vertices in G are covered, either in the initial stage by some carefully chosen vertices in
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T, or in the last stage by the leaves. An additional complication is that if |Uf' | > 1, then we will embed
vertices in V; into U;" for each i € [2], but if |U;"| = ¢; — 1, which implies that |Uy| = t; — 1 as well, we
will instead embed vertices in V; into Uy, for each i € [2], except for one leaf in Vi which needs to be
embedded into Ufr . The last part is possible as there will be some red edges in G[U1+ ] in this case. To
avoid repetition, we will prove the following embedding lemma that will later be applied to (U;",U,") in
the former case, and to (U7, U;") in the latter case.

Lemma 7.8. Let l/n <K c< p < a K fKe 1. Let G be a graph on at most 2n vertices that contains
two disjoint vertex sets Uy, Uy with |U1| > t; — 1 and |Us| > (1 — p)t1. Moreover, if |Ui| = t1 — 1 then
e(G[Us]) > 10%n. Suppose §(G[U1,Us]) > Bn and, for each i € [2], all but at most un vertices u € U;
satisfy dg(u, Us—;) > |Us—;| — pn.

Let 0 < ¢ < 2¢en. Suppose there exist subsets Uy C Uy and Ug C Uy with (Ua| < £ and |Up| <
(2/3 — e)n, such that [Ng(u, U\ Ug)| > |U2\ Ug| — /0 for each uw € Uy \ Uy.

Let T be an n-vertex tree with A(T) < cn and bipartition classes Vi and Vi of sizes t1 and to,
respectively, such that t1 > (2 — u)te, and one of the following holds.

V1 There is a set L of an leaves of T in V1 such that dp(u, L) < \/n for each uw € Np(L).

V2 T contains a set V| of £ vertices in Vi and a disjoint set L of an leaves in Vi such that vertices in
V] have no common neighbour, |[N7(V{)| < en, and Ny (V{) N Np(L) = 0.

Then, G contains a copy of T'.

Proof. Let V{ = 0 if T does not satisfy [V2] In both cases, let s; be a leaf of 7 in V; \ V{, which exists by
Lemma using t1 > (2 — p)te. Let so be the neighbour of s; in T', and view T as being rooted at s;.

Let L' = L\ Nr(s2), and let P be the set of parents of L'. Note that |L'| > an/2 > un. Partition
P = Py U P, so that for each j € [2], L; := Np(P;, L') has size at least an/10. If[V2|holds, then take an
injection ¢ : Uy — V{ such that no vertex in ¢(Uy4) is adjacent to sa, which is possible as |Ux| < £ = |V/|
and vertices in V{ share no common neighbour. For every u € Uy, let ¢’(u) be the parent of ¢(u) in the
rooted tree T, and let P’ = {¢/(u) : u € Ua}. Note that from the assumption in[V2] P'NP = 0. If[V2
does not hold then let both ¢ and ¢’ be the empty function, and let P’ = ().

For each j € [2], let Uy = {u € U : dg(u,Us—;) > |Us—;| — pun}, so that [U; \ U; | < pn. Select
a random subset Z C U, by including each vertex independently at random with probability 5. Using
Lemma with positive probability we have |Z| < 28n, dg(u,Z) > B?n/2 for each u € Uj, and
e(G[U2] — Z) > 0 if |Uy| = t; — 1. Fix a choice of Z with these properties. Note that

Uy \(UpUZ)| > (1—p)ty —pun—(2/3 —¢e)n—28n > 2an.

By adding vertices to Up if necessary, we may assume that |Uy, \ (Up U Z)| = 2an.

Let 7" =T — L' and m = |T'|. Extend s1, s to an ordering s1, ..., Sy, of the vertices in T”, such that
for every 2 < i < m, s; has a unique neighbour in T” to its left in this ordering. If |U;| = ¢t; — 1, pick
v1ve € E(G[Us] — Z) arbitrarily. Otherwise, arbitrarily pick vive € E(G[U1,Us] — Z) with v; € U; and
vy € Us. Embed s; to v; and sy to vo. For each 3 < ¢ < m, suppose s; has been embedded to v; for
all j < i with only vertices in V] embedded into Ua, and let j; < i satisfy sj,s; € E(T"). Note that if
s; € Vo and vj, € Uga, then s;, € V{, so s; ¢ PU P’ as vertices in V{ share no common neighbour and
Nr(V{)N Nr(L') = (. Embed s; randomly to some v; as follows.

W1 If s; € P1, then randomly select v; from Ng(v),, Uy \ (UpU ZU{v1,...,v,1})).
W2 If s; € P, then randomly select v; from Ng(vj,, Z \ {v1,...,vi—1}).
W3 If s; € P/, say s; = ¢'(u), then randomly select v; from Ng(vj,, Ng(u, Z) \ {vi,...,v;1}).

W4 If s; € Vo \ (PUP’) and v;, ¢ Ua, then randomly select v; from Ng(vj;,,(Uy NUg) \ (Z U
{’Ul, . 7Ui—1}))-

W5 If s; € Vo \ (PUP’) and vj, € Uy, then randomly select v; from Ng(vj,, Z \ {v1,...,vi—1}).

W6 If s; € V] and there is some u € Uy such that ¢(u) = s;, then let v; = u.
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W7 If s; € Vi and there is no u € U4 such that ¢(u) = s;, randomly select v; from Ng (v, Uy \ (Ua U

{’Ul, e ,’Uifl})).

Note that can always be carried out to obtain an embedding of T”. Moreover, from Uy is
covered by this embedding if holds.
For each 7 € [m], let di,l = dT(Si, Ll)7 di72 = dT(Si, Lg), and dz = di,l + di,g.

Claim 7.9. With high probability, for every vertex v € Uy not yet covered by the embedding of T",

> di>10m.
i€[m]w; ENg (v)

Proof of Claim[7.9 Note that d; = dy = 0. For each v € Uy \Uy4 and i € [m], let X, ; = d; 1 if v; € Ng(v)
and X, ; = 0 otherwise. For each v € U4 and i € [m], let X, ; = d, 2 if v; € Ng(v) and X, ; = 0 otherwise.

Regardless of whether or holds, for each v € U1 \U,4 and @ € [m], let s;, be the unique neighbour
of s; to its left, then, using and |Uy \ (Up U 2Z)| = 2an,

|INg(vj,, Uy \ (Nag(v) UUg U Z U {v1,...,vi-1}))|

‘Ng(’vﬁ,U; \ (UB UZu {’1)1,...7’1)1‘,1})”
N 1

= 2an—an —pun — ni/3’

P(Xy;#dir | Xoa,-o, Xpiz1) <

Let £y = |Li| = > i ep, din > an/10. Let P{ = {s; € P1 : d;jy < n/log?n}. By Lemma [2.6] if
> iis;ep; din > 01/2, then for every v € Uy \ Ua,

41 02 1
P Xpi<an/40 | <exp | — =75 | <exp | — L <—. (71
Z / ( 104 Zi:siep{ d?’1> 104(%)( n_)2 n2 (7.1)

i:s;€P] n log n

Otherwise, Zi:siePl\P{ di1 > 01/2. Since |P \ Pj| < log2 n, for each v € Uy \ Uy, the probability that
there is some J C Py \ P| with |J| > 10 and X, ; # d; 1 for each ¢ € J is at most

a 2 )10. 1 10<i
og 3] =z

so with probability at least 1 — 1/n2, Zi:siePl\Pl’ Xp,i > 01/2 —10cn > an/40. Combined with and
using a union bound, we have with high probability that Zie[m]:viENc(v) d; > Zi:siEPl Xyi > an/40 >
10pn for all v € Uy \ Ua.

Now let v € Uy. If holds, then v is covered by the embedding of T” so there is nothing to prove.
Suppose now that holds. For every i € [m], note that d;» < d; < \/n, and let s;, be the unique

neighbour of s; to its left. Then, using

|NG(Uﬁ7 (ZQNG(U)) \ {Ulv' . ~;Ui—1})‘
[Nc(vj,, Z\{v1, ..., vi-1})]

< B*n/2 — an —

- 28n

P(X,i=di2| Xv1,--, Xpiz1) >

"> 510,

Let by = |La| = d; 2 > an/10, then by Lemma

1:8,E€Ps

P Z Xpi <afin/200 | <ex —L <exp|— Cis <i
SR (TS SRR B T YV B VD) el

1:8,E€ Py

By a union bound, with high probability, all v € U4 satisfy Zie[m]:vieNc(v) di > D isep, Xvi
afn/200 > 10un.

LIV
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Finally, it remains to embed L’. Let U be the set of unused vertices in Uy, note that |U| > |L/|,
and every v € U satisfies Zie[m]:viENc(v) d; > 10un by Claim We verify that Hall’s condition holds
between the set {v; : s; € P} of images of parents of L’ and U. Indeed, for any non-empty J C P, if

0<> isesdi <|L'| — pn, then as v; € Uy for each i € J byand we have

IN¢({vi:s; € J}LU)| > |U| —pn > |L'| — un > Z d;.
i:8;€J

If instead > ... o, di > |L'| — pn, then [Ng({vi : si € J},U)| = [U| > |L'| > Y ., c;di, as any v €
U\ Ne({vi : si € J}) would satisty 37, (.0.eng(v) 4 < bn, a contradiction. Therefore, by Lemma
we can embed L' into U to finish a copy of T in G. OJ

7.7 Proof of Theorem [2.4]

Our final step before we can prove Theorem [2:4] is to prove the following results which give the desired

sparse cut (see Definition used in Case and Case

Proposition 7.10. Let 1/n < ¢ < p < e < 1. Let T be an n-vertex tree with A(T) < en and bipartition
classes Vi and Va satisfying |Vi| > (2 — w)|Va|. Then, T has an (¢,/n)-sparse cut V(T') = AU B, such
that at most two vertices in {v € A : dr(v,B) > 0} are adjacent to leaves of T in A.

Proof. By Lemma there is a vertex v € V(T') such that each component of 7' — v has size at most
n/2. Let £ < cn be the number of components in 7' — v and let T1,...,Ty be these components in order
of decreasing size. Let 7 be maximal subject to >._, |T;| < (2/3 — 2¢)n, and note that r > 1.

If |T| < +/n, then as |T;| < y/n for all ¢ > r, there exists 7’ > r such that (1/3+3¢/2)n < Zfzw T3] <
(1/3+3¢/2)n+ v/n,s0 A= {v} UNp(v) U (Uic,yV(T})) and B = V(G) \ A form an (e, y/n)-sparse cut.

Assume now that |T.| > +/n, then as |T;| > /n for all ¢ € [r], we have r < y/n. If, moreover,
Yiep [Til =2 (1/3 +¢€)n, then A = {v} U (Uf_, 11V (Ty)) and B = V(G) \ A form an (e, /n)-sparse cut.
Thus, we can assume that >, [T3] < (1/3 +€)n.

Now, by the maximality of r, we have |T,11| > (2/3 = 2e)n— (1/34+¢)n = (1/3 —3e)n. As |Th|, |Tr| >
|Ty41] > (1/3—3e)n, we must have r = 1, and (1/3 —3¢)n < |Ta| < |T1| < (1/3+¢)n. For each j € [2], let
v; be the unique neighbour of v in T}, and view T as a tree rooted at v;. Let v;. be a vertex farthest away
from v; in Tj subject to the condition that the subtree T]’» C T} containing v;- and all of its descendents in
T has size at least (1/3 — 10e)n.

Let {S; : i € I;} be the components of 7] — v} and let {S; : i € Is} be the components of T4 — v}.
I£ > iersi<ym [Sil = 5en, then we can find I1 C Iy such that |S;| < y/n for each i € I and 5en <
Eiel{ |Si| < 6en. Then, B = V(Tz) U (Usjer;V(Si) \ Nr(vy)) and A = V(G) \ B form an (g,/n)-
sparse cut. Similarly, an (e, \/n)-sparse cut exists if ), L8| < vm [Sil = 5en. Thus, we can assume that
Yiensi|>ym [Sil and 3o g. 5 [Si| are both at least (1/3 —20e)n. Let I C {i € LUy : [S;] > Vvn}
be minimal subject to ), ;[Si| > (1/3 4 ¢)n. Then, minimality and the choices of vy, v5 imply that
Yier 1Sl < (1/34+¢e)n + (1/3 — 10e)n = (2/3 — 9)n, so B = UiV (S;) and A = V(T) \ B form an
(e,+/n)-sparse cut.

Therefore, T always contains an (e, v/n)-sparse cut AU B. Finally, it is easy to verify that in all cases
above, there are at most two vertices in {v € A : dr(v, B) > 0} that are adjacent to leaves of T in A. O

Proposition 7.11. Let 1/n € ¢ < p < a < ¢ < 1. Let T be an n-vertex tree with A(T) < en and
bipartition classes Vi and Va satisfying |Vi| > (2—p)|Vz|. Then, T has an (g,+/n)-sparse cut V(T) = AUB
such that at least one of the following holds.

X1 There is a set L of at least an leaves of T in Vi such that dr(u, L) < v/n for each u € Nr(L).

X2 T contains a set V{ of |[{v € A : dr(v,B) > 0}| vertices in Vi, and a disjoint set L' of an leaves in
V1, such that vertices in V{ have no common neighbour, |Np(V{)| < en, and Np(V{) N Np(L') = (.

Proof. Let ¢ < v < €. We begin with the following claim.
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Claim 7.12. Let L be a set of leaves of T in Vy. Suppose that V(T) = A’ U B’ is a (2e,+/n)-sparse cut
of T, and let Ay = {a € A" : dr(a,B’) > 0}. For each a € Ay, let R, be the component of T — (A’ \ A1)
containing a, and suppose there exists ro € V(R, — a) NVy with dr(ry) < 1/7. Moreover, assume that at
least 1/3 of the vertices in Ugea, Rq are in L, then T has an (,/n)-sparse cut V(T) = AU B and some
corresponding L', V| such that holds.

Proof of Claim[7.12 Arrange the components R,, a € Ay, in decreasing order of |V (R,)NL|/|R,|. Take a
minimal collection A} C Aj, starting from the elements with the highest ratio, such that . AL |[V(R,)N
L| > 2an.

Suppose first that ZaeA'l [V(R.) N L| < 4an. Noting that (30,4 [V(Ra) NV L)/(Xaca, [Ral) <
maxaca, |V(Ry) N L|/|Ra|, we have ZaEA'l |Ra| < 12an < en. Let L' C Ugeay(V(Ra) N L) have size
an, B = UaeAl\AiV(Ra —a), A=V(G)\ B, V{ ={r, : a € A1 \ A}}. Note that |[Np(V{)| < |41]/vy <
2cn/y < en and Np(VY) is disjoint from Np(L'), so holds with respect to the (e,/n)-sparse cut
V(T)=AUB, L', and V/.

If ZaeA’l |[V(R,) N L| > 4an, then the minimality of A} implies that there exists a* € A} C A;
satisfying |V(Rq+) N L| > 2an. In particular, we can find a set L' C V(R,~) N L of size an, and some
7. € V(Rq+)N(L\L'), such that Ny (r}.) "\Np(L') = 0. Then, let A= A’ and B = B’, and note that [X2|
holds with respect to the (g, /n)-sparse cut V(T) = AUB, L', and V{ = {r, : a € A; \ {a*}} U{r,.}.

G

Now, Proposition gives a (100, y/n)-sparse cut V(T') = A’ U B’, such that at most two vertices
in {v e A’ : dr(v,B’) > 0} are adjacent to leaves of T'in A’. Let A; = {v e A" :dr(v,B’) > 0}. For each
a € Ay, let R, be the component of T — (A’ \ A1) containing a. Let Ay be the set of a € A; such that
R, — a contains at least y|R,| vertices in V. Then, for each a € Ag, there exists r, € V(R, —a) NV] such
that dp(rq) < 1/7.

Case L. > . |Ro—al > (1/3+2¢)n. By Lemmam T contains at least t; —to > (1/3 — 10p)n leaves
in V3. If A”\ A; contains at least 10an > an + 2cn leaves of T in Vi, then there is a set L’ of an such
leaves in A"\ A; with their parents not in A;. Then, let B = Ugea,V (R, — a), A =V(G) \ B, and note
that A and B form an (e, \/n)-sparse cut. Set V{ = {r, : a € A5}, then [X2| holds with respect to A, B,
L', and V7.

If instead A’ \ A; contains at most 10an leaves of T in Vi, then at least (1/3 — &)n leaves of T in V}
are in Uge 4, Ra, 80 Ugea, R, contains a set Ly of at least (1/3 — 10e)n of leaves of T in V1, as Ugec a,\ 4, Ra
contains at most yn vertices in V7. In particular, at least 1/3 of the vertices in Useca, R, are in Ly. Let
B" = Uzea,V(R, —a) and A” = V(G) \ B”, then we can apply Claim to the (2e,+/n)-sparse cut
V(T) = A” U B” to finish the proof.

CaseIl. ) .4, [Ra—al < (1/3+2e)n,50 3 c s\ a, [Ra—al 2 97en. Then, 37 4\ 4, (IV(Ra—a)NVa|—
[V(Ry —a)NV4|) > ZGGAI\AZ((I —29)|Ry| — 1) > 95en. Consider the subtree T” obtained by removing
R, —a from T for each a € A; \ Az, and note that at most |A; \ A2| < en leaves in T” are not leaves in
T. By Lemma [2.10 7" contains at least |V (T") N V4| — |V(T") N Va| > t; —to 4+ 95en > (1/3 + 92¢)n leaves
in V1. Thus, T contains at least (1/3 4 91e)n leaves in V5.

If there is a set L of at least an leaves of T in V; whose parents are all adjacent to at most \/n leaves
of T, then [X1] holds and we are done, so suppose otherwise. By Lemma[2.15] there is a vertex v in T' such
that every component of T'— v has size at most n/2. View T as being rooted at v. Then, there is a set
Ly of at least (1/3 4 90¢e)n leaves in V7, each of whose parent in T is adjacent to at least v/n leaves in T,
and no leaf in Ly or parent of leaf in Ly is equal to v. Let p1,...,pr be the parents of Ly in T', and note
that & < y/n. Then, for every i € [k], let P; be the subtree of T induced by p; and all of its descendants
in T, and note that |P;| < n/2 as p; # v. Let I C [k] be the set of indices i € [k], such that p; is not a

descendant of any p; with j # 4. Let I’ C I be minimal subject to ), [Pi| > (1/3 + 2¢)n.

Case IL.1. Y, |P)| < (2/3 — 2e)n. Let B = Ujep/V(P;) and A = V(T) \ B. Note that T[A] is a tree,
and V(T) = AUB is a (2¢, y/n)-sparse cut. Let Ay = {a € A : dp(a, B) > 0}. For each a € Ay, let R, be

the component of T'— (A \ A;) containing a, pick any p; € Nr(a, B), and then pick r, to be any children
of p; in L.
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If [BN Ly| < (1/3 + 3¢)n, then at least en leaves in Lo are in A, so we can pick a set L' of an such
leaves. Then, A, B, L', and V| = {r, :a € A} Satisfy

If [BN Ly| > (1/3+ 3¢)n, then at least 1/3 of the vertices in U, 4 R, are leaves in L, so we are done
by Claim

Case I1.2. ), |Pi| > (2/3 —2¢)n. Then, by minimality, |P;| > (1/3 —4e)n for each i € I, so |I| = 2 as
|P;| < mn/2. Without loss of generality, say I = {1, 2}, and note that |P;|,|P:| < (1/3+ 2¢)n by minimality.
Since at most (1/3 + 2¢)n vertices in T are outside of Py U P,, P; U P, contains at least 80en leaves in Lo,
so we may assume that, say, P; contains at least 40en such leaves.

Let {q1,.--,qm} C {p3,...,pr} be the set of descendants of p; in T, and assume they are ordered
so that if ¢; is a descendant of g; in 7', then ¢ < j. Let Q; be the subtree of T" induced by ¢; and all
of its descendants in 7', and let m/ € [m] be minimal subject to |Ly N (U™, V(Q;))| > 20en. Note that
by minimality and A(T) < en, |Ly N (U, V(Q4))| < 21en, and so |(Ly N V(P)) \ (U, V(Qs))| > 19en.
Let B = V(P,) U (U™, V(Q;)), and observe that (1/3 — 4e)n + 20en < |B| < (2/3 4 4e)n — 19en. Let
A =V(G)\ B, and note that V(T) = AU B form a (2¢, /n)-sparse cut. Thus, we are now in the same
situation as in Case II.1, and can finish the proof in the same way. |

Finally, we can put all the work of this section together to prove Theorem [2:4] following the outline in

Section [T.11

Proof of Theorem[2.]} Let 1/n < ¢ < p < 1 and let ¢1,ty € N satisfy t1 +to = n and t; > (2 — p)ts.
Let G be a Type II (p,t1,t2)-extremal graph on max{2t;,t; + 22} — 1 vertices, so from definition there
are disjoint subsets Uy, Uz C V(G) such that |Uil|,|Uz| > (1 — p)t1, and for each i € [2] and u € U;,
drea(u, U;) < pn and dpjye(u, Us—;) < pn. Let T be an n-vertex tree with A(T) < cn and bipartition
classes V1 and V, with |V;| = t; for each i € [2]. We need to find a monochromatic copy of T in G.

Let 4 < B < 1. Let Us",Uf € V(G) be maximal disjoint sets with U; C U;", Uy C Uy, and
drea(u, Us_;) > Bn for every i € [2] and u € U;". Note that |U;"\ U;| < 2un for each i € [2]. By relabelling
if necessary, we can assume that |U;"| > |US|.

First (for Case 7 suppose that there are distinct vertices v1,vo € V(G) \ (U7 UU,). By the
maximality of U;" and Uy, we have that dyiue(vi, U;) > |U;| — Bn for each i,j € [2]. As t1 > (2 — p)ta,
we have |U;| > ¢1 — un > (2/3 — 10p)n for each i € [2]. Since 6(Gpe|Us]) > |U;| — un for each i € [2], we
can apply Lemma [7-3] to find a copy of T' in Gypjye.

Thus, we can assume that |V (G)\ (U;” UUS)| < 1. It follows that |U;"| > [(|G] — 1)/2] > [2n/3] — 1,
and |U;"| > t; — 1. Next (for Case , suppose there is some vertex v € V(G) with at least n red
neighbours in both U;” and U;". Then, v has at least fn — 2un > pn red neighbour in both U; and Us.
Therefore, by Lemma G contains a red copy of T.

Hence, we can assume there is no such vertex v, from which we get §(Gplue[U;"]) > |U;"| — Bn for each
i € [2]. Next (for Case , suppose G[U;"] contains at most 10°n red edges and there is exactly one
vertex w in V(G) \ (U UU,"). Using the maximality like above, dpie(w,U;") > |U;| — 28n for each
i € [2], so we can find a blue copy of T in G using Lemma

Thus, we can assume that either G[U;"] has more than 10%n red edges, or V(G) \ (U;" UU;) = 0.
Let 3 < e < 1. Let V(T) = AU B be an (g,+/n)-sparse cut given by Proposition Suppose (for
Case [I1.D)) that T[A, B] can be embedded into Gpjue[U;", U], either with A embedded into U;™ and B
embedded into U2+ , or the other way around, then G contains a blue copy of T' by Lemma

Finally, suppose (for Case that T[A, B] cannot be embedded into Gue[U;, Uy ]. Let £ = [{v €
A : dp(v,B) > 0}] and list the elements in {v € A : dr(v,B) > 0} as ay,...,a,. For each i € [{], let
dz‘ = dT(ai,B) < \/ﬁ

If |UF| > t1, let I C [£] be a maximal set for which there are distinct vertices {w; : i € I} C U and
disjoint subsets {W; C U; 4 € I}, such that W; C Npje(w;) and |W;| = d; for each ¢ € I. As we are
not in Case [I| < €. Let Uy = {w; : i € I'} and Ug = U;erW;. Then, the maximality of I implies
that every vertex in U;” \ Ua has at most \/n blue neighbours in U, \ Up. Therefore, by Lemma G
contains a copy of T in red.

If |U;| = ¢, — 1, then we must have |V(G) \ (U;” UU; )| = 1 and |U; | = ¢; — 1. Since we are not in
Case IA‘IrJ_'Q G [U1+ | has at least 1057 red edges. We now proceed as above but swapping the role of U1Jr
and U, . Let I C [¢] be a maximal set for which there are distinct vertices {w; : i € I} C U5 and disjoint
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subsets {W; C U;" : i € I}, such that W; C Nyjue(w;) and |W;| = d; for each i € I. Let Uq = {w; :i € I}
and Up = U;e;W;. Then, |I| < £ and the maximality of I implies that every vertex in U)" \ Uy has at
most /n blue neighbours in Uf \ Up. Therefore, by Lemma G contains a copy of T in red. This

completes the proof of Theorem O
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