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ABSTRACT. We study the F-decomposition threshold dr for a given graph F. Here an F-
decomposition of a graph G is a collection of edge-disjoint copies of F' in G which together
cover every edge of G. (Such an F-decomposition can only exist if G is F-divisible, i.e. if
e(F) | e(@) and each vertex degree of G can be expressed as a linear combination of the
vertex degrees of F'.)
The F-decomposition threshold dr is the smallest value ensuring that an F-divisible
graph G on n vertices with §(G) > (6r + o(1))n has an F-decomposition.
Our main results imply the following for a given graph F', where §5 is the fractional
version of §r and x := x(F):
(i) dr < max{dh, 1 - 1/(x+ D}
(ii) if x > 5, then 6r € {65,1 —1/x,1 —1/(x + 1)}
(iii) we determine dr if F' is bipartite.
In particular, (i) implies that dx, = d%, . Moreover, combined with bounds on d%, by
Barber, Kiihn, Lo, Montgomery and Osthus, (i) gives the best explicit bound on §r which
holds for arbitrary graphs F. Our proof involves further developments of the recent ‘iter-
ative’ absorbing approach.

1. INTRODUCTION

Let F' be a fixed graph. A fundamental theorem of Wilson [20] states that for all suffi-
ciently large n, the complete graph K, has an F-decomposition (subject to the divisibility
conditions discussed below). Here, an F'-decomposition of a graph G is a collection of edge-
disjoint copies of F'in G which together cover every edge of G. The case when F is a triangle
is known as Kirkman’s theorem [13].

The problem of determining whether an arbitrary graph G has an F-decomposition is
much more difficult (in fact, the corresponding decision problem is NP-complete (see [5])).
Recently there has been some significant progress in extending Wilson’s theorem to dense
graphs, i.e. graphs of large minimum degree — the current paper will build on this.

A clearly necessary condition for the existence of an F-decomposition is that e(F) | e(G).
If this is satisfied, then we say that G is F'-edge-divisible. Moreover, for r € N, we call G
r-divisible, if r | dg(x) for all z € V(G). We say that G is F-degree-divisible if it is ged(F)-
divisible, where gcd(F) := ged{dp(v) : v € V(F)} (this is another trivially necessary
condition for the existence of an F-decomposition). If a graph G is both F-edge-divisible
and F-degree-divisible, then we simply say that G is F'-divisible.

For a fixed graph F', let dr be the minimum of the set of all non-negative real numbers
0 with the following property: for all u > 0 there exists an ng € N such that whenever
G is an F-divisible graph on n > ng vertices with 6(G) > (0 + p)n, then G has an F-
decomposition. Clearly, the minimum exists. Note that isolated vertices in F' are irrelevant
and the F-decomposition problem is trivial if F' has only one edge. Thus in all our statements
concerning a given graph F', we will assume that F' has no isolated vertices and e(F) > 2
without mentioning this explicitly.
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The purpose of this paper is to investigate the above F-decomposition threshold §r. In
particular, we determine dr for all bipartite graphs, improve existing bounds for general F'
and prove a ‘discretisation’ result for the possible values of dp.

1.1. Bounding the decomposition threshold for arbitrary graphs. Our first main
result (Theorem 1.1) bounds the decomposition threshold dp in terms of the approximate
decomposition threshold 5&?, the fractional decomposition threshold 47, and the threshold
0% for covering a given edge. We now introduce these formally.

Let F' be a fixed graph. For n > 0, an n-approximate F'-decomposition of an n-vertex
graph G is a collection of edge-disjoint copies of F' contained in G which together cover all
but at most nn? edges of G. Let §}. be the smallest § > 0 such that for all u > 0 there
exists an ng € N such that whenever G is a graph on n > ng vertices with 6(G) > (0 + p)n,

then G has an n-approximate F-decomposition. Clearly, 5}7; > 07 whenever i/ < 7. We let
o%F = SUP,;~0 0 -

Let G be the set of copies of Fin G. A fractional F-decomposition of G is a function
w: G — [0,1] such that, for each e € E(G),

(1.1) > w(F') =1.
FIeGF : ec E(FY)
Note that every F-decomposition is a fractional F-decomposition where w(F’) € {0, 1}.

Let 6% be the smallest § > 0 such that for all g > 0 there exists an ng € N such that
whenever G is an F-divisible graph on n > ng vertices with §(G) > (§ + p)n, then G has a
fractional F’-decomposition. Usually the definition considers all graphs G (and not only those
which are F-divisible) but it is convenient for us to make this additional restriction here as
07 is exactly the relevant parameter when investigating ép (in particular, we trivially have
03 < 6r). Haxell and R6dl [10] used Szemerédi’s regularity lemma to show that a fractional
F-decomposition of a graph G can be turned into an approximate F-decomposition of G
(see Theorem 11.3). This implies %" < &% (see Corollary 11.4).

Let 6% be the smallest § such that for all 1 > 0 there exists an ng € N such that whenever
G is a graph on n > ng vertices with §(G) > (0 + p)n, and € is an edge in G, then G
contains a copy of F' which contains ¢’.

Our first result bounds dp in terms of the approximate decomposition threshold (5%+ and
the chromatic number of F. Parts (ii) and (iii) give much more precise information if x > 5.
We obtain a ‘discretisation result’ in terms of the parameters introduced above. We do not
believe that this result extends to x = 3,4 (see Section 15 for a further discussion). On the
other hand, we do have dr € {0,1/2,2/3} if x(F) = 2 (see Section 1.3). We also believe
that none of the terms in the discretisation statement can be omitted.

Theorem 1.1. Let F be a graph with x := x(F).
(i) Then 6p < max{d% 1 —1/(x +1)}.
(i) If x > 5, then dp € {max{0%, 0%}, 1 —1/x,1 —1/(x +1)}.
(ii) If x > 5, then 0p € {85, 1 —1/x,1—1/(x + 1)}

Theorem 1.1(i) improves a bound of 67 < max{d%",1— 1/3r} proved in [2] for r-regular
graphs F'. Also, the cases where F' = K3 or Cy of (i) were already proved in [2].

Since it is known that 5?(t >1—1/(r+1) (see e.g. [22]), Theorem 1.1 implies that the
decomposition threshold for cliques equals its fractional relaxation.

Corollary 1.2. For allr > 3, 0k, = 5% = 5??;.

1.2. Explicit bounds. Theorem 1.1 involves several ‘auxiliary thresholds’ and parameters
that play a role in the construction of an F-decomposition. Bounds on these of course lead
to better ‘explicit’ bounds on dp which we now discuss.

The central conjecture in the area is due to Nash-Williams [17] (for the triangle case) and
Gustavsson [9] (for the general case).



Conjecture 1.3 (Gustavsson [9], Nash-Williams [17]). For every r > 3, there exists an ng =
no(r) such that every K,-divisible graph G on n > ng vertices with 6(G) > (1 —1/(r +1))n
has a K,-decomposition.

For general F', the following conjecture provides a natural upper bound for §r which
would be best possible for the case of cliques. It is not clear to us what a formula for
general F' might look like.

Conjecture 1.4. For all graphs F, 6p <1 —1/(x(F)+1).

Note that by Theorem 1.1 in order to prove Conjecture 1.4 it suffices to show 5%+ <
1 —1/(x(F)+1). This in turn implies that Conjecture 1.4 is actually a special case of
Conjecture 1.3. Indeed, it follows from a result of Yuster [23] that for every graph F,

0+ 0+ 0+ %
0 < 6KX<F)’ and thus 0" < 5KX(F) < 5Kx(F)‘

In view of this, bounds on ¢ are of considerable interest. The following result gives the
best bound for general r (see [1]) and triangles (see [6]).

Theorem 1.5 ([1], [6]).
(i) For every r > 3, we have 63, <1— 10~4p3/2,
(i) 0%, < 9/10.

This improved earlier bounds by Yuster [22] and Dukes [7]. Together with the results in [2],
part (ii) implies dx, < 9/10. More generally, combining Theorem 1.5 and Theorem 1.1(i)
with the fact that 5%+ < 59{+(F) < 0% () OD€ obtains the following explicit upper bound on

X X

the decomposition threshold.

Corollary 1.6.
(i) For every graph F, §p <1 — 10~*x(F)~%/2,
(i1) If x(F') = 3, then ép < 9/10.

Here, (i) improves a bound of 1 — 1/max{10*y(F)3/2,6e(F)} obtained by combining
the results of [1] and [2] (see [1]). It also improves earlier bounds by Gustavsson [9] and
Yuster [22, 24]. A bound of 1 — ¢ also follows from the results of Keevash [12].

In the r-partite setting an analogue of Corollary 1.2 was proved in [3], an analogue of
Theorem 1.5(i) (with weaker bounds) in [16] and an analogue of Theorem 1.5(ii) (again with
weaker bounds) in [8]. These bounds can be combined to give results on the completion of
(mutually orthogonal) partially filled in Latin squares. Moreover, it turns out that if § > 6}
(in the non-partite setting), then there exist extremal graphs that are extremely close to
large complete partite graphs, which adds further relevance to results on the r-partite setting
(see Section 15).

1.3. Decompositions into bipartite graphs. Let F' be a bipartite graph. Yuster [21]
showed that 6 = 1/2 if F' is connected and contains a vertex of degree one. Moreover,
Barber, Kiihn, Lo and Osthus [2] showed that dc, = 2/3 and d¢, = 1/2 for all even £ > 6
(which improved a bound of d¢, < 31/32 by Bryant and Cavenagh [4]). Here we generalise
these results to arbitrary bipartite graphs.

Note that if F' is bipartite, it is easy to see that 5%+ = 0, as one can trivially obtain
an approximate decomposition via repeated applications of the Erdés-Stone theorem. This
allows us to determine dp for any bipartite graph F. To state the result, we need the
following definitions. A set X C V/(F) is called Cy-supporting in F if there exist distinct
a,b e X and ¢,d € V(F) \ X such that ac, bd, cd € E(F). We define

T(F) := ged{e(F[X]) : X CV(F) is not Cy-supporting in F'},
T(F) := ged{e(C) : C is a component of F'}.

So for example 7(F) = 1 if there exists an edge in F' that is not contained in any cycle
of length 4, and 7(F) > 1 if F is connected (and e(F) > 2). The definition of 7 can
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be motivated by considering the following graph G: Let A, B,C be sets of size n/3 with
G[A], G[C] complete, B independent and G[A, B] and G[B, C] complete bipartite. Note that
d(G) ~ 2n/3. It turns out that the extremal examples which we construct showing dp >
2/3 for certain bipartite graphs F' are all similar to G (see Proposition 13.11). Moreover,
7(F) = 1 if for any large c there is a set of copies of F' in G whose number of edges in G[A]
add up to c.

We note that 7(F') | ged(F') and ged(F) | 7(F') (see Fact 13.2). The following theorem
determines 0 for every bipartite graph F.

Theorem 1.7. Let F' be a bipartite graph. Then

2/3 if T(F) > 1;
dp =10 if T(F) =1 and F has a bridge;
1/2  otherwise.

We will prove Theorem 1.7 in Section 13. The next corollary translates Theorem 1.7 into
explicit results for important classes of bipartite graphs.

Corollary 1.8. The following hold.

(i) Let s,t € N with s+t > 2. Then 0k, , = 1/2 if s and t are coprime and ik, =2/3
otherwise.
(ii) If gcd(F) =1 and F is connected, then op = 1/2.
(iii) If F' is connected and has an edge that is not contained in any cycle of length 4, then
op =1/2.

(For (ii) and (iii) recall that we always assume e(F) > 2.) Note that 7(Ks;) = ged(s,t).
Then (i)—(iii) follow from the definitions of 7 and 7.

1.4. Near-optimal decompositions. Along the way to proving Theorem 1.1 we obtain
the following bound guaranteeing a ‘near-optimal’ decomposition. For this, let 63* be the
smallest § > 0 such that for all g > 0 there exists an ng € N such that whenever G is a graph
on n > ng vertices with §(G) > (6 + p)n, and z is a vertex of G with ged(F') | dg(x), then
G contains a collection F of edge-disjoint copies of F' such that {zy : y € Ng(x)} C JF.
Loosely speaking, 077 is the threshold that allows us to cover all edges at one vertex. For
example, if F' is a triangle, then 6} is essentially the threshold that N¢(z) contains a perfect
matching whenever dg(x) is even. Note that 037 > §%.

The following theorem roughly says that if we do not require to cover all edges of G
with edge-disjoint copies of F', but accept a bounded number of uncovered edges, then the
minimum degree required can be less than if we need to cover all edges.

Theorem 1.9. For any graph F' and p > 0 there exists a constant C = C(F, ) such that
whenever G is an F-degree-divisible graph on n vertices satisfying

0(G) = (max{dy", 05"} + p)n
then G contains a collection of edge-disjoint copies of F' covering all but at most C' edges.
Here, 63¥ <1—1/x(F) (see Corollary 14.13). For many bipartite graphs F', e.g. trees and
complete balanced bipartite graphs, our results imply that max{égf, 0} < op. It seems
plausible to believe that there also exist graphs F with x(F) > 3 such that max{§%", 6%} <

6r. However, the current bounds on 5%+ do not suffice to verify this. The proof of The-
orem 1.9 can be found in Section 5.

2. OVERVIEW OF THE PROOFS AND ORGANISATION OF THE PAPER

One key ingredient in the proofs of Theorems 1.1, 1.7 and 1.9 is an iterative absorption
method. Very roughly, this means that we build our decomposition of a given graph G in



many iterations, where in each iteration we add copies of F' to our current partial decom-
position. In the current proof, we can carry out this iteration until we have a ‘near-optimal
decomposition’ which covers all but a bounded number of edges of G. Let H be the graph
consisting of the leftover (i.e. uncovered) edges. This leftover graph H can then be absorbed
into a graph A which we set aside at the beginning (i.e. H U A has an F-decomposition).
Altogether this yields an F-decomposition of the original graph G.

More precisely, to obtain the near-optimal decomposition we proceed as follows. At the
beginning of the proof we will fix a suitable nested sequence of vertex sets V(G) = Uy 2
Uy D --- D Uy, which will be called a vortex in GG. After the ith iteration we can ensure that
the uncovered edges all lie in U;, which is much smaller than U;_;. We can also preserve the
relative density of the leftover graph G; after the ith iteration, i.e. 6(G;[U;])/|Ui| ~ 9, where
§ := 0(G)/|G|. We will show that this can be achieved provided that § > 6% and & > &%,
These iterative steps are carried out in Section 5. In particular, we obtain Theorem 1.9 as
a byproduct of this iterative absorption argument.

We now turn to the absorption step itself. The final set U, in the iteration will have
bounded size. This immediately implies that the final leftover graph H C G[U,| will also
have a bounded number of edges. In particular, there are only a bounded number Hi, ..., H;
of possibilities for H. The graph A will be constructed as the edge-disjoint union of absorbers
Ay, ..., As, where each A; is tailored towards H;. More precisely, the crucial property is
that both A; and A; U H; have an F-decomposition for each i € [s]. With this property, it
is clear that A has the required absorbing property, i.e. AU H; has an F-decomposition for
any of the permissible leftovers H;.

The absorbers will be constructed in several steps: rather than constructing A; directly,
we will obtain it as the ‘concatenation’ (equivalent to the edge-disjoint union) of several
‘transformers’ T'. The role of T is to transform H; into a suitable different graph H] (more
precisely, both H/UT and TUH; have an F-decomposition). We can then concatenate several
such transformers to transform H; into a disjoint union of copies of F', which trivially has
an F-decomposition.

This reduces the absorption problem to that of constructing transformers. Surprisingly,
the main hurdle for the latter is the ability to construct a transformer T" which simply moves
H; to a different position, i.e. transforms H; into an isomorphic copy H| of H; in G, with
a different vertex set. Once this is achieved, we can obtain more general transformers by
simple modifications.

Yet again, we do not construct these transformers directly, but construct them from
building blocks called ‘switchers’. These switchers are transformers with more limited
capabilities. The most important switchers are Cg-switchers and Ky ,-switchers. A Cg-
switcher S transforms the perfect matching E™ := {ujus, uguy, usug} into its ‘complement’
E™ := {ugus, uqus, uguy } along a 6-cycle. (The formal requirement is that both SUE™ and
S UE™ have an F-decomposition.) A Ky ,-switcher transforms a star with r leaves centred
at z into a star with the same leaves centred at z’/. Surprisingly, it turns out that these
building blocks suffice to build the desired transformers (see Lemma 9.1).

Occasionally, we build the above switchers from even more ‘basic’ ones. For example, in
Section 10 we will build a Cg-switcher by combining Cy-switchers in a suitable way. Apart
from proving the existence of switchers, we also need to be able to find them in G. This is
where we may need the condition that 6(G) > (1—1/(x+1)+o0(1))|G|. To achieve this, we
will apply Szemerédi’s regularity lemma to G to obtain its reduced graph R. We will then
find a ‘compressed’ version (i.e. a suitable homomorphism) of the switcher in R. This then
translates to the existence of the desired switcher in G via standard regularity techniques.

The switchers are also key to our discretisation results in Theorem 1.1(ii) and (iii). We
show that if 0p < 1—1/(x+1), then to find the relevant switchers (and hence, as described
above, the relevant absorbers) we need the graph G only to have minimum degree (1 —
1/x + o(1))|G|. Similarly, if 6 < 1 — 1/x, the minimum degree we require is only (1 —
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1/(x = 1) +0(1))|G|. As discussed earlier we require the minimum degree to be at least
(max{6%", 6%} + 0(1))|G| in order to iteratively cover all but a constant number of edges
in G (see Theorem 1.9). This may not be sufficiently high to construct our absorbers, but
this discretisation argument will allow us to conclude that if 6 exceeds max{6%", 5%} then
it can take at most two other values, 1 —1/(x +1) or 1 — 1/x (see Theorem 12.4).

Most of the above steps are common to the proof of Theorems 1.1 and 1.7, i.e. we can
prove them in a unified way. The key additional difficulty in the bipartite case is proving
the existence of a Cg-switcher for those F' with ép = 1/2.

The iterative absorption approach was initially introduced in [14] and was further de-
veloped in the present context of F-decompositions in [2]. The present iteration procedure
is much simpler than the one in [2]. The concept of transformers also originates in [2], but
the approach via switchers is a new feature which allows us to go significantly beyond the
results in [2].

This paper is organised as follows. The following section contains the basic notation
that we use. Sections 4 and 5 deal with the ‘near-optimal decomposition’. More precisely,
Section 4 introduces the concept of vortices, and in Section 5 we perform the iteration based
on these vortices, leading to the proof of Theorem 1.9.

Sections 6-10 and 12 are devoted to absorbers, which are constructed in several steps
as described above. Section 6 recalls well-known results on e-regularity and introduces the
setting of an («, €, k)-partition in which we intend to find absorbers. In Section 7, we combine
the ‘near-optimal decomposition’ with the concept of absorbing in order to prove a general
decomposition theorem. In order to apply this theorem, we need to be able to find absorbers
in a graph with an («, ¢, k)-partition. In Section 8, we introduce the concepts that allow
us to achieve this. In Section 9 we will construct transformers out of switchers. Section 10
deals with the construction of switchers. Finally, in Section 12 we use transformers to
build absorbers, which we can then use to obtain upper bounds on dr using the general
decomposition theorem. In addition, in Section 11, we prove some relations between the
auxiliary thresholds which we need for our discretisation result.

In Section 13, we determine dr for all bipartite graphs F. Finally, in Section 14 we will
investigate 63" and then combine all our results to prove Theorem 1.1.

3. NOTATION AND TOOLS

For a graph G, we let |G| denote the number of vertices of G, e(G) the number of
edges of G, and G the complement of G. For a vertex v € V(G), we write Ng(v) for the
neighbourhood of v and dg(v) for its degree. More generally, for vertex subsets S,V C V(G),
we let Ng(S,V) := V N[),cqg Na(v) denote the set of vertices in V' that are adjacent to
all vertices in S, where Ng(0,V) := V. We then define dg(S,V) := |Ng(S,V)| and write
dg(z, V) if S = {x}.

A set of edge-disjoint copies of F' in a graph G is called an F'-collection. Thus an F-
decomposition of G is an F-collection that covers every edge of G. If G and H are two
edge-disjoint graphs, we write G J H for the union of G and H.

Let G be a graph and let Vi, ..., V) be disjoint subsets of V(G). We write G[V;] for the
subgraph of G induced by Vi. Moreover, if k > 2, then G[V1,..., V]| denotes the k-partite
subgraph of G induced by Vi,...,Vi. If Vi,...,V} form a partition P of V(G), we write
G[P] instead of G[V1,..., Vi].

If G is a graph and H is a subgraph of G, then G — H denotes the graph with vertex set
V(G) and edge set E(G) \ E(H). Moreover, if X C V(G), then G — X := G[V(G) \ X].

For a graph K and ¢t € N, we let K (¢) denote the graph obtained by replacing each vertex
of K with t vertices and each edge of K with a copy of K;;. A homomorphism ¢: H — G
from a graph H to a graph G is a map ¢: V(H) — V(G) such that ¢(z)¢(y) € E(G)
whenever zy € E(H). We let ¢(H) denote the subgraph of G with vertex set ¢(V(H)) and
edge set {p(x)p(y) : xy € E(H)}. We say that ¢ is edge-bijective if e(¢p(H)) = e(H). We



will sometimes identify a graph with its edge set if this enhances readability and does not
affect the argument.

For n € N and distinct 41, ..., i, € [n], we let (i1, ...,ix) denote the permutation 7: [n] —
[n] defined as 7(i;) = ij41 for all j € [k — 1], w(ix) := 41 and 7(i) := ¢ for all i €
[n)\ {i1,...,ix}. We write 2V for the power set of U.

We write < y to mean that for any y € (0, 1] there exists an z¢ € (0,1) such that for
all z < zy the subsequent statement holds. Hierarchies with more constants are defined in
a similar way and are to be read from the right to the left. The expression a = b 4 ¢ means
that a € [b— ¢, b+ ].

Let m,n, N € N with max{m,n} < N. Recall that a random variable X has hypergeo-
metric distribution with parameters N,n,m if X := |S N [m]|, where S is a random subset
of [N] of size n. We write X ~ B(n,p) if X has binomial distribution with parameters n, p.
We will often use the following Chernoff-type bound.

Lemma 3.1 (see [11, Remark 2.5 and Theorem 2.10]). Let X ~ B(n,p) or let X have a
hypergeometric distribution with parameters N,n,m. Then

P(|X — E(X)| > t) < 2e2°/7,
4. VORTICES

As explained earlier, our proof method involves an ‘iterative’ absorption process, where in
each iteration, we ensure that the leftover edges are all contained in some set U; where U; is
much smaller than U;_;. The underlying structure is that of a ‘vortex’ which we introduce
now.

Definition 4.1. Let G be a graph on n vertices and W C V(G). A (0, u, m)-vortex in G
surrounding W is a sequence Uy 2 Uy D --- D Uy such that

(VJ) Uop = V(G)’

(V2) U] = LlU;-1]) for alli € [];

(V3) |Ugl =m and W C Uy;

(V4) da(x,U;) > 68|U;| for alli € [¢], x € U;—1.

Often W plays no role and we just refer to a (6, u, m)-vortex in G in this case.

Our aim is to show that every large graph of high minimum degree contains a vortex
such that the final set U, has constant size. We can also guarantee that a small given set
W is contained in this final set (i.e. the vortex surrounds W). This will only be relevant
in Section 14 (with [WW| = 1). In the main application, we will have W = (). The next
proposition follows easily from Lemma 3.1.

Proposition 4.2. Let § € [0,1] and 1/n < p. Suppose that G is a graph on n vertices with
0(G) > on and W C V(G) with |W| < 1/u. Then V(G) contains a subset U of size |un]
such that dg(x,U) > (8 — 2n~/3)|U| for every x € V(G) and W C U.

We now iterate the above proposition in order to obtain a vortex for a given graph G
such that the final set has constant size.

Lemma 4.3. Let 6 € [0,1] and 1/m’ < p < 1. Suppose that G is a graph on n > m/
vertices with 6(G) > én and W C V(G) with |W| < 1/u. Then G has a (6 — p, 1, m)-vortex
surrounding W for some [um'| <m <m’.

Proof. Recursively define ng := n and n; := |un;_1|. Observe that u‘n > n; > pin—1/(1—
p). Further, for i € N, let a; := n~ /3 el p~U=D/3 with ag := 0. Let £ := 1+ max{i >
0 : n; > m'} and let m := ny. Note that [um'| < m < m/. Now, suppose that for some

i € [¢], we have already found a (6 — 3a;—1, i, nj—1)-vortex Uy, ...,U;—1 in G surrounding
W. In particular, §(G[U;—1]) > (0 —3a;—1)n;—1. By Proposition 4.2, there exists a subset U;

of Uj_1 of size n; such that dg(x,U;) > (§ — 3a;—1 — 2n;_11/3)nl forall x € U;_1 and W C U;.
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Thus, Uy,...,U; is a (6 — 3a;, pt, n;)-vortex in G surrounding W. Finally, Up,...,U, is a
(6 — 3ag, g, m)-vortex in G surrounding W. Observe that

13 Iu—K/B -1 (Mé—ln)—l/?) m/—1/3
M—1/3_1 - 1_ﬂ1/3 - 1_,“1/3

since uéiln > ny_1 > m/, and so the lemma follows. O

ag=mn < u/3

5. NEAR-OPTIMAL DECOMPOSITION

The goal of this section is to prove the following lemma. Given a vortex, it finds a ‘near-
optimal’ decomposition in a graph of sufficiently large minimum degree. The proof proceeds
using an ‘iterative’ absorption approach.

Lemma 5.1. Let § := max{0%", 0%}, Assume that 1/m < p,1/|F|. Let G be an F-degree-
divisible graph with 6(G) > (04 3u)|G| and let Uy D Uy 2 -+ D Uy be a (6 +4p, 1, m)-vortex
in G. Then there exists a subgraph Hy of G[Uy] such that G — Hy is F-decomposable.

The proof of Lemma 5.1 relies on a number of further tools. Before we start proving
Lemma 5.1, we show how it implies Theorem 1.9.

Proof of Theorem 1.9. Let F and u be given and choose m’ sufficiently large. Let
§ := max{d%", 6% }. Now, let G be any F-degree-divisible graph with §(G) > (6 + 5u)n. If
n < m/, then e(G) < m'2. If n > m/, then by Lemma 4.3, G contains a (& + 4, i, m)-vortex
Uy 2U; 2 --- 2 Uy for some |pm'| < m < m'. Then, by Lemma 5.1, there exists an F-
collection that covers all edges of G' except some edges of G[Uy], that is, at most m? < m/?
edges. O

5.1. Bounded covering of edges around a vertex. Many times in the proof of Lemma 5.1,
we will wish to find copies of F' which cover all the edges around some vertex, x say. To
do so, we will use the definition of ¢%*, but we will often further wish to ensure that no
vertex lies in many of these copies of F' (except, of course, z). This motivates the following
definition and lemma.

Let 5%x’bd be the smallest § > 0 such that for all i > 0 there exists an ng € N such that
whenever G is a graph on n > ng vertices with §(G) > (0 + u)n, and z is a vertex of G
with ged(F) | dg(x), then G contains a collection F of edge-disjoint copies of F' such that
{zy : y € Ng(z)} C E(F) and A(JF —z) < no.

Clearly, 5}?,&;(1 > 07". Maybe surprisingly, the following is true.

Lemma 5.2. For all graphs F, we have 5})7x’bd =%,

To prove Lemma 5.2, we need the following definition. Given a graph G and a vertex
x € V(G) with r | dg(z), we call a partition V1,..., Vi of V(G) \ {z} a (3, m,r)-splitting
with respect to x, if for all i € [k]:
o 1| dg(x, V),
o 0(G[Vi U{x}]) = 0|Vif;
e m/3 <|Vi| <2m.
We shall consider (d,m,r)-splittings where m is bounded and k is comparatively large.
Their existence will follow from the next proposition and the subsequent lemma, which are
similar to Proposition 4.2 and Lemma 4.3 in their interplay.

Proposition 5.3. Let 6 € [0,1] and 1/n < 1/r. Suppose that G is a graph on n+1 vertices
with §(G) > én and x is a vertex of V(G) such that r | dg(x). Then V(G) \ {z} can be
partitioned into two sets Vi, Vy such that v | dg(z,V;) and dg(v,V;) > (6 — 2n~Y3)|Vi| for
every v € V(G) and i € {1,2}, and |V1| < |Va| < [V1] + 2r.

Proof. Let V{, V] be a partition of V(G) \ {z} such that



(1) Vi < V3l < V| + 15

(2) dg(v,V/) > (6 —n=1/3)|V/| for all v € V(G) and i € [2).
That such a partition exists can be seen by choosing V{ as a random subset of V(G) \ {z}
of size |n/2]. Applying Lemma 3.1 shows that with probability at least 3/4, V{ and V4 :=
V(G)\ ({=} U V) have the desired properties. Then by removing at most r — 1 neighbours
of z from V] and adding them to V3, we can obtain the desired partition Vi, V5. a

Lemma 5.4. Let 6 € [0,1] and 1/m < p,1/r. Suppose that G is a graph on n+1 > m+4r
vertices with 6(G) > én and x is a vertex of G with r | dg(x). Then G has a (6 — p,m,r)-
splitting with respect to x.

Proof. Define n;r = n277 +4r(1 — 277) and n; = n277 — 4r(1 — 277), which need
not be integers. Further, for j € N, let a; := n~1/3 Zj’e[j] 20" =1/3 with ag := 0. Let
(:=1+max{j>0: n;r >m+4r}.

Now, suppose that for some j € [/], we have already found a partition P;_; of V(G)\ {z}
such that for all V' € P;_;

(i)j—1 njy S|V <nj g
(i)j—1 7 [ do(z,V);
(iil)j—1 6(G[V U {z}]) = (6 — 3a;-1)[V].

(Note that we can take Py := {V(G) \ {z}}.) We now find a refinement P; of P;_; such
that (1)]*(111)J hold.

Consider V' € P and let G’ := G[V U {z}]. Since |V| > n, | > n; , — 8 > m — 4r,
we can apply Proposition 5.3 to obtain a partition of V' into Vj, Vs such that r | dg/(z, V)
and dgr(v, Vi) > (8 — 3aj_1 — 2|V|7Y/3)|Vi| for every v € V U {x} and i € {1,2}, and
V1| < |Va| < |Vi]+2r. It is easy to check that (i);—(iii); hold for V; and V5. Hence, refining
every V € P;_; in this way yields a partition P; such that (i);—(iii); hold.

Observe that
13 2¢/3 _ 1 - (n27(€fl)>71/3 - m71/3 - M/3

21/3 — 1 1—271/3 1—271/3

ag=n

since n2~ (=1 > ”2—1 — 4r > m. Thus Py is the desired splitting as m/3 < n, < nZ < 2m.
O

Proof of Lemma 5.2.  Let r := ged(F). It is sufficient to show 97" < 647, Let
pu>0. Let n’ =n/(u/4, F) be such that whenever G’ is a graph on at least n’ vertices with
(G > (0% + p/4)|G'| and 2’ is a vertex of G’ with ged(F) | der(2'), then G’ contains an
F-collection such that every edge at a’ is covered. Let 1/ng < 1/n’,1/r,u. Let G be any
graph on n > ng vertices with 6(G) > (§ + p)n and let z € V(G) with r | dg(z). We have
to find an F-collection F such that F covers all edges at x and A(JF — x) < ng.

By Lemma 5.4, there exists a (d + 11/2,no/2, r)-splitting V1, ..., Vi with respect to z. For
each i € [k], let G; := G[V; U {x}]. Thus, |G;| > |Vi| = no/6 >/, 6(Gi) > (0 + n/2)|Vi| >
(0 + u/4)|G;| and r | dg,(xz). Hence, by our choice of n’, G; contains an F-collection F;
such that every edge at x is covered. Let F := Fj U---U Fi. Then, A(JF — z) <
max{|Vi|,...,|Vk|} < no. O

5.2. Bounded approximate decompositions. For v > 0, a v-bounded approximate F-
decomposition of an n-vertex graph G is a collection F of edge-disjoint copies of F' contained
in G such that A(G—JF) < yn. Let (5}’bd be the smallest 6 > 0 such that for all ;1 > 0 there
exists an ng € N such that whenever G is a graph on n > ng vertices with 6(G) > (0 + p)n,
then G has a «-bounded approximate F-decomposition.
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Trivially, for all v > 0 we have (5}’bd > (5}/ 2, the threshold for a y-approximate decom-

position. Here, we will build to giving an upper bound for 5}7;:bd in Lemma 5.7. To find a
bounded vy-approximate F-decomposition of a graph G with large minimum degree, we will
start by breaking G into a large (but constant) number of edge-disjoint subgraphs which
each have a high minimum degree but much fewer vertices than G. We then iteratively find
approximate decompositions of these subgraphs. In doing so, we track vertices which have
high minimum degree in the remainder of some previous approximate decomposition, and
ensure these vertices always have small degree in the remainder of the later approximate
decompositions. We will use the following lemma to find approximate decompositions where
vertices in a specified subset X have low degree in the remainder.

Lemma 5.5. Let 1/n < n < p,1/|F|. Let 6 := max{d},6%}. Suppose that G is a graph
on n wertices with §(G) > (8 4+ p)n and that X is a subset of V(G) of size at most n'/3n.
Then there exists a subgraph H of G such that G — H is F-decomposable and Y := {x €
V(G) : dg(x) > \/mn} has size at most 4,/nn and does not contain any vertex from X.

Proof. By Lemma 5.2, we may assume that the following holds:

(x) Whenever G’ is a graph on at least n/2 vertices with 6(G’) > (6 + p/2)|G’| and
x € V(G") with ged(F) | dgr(z), then G’ contains a collection F of edge-disjoint
copies of F such that all edges at z are covered and A(JF —z) < 5~ V4,

Let x1,...,zy be an enumeration of X. For i € [{], let 0 < r; < gcd(F') be such that
dg(x;) = r; mod ged(F). Let A; be a set of r; vertices in Ng(x;) \ X. Let Go be the
graph obtained from G by deleting all edges from z; to A;, so gcd(F) | dg,(x;) for all i € [{]
and §(Gp) > (6 + 3u/4)n. We will now successively find F-collections F; such that F; is a
collection of edge-disjoint copies of F'in G; covering all edges at x; and A(|J F; —z;) < n=1/4,
where Gi == (Go — Uje;i—1yUF5) \ {z1,...,zi—1}. Suppose that for some i € [{], we have
already found Fi,...,F;—1. Note that ged(F) | dg,(x;). Moreover, §(G;) > (6 + 3u/4)n —
n~Y4(i — 1) > (0 + p/2)n. Therefore, by (x), there exists a collection F; of edge-disjoint
copies of F' in G; such that all edges at z; are covered and A(|JF; — z;) < 77*1/ 4,

Let 7' := Ueiq Fi and Gea := (G = UF) \ {z1,...,ze}. S0 6(Gey1) = (6 + p/2)n.
Let F” be an n-approximate F-decomposition of Gyy1. Let H := G —|JF' — |JF” and
Y :={zx e V(G) : dy(xz) > /qn}. Since dy(z) < gcd(F) for all z € X, we have Y N X = ().
Finally, e(H) < nn® + | X|ged(F) < 2nn? and 2e(H) > |Y|\/nn. Hence, Y| < 4,/nn. O

In order to obtain an upper bound for 5}’bd, we need a K;-decomposition of K for some
large t and some even larger s. We could apply Wilson’s theorem, but we don’t need
such heavy machinery here, only the following simple proposition. We include a proof for
completeness.

Proposition 5.6. Let p be a prime. Then for every k € N, K has a K),-decomposition.

Proof. First, we prove that K,(p) is Kj,-decomposable. Let Vi,...,V, be the partition of
the vertex set into independent sets of size p and let v;1,...,v;, be an enumeration of V;.
We define a set F of K)’s as follows. The p-tuple (vi;,,...,vp;,) is the vertex set of a copy
of K, in F if and only if there exists an € {0,1,...,p — 1} such that i;41 —i; =r mod p
for all j € [p], where i1 := i1. It is easy to see that F is a Kj,-decomposition, as p is prime.

We now prove the statement by induction on k. For k = 1, there is nothing to show.
For k > 1, do the following. Partition the vertices of K into p*~1 clusters of size p. The
edges inside each cluster form a copy of K, so we can remove them. Consider the complete
reduced graph where the clusters are vertices. By induction, this reduced graph has a K-
decomposition. Every copy of K, in this decomposition corresponds to a copy of K,(p) in
the original graph, which is Kj,-decomposable by the above. O
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Lemma 5.7. For every v > 0, 5}’bd < max{d%", 597},

Proof. Let 1/n < n < 1/s < 1/t < p,v,1/|F| and assume that ¢ is prime and s is a
power of ¢. Thus, by Proposition 5.6, K has a K;-decomposition. Let ¢ := max{d}, 0%}
and suppose that G is a graph on n vertices with §(G) > (0 + u)n. We have to show that
G has a y-bounded-approximate F-decomposition.
Let P = {V4,...,Vs} be a partition of V(G) with the following properties:
(i) [Vil = (L £ n)n/s;
(i) dg(x, Vi) > (0 +2u/3)|V;| for all z € V(G), i € [s].
To see that such a partition exists, independently for every vertex x € V(G), choose an
index ¢ € [s] uniformly at random and put z into V;. Apply Lemma 3.1 to see that such a
random partition satisfies (i) and (ii) with probability at least 3/4.
Note that A(G — G[P]) < (1 +n)n/s < yn/2. Thus it is enough to show that G[P] has
a y/2-bounded-approximate F-decomposition.
Let {T1,...,T;} be a K;-decomposition of K (where we assume that V(K;) = [s]).
Clearly, ¢ < s2. For i € [¢], define G; := Ujker(r,) GIV: Vil. So the G; form a decomposition
of G[P]. Moreover, using (i) and (ii), we deduce

0(Gi) = (0 +2u/3)(1 =n)(t = V)n/s = (6 + p/2)(L+ n)tn/s > (6 + p/2)|Gil.

Start with BAD := (). For i = 1,...,¢, do the following: Apply Lemma 5.5 with G;,
/2 and BAD NV (G;) playing the roles of G, i and X to obtain a subgraph H; of G; such
that G; — H; is F-decomposable, dg,(z) < \/n|G;| for all © € BAD and dg,(z) > /0|Gi|
for at most 4,/7|G;| vertices x € V(G;). Add all the vertices = with dg,(x) > /7|Gi| to
BAD. Since |BAD| < s%4,/5(1 + n)tn/s < n*/3(1 — n)tn/s at any time, the conditions
of Lemma 5.5 are satisfied each time. Let H := Uie[é} H; and let z be any vertex of G.
Crucially, dg,(x) > \/n(1 4 n)tn/s for at most one i € [¢]. Therefore,

dp(x) < ly/ml+n)tn/s+ (1 +n)tn/s < 2s\/ntn+ 2tn/s < yn/2,

as required. O

5.3. Covering a pseudorandom remainder. In proving the main lemma in this section,
we will have the following situation. Given a small set U in our graph G, we will have found
copies of F' which cover all the edges in G — U and most of the edges between V(G) \ U
and U. We will wish to find copies of F' which cover the remaining edges between V(G) \ U
and U (while necessarily using some edges in G[U]). The following lemma tells us this is
possible if our remaining edges satisfy certain pseudorandom conditions.

Lemma 5.8. Let 1/n < p < u,1/|F|. Let G be a graph on n vertices and let U be a subset
of V(G) of size at least yn. Let W := V(G)\ U and let wy,...,w, be an enumeration of
W. Suppose there are sets Uy, ...,U, C U with the following properties:

(i) ged(F) | dg(w;) for alli € [p];

(i) Ng(w;) C U; for all i € [p];

(i.z'z') dg(z,U;) > (03 + p)|Us| for all x € U U {w;};

(w) |Ui| = p|U[/2;

(v) U; NU;| < 22U for all 1 <i < j<p;

(vi) every x € U is contained in at most 2pn U;’s.
Then there exists a subgraph Gy of G[U| such that Gy U G[U, W] is F-decomposable and
A(Gr) < g0

The proof of Lemma 5.8 is quite similar to that of Lemma 10.7 in [2], we include it for
completeness. The proof will make use of the following result.
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Proposition 5.9 (Jain, see [18, Lemma 8]). Let X,..., X, be Bernoulli random variables
such that, for any i € [n] and any x1,...,z;—1 € {0,1},

PX;=1|X1=a21,...,Xi 1 =21) < p.
Let B~ B(n,p) and X := X1+ -+ X,. Then P(X > a) <P(B > a) for any a > 0.

Proof of Lemma 5.8. Let A := p~ /4. By Lemma 5.2, we may assume that the following
holds.

(x) Whenever G is a graph on at least p|U|/2 vertices with 6(G’) > (0% + 11/2)|G’| and
x is a vertex in G’ with ged(F) | dg(x), then G’ contains a collection F of edge-
disjoint copies of F' such that all edges at = are covered and A(JF —z) < A. (In
other words, there is a spanning subgraph A of G’ — x such that AU G'[V(A), {z}]
is F-decomposable and A(A) < A.)

We want to find edge-disjoint subgraphs T1,...,T, in G[U] such that V(T;) = U;, T; U
G[U;, {w;}] is F-decomposable and A(T;) < A. Then, Gy := Ty U ---UT, is the desired
subgraph, since GuUG[U, W] = U, (TiUG[Us, {wi}]) by (ii) and A(Gy) < A-2pn < p2U],
using (vi).

We find 77, ...,T, in turn using a randomised algorithm. Let ¢ := [8p*/2|U|] and define
G, = G[Uj] for all j € [p]. Suppose that we have already found T1,...,Ts_; for some
s € [p]. We now define Ty as follows. Let Hy 1 := |Ji={ T; and let G, := (G — Hy_1)[Us].
If A(Hy_ 1[Us]) > Ap®?n, then let Ai,..., A; be empty graphs on U,. If A(H,_1[U]) <
Ap*/?n, then

8(GL) > 8(GUS)) — A(Hs—1[Us)) > (38 + p)|Us| — Ap**n
> (0% + p/2)(|Us] + 1) + (t — 1A,

by (iii) and (iv). Thus, by (x), we can find ¢ edge-disjoint subgraphs Aq,..., A; of G, which
are all suitable candidates for T;.

In either case, we have found edge-disjoint subgraphs Aj,..., A; of G%. Pick i € [¢]
uniformly at random and set T; := A;. The lemma follows if the following holds with
positive probability:

(5.1) A(H,[U;]) < Ap®/2n for all j € [p].

To analyse this, for s,j € [p] and u € Uj, let YJ"“ be the indicator function of the event
{dr,(u,Uj) > 1}. Let X7 := 3P | vZ*. Note that dr, (u, Uj) < YA, so dp,(u,U;) <
AX7H%  Therefore to prove (5.1) it suffices to show that with positive probability, X7* <
p3/?n for all j € [p] and u € Uj.

Fix j € [p] and u € U;. Let S7" be the set of indices s # j such that u € Us. By (vi),
594 < 2pn. Note that Y7 = 0 for all s ¢ S%* U {5}. So

(5.2) Xr<14 Y v
s€Siu
Let s1,...,8|g.u| be the enumeration of S such that s, < sy for all b € [|S9%] —1].

Note that dg, (u,U;) < |U; NUs,| < 2p%|U| by (v). So at most 2p%|U| of the subgraphs
b

A; that we picked in G;b contain an edge incident to w in G;. This implies that for all

Y1, Y1 € {0,1} and all b € [|S7¥]],

20°|U| _ p'/?

< —.
t - 4

Sb

PYS =1V =y, Y =yp) <
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Let B ~ B(|S7%, p'/2/4). By (5.2), Proposition 5.9 and the fact that |S7%| < 2pn we have
that

BX" > p%n) <P( Y Vi > 3p%°n/4) < B(B > 3p*7n/4)
SESIU

<P(|B —E(B)| > p*/*n/4) < 2¢77"/16,

where the last inequality holds by Lemma 3.1. Since there are at most n? pairs (j,u), there
is a choice of T, ..., T, such that X7* < p%2n for all j € [p] and all u € Uj, proving the
claim. O

5.4. Proof of Lemma 5.1. Before proving the main tool of this section (from which
Lemma 5.1 will follow simply by induction), we need one final proposition. Given a subset
R of a graph G with certain properties, and any sparse subgraph H of G — R, it allows
copies of F' to be found in G which cover the edges of H without covering any other edges
in G — R.

Proposition 5.10. Let 1/n < v < p,1/|F|. Let G be a graph on n vertices and let
V(G) = LY R such that |R| > pn and dg(z, R) > (8% + p)|R| for all z € V(G). Let H be
any subgraph of G[L] such that A(H) < «yn. Then there exists a subgraph A of G such that
A[L] is empty, AU H is F-decomposable and A(A) < p?|R|.

Proof. Let e1,...,e, be an enumeration of E(H). We will find edge-disjoint copies
Fy,...,F, in G such that F; contains e; and V(F;) N L = V(e;). Suppose we have
already found F1,...,Fj_; for some j € [m]. Let Gj_1 := Fy U--- U Fj_; and suppose
that A(Gj-1) < /An+ |F|. Let BAD :={z € V(G) : dg,_,(x) > \/yn}. Note that for all
reL,dg,  (r) <|FIA(H) < \/An,s0 BADNL = (). We have

e(Gj-1) < e(F)e(H) < |FPA(H)n < |[F[*yn?.

On the other hand, 2e(G,_1) > |BAD|,/yn. Thus, |BAD| < 2|F|*\/yn < p|R|/2. Let
G :=(G—Gj-1)[(R\ BAD)UV (ej)]. Observe that 6(G’) > (6% + p/4)|G'|, so there exists
a copy F; of F in G’ that contains e;. Moreover, since F; does not contain any vertex of
BAD, we have ensured A(G;) < /yn + [F| for the next step. Finally, A := ;) (F7 — €i)
is the desired subgraph. O

We are now ready to prove the main tool that will enable us to prove Lemma 5.1 by
induction.

Lemma 5.11. Let § := max{6%", 6%} and 1/n < u,1/|F|. Let G be a graph on n vertices
and U C V(G) with |U| = |un|. Suppose that 6(G) > (0 + 2u)n and for all x € V(QG),
dg(z,U) > (6 + w)|U|. Then, if gcd(F) | dg(x) for all x € V(G) \ U, there exists an
F-collection F in G such that every edge in G — G[U] is covered, and A(JF[U]) < p?|U|/4.

Our strategy is as follows. Since U is relatively small, we know that G — G[U] still has
high minimum degree. Therefore, we can obtain an approximate decomposition that uses
no edges inside U, but covers almost all edges outside U. Before doing this, we set aside
two sparse subgraphs R’ and R” of G[U,V(G) \ U] with pseudorandom properties. Letting
H be the leftover of the approximate decomposition, we use R’ and some edges of G[U] to
cover all edges in H[V(G) \ U] using Proposition 5.10. Finally, we combine H[U,V(G) \ U]
and the leftover of R with R”. Since R” is relatively dense (compared to R and H) and
has pseudorandom properties, we can cover all these edges using Lemma 5.8.

Proof of Lemma 5.11. Choose new constants 7, &, p > 0 such that 1/n < 7y < { € p <
w,1/|F|. Let W :=V(G)\ U. We will first choose suitable graphs R’ and R” which we will
put aside for later use. Let k := [¢71] and K = (kgl)



14 S. GLOCK, D. KUHN, A. LO, R. MONTGOMERY AND D. OSTHUS

Let Vi, ..., Vi be a partition of U with the following properties:
(5.3) da(z, Vi) > (6 + p/2)|V;] for all z € V(G) and i € [K];
(5.4) Ul/2K < [Vi| <2|U[/K.

To see that such a partition exists, independently for every vertex u € U, choose an index
i € [K] uniformly at random and put w into V;. Apply Lemma 3.1 to see that such a random
partition has the desired properties with probability at least 3/4.

Split W arbitrarily into k sets Wy, ..., W} as evenly as possible and let G%/V, e ,GII,(V be
an enumeration of the K graphs of the form G[W;] or G[W;, W;]. Thus, GIW] = Uk Gl
and |Gy, | < 2(|W|/k+ 1) < 2¢n for all i € [K].

For every i € [K], let R; := G[V;,V(GY,)]. Let R' :== Ry U--- U Rg. Note that dp/(u) <
[V (Giy)| < 2¢n for all u € U and dpr(w) < k- 2|U|/K < 4¢n for all w € W, so

(5.5) A(R)) < 4¢n.

Let G' := G — R'. So dg/(z,U) > (6 + 3u/4)|U] for all x € V(G). Let p := |W| and let
Ui, ..., U, be subsets of U with the following properties:
(a) der(z,U]) > (6 + p/2)|U}| for all z € V(G) and i € [p];
(b) plUI/2 < [U1] < 20{U] for all i € [p];
(c) U NUj| < 3p*U|/2 for all 1 <i < j <p;
(d) each u € U is contained in at most 3pp/2 of the UJ.

That these subsets exist can again be seen by a probabilistic argument. Indeed, for every
pair (u,7) € U x [p], include u in U] with probability p independently of all other pairs.
Applying Lemma 3.1 shows that the random sets U7, ..., UI’, satisfy the desired properties
with probability at least 3/4.

Let wy, ..., wp be an enumeration of W and let R” := ¢, G'[U;, {wi}]. By (b) and (d),
A(R") < max{2p|U|,3pp/2} < 2pn.

Let G” :== G—G[U]—R'—R". Observe that 6(G”) > (6+/2)n. We now apply Lemma 5.7
to find an approximate decomposition of G”. More precisely, by Lemma 5.7, there exists
a subgraph H of G” such that G” — H has an F-decomposition F; and A(H) < yn. Let
Hy == H[W] and Hyw := H[U, W].

Next, we want to cover the edges of Hyy using R'. Recall that Giy, . .. ,G[Vf, is a decom-
position of G[W]. For all i € [K], let H; := Hy N GY, and G; := G[V;] U R; U H;. So the
H; decompose Hy . Note that V(G;) = V; UV(GY,) and thus p&?n/10 < |Vi| < |Gy < 3¢n,
implying that |V;| > €2|G;|. Moreover, dg,(x,V;) > (6 + &2)|V;] for all x € V(G;) by (5.3)
and our choice of R;. Since § > 03 > 6% and A(H;) < yn < /7|G;|, we can apply Pro-
position 5.10 with &2 and /7 playing the roles of y and 7 to obtain a subgraph A; of G;
such that A; U H; is F-decomposable, 4;[V(G;) \ Vi is empty and A(4;) < &4V;|. Let
A:=A1U---UAk. So AU Hy has an F-decomposition Fy and A(A4) < &n.

We now want to cover the remaining edges of Hyw U R using R”. Let G := G —
U F1 — U Fe. Note that G”'[W] is empty. For every i € [p], let U/" := Ngw (w;) \ U}. Hence,
\U!"| < A(Hyw) + A(R') < (y+4&)n. Let U; := U/ UU/". We want to check the conditions
of Lemma 5.8 for G” and Uy, ..., U,, with p/4 playlng the role of . Conditions (i), (i) and
(iv) clearly hold. To see that (iii) holds, let i € [p] be arbitrary and consider first u € Us.
Since G"'[U] = G — |J F2, we have

—~

a

de(u,U5) = de(w, U) — A(A) = (54 /DUl — €n > (5 + /) |U.

N

—

a)
Secondly, dgr (w;, Us) > dpr(wi, Ui) = dar(wi, Uf) > (8 + p/2)|U]| = (6 + p/4)|Uil.
For (v), observe that

(©)
Ui N U] < 3p2IU1/2 + 2(7 + 46)n < 26U
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forall 1 <i<j<np.

Finally, note that every u € U is contained in at most A(Hyw) + A(R') < (v + 4&)n
of the sets U/. Combining this with (d), we conclude that u is contained in at most
3pp/2 + (v + 4&)n < 2pn of the U;’s, establishing (vi). Thus, by applying Lemma 5.8, we
obtain a subgraph Gy of G"”'[U] such that Gy U G"”'[U, W] has an F-decomposition F3 and
A(G) < (u/47|U].

Let F := F1 UF2UF3. By construction, F covers every edge of G — G[U], and A(F[U]) <
A(4) T A(Gr) < p2lU|/4 0

We can finally deduce Lemma 5.1 by inductively applying Lemma 5.11.

Proof of Lemma 5.1. If ¢ = 0, then we can put Hy := G. Therefore, let us assume £ > 1.
We prove the following stronger statement by induction on £.

Let G be an F-degree-divisible graph with 6(G) > (§+3u)|G| and let Uy be a subset of V(G)
of size |pu|G|| such that dg(x,Uy) > (6+7u/2)|Ur]| for allz € V(G). LetUy 2 U O --- D Uy
be a (6+4u, p, m)-vortex in G[U1). Then there exists a subgraph Hy of G[Uy] such that G—Hy
18 F'-decomposable.

If ¢ = 1, then Lemma 5.11 applied to G and U; yields a subgraph H; of G[U;] such
that G — Hp is F-decomposable. So let us assume that £ > 2 and that the claim holds
for ¢ — 1. Let G’ := G — G[Us). Note that §(G') > (0 + 2u)|G’| and dg(z,Ur) > (6 +
w)|U1|. Furthermore, dg(z) = dg(x) and thus ged(F) | dg(z) for all x € V(G') \ Uy.
By Lemma 5.11, there exists an F-collection F in G’ that covers all edges outside G'[U]
and satisfies A(JF[U1]) < p?|U1]/4. Let G” := G[U1] —JF. So G” is F-degree-divisible
and §(G") > (6 + 3u)|G"|. Moreover, Us is a subset of V(G”) of size |u|G”|| such that
dGu(.I',UQ) Z ((5 + 4#)’[]2’ — A(UF[Ul]) Z ((5 + 7/L/2)’U2‘ for all = S V(GH). Finally,
Uy 2 - D Upis a (6 + 4u, p,m)-vortex in G”"[Us], since G”"|Us] = G|Us]. By induction,
there exists a subgraph Hy of G”[Uy] such that G” — Hy has an F-decomposition F'. But
now, F U F’ is an F-decomposition of G — Hy, completing the proof. O

6. REGULARITY

In this section, we state Szemerédi’s regularity lemma and related tools. Let G be a graph
with two disjoint sets of vertices A, B C V(G). The density of G[A, B] is then defined as
ac(A, B) :=eq(A, B)/(JA||B]). Given € > 0, we call G[A, B] e-regular if for all sets X C A
and Y C B with |X| > ¢|A| and |Y| > €|B|, we have |ag(X,Y) —ag(4, B)| < e.

Fact 6.1. Let G[A, B] be e-regular with density o and let Y C B with |Y| > €|B|. Then all
but at most €| A| vertices of A have at least (o — €)|Y| neighbours in'Y .

Fact 6.2. Let G[A, B] be e-regular with density o and for some ¢ > ¢, let A C A and
B’ C B with |A’| > c¢|A| and |B'| > ¢|B|. Then G[A, B'] is 2e/c-regqular with density o +¢.

Lemma 6.3 (Regularity lemma). For all e > 0 and ko € N, there exists a k{, = k{(¢, ko)
such that for all a € [0,1] the following holds. Let G be a graph on n > ki vertices and
Wi,..., Wy a partition of V(G) with ¢ < ko. Then there exist a partition Vo, V1,..., Vi of
V(G) and a spanning subgraph G' of G satisfying the following:

(R1) ko < k < ki;

(R2) |Vo| < en;

(R3) [Vi| =+ = Vil

(R4) de/(x) > dg(x) — (o + &)n for all x € V(G);

(R5) G'|Vi] is empty for all i € [k];

(R6) for all1 <1 < j <k, G'|V;,Vj] is either e-regular with density at least o or empty;

(R7) for alli € [k] and j € [{], VinW; =0 or V; C Wj.
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Given a graph G and a partition Vi, ...,V of V(G), we associate a so-called reduced graph
R with this partition, where R has vertex set [k] and ij € E(R) if and only if G[V;,V}] is
non-empty. We refer to the function o: V(G) — V(R) such that = € Vj(,y for all € V(G)
as the cluster function. In the setting of Lemma 6.3, we slightly abuse notation and say that
R is the reduced graph of Vi,...,Vy if R is the reduced graph of V7, ...,V with respect to
G'[V(G)\ V.

Proposition 6.4. Suppose that G is a graph on n vertices with 6(G) > én and that G' and
Vo, .-+, Vi satisfy (R1)-(R6). Then 6(R) > (6§ — o — 2¢)k, where R is the reduced graph of
i, .., Vg.

We will often use the following embedding lemma which is straightforward to prove and
has become known as the ‘key lemma’.

Lemma 6.5 (Key lemma). Let 1/n < ¢ < a < 1/m. Let G be a graph such that

] V(G) =Viu...uUVg;

o for alli € [k], |Vi| =n and G[Vi] is empty;

o foralll <i<j<k, G[V;,Vj] is either e-reqular with density at least o or empty.
Let R be the reduced graph of Vi,...,Vi. Let H be a graph of order at most m and suppose
that ¢»: H — R is a homomorphism. Moreover, let (Cy)zev (m) be candidate sets such that
Cr C Vi) and |Cx| > an for all x € V(H). Then there exists an embedding ¢: H — G
such that ¢(x) € Cy for all x € V(H).

The following definition will be crucial for our embeddings.
We call G[A, B] weakly-(a, €)-super-reqular if

e G[A, B] is e-regular with density at least «;

o forall a € A, dg(a,B) > «a|B| or dg(a, B) = 0;

o forall b € B, dg(b, A) > a|A| or dg(b, A) = 0.

The next proposition implies that we can turn any e-regular pair into a weakly-super-
regular pair by deleting a small number of edges. This will allow us to simultaneously turn
all regular pairs of a regularity partition obtained by the regularity lemma into weakly-
super-regular pairs (which is impossible for the more standard notion of super-regularity as
one needs to delete vertices in that case).

Proposition 6.6. Let G[A, B] be e-regular with density at least o and assume that |A| =
|B| =: m. Then G[A, B] can be made weakly-(ac — 21/, 4+/€)-super-reqular by deleting at
most (o — e)m edges at every vertex.

Many of our constructions will be carried out in a graph where we have found a regularity
partition and ‘cleaned’ the edges between classes using Proposition 6.6. In order to describe
such graphs, we use the following definition. Given a graph G, we call a partition Vq,..., Vy
of V(G) an (a, g, k)-partition of G, if

(P1) [Vi| = (1 £2)|G|/k;

(P2) G[V;] is empty for every i € [k];

(P3) for all 1 <i < j <k, G[V;,V;] is either weakly-(c, €)-super-regular or empty.

We will often use the fact that if Vi,...,Vy is an (o, ¢, k)-partition of G and G’ is a
spanning subgraph of G such that dg(z,Vi) > da(x,V;) — €2|V;| for all x € V(G) and
i € [k], then Vi,...,V is an (a — 2¢, 3¢, k)-partition of G'.

Similarly, if £ < 1/2 and V/ C V; with |V; \ V/| < 2|V;| for all i € [k], then V{,..., V] is
an (a — ¢, 3¢, k)-partition of G[V] U --- U V/].

7. THE GENERAL DECOMPOSITION THEOREM

In Section 5 we saw how to find a near-optimal F-decomposition of a given graph G
which covers all but a bounded number of edges of G. As mentioned in Section 2, our goal
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is to deal with the leftover edges using absorbers. Given graphs F and H, an F'-absorber
for H is a graph A such that V(H) C V(A) is independent in A and both A and AU H
have F-decompositions. For H to have an F-absorber it is clearly necessary that H is at
least F-divisible. Clearly, if G was F-divisible in the beginning, then the leftover graph H
obtained from a near-optimal F-decomposition of G is still F-divisible. The strategy is thus
to find an F-absorber A for every possible leftover graph H and remove all these absorbers
before covering almost all edges of G. The union of these absorbers will then allow us to deal
with any leftover from the near-optimal decomposition. In this section, we prove a general
decomposition result, that is, G has an F-decomposition whenever the minimum degree of
G is large enough to guarantee (i) an approximate decomposition, (ii) a covering of all edges
at one vertex, (iii) an absorber for any bounded size subgraph (see Theorem 7.1).

In order to minimise the minimum degree we require to find absorbers, we will make
sure that the possible leftover graphs respect an (o, €, k)-partition. We will achieve this by
applying the regularity lemma to G first and then ‘cleaning’ G with respect to the obtained
partition. Call F' §-absorbing if the following is true:

Let 1/n <« 1/kj,e < a,1/b < 1/m, p,1/|F| and suppose that G is a graph on n
vertices with §(G) > (6 + p)n which has an (a, e, k)-partition for some k < k{, and
that H is any F-divisible subgraph of G of order at most m. Then G contains an
F-absorber for H of order at most b.

The focus of Sections 8, 9, 10 and 12 will be to find for a given graph F' the minimal §
such that F' is §-absorbing.

Theorem 7.1. Let F be a graph. Let § > max{égf, %}, and assume that F' is §-absorbing.
Then o <.

Proof. Let 1/n < 1/k) < ¢ < 1/ko,a,1/b < 1/m' < pu,1/|F|. Let G be an F-
divisible graph on n vertices with §(G) > (0 + 10u)n. We need to show that G has an
F-decomposition.

Set Uy := V(G). Using Lemma 3.1, it is easy to see that there exists a subset U; of size

|un| such that for all x € V(G),
(7.1) da(z,Ur) = (0 + 9p)|Un],
(7.2) de(z, U \ Ur) = (6 4+ 9u)|Uo \ U1l.

Apply the regularity lemma (Lemma 6.3) to G[U;] to obtain a partition of U; into sets
Vo, V1, ..., Vi and a spanning subgraph G’ of G[U;] such that

(R1) ko <k < k{;
R2) [Vo| < €!U1|
) Wil == |Vil;
) da/(z) > dajun(v) — (o +¢)|Un] for all € Us;

) G'|V;] is empty for all i € [k];

(R6) for all 1 <i < j <k, G'[V;,Vj] is either e-regular with density at least o or empty.

Applying Proposition 6.6 to every pair G'[V;, V] of density at least « yields a spanning
subgraph G of G’ such that

(R1) dg,,(z) > dgu,)(x) — 2a|U1] for all x € Uy;

(R2') G4[Vi] is empty for all i € [k];

(R3) for all 1 < i < j <k, Gy[V;,V]] is either weakly-(a — 21/¢, 4\/€)-super-regular or
empty.

Let H := G[U1] — G4. Note that A(H) < 2a|U;| < 2an and § > 63F > 6%. So by (7.2)
and Proposition 5.10, we can obtain a subgraph A of G such that A[U;] is empty, AU H is
F-decomposable and A(A) < un.

By (7.1) and (R1'),

(7.3) §(Gy) > (6 +8u)| Uyl

(
(R
(R
(R
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Let Uy be a subset of Uy \ Vp of size |u|U;|| satisfying the following properties (consider
a random choice of Uy and apply Lemma 3.1):
(i) da,, (z,Uz) > (0 + Tp)|Us| for all x € Uy;
(i) |[V;\Us2| = (1 — p£e)|V;] for all i € [k];
(iii) dg,(z,Vi\U2) > (1 —2p)da,, (x,V;) for all x € Uy, i € [k].
Finally, let Uy D Us 2 --- D Uy be a (0 + 6u, pr, m)-vortex in Gg[Us] for some |um'| <
m < m/, which exists by Lemma 4.3. We want to find an absorber for every F-divisible
subgraph of G[U;]. We will find these in the following graph Gg;s: For every i € [k], let
V= (V;\ U2) U (V;NUy), and let
Gaps := GCZ[VII J---uJ Vk/]
Note that, since Uy, C Uy C U; \ Vi, we have that Uy C V(Ggps). We claim that
(iv) V{,...,V/ is an (a/2,104/€, k)-partition of Ggps;
(V) 6(Gabs) = (6 + 6p)|Gas|-
To verify (v), recall (7.3) and note that |U; \ (V/ U---UV])| < |Uz| + |Vo| < 2p|Un].
Now, we check (iv). Gaps[V]] is clearly empty for every ¢ € [k], so condition (P2) is
satisfied. By (ii), we have |V/| = (1 — u & 2¢)|Vi|. Now, (R3) implies that |[V| — [V/|] <
4e|Uy|/k for all 1 <i < j <k and hence |V/| = (1 £ 5¢)|Gaps|/k, so (P1) is satisfied.
In order to establish condition (P3), consider 1 < i < j < k. If G4[V;,Vj] is empty,
then Gups[V/, V] is also empty. So let us assume that G [V;, V;] is weakly-(o — 24/¢, 41/¢)-

R
super-regular. We need to show that Gus[V/, V]] is weakly-(a/2,10,/¢)-super-regular. By
Fact 6.2, Gaps [V}, V]] is 10y/e-regular with density at least a« — 61/ > a/2. Let x € V" and

suppose that dg,,, (z,V]) > 0. Then, dg,,(z,V;) > (@ — 21/€)|V;|. Using (iii), we can check
that

A6, (2, V) 2 day (2, Vi \U2) = (1 = 2u)de, (2, V;) = (1 = 2p) (e = 2VE)|Vj] = alV]]/2.

This proves (iv).

We will now find absorbers for all possible leftover graphs inside U,. Let therefore
Hy,...,Hs be an enumeration of all F-divisible spanning subgraphs of G[Us]. We want
to find edge-disjoint subgraphs Ay, ..., A in Ggs such that for all i € [s], A;[Uy] is empty
and A; is an F-absorber for H; of order at most b. Suppose that for some j € [s], we
have already chosen Aq,...,Aj_1. Let éj be the graph obtained from G5 by deleting all
edges inside U, except those of H;, and all edges of Aq,..., A;_1. Since we deleted at most

m+sb < m+2(3)p edges at every vertex, (v) implies that §(G;) > (8 + 5u)|G|. Also,
(iv) implies that V7,...,V} is an (a/4, 30y/€, k)-partition of G;. Since F is §-absorbing, G
contains an F-absorber A; for H; of order at most b and so that A;[U,] is empty.

Let A* := A1 U---UA,. Let Ggpp :=G — (AU H) — A*. Observe that

(7.4) GapplU2] = (G — H)[Us] = Ga[Us].
We want to apply Lemma 5.1 to Ggyp. Note that
(7.5) A(A*UAUH) < 2p*n < p|Us|.

Clearly, Ggpp is F-divisible and 0(Gapp) > (6 + 8u)n by (7.5). We claim that Uy 2 Uy D
- D Upis a (8 + 4p, pr, m)-vortex in Ggpp. Conditions (V1)—(V3) hold by construction.
Moreover, for i > 3, we have dg,,, (2, U;) > (§ + 6u)|U;| for all x € U;—1 by (7.4). So let

i€ {1,2}. For all x € U;_;, we get

(7.5)
dGopp (T, Us) > da(w,U;) — p|Us| > (6 + Tp)|Ui| — p|Uz| > (6 + 6p)|Us],

where we use (7.1) if i = 1 and (i) if # = 2. Thus, by Lemma 5.1, there exists a subgraph
Hj of GupplUs] such that Gpp — Hj is F-decomposable. In particular, Hj is F-divisible.
Crucially, by (7.4), Gapp[Ue] = G[Us], so Hf = Hy for some s’ € [s]. Since Ay UHgy has an
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F-decomposition and A; has an F-decomposition for every i € [s] \ {s'}, we conclude that
A* U Hj is F-decomposable. Therefore,

G=(AUH)UA" U(Gepp — H}) UH]

has an F-decomposition. O

8. MODELS AND COMPRESSIONS

In order to prove an upper bound on dr using Theorem 7.1, we must be able to find F-
absorbers for rather arbitrary subgraphs of a large graph G. Suppose that G’ is a subgraph
of G and we know that H is an F-absorber for G'. The Erd8s-Stone theorem tells us
that 6(G) > (1 — 1/(x(H) — 1) + u)|G| guarantees a copy of H in G. However, for H to
fulfill its purpose, we need it to be rooted at V(G’), which is more difficult to achieve. In
the following, we will introduce the concepts that enable us to embed rooted graphs in an
efficient way.

8.1. Models and labellings. We define a model to be a pair (H,U) where H is a graph
and U is an independent set in H. The vertices of U are called roots. Generally speaking,
we want to embed H into a large graph G in such a way that the roots are mapped to
a prescribed destination. More formally, given a model (H,U), a graph G and a map
A: U — 2V an embedding of (H,U ) into G respecting A is an injective homomorphism
¢: H — G such that ¢(u) € A(u) for all w € U. Clearly, a necessary condition for the
existence of an embedding respecting A is that there exist distinct (vy)uer € V(G) with
vy € A(u). If this is satisfied, then we call A a G-labelling of U. All our labellings will be of
the following form. There will be a set U; C U such that |A(u)| = 1 for all u € Uy (and thus
A(u) # A(u) for all distinct u,u’ € Uy). The labels of the elements of U \ U; will be large
subsets of clusters of a regularity partition. Furthermore, most often we will have Uy = U.

Call a model (H,U) 0-embeddable, if for all u > 0, there exists an nyg € N such that
whenever G is a graph on n > ng vertices with §(G) > (§ + p)n and A is any G-labelling of
U, there exists an embedding of H into G respecting A. As described below, the degeneracy
of H rooted at U can be used to give a simple bound on the values of § for which (H,U)
is 0-embeddable. Here, for a graph K, the degeneracy of K rooted at X C V(K) is the
smallest d € N U {0} such that there exists an ordering v1,...,vk|—|x| of the vertices of
V(K)\ X such that for all i € [|K| — | X]],

dK(Ui,XU{Uj 1<y <Z}) <d.

Observe that if H has degeneracy at most d rooted at U for some d € N, then (H,U) is
(1 — 1/d)-embeddable. Indeed, if G is a graph with §(G) > (1 — 1/d + p)|G|, then every
set of d vertices has many common neighbours. Hence, any set of |U| vertices in G can be
extended to a copy of H by embedding the vertices of V(H) \ U one by one.

As we shall discuss in the next subsection, this simple bound is usually not sufficient for
our purposes. Before that, we will prove the following lemma which is used in Sections 11
and 14. It says that if the minimum degree of G is sufficiently large to embed a copy of (H, U)
according to any given labelling, then we can in fact embed many copies edge-disjointly into
G, provided that the respective labellings are not overly restrictive.

Lemma 8.1. Let (H,U) be a 6-embeddable model for some 6 € [0,1]. Let 1/n < p < 1/|H|
and let G be a graph on n vertices with 6(G) > (§ + p)n. Suppose that A1,..., A, are G-
labellings of U such that m < u*n? and for allv € V(G), |{j € [m] : v € JIm(A;)}| < p?n.
Then there exist embeddings ¢1, ..., ¢m of H into G such that ¢; respects Aj for all j € [m)],
P1(H), ..., ¢m(H) are edge-disjoint, and A(U;cp, ¢5(H)) < pm.

Proof. We may assume that |A;(u)| =1 for all j € [m] and u € U. Let R; := ey Aj(u).
We will find ¢1,..., ¢, one by one. For j € [m] and v € V(G), define root(v,j) := |{j’



20 S. GLOCK, D. KUHN, A. LO, R. MONTGOMERY AND D. OSTHUS

[j] : v € Ry}|. Suppose that for some j € [m], we have already defined ¢1,...,¢;_1 such
that

(8.1) dg, ,(v) < pPn+ (root(v, j — 1) +1)|H|

for all v € V(G), where Gj—1 = Ujej_1) @5 (H). We now want to define ¢; such that
(8.1) holds with j replaced by j 4+ 1. Let BAD := {v € V(G) : dg,_,(v) > pn}.
Note that 2e(Gj_1) > |BAD|u*n and e(Gj_1) < me(H) < p'e(H)n? Thus, |BAD| <
2u%e(H)n < un/4. Let BAD' := BAD \ R; and define G’ := (G — G;-1)[V(G) \ BAD/].
Since A(Gj—1) < pn/4, we have 6(G') > (6+ p/2)n. Note that A is a G'-labelling of (H, U).
Since (H,U) is 6-embeddable, there exists an embedding ¢; of H into G’ respecting A;. It
remains to show that (8.1) holds with j replaced by j + 1. Let v € V(G). If v ¢ BAD,
then dg,(v) < dg,_,(v) + [H| < p?n + |H|, so assume that v € BAD. If v € BAD',
then dg ()(v) = 0 and hence dg;(v) < dg,; ,(v). Finally, if v € BAD \ BAD', then
v € Rj, implying that root(v,j) = root(v,j — 1) + 1. Thus, dg,(v) < dg,_,(v) + [H| <
w2n + (root(v,j) + 1)|H|. O

8.2. Compressions. As observed in the previous section, the rooted degeneracy of a model
(H,U) translates into a bound on the minimum degree of a graph G which ensures the
embeddability of (H,U). However, this bound is usually too large for our purposes. We
will improve on this by considering the above degeneracy approach in the reduced graph
setting. This involves the notion of compressions which we now discuss informally.

Let (H,U) be a model. Let G be a graph and A a G-labelling of U, and as an example
assume that U = {ug,us} and A(u;) = {v;}. Suppose that R is the reduced graph of some
regularity partition of G with cluster function o. The key lemma tells us that if there
exists a homomorphism H — R, then H can be embedded into G, but the corresponding
embedding does not necessarily respect the given labelling A. It will be useful to have an
embedding ¢ of H such that, though ¢ might not respect A, it is close to respecting A (in
the sense that at least every vertex is embedded in the correct cluster). More precisely,
letting 2/, 24, € V(R) be such that o(v;) = 2}, we require o(¢(u;)) = z;. Now, if ¢/': H - R
was a homomorphism such that ¢'(u;) = 27, then the key lemma again would give us such
an embedding.

In order to investigate the embedding properties of (H,U) without referring to the host
graph and labelling, we consider the following intermediate graph: By considering only
(H,U), we find a graph K such that ¢): H — K is a homomorphism, {x;, z2} is independent
in K and K has low degeneracy rooted at {x1,z2}, where x; := ¥ (u;) are distinct. Then,
coming back to the above situation, we can use a degeneracy argument to find a copy of K in
R rooted at {z], x5}, i.e., a homomorphism ¢": K — R such that ¢"(z;) = «}. We can then
take ¢’ := 19" o1} to find a homomorphism from H into R. In finding this homomorphism, we
have used the degeneracy of K, not H. We can easily pick such a graph K with degeneracy
at most x(H) + |U| — 1, and sometimes even lower. In many cases this is much lower than
the degeneracy of H, reducing the minimum degree required. Loosely speaking, our gain
has come from the fact that we ‘compressed’ the original embedding problem to the reduced
graph level.

Note that we assumed {x1,z2} is independent. If 2}z, € E(R), then we could allow K
to contain the edge xix9, possibly allowing a graph K with lower degeneracy to be used.
Similarly, if ) = ), we can construct K with x; = x9, which may allow us to use a graph
K with lower degeneracy.

The following definitions formalise the above discussion. Given a set U, a pair (J, f)
is called a root-compression of U, if J is a graph and f: U — V(J) is a surjective map.
Further, (J, f, K, 1) is called a compression of (H,U) if

(Cl) K is a graph and J is an induced subgraph of K;
(C2) (J, f) is a root-compression of U;
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(C3) ¢: H— K is a homomorphism such that ¢ [y = f.

We say that (J, f, K,v) is a d-compression if K has degeneracy at most d rooted at V'(J).
For our purposes, J will be a rather simple graph, e.g. a short cycle or path, whereas K
may have a more complex structure. It is thus often convenient to ignore K itself and only
record its degeneracy. Accordingly, (H,U) is called d-compressible with respect to (J, f), if
there exist K and v such that (J, f, K,v) is a d-compression of (H,U). When referring
to a compression (J, f, K,), J and f are technically redundant since J = K[¢(U)] and
f = ¥ly. However, as indicated above, the root-compression (J, f) is often the essential
part of (J, f, K,1) and we want to be able to refer to it directly.

Our embedding approach is roughly as follows (this is formalised in Lemma 8.4). Assume
that (H,U) is d-compressible with respect to (J, f). Let G be a graph with 0(G) > (1 —
1/d 4+ p)|G| and let R be the reduced graph of some regularity partition of G. Instead of
seeking an embedding approach which works for all possible G-labellings A of U, we limit
ourselves to ‘admissible’ labellings. Informally, this means that J is a subgraph of R such
that every label A(u) is contained in the cluster of f(u). By definition, there exist K and 1
such that (J, f, K, 1) is a d-compression of (H,U). As R inherits the minimum degree ratio
of G and since K has degeneracy at most d rooted at V(J), we can extend J to a copy of
K in R. Then, using the key lemma, we can embed H into G such that v € U is mapped
into the cluster of f(u). This embedding is close to what we desire in the sense that the
image of u and the label of u are already in the same cluster. Finally, we will modify this
embedding to an embedding respecting A. It remains to make more precise when a labelling
is admissible. We can then prove our embedding lemma.

For this, we say that a G-labelling A of U respects the root-compression (J, f), if A(u) =
A(u') for all u,u’ € U with f(u) = f(u'). In this case, the function Ay: V(J) — 2V(G),
where Aj(z) := A(u) for any u € f~1(z), is well-defined.

The following definition collects a set of restrictions that we put on a G-labelling A. They
will later enable us to find an embedding of a given model (H,U) into G respecting A. Note
that the conditions do not involve H, but depend on the chosen root-compression (J, f) of

U.

Definition 8.2. Let U be a set with root-compression (J, f), G a graph and A a G-labelling
of U. Let Uy :={u € U : |A(u)| = 1} and Uy := U \ Uy. Moreover, let Jy := f(Uy)
and Jo = V(J)\ Ji. We call A (o, e, k)-admissible, if A respects (J, f) and G has an
(a, €, k)-partition Vi, ..., Vi with reduced graph R such that the following hold:

(D1) there exists a homomorphism j: J — R such that Aj(x) C Vj(y) for all z € V(J);

(D2) |Aj(z)| > a|Vjm| for all x € Ja;

(D3) for every x € V(J), dg(Wa, Vi) = a|Vj@|, where W, = UyeNJ(m,Jl) As(y);

(D4) Aj(x) € Na(Wa, Vi) for all z € Ja.

In order to prove the main lemma of this section (i.e. Lemma 8.4), we need the following
simple result.

Proposition 8.3. Let a € (0,1). Let G be a graph and let Vi, ...,V be a partition of V(G)
such that |V;| > 1/« for alli € [k]. Let W C V(G). Then there exists a spanning subgraph G’
of G such that dey(x) > dg(x) —oz22‘wl+1|G] for every x € V(G) and der(W', Vi) ¢ (0, | Vi)
for every subset W' C W and every i € [k].

Proof. Let n := |G| and let W1, ..., W, be an enumeration of the subsets of W. For each
j € [s], let Bj := 2579 ~; := B + -+ f; and 7o := 0. Suppose that for some j € [s], we
have found a subgraph G;_1 by deleting at most y;_jan edges at every vertex such that
da;_, (Wi, Vi) ¢ (0, Bj—1a|Vi]) for every i € [k] and £ € [j — 1]. Consider W; and fix some
w € Wj. Let I C [k] contain the indices i for which dg,_, (W}, Vi) < Bja|Vi|]. Let G; be
obtained from G;_1 by deleting for every i € I the edges from w to Ng,_, (W}, V;). Clearly,
for all i € [k], dg,;(W;, Vi) ¢ (0, Bja|Vi]), and Gj is obtained from G;_; by deleting at most
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Bjan edges at every vertex. It remains to show that for all £ € [j — 1] and ¢ € [k], we have
da,(We, Vi) & (0, Bja|V;]). Suppose that £ € [j — 1], i € [k] and dg, (W, V;) > 0. If w € W,
then dg; (W, Vi) > da;_, (Wi, Vi) — Bja|Vi| > (Bj-1 — Bj)alVi] = Bja|Vi|. If w & Wy, then
we have dg, (W, Vi) > dg,_,(We, Vi) — 1 > (Bj-1 — B;)a|Vi| = BjalVi| as well.

Let G’ := Gs. Note that B, = 1 and 7, < 251, O

Lemma 8.4. Let 1/n < 1/k{,e < a < 1/t,p. Let (H,U) be a d-compressible model with
respect to the root-compression (J, f) such that |H| < t. Suppose that G is a graph on n
vertices with 6(G) > (1 —1/d + p)n and A is an (o, ¢, k)-admissible G-labelling of U for
some k < k. Then there exists an embedding of (H,U) into G respecting A.

Proof. Let Uy, Us, J1,J2, Vi, ..., Vi, R, j, (Wa)zev () be as in Definition 8.2. Let o: V(G) —
V(R) be the cluster function of Vi,...,Vi. Let K and v be such that (J, f, K, ) is a d-
compression of (H,U). We may assume that | K| < t. We define W, also for z € V(K)\V (J),
that is, W, := UyeNK(a:,Jl) Aj(y).

Let W := J,cp, Alu) and apply Proposition 8.3 to obtain a spanning subgraph G’ of G
such that §(G') > (1 —1/d + p/2)n and dg (W', V;) ¢ (0, «|V;|) for every subset W C W
and every i € [k]. For every x € Ji, let v, € V(G) be such that Aj(x) = {vz}. So
W ={v; : z € Ji}. For every x € Jo, pick any vertex v, € V.

We are going to define a homomorphism f: K — Rsuch that éfV(J) = jand Ng(Wy, Vé(:c)) #*
() for all x € V(K)\ V(J). First we define a homomorphism ¢: (K —J) — G’ as follows. For
every x € V(J), let £(x) := v,. Let x1,..., 2y be an ordering of the vertices of V(K)\ V(J)
such that for every i € [], we have |Nj(z;)| < d, where Ng(z;) := Ng(z;) N (V(J) U {z; :
Jj <i}). We define &(x;) one by one. Suppose that for some i € [¢], we have already defined
&(x1),...,&(xi—1). Since 6(G') > (1 —1/d + p/2)n, we know that Ng/(§(Ny(z;))) # 0, so
we can pick £(z;) from this set. Note that for all i € [¢], we have W,,, C §(Nj(z;)) and thus

(8.2) 5(371) S NG/(Wxi)'

We now obtain a homomorphism &: K — R, where we let £(z) := o(£(z)) for all z € V(K).
Note that &(z) = j(x) for all z € V(.J), therefore, £ is indeed a homomorphism.

For every vertex x € V(K), we will construct a set Z, C V(G) such that (Z1)—(Z5) below
hold. These sets Z, will then be suitable for an application of the key lemma.

(Z1) The Z,’s are pairwise disjoint and disjoint from W;

(Z2) |Zz| > an/2kt for all z € V(K);

(23) if zy € E(K), then G[Z,, Z,| is \/e-regular with density at least c/2;

(Z4) for all x € Ja, Zy C Aj(x);

(Z5) for all zy € E(K) with z € Ji, Z, C Ng(vy).

In order to achieve this, we first define a set Z!, for every x € V(K) such that

(Z1") Z! C Ve(w) and |Z!| > O‘|V£(x)‘ for all x € V(K);

(22') for all x € Jo, ZI, = Aj(x);

(Z3') for all zy € E(K) with = € J1, Z; C Ng(vg).

For x € Ja, we let Z, := Aj(x). For x € V(K)\ Ja, we let Z, := Ng(Wx,Vg(x)). Thus,
(7Z2") holds by definition.

We now check (Z1'). Recall that &(z) = j(x) for all € V(J), so we clearly have
Z! C Ve for all z € V(K). Now, if x € Jy, then |Z!| > Oz’Vé(x)| holds by (D3). If
x € Ja, then it holds by (D2). So let z € V(K) \ V(J). Since W, C W, we have that

der (W, Vé(a:)) ¢ (0, 04|Vé(x)\). But {(z) € Ng/(Wy) by (8.2) and {(z) € Vew) by definition of

€. Thus Ng/ (W, Vé(x)) is non-empty and we deduce that |Z.| = dg(W,, Vé(x)) > a]Vé(x)\.
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We continue with checking (Z3"). Let zy € E(K) and = € J;. Note that v, € W,
by definition of W,. Moreover, note that ZZ/J C Ng(Wy), which follows directly from the
definition of Z; if y ¢ Jo, and from (D4) if y € Jo. So Z;, € Ng(v,) follows from that.

It is now relatively easy to obtain Z, from Z.. Since there are |K| <t sets and |W| < t,
we can choose a subset Z, C Z! for every x € V(K) such that they satisfy (Z1) and
| Zs| > |Z0] )t —1 > 2a|Vé(x)\/3t. So (Z2), (Z4) and (Z5) are also satisfied. Finally, since &
is a homomorphism, (Vé(a;y é(y)> is e-regular with density at least o whenever zy € E(K).

Fact 6.2 then implies (Z3).

Since ¢: H — K is a homomorphism by (C3), we can apply the key lemma (Lemma 6.5)
to obtain an injective homomorphism ¢’: H — G such that ¢/(h) € Zyy) for all h € V(H).
Note that ¢'(u) € Vj(pw)) for every u € U. We define ¢: H — G by taking ¢(u) := vy
for all w € Uy and ¢(h) := ¢/(h) for all h € V(H) \ U;. We claim that ¢ is an embedding
of H into G respecting A. The map ¢ is injective because of (Z1). For u € Uy, we have
¢(u) € A(u) by definition. For u € Us, we have ¢(u) = ¢'(u) € Zyw) = Zfw) € A(u) by
(Z4). Finally, let uh € E(H) with u € Uy and h ¢ Uy. Then Zy,) € Ng(vy(yy) by (Z5) and
¢(h) = ¢'(h) € Zyp). Hence, p(u)p(h) € E(G), completing the proof. O

8.3. Attaching models. The previous lemma provides us with a tool to embed models
respecting given labellings. In general, we are interested in the minimum degree threshold
at which this is possible. Note that the condition on §(G) in Lemma 8.4 is governed by the
degeneracy of the model (H,U) with respect to (J, f). Later on, we will try to find models
with good, that is, low-degenerate, compressions.

We conclude this section by collecting some tools that will enable us to build those models
in a modular way.

Fact 8.5. Let (H,U) be d-compressible with respect to (J,f) and let : J — J be a
surjective homomorphism. Then (H,U) is d-compressible with respect to (J', f'), where

f(w) := B(f(u)) for allueU.

Proof. Since 3 is surjective, (J', f’) is a valid root-compression of U. Let (J, f, K,1) be a
d-compression of (H,U). We may assume that J’ and K are vertex-disjoint. Let K’ be the
graph obtained from the union of J" and K \ V(J) by adding an edge between 2’ € V(J)
and y € V(K)\ V(J) if there exists € V(J) such that f(z) = 2’ and xy € E(K). Clearly,
J" is an induced subgraph of K’. Moreover, the degeneracy of K’ rooted at J' is at most
d since K'\V(J') = K\ V(J) and dg+(y,V(J")) < dr(y,V(J)) for all y € V(K) \ V(J),
so we can take the same order of the vertices. Define ¢': V(H) — V(K') as follows. If
B(o) £ V), let 1/(0) := 0(v). TE(v) € V(J), let ¥/(v) = B((0)). Clearly, ¥/(u) = f'(u)

for all u € U and % is a homomorphism. O

Note that whenever (H,U) and (S, W) are models such that V(H) NV (S) = W, then
(HUS,U) is a model too.

Proposition 8.6. Let (H,U) and (S, W) be models such that V(H)NV(S) = W. Assume
that (J, f, K,v) is a d-compression of (H,U) and that (S, W) is d-compressible with respect
to (Js, fs). Suppose that 5: Jg — K is a homomorphism that satisfies 5(fs(w)) = ¥(w) for
allw € W. Then there exists a d-compression (J, f, K',4") of (HUS,U) such that K C K’

and Y'lv iy = .
Proof. By Fact 8.5, we can assume that Jg is a subgraph of K satisfying fs(w) = ¢ (w)
for all w € W, that is, /5 is the identity. (Indeed, define J' := 8(Jg) and f'(w) := B(fs(w))
for all w € W. Then J' is a subgraph of K and f'(w) = B(fs(w)) = ¢ (w), and (S, W) is
d-compressible with respect to (J', f') by Fact 8.5.)

So let (Jg, fs, Kg,1s) be a d-compression of (S, W) and assume that V(Kg) NV (K) =
V(Jg). We can then take K’ := K U Kg. So J is an induced subgraph of K’ and K’ has
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degeneracy at most d rooted at V(J). Since ¥g(w) = fs(w) = (w) for all w € W, we
can define ¢'(z) := ¢ (x) for all x € V(H) and ¢'(x) := ¢g(x) for all x € V(S) in order to
obtain a homomorphism ¢': HU S — K. O

The fact that K C K’ and ¢'[y(gy = 1 in Proposition 8.6 allows us to attach several
models to a given initial model without interference.

Corollary 8.7. Let (H,U) be a model with d-compression (J, f, K, 1) and let (S1, W1), ..., (St, Wy)
be models such that V (S;)NV (S;) = W;NWj for all1 <i < j <t. For everyi € [t], suppose
that
(1) V(H) NV (5;) = Wi

(i) (Si, W) is d-compressible with respect to (J;, fi);

(iii) Bi: Ji — K is a homomorphism satisfying B;(fi(w)) = ¥ (w) for all w € W;.
Then there exists a d-compression (J, f, K',4') of (HUS1 U---U S, U) such that K C K’
and Y'lv(my = .

9. TRANSFORMERS

Given two vertex-disjoint graphs H and H', a graph T is called an (H, H') p-transformer
if both HUT and H'UT have F-decompositions and V(H)UV (H') C V(T) is independent
in 7. Transformers in this sense were introduced in [2] as building blocks for absorbers. For
two graphs H and H’, write H ~ H' if there exists an edge-bijective homomorphism from
H to H'. When constructing good F-absorbers, a crucial step is to have a good (H, H')p-
transformer whenever H ~» H’. In terms of how to build absorbers out of such transformers,
the main ideas in [2] are essentially sufficient for our purposes. We will discuss this as briefly
as possible in Section 12. However, in order to achieve our goals, we need more sophisticated
transformers. This will be our focus in this and the next section.

We call a graph F §-transforming if the following holds:

Let 1/n < 1/k{,e < a,1/b < 1/m,u,1/|F| and suppose that G is a graph on
n vertices with 6(G) > (6 + p)n which has an («, ¢, k)-partition for some k < kf,
and suppose that H and H' are vertex-disjoint subgraphs of G of order at most m,
where H is ged(F)-regular and H ~ H’. Then G contains an (H, H') p-transformer
of order at most b.

In Section 12, we will see that F' being d-transforming implies that F' is §-absorbing (see
Lemma 12.1). We will build transformers out of so-called switchers. Let S be a graph and
U an independent set in S. Let E1, F» be two disjoint sets of edges on U. We call S an
(E1, E9) p-switcher if both S U E; and S U Ey are F-decomposable. We will mostly use
‘cycle switchers’ and ‘double-star switchers’. In the first case, F'; and FEs are the two perfect
matchings forming an even cycle. In the second case, F; and E5 are two stars with the same
leaves, but distinct centers.

We now briefly sketch how to build transformers out of these switchers (details are given
in Lemma 9.1). For the sake of simplicity, suppose that H' is a vertex-disjoint copy of H
and that H is r-regular, where r := gcd(F'). For any « € V(H), let 2’ denote its copy in
H'. We will build the desired (H, H') p-transformer by introducing r new vertices for every
xz € V(H) and joining them to z and /. We can then pair up these ‘middle’ vertices with
the r neighbours of x in H. A number of Cg-switchers will now allow us to translate the
transforming task between H and H’ into a switching task between two stars with 7 common
leaves. For example, let xy € E(H) and assume that z,, is the middle vertex between z
and ' associated with y. Similarly, assume that z,, is the middle vertex between y and
y associated with z. Then let Ey := {2y, 2z 42, 2y 0¥’} and Epr = {2y, 2oy, 2y 2y} A
Cg-switcher will now allow us to either cover Fy or Ep with edge-disjoint copies of F.
Doing this simultaneously for all edges of H, we can either cover (i) E(H) together with all
edges of the form z, @’ or (ii) E(H') together with all edges of the form z, ,x (see Figure 1).
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For every z € V(H), a Kj y-switcher will then enable us to cover all edges of the form 2z 4T

8

H/

FIGURE 1. Sketch of a (Cs, C5) p-transformer built from five Cs-switchers and five Ky 2-switchers.

in case of (i), or all edges of the form z, ,z in case of (ii).

In order to find the desired switchers in a graph G, we will use Lemma 8.4 and therefore
have to equip switchers with compressions. Since compressions involve a fair amount of
notation, we introduce the following conventions. When mentioning the cycle Cy, we usually
assume that V(Cy) = {c1,...,¢} and E(Cyp) = {cicit1 : ¢ € [( — 1]} U {c1er}. Similarly,
{p1,...,prs1} denotes the vertex set of the path Py with edge set E(P;) = {p1p2,...,PpePri1}

Very often, we want to switch between the two perfect matchings of an even cycle. For
the sake of readability, S is called a (uy,...,us)p-switcher if S is an (F1, Eq)p-switcher,
where

Ei = {ujug, uzuy, ..., ug—quz} and FEo:= {ugus,...,usy_oUs—1, U1}

Let £ > 2, d > 0 and suppose that Aug C E(Cy). A d-compressible (Cyy)p-switcher
with augmentation Aug is a model (S, {u1, ..., u9}) satisfying the following properties (see
Figure 2):

e it is d-compressible with respect to the root-compression (Coy U Aug, f), where
o f(u;) :=¢; for all i € [24];
e Sisa (u,...,uy)p-switcher.

The set Aug may be viewed as unwanted, and we will omit saying ‘with augmentation ().
When using switchers to build transformers, we must in fact have Aug = ) (see Lemma 9.1).
However, when constructing switchers in Section 10, we will first obtain compressions where
Aug # () and then perform reductions to achieve that Aug = 0.

Similarly, let r > 1, d > 0 and suppose that Aug C E(P). A d-compressible (Ko, )p-
switcher with augmentation Aug is a model (S, {u1, ..., ur+2}) satisfying the following prop-
erties (see Figure 2):

e it is d-compressible with respect to the root-compression (P> U Aug, f), where

o f(u;) :==po foralli e [r], f(ur41) :==p1 and f(ury2) == ps;

o Sisa ({uryiu; @ i€ [r]},{ursou; : @ € [r]})p-switcher.
Note that the existence of a (K3, ) p-switcher implies that ged(F') | r. Also note that though
as graphs C4 and Ko are isomorphic, a (Cy)p-switcher and a (K3 2)p-switcher are two
different concepts according to the above definitions.
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] €2
U2

C4 C3

FIGURE 2. A 3-compressible (K32 3)p-switcher with augmentation {pip3} and a 4-
compressible (C4)p-switcher with augmentation (0. The shaded areas indicate where the
edges of the switchers may lie.

Lemma 9.1. Let F' be any graph and r = gcd(F). Let d > 2 and assume that there
ezists a d-compressible (Cg) p-switcher and a d-compressible (Ko ,)p-switcher. Then F is
(1 — 1/d)-transforming.

Proof. Let U* = {u],...,ur o} and U° = {uf,...,ug} be sets. Define the function
[P U = V(P2) by f*(uryy) = p1, f*(uy,,) = p3 and f*(u]) := pp for all i € [r].
Moreover, let f°: U° — V(Cs) be defined as f°(uf) := ¢; for all i € [6].

By our assumption, there exists a ({uy,uj : i € [r]}, {uj ou; @ i € [r]})p-switcher S*
such that (S*,U*) is a d-compressible model with respect to (P, f*).

Moreover, there exists a (uj,u$, u3, uy, ug, ug)p-switcher S° such that (S°,U°) is a d-
compressible model with respect to (Cg, f©).

Let t := max{|S*[,|S°|}. Let 1/n <« 1/kj,e < a,1/b < 1/m,pu,1/|F|. So we may
assume «, 1/b < 1/t since t only depends on F. Suppose that G is any graph on n vertices
with 6(G) > (1 —1/d + p)n which has an (e, k)-partition Vi, ...,V for some k < k), and
suppose that H and H’ are vertex-disjoint subgraphs of G of order at most m, where H is
r-regular and ¢ is an edge-bijective homomorphism from H to H'. For a vertex z € V(H),
to enhance readability, we will sometimes write 2’ for ¢(x). We need to show that G contains
an (H, H') p-transformer of order at most b.

Step 1: Setup

Let R be the reduced graph of Vi,...,V; and o: V(G) — V(R) the associated cluster
function. Consider any vertex z € V(H). Note that |Ng(x) N Ng(2')| > 2un. Hence, there
exists an index 7(z) € [k] such that

‘NG(x) N NG(‘T/) N VT(.’L’)| > 2:“’|V;(x)|

Let Vf(m) := Ng(2) N Ng(2') NV, (5). Let y be a neighbour of z in H. Since xy, 2"y’ € E(G),
the pairs (V, (), Vo(y)) and (Vi) Vi(yy) must be weakly-(«, )-super-regular. Moreover,
Dﬁ}y ::|Ng(y) N V() has size at least a|V, ()| and Dy, := Ng(y') N V(5 has size at least
(6 oz

Our goal in this step is to find for every x € V(H) a set A, C V(G) with the following
properties:

(L3) for all z € A, and y € Ny(z), da(z,Dyy) > &®|V,y))/2 and dg(z,Dy,) >

O‘2‘Va(x/) ‘/2
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Consider z € V(H). By the definition of 7(x), the pairs (V, (), V;(2)) and (Vo(or), Vr(a)) are
weakly-(«, £)-super-regular. Since |V @] = 20V ()|, we deduce that the pairs (Vo (,), ‘A/T(l.))
and (V, (), VT(@) are €/p-regular with density at least a — €. By Fact 6.1, we know that

there is a set A, C VT(I) containing all but at most 27"5]V )|/ vertices of VT(I) such that
every z € A, has at least (a—e—¢ /)| D, 4| neighbours in Dz,y and at least (a—e—¢/u)| Dy |
neighbours in Dj, , for every y € Ny (z). Checking that [A,| > (1 — 2T5/H)|Vr(z)| > pl Vil
and dg(z, Dyy) > (0 — e —e/p1)|Day| > &®|V,()|/2 and equally dg(z, D) > 2|V (2| /2
for all z € A, and y € Ny (x) confirms that A, satisfies (L1)-(L3).

Step 2: Finding switchers

We first find the double-star switchers. This means that for every x € V(H), we want to
find a subgraph S} of G and a set Z, C V(G) such that

(S1%) |Zy| = r and Z; C Ay;

(S2%) (SH)zev(my, (Ef UE, )yev ) and G[V(H)UV (H')] are edge-disjoint, where E; :=
{zz: z€Z;}and E :={2'2 : z € Z,};

(S3%) [S3] <

(S4*) Sk is an (B, E; ) p-switcher.

We can find them one by one using Lemma 8.4. Suppose that for some subset Y C V(H),
we have already found Sj and Zj for all y € Y and now want to define S; and Z, for
x € V(H)\Y. Let Gy be the subgraph consisting of all edges of (S}),ey, (B} U E, )yey
and G[V(H)UV(H')]. Let G' := G—Gy. Note that since A(Go) < tm~+rm—~+2m, Vi,...,Vj
is an («/2, 3¢, k)-partition for G’.

Define a G'-labelling A of U* as follows: A(u)r ;) := {z}, A(u) ) := {2}, A(u]) := A, for
all 7 € [r]. It remains to check that A is («/2, 3¢, k)-admissible. Clearly, A respects (Po, ).
Let j(p1) := o(x), j(p2) := 7(x) and j(p3) := o(z’). Then (D1) holds. (D2) holds because
|Ap,(p2)| = [Az| = p|Vr)l = alVjp,|/2 by (L2), where Ap, is as in Definition 8.2. For
(D3), note that Wy, = W,, = 0, where W), is as in Definition 8.2, so (D3) holds trivially in
this case. Moreover, Ng(Wy,, Vip,)) = Na({z,2'}, Vi(y)) = VT(x) and so dg(Wy,, Vj@,)) =
1Vipo)l- (D4) holds by (L1).

Hence, by Lemma 8.4, there exists an embedding p of (S*, U*) into G’ respecting A. Let
Sk = p(S*) and Z, := p({u} : ¢ € [r]}). Then S} and Z, satisfy (S1*)—(S4*).

We now find the cycle switchers. For this, we associate the vertices of Z, with the
neighbours of x in H, that is, we assume Z, = {2, : y € Npg(x)}. For every edge
xy € E(H), we want to find a subgraph Sy of G such that

(S1°) (S5 )ayev(m)s (Si)ecv (), (Ef UEL )gev(my and G[V(H)UV (H')] are edge-disjoint;
(52°) |S. y\ <t
(S3°) Sg, is an (z,y, zy.u, Y, ', 22y )-switcher.

Again, we find them one by one using Lemma 8.4. Suppose that for some subset ¥ C
E(H), we have already found S} for all e € Y, and that we now want to define Sy, for
vy € E(H)\'Y. Let Gy be the subgraph consisting of all edges of (S¢)cey, (S3)zev(m)s
(Ef UE; )pev(m) and G[V(H) UV (H')] and let G’ := G — Gp. Since A(Gp) < trm/2 +
tm + rm + 2m, we have that Vi,...,V} is an (a/2, 3¢, k)-partition for G'.

Define a G'-labelling A of U° as follows: A(ug) := {z}, Aus) := {y}, A(u§) == {zy},
A(ug) = {vy'}, Aug) = {2/}, A(wg) = {zz,}. Trivially, A respects (Cs, f°). Define
J(e1) = 0(@), 3(e2) 1= oy), J(cs) = (), (ca) = (1), j(c5) = o(a’) and j(ce) = 7(2).
Then (D1) holds. Moreover, (D2) and (D4) hold trivially since |A(uj)| = 1 for all i € [6].
We will now check that (D3) holds. Note that W, = {z,,,y} and so

da (WCN V;(q)) - dG({Zm,y’ y}v Vo‘(x)) - dG(zm,y’ DZ,ZI) > QQIVU(x)’/z
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by (S1*) and (L3). The same applies to ¢; with i € {2,4,5}. Note that W, = {y,4'} and so

dc(Wey, Vi) = da({y: v} Vi) = Vel = 20/ Vi)

by definition of 7(y). The same applies to cg. Thus, A is (a?/2, 3¢, k)-admissible.
Hence, by Lemma 8.4, there exists an embedding p of (S°,U°) into G’ respecting A. Let
Szy = p(S°). Then (S1°)-(S3°) are satisfied.

Step 3: Transforming
We can now define the desired (H, H') p-transformer. Observe that (S2*) implies that

(9.1) U Ef = U {T204, Y2y 0},

z€V(H) ryeE(H)
(9.2) U E; = U {2204,y 2y.2}
€V (H) ry€EE(H)

Let
7= |J S,u U (S;UEfUE;).
zyeE(H) eV (H)

We claim that T is the desired (H, H') p-transformer. By construction, 7" has order at most
trm/2 +mt < band T[V(H) UV (H')] is empty. Finally and most importantly,

YU Uz yma) U | (STUE)
ry€E(H) zeV (H)
is F-decomposable by (S3°) and (S4*). Similarly,

Tun & U (8o, U{z"Y 220y, y2y2}) U U (SyUEL)
zycE(H) zeV(H)

TUH

is F-decomposable. O

10. CONSTRUCTING SWITCHERS

In the previous section, we saw how the problem of finding an (H, H')p-transformer
for two rather arbitrary graphs H, H' can be reduced to the problem of constructing well-
compressible switchers. We will now describe such switchers. The following ‘discretisation
lemma’ is key to narrowing the value of dp down for Theorem 1.1(ii)—(iii).

The main idea of the lemma is as follows. Suppose that d € N and dp = 1 —1/d — p
for some p > 0 and we aim to construct a (d — 1)-compressible (E7, Ey)p-switcher S. We
therefore have to show that both S U F; and S U Ey are F-decomposable. We will achieve
this by simply using the definition of dp. More precisely, we will consider an arbitrary
large graph S such that both S U E; and S U E» are F-divisible and 6(S) > (0r + 1/2)]S|.
Then, both S U EF; and S U Ey must be F-decomposable. Moreover, we can also ensure
that S is d-partite. The location of a vertex in one of the d classes then naturally defines a
homomorphism ¢ : S — Ky, which will ensure that the switcher S is (d — 1)-compressible.

Lemma 10.1 (Discretisation lemma). Let F' be any graph and let r := gcd(F') and d € N.
Suppose that §p < 1 —1/d. Then the following assertions hold.
(i) There ezists a (d — 1)-compressible (Cy) p-switcher with augmentation {cic3, cacq}.
(i1) There exists a (d — 1)-compressible (Ks ) p-switcher with augmentation {pip3}.
Proof. Let p:=1—-1/d — dp, d° := max{d,4} and d* := max{d,3}. By definition of
OF, there exists ng € N such that whenever G is an F-divisible graph on n > ng vertices

with 6(G) > (dr + p/2)n, then G is F-decomposable. Let s € N be such that 1/s <
1/ng,1/|F|,1/d, 1 and such that s is divisible by e(F') and gcd(F).
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To prove (i), let K° be the complete graph on {ci,..., ¢4 }. Clearly, K° has degeneracy
at most d — 1 rooted at {cq,...,c4}. Let G° be a complete d°-partite graph with vertex
classes V1,...,Vgo of size s each. Then, G° is F-divisible and |G°| > ngy. For all i € [4],
pick some u; € V; and define f°(u;) := ¢;. Note that x(F) < d < d° since trivially op >
1—1/(x(F)—1). Since s is sufficiently large, we can easily find edge-disjoint copies Fi, ..., Fy
of F' in G° such that ujus € E(F}), ujug € E(Fy), ugus € E(F3) and uguy € E(Fy), but
ujug,usuy ¢ E(Fy U--- U Fy). Define S° := G° — {ujug,usus} — (Fy U --- U Fy). Let
°: S° — K° be such that °(z) = ¢; if and only if € V;. Hence, ¢° is a homomorphism.
Moreover, {uj,...,us} is independent in S°, so (K°[{c1,...,ca}], f®, K, ¢°) is a (d — 1)-
compression of (S°, {uy,...,us4}). It remains to show that S° is a (u1, ug, us, ug) p-switcher.
But S° U {ujug,ugus} = G° — (Fy U --- U Fy) is F-divisible and thus S° U {ugus, uqu;} is
F-divisible as well. Finally,

d(S° U{ujug,ugug}) > (d° = 1)s —4|F| > (1 — 1/d° — u/2)sd® > (0p + 11/2)]S°]

and §(5° U {ugus, ugu1}) = 6(S° U {ujuz,ugus}). So since |S°| = |G°| > ng, both S° U
{ujug, usus} and S° U {ugus, uqu; } are F-decomposable.

To prove (ii), let K* be the complete graph on {pi,...,p4}. Clearly, K* has degeneracy
at most d—1 rooted at {p1, p2, p3}. Let G* be a complete d*-partite graph with vertex classes
Vi,..., Vg of size s each. Then, G* is F-divisible and |G*| > ng. Let u,41 € Vi, ug, ..., u, €
Vo and ur42 € V3. Define f*(u;) := po for alli € [r], f*(ups1) := p1, and f*(ur42) := p3. Let
Et :={upy1u; : i € [r]} and B~ := {uy42u; : i € [r]}. Let Fy,..., F,41 be edge-disjoint
copies of F' in G* such that u,you; € E(F;) for alli € [r+1] and ETNE(FyU---UF,41) = 0.
Define $* := G* — E* — (Fy U---U F,11). Let ¢*: S* — K* be such that ¢*(z) = p; if
and only if x € V;. Hence, ¢* is a homomorphism. Moreover, {uy,...,u,4+2} is independent
in S*, so (K*[{p1,p2,p3}], f*, K*,¢*) is a (d — 1)-compression of (S*,{ui,...,ur42}). It
remains to show that S* is an (ET, E~)p-switcher. But S*UET = G* — (F; U---U F,41)
is F-divisible and thus S* U £~ is F-divisible as well. Finally,

S(STUET) > (d*—1)s— (r+1)|F| > (1 —1/d* — p/2)sd* > (6p + p1/2)|S™],

and similarly, 6(S* U E~) > (6F + p/2)|S*|. Therefore, both S* U Et and S* U E~ are
F-decomposable. O

Recall that in order to apply Lemma 9.1, we require a (Cg) p-switcher and a (Kzgcd( F)) -
switcher with no augmentations, whilst the above lemma outputs switchers with augment-
ations. In the following, we will carry out a sequence of reductions which will provide us
with the switchers required for Lemma 9.1. Roughly speaking, in each reduction, we assume
that we have a d-compressible switcher S’ with some augmentation(s). We then construct a
d-compressible switcher S by combining several copies of S’ in such a way that S has fewer
augmentations than S’. In order to ensure that S is still d-compressible, we will appeal
to Corollary 8.7. Under rather natural assumptions, it allows us to attach d-compressible
models to an existing model without increasing degeneracy.

Lemma 10.2. Let F be any graph, d > 3 and r € N. Assume that there exists a
d-compressible (Ks ,)p-switcher with augmentation {p1ps}. Then there also exists a d-
compressible (K2, )p-switcher (with augmentation ).

We prove the lemma as follows. First we add a new vertex a connected to py, po and
p3. We then obtain the desired switcher by combining two switchers with the underlying
augmented paths pipsa and apaps.

Proof. Let U = {uq,...,ur42} and let S’ be the graph on U U {w} with edge set E* :=
{wu; : i € [r]}. Define f: U — V(P,) as f(u;) := po for all i € [r], f(ur+1) := p1 and
f(urs2) := ps. Moreover, define ¢ such that |y = f and ¢ (w) := a, where a is a new
vertex. Let K be the graph with V(K) = V(Py)U{a} and E(K) = E(P2) U {ap1, apa, aps}.
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Clearly, (P2, f,K,%) is a 3-compression of (S',U). Set E* := {u,41u; : i € [r]} and
E~ = {upyou; : i €[r]}.

Define f: (U \ {upry2}) U{w} — V(P) as fT(u;) := po for all i € [r], fT(ups1) := p1
and f*(w) := ps. Since there exists a d-compressible (K3, )p-switcher with augmentation
{p1p3}, there exists an (ET, E%)p-switcher ST such that (ST, (U \ {u,y2}) U {w}) is d-
compressible with respect to (P2 U {p1p3}, fT).

Similarly, there exists an (E~, E*)p-switcher S~ such that (S, (U \ {ur4+1}) U{w}) is d-
compressible with respect to (PoU{p1ps}, f7), where f~(u;) := pa foralli € [r], f~ (ury2) =
p1 and f~(w) := p3. We can also assume that V(ST) NV (S") = (U \ {ur42}) U{w},
V(ST)NV(S) = (U\{ursa}) U{w} and V(SH) N V(ST) = {w,ug,..., ur }.

Now define 8*: Py U {pips} — K as 87 (p1) = p1, 87 (p2) := p2 and 7 (p3) := a.
Analogously, 57 : PoU{p1p3} — K is defined as 5~ (p1) := p3, 87 (p2) := p2 and S~ (p3) := a.
Then, ST(f*(v)) = ¥(v) for all v € (U \ {ur42}) U{w} and B~ (f(v)) = ¥(v) for all
v € (U\ {ur41}) U{w}. Let S:= S USTUS™. Hence, by Corollary 8.7, (S,U) is d-
compressible with respect to (P2, f). Finally, since SUET = (S~ UEY)U (ST U E™) and
SUE™ =(STUEY)U(STUE™), (S,U) is an (E™, E™) p-switcher. O

Since the definitions of the homomorphisms § and functions f are usually natural and
clear from the context, we will often omit the corresponding details in future applications
of Corollary 8.7. We can now combine several (Cy)p-switchers into a (Cg) p-switcher.

Lemma 10.3. Let F be any graph and d > 3. Assume that there exists a d-compressible
(Cy) p-switcher. Then there also exists a d-compressible (Cg)p-switcher.

Proof. Let U = {u1,...,us} and let S’ be the graph on U U {wi,ws} with edge set
{uw, uswy, ugws, ugwe, wiws }. Define f: U — V(Cs) by f(u;) := ¢; for i € [6]. Moreover,
let ¢ be defined such that [y = f, ¥(w1) := a1, and 1 (we) := ag, where a;, ag are new verti-
ces. Let K be the graph on V(Cs)U{ay, az} with edge set E(Cg)U{c1a1, c5a1, caa2, c402, ajda}.
Observe that (Cs, f, K,) is a 3-compression of (S’,U).

By Corollary 8.7 and our assumption, we can attach graphs St,...,Ss to S’ such that
Sy is a (u1,ws, us, ug) p-switcher;
Sy is a (wa, ug, us, uyg) p-switcher;
Sz is a (uq, u2, we, w1 ) p-switcher;
Sy is a (we, ug, us, w1 ) p-switcher;
(S"USLU---USy,U) is d-compressible with respect to (Cs, f).
Let S := S US;U---USy. It is easy to check that S is a (uq,...,us)p-switcher. For
example, SU{ujuz, ugus, usug} can be decomposed into S;U{ujwr, usug}, SaU{uswa, usuy},
S3 U {ujug, wiwe} and Sq U {ugws, uswy }, which are all F-decomposable. O

Lemma 10.4. Let F' be any graph and d > 4. Assume that there exists a d-compressible
(Cy) p-switcher with augmentation {cics,cacq}. Then there also exists a d-compressible
(Cy) p-switcher (with augmentation ().

Proof. Let U = {uy,...,us} and define f: U — V(Cy) as f(u;) := ¢; for i € [4]. Let
w be a new vertex and let S be the graph on U U {w} with edge set {ujw,wus}. Define
Y(u;) == f(u;) for i € [4] and ¢(w) := a, where a is a new vertex.

We will first show that there exists a d-compressible (Cy)p-switcher with augmentation
{c1c3}. To this end, let K be the graph on V(Cy)U{a} with edge set E(Cy)U{cies} U{cia :
i € [4]}. Note that (C4 U {cics}, f, K, 1) is a 4-compression of (S, U). By Corollary 8.7 and
our assumption, we can attach graphs 51,52 to S such that

e Sy is a (ug,ug, ug, w)p-switcher;
e Syis a (u1,w,us, us) p-switcher;
e (S,U) is d-compressible with respect to (Cy U {cic3}, f), where S := SUS;US,.
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Clearly, S is a (u1, ug, us, u4) p-switcher.

We now conclude that there exists a d-compressible (Cy) p-switcher without augmentation.
Let K’ be the graph on V(Cy) U {a} with edge set E(Cy) U {c;a : i € [4]}. Note that
(Cy, f, K',9) is a 4-compression of (5’, U). By the above and Corollary 8.7, we can attach

1,5} to S such that
e S7is a (u1,us, us, w)p-switcher;
e S)is a (u1,w,us, us) p-switcher; A
e (5',U) is d-compressible with respect to (C4, f), where S' := SUS] U S).
Then, S’ is a (uq, uz, ug, ug) p-switcher. O

We will now gather the remaining building blocks to show that every graph F is (1 —
1/(x(F) + 1))-absorbing. Recall from Lemmas 9.1 and 10.3 that in order to do this we
have to construct a (x(F') + 1)-compressible (Cy)p-switcher and a (x(F') + 1)-compressible
(K3 gea(ry) F-switcher. In fact, we will only describe a (Cy)p-switcher and then derive the
(K3 gea(ry) F-switcher via a further reduction.

Lemma 10.5. Let F be any graph and x = x(F). There exists a (x + 1)-compressible
(Cy) p-switcher.

Proof. Let ¢ := |F| — 1 and suppose that V(F) = {fo,..., f¢} and fofs € E(F). Let F' :=
F — fo. Let 20,0,...,20—1,0-1 be £? new vertices. We define copies of F’ on them as follows:
For every i € {0,...,¢ — 1}, let F;r be a copy of F' on {z;g,...,zi¢—1} such that z; ; plays
the role of fig; for all j € {0,...,¢—1}, where i@ j denotes addition modulo £. Similarly, for
every j € {0,...,¢—1}, let F; be a copy of F"on {z,...,20-1,} such that z; ; plays the
role of fig; for alli € {0,...,¢ —1}. Note that the graphs Fy,... ’Fetho_7 o, F | are
all edge-disjoint. Let S’ be the graph obtained from the union of all these graphs by adding
two new vertices w1, u3 and joining both of them to every z; ; with fig; € Np(fe). We claim
that S’ has two natural F-decompositions Fi, Fa. To see this, for k € {1, 3}, define

E;r(uk) = {ukZm‘ : fi@j S NF(fg), j e {0, ol — 1}}
for all i € {0,...,¢ — 1} and
Ej_(uk) = {ukzm : fi@j S Np<fg), 1€ {0, N 1}}

for all j € {0,...,£ —1}. Note that, for each k£ € {1,3}, Uf:é Ef(ug) = U?;é B (uy)
consists of all edges at wuy in S’. Thus,

-1 -1
§' = | J(E UES (w) U(F UE; (us)) = (B U B} (us) U (F; U B} (un)).
i=0 1=0

Since for all k € {1,3} and i € {0,...,£ — 1}, both F." U E (ug) and F;” U E; (uy,) form
a copy of F, this shows that S’ has two (natural) F-decompositions.

In order to obtain the desired switcher, we make some minor modifications to S’. Note
that the vertex zp¢ is contained in the copies FO+ and Fy , and w1200, us3200 € E(5)
because fofr € E(F). Let S be the graph obtained from S’ — zp as follows: Add new
vertices ug,uq and add all edges from us to NFJ-(ZO’()) and all edges from wu4 to NFO— (20,0)-
We claim that S is a (ug,ug, us, ug) p-switcher. Clearly, {uq,...,us} is independent in S.
Let FJ' = SH{u2, 20,1, ...,200-1}] and FO_ = S{ua, z10,...,20-10}]. Further, let

Eyf (w1) := Ef (u1) \ {u120,0};

Ey (u1) := Ey (u1) \ {u1z00};
i (u3) = Ef (us) \ {uszo,0};
5o (us) = Ey (uz) \ {uszo,0}-
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Crucially, FF UES (u1) U{utus}, Fy U Ey (u3) U{usus}, Fy” U Ey (uz) U {ugus} and Fy U
Ej (u1) U {ujus} are all copies of F. Moreover,

/-1

S = (Ff U Ef () U (Fy U Eq (ua)) U |JI(F7 U E (w)) U (F U E] (ug))]
=1
/-1

= (Fy UEG (u3)) U (Fg U Ey (u) U [JIFT UES (us)) U (F; U B (w1))].
=1

With the above, it follows immediately that S is a (ug, ug, ug, u4) p-switcher.

Let g: {u1,...,us} — V(Cy4) defined by g(u;) := ¢; for i € [4]. It remains to show that
the model (S,{u1,...,us}) with root-compression (Cy,g) is (x + 1)-compressible. Let K
be the graph obtained from C4 by adding a complete graph on new vertices cs,...,cy42
and all edges between {c1,...,cs} and {cs,...,cy42}. This way, C4 is an induced subgraph
of K and K has degeneracy at most xy + 1 rooted at V(Cy4). Let ¢ be a colouring of F
with colour set {ci,c2} U {c5..., ¢ 42} such that ¢(fy) = ¢1 and ¢(fo) = c2. We define
: V(S) = V(K) as follows: Take 9(u;) := ¢; for all i € [4]. For every vertex z;; € V(5),
we let ¥(z; ;) = c(fiwj). It is easy to see that v is a homomorphism. For example, if
zi iz € E(S), then we must either have i = i’ and 2 ;27 4 € E(F;') or j = j' and
zijzirj € E(F;7). In both cases, fig;fiay € E(F), implying c(fie;) # c(fire; ). Hence,
¥(zi5) # ¥(z,5) and thus ¥(z;)¢ (2 5) € E(K). If wiz; € E(S), then fig; € Np(fe)
and so w(ul) = = C(fg) #* C(fi®j) = w(zi,j). If U225 € E(S), then ¢ = 0 and fj S Np(f())
and so ¢¥(u2) = ¢ = ¢(fo) # c(fiw;) = ¥ (2i;). Together with a similar argument for uz and
4, this completes the proof. O

Using the (C4)p-switcher constructed above, we are able to construct a (K g, (v))F-
switcher for every v € V(F) (see Lemma 10.7). The following lemma implies that this
suffices to obtain the desired (K3, )p-switcher.

Lemma 10.6. Let F' be any graph, d > 0 and r € N such that ged(F) | r. Suppose that for
all v € V(F), there exists a d-compressible (Ky 4,.(v)) F-switcher. Then there also exists a
d-compressible (K2 ) p-switcher.

Proof. Let Vi and V2 be multisubsets of V(F') such that r + ny = ng, where ny :=
> vev, Ar(v) and ng =3y, dr(v).

Let U = {u1,...,ur42} and let W be a set of n; new vertices. Define f(u;) := po for
all i € [r], f(ur41) := p1 and f(ur42) := p3. Let S’ be the graph on U U W with edge set
{urp1w, urpow : w € W}. Define ¢ such that ¢ [y = f and ¢ (w) := pa for all w € W. So
(Py, f, Py, 1) is a 0-compression of (S',U).

Let BT := {uy11u; : i € [r]} and B~ := {u,42u; : i € [r]}. In order to obtain an
(E*, E7)p-switcher, we partition W into subsets (U,)yecy; and partition W U {uq, ..., u,}
into subsets (Uy)vey, such that |U,| = dp(v) for all v € V3 U V.

By Corollary 8.7 and our assumption, we can attach graphs (S,)yev,uv, to S’ such that
Sy is a ({ury12 @ 2 € Uyt {upq2z : 2z € Uy})p-switcher and (S,U) is d-compressible with
respect to (Py, f), where S := S"UJ,ey,uy, Sv- Finally, observe that

SUEY = | (SoUfuraz s 2€ U1 U (SoUfupez : 2 € U})
veEVs veV]

is F-decomposable, and by symmetry, S U E~ is also F'-decomposable. O

Lemma 10.7. Let F be a graph, let r := gcd(F') and x := x(F). There exists a (x + 1)-
compressible (Ks,)p-switcher.
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Proof. By the previous lemma, we can assume that » = dp(v) for some v € V(F). So let
wi, ..., w, be an enumeration of Ng(v). Moreover, fix a colouring ¢ of F' with colour set [x]
and c(v) = 1.

Let U = {uq,...,ur2} be aset of new vertices and let S” be the graph on UUV (F—v) with
E(S") := DYUD~UE(F—v), where D" := {u,y1w; : i € [r]} and D™ := {upqow; : i € [r]}.
Define f: U — V(P») as f(u;) :=p2 for all i € [r], f(ur41) :=p1 and f(ur42) := p3. Define
¥ such that Y[y = f and ¥(z) := a.y) for all z € V(F — v), where ay,...,a, are new
vertices.

Let K be the graph obtained from P, by adding a clique on ay,...,a, and all edges
between {p1,p3} and {az,...,a,}. So P is an induced subgraph of K and K has degeneracy
at most y rooted at V(Py). Thus, (Pe, f, K,1) is a x-compression of (S’,U).

For every i € [r], we have that 1 (ur11) = p1, Y(wi) = ac(w,), Y(urs2) = p3 and Y (u;) = po.
By Lemma 10.5, there exists a (x+1)-compressible (C4) p-switcher. Hence, by Corollary 8.7,
we can attach graphs Si,...,S, to S’ such that

e S;is a (upg1,w;, Upto, u;) p-switcher;
e (S,U) is (x + 1)-compressible with respect to (Ps, f), where S :=S"US;1U---US,.
We claim that S is an (ET, E~)p-switcher, where E* := {u,11u; : i € [r]} and E~ :=
{ur42u; : i € [r]}. To this end, observe that S;U- - -US, is an (ETUD~, E-UD™) p-switcher.
Hence,
SUET =((F—v)UuDNHu(Siu---US, UETUD™)
and
SUE™ =((F—v)UD )U(SU---US, UE~UD")
are both F-decomposable. O

11. DIVISIBILITY AND THRESHOLD RELATIONS

In this section, we make some observations regarding the relationship between the ‘aux-
iliary thresholds’ 5;,5}$,6%+,5} and 6p. For this (and for later use when constructing
extremal examples), we first gather some tools that allow us to remove a sparse subgraph
of a given graph G in order to make G divisible.

Lemma 11.1. Let 1/n < u,1/r. Let G be a graph on n vertices with §(G) > (1/2+p)n and
let £: V(G) = {0,...,r—1} be any function satisfying r | erV(G) &(x). Then, there exists
a subgraph H of G such that A(H) < pn and dg—_pg(x) = &(x) mod r for all x € V(QG).

Proof. We will find H as a union of many small subgraphs which shift excess degree
from one vertex to the next one. Let wv € E(K,,) and let u be a new vertex. Let
Q = (K, — {wv}) U{uw}. Let @ be the graph obtained from K, , by subdividing one
edge with a new vertex z. Note that dg(u) = 1, dg(v) = —1 mod r, dg/(z) = 2, while all
other vertices of ) and Q' have degree r.

Claim 1: (Q,{u,v}) is 1/2-embeddable.

It is sufficient to show that if z, 2’ € V(G) are distinct, then G contains a copy of @ with
x, 2" playing the roles of u,v. So suppose that x and z’ are distinct vertices in G. Let y be
a neighbour of x in G. Let Y be a subset of Ng(y) of size un/2 disjoint from {x,z'}. For
every 4 € Y, ¢ has at least un neighbours in X := Ng(2/)\ (Y U{xz,y}). Let H := G[X,Y].
Then, e(H) > |Y|un > p?|H|?/2. Hence, K,_1,—1 must be a subgraph of H. Together
with x,2’,y, this yields the desired copy of Q.

Claim 2: (Q',{z}) is 1/2-embeddable.

Let z be any vertex in G. It is easy to see that 6(G[Ng(z)]) > 2un. Thus, K,, must be
a subgraph of G[Ng(x)], which together with x contains a copy of @’ with x playing the
role of z.
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Now, let z1, ..., x, be an enumeration of V(G), and for each ¢ € [n—1], let a; € {0,...,r—
1} be such that a; = Y (da () — €(;)) mod r. Let an € {0,...,r — 1} be such that
an = e(G) mod r. Moreover, set ag := 0.

For every i € [n — 1], we want to find a; edge-disjoint copies of @ in G’ such that x;, ;11
play the roles of u,v. To this end, for every i € [n — 1] and j € [a;], let A; ;: {u,v} = V(G)
be a G-labelling defined as A; j(u) := {x;} and A;;(v) := {x;41}. Note that there are at
most rn labellings and every vertex of G is the image of a root at most 2r times. We can
thus apply Lemma 8.1 to find edge-disjoint embeddings (i j)ic[n—1),jeqa;) Of @ such that ¢; ;
respects A;j and A(H') < pun/2, where H' := U;cp-1) je[a;] 01 (@)-

Note that §(G — H') > (1/2 4 u/2)n. Thus, we can greedily find a,, edge-disjoint copies
of Q' in G — H' with z,, playing the role of z. Then, let H be the union of H’ and the copies
of Q'. Clearly, A(H) < pn.

Moreover, we have dg(x;) = a; — a;—1 = dg(z;) — £(z;) mod r for every ¢ € [n — 1].
Finally,

du(zyn) = 2an — apn—1 = 2e(G) — Z (da(xj) —&(z))) = dg(xn) — E(xn) mod 7.
j€n—1]

Hence, we have dg_pg(z) = &(xz) mod r for all z € V(G). O

Roughly speaking, the above lemma allows us to make a graph F-degree-divisible. The
following proposition allows us to make a graph F-edge-divisible, without destroying degree-
divisibility. We will also use it in Section 13 to construct extremal examples.

Proposition 11.2. Let F be a graph and r := ged(F). Let n € N and suppose that G is a
graph on n vertices with §(G) > n/2+2e(F)(r+1). Then, for any number e with r | 2e, there
exists an r-divisible subgraph H of G such that e(H) = e mod e(F') and A(H) < 2e(F)r.

Proof. Let V' C V(@) be such that ged{|V'|,e(F)} = 1 and |V \ V| < e(F). Let
G’ = G[V']. Clearly, r | 2¢(F). Let a := r if r is odd and a := r/2 if 7 is even. So a | e and
a|e(F). Let 0 <t < e(F)/a be an integer such that e = ta mod e(F). Let o, 3 € Z be
such that ae(F) + B|V'| = t. We can assume that 0 < 8 < e(F).

Observe that §(G’") > |G’|/2 + 2(Ba — 1). Hence, by Dirac’s theorem, we can take H to
be the union of Sa edge-disjoint Hamilton cycles in G’. We then have e(H) = |V'|fa =
a(t — ae(F)) = e mod e(F'). Moreover, H is r-divisible and A(H) < 2e(F)r. O

In order to show that 5?; < 0%, we use the following result.

Theorem 11.3 (Haxell and R6dl [10]). Let F' be a graph and n > 0. There exists ng € N
such that whenever G is a graph on n > ng vertices that has a fractional F-decomposition,
then all but at most nmn? edges of G can be covered with edge-disjoint copies of F.

Corollary 11.4. Let F be any graph with x(F) > 3. Then max{6%", 6%} < 6% < dr and
Mr < p.

Proof. Let r := gcd(F). Clearly, 1/2 < 67 < 0.

Firstly, we show 67" < ép. Let 1/n < p,1/|F| and let G be a graph on n vertices
with 6(G) > (0p + u)n. Suppose that z* € V(G) with r | dg(z*). Let G’ := G — z*
and define {(z) := r — 1 for all x € Ng(z*) and &(x) := 0 for all z € V(G') \ Ng(z*).
Apply Lemma 11.1 to obtain a subgraph H of G’ such that dg/— g (z) = &(z) mod r for all
x € V(G') and A(H) < pn/2. Let G” := G — H. Hence, G” is r-divisible and §(G") >
(0F 4+ 11/2)n. Apply Proposition 11.2 to G” — z* with e(G”) playing the role of e in order
to obtain an r-divisible subgraph H’ of G” — 2* such that e(H') = e(G”) mod e(F) and
A(H') <2e(F)r. Let G := G" — H'. Observe that G"" is F-divisible, 6(G") > (6p+ u/4)n
and Ngw(2*) = Ng(x*). Now, G has an F-decomposition. In particular, all edges at x
are covered.
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We continue by showing 6%, < 0%. Let 1/n < p,1/|F| and let G be a graph on n vertices
with 0(G) > (03+p)n. Suppose that € = 2y’ € E(G). We need to show that €’ is contained
in a copy of F'. Using Lemma 11.1 and Proposition 11.2 in the same way as above, it is easy
to find a spanning subgraph G"’ of G such that G" is F-divisible, 6(G") > (6} + p/4)n
and ¢’ € E(G"). Now, G" has a fractional F-decomposition, which is only possible if every
edge of G"” is contained in a copy of F. In particular, ¢’ is contained in a copy of F.

Lastly, we show that 07 < &} for all n > 0, implying that 52f < 60p. Let n > 0. Let
1/n < p,1/|F| and let G be a graph on n vertices with §(G) > (07 + p)n. We may assume
that p < n. Using Lemma 11.1 and Proposition 11.2, it is easy to find a subgraph H of G
such that G’ := G — H is F-divisible, §(G’) > (6% + p/4)n and e(H) < un?. So G’ has a
fractional F-decomposition. Thus, by Theorem 11.3, all but at most un? edges of G’ can be
covered by edge-disjoint copies of F', giving an n-approximate F-decomposition of G. O

12. ABSORBERS

The aim of this section is to prove the following lemma. Having done this, we can then
bound §f in terms of §°F, 6% and x(F) (see Theorem 12.4).

Lemma 12.1. Let F' be any graph and let § > 1/2. If F is §-transforming, then F is
6-absorbing.

Roughly speaking, we obtain the desired absorber by concatenating several suitable trans-
formers. In particular, as intermediate steps, we ‘transform’ a given graph into certain
special graphs which we now define.

For a graph F, e € E(F) and h € N, let L(h; F,e) be the graph obtained from h vertex-
disjoint copies of F' by subdividing all copies of e with one new vertex and identifying the
new vertices. Note that x(L(h; F,e)) < max{x(F),3}.

For a graph F', v € V(F'), a graph H and an orientation H of H, let H*ULEY) he the
graph obtained from H by adding d;;(x) copies of F' for every x € V(H) and identifying
the copies of v with x.

We need the following result from [2]. (Recall that we write H ~~ H’ if there is an
edge-bijective homomorphism from H to H'.)

Lemma 12.2 (see [2, Lemma 8.7]). Let F' be a graph, uwv € E(F) and r := gcd(F). Then
for every F'-degree-divisible graph H and any orientation H of H, there exists an r-regular
graph Hy such that |Ho| < 4e(H)e(F), Hy ~ HHEY) gnd Hy ~ L(e(H); F,uv).

The statement here is slightly more general than that in [2], as we do not require F' to
be r-regular here, but the same proof goes through.

Proof of Lemma 12.1. Let F be a graph, x := x(F), r := gcd(F), 6 > 1/2 and
assume that F' is J-transforming. Note that this implies that 6 > 1 — 1/(x — 1). Let
1/n < 1/kj,e < a,1/b < 1/m,u,1/|F| and suppose that G is a graph on n vertices with
d(G) > (6+ p)n which has an («, €, k)-partition Vi, ..., Vj for some k < k{, and H is any F-
divisible subgraph of G of order at most m. We need to show that G contains an F-absorber
for H of order at most b. Let H be any orientation of H. Moreover, fix uv € E(F).
We first extend H to H®®ULEY) iy G. Let eq,...,e; be an enumeration of E(I:I) and

e; = T;1;. We want to find copies Fi,...,F; of F' in G such that

(i) V(F;) NV (H) = {x;} for all i € [t], where z; plays the role of v in Fj;

(i) V(F;—z)NV(Fj—z;) =0forall 1 <i<j<t.
Suppose that for some s € [t], we have already found Fi, ..., Fs_1. Let X := V(H)UV (F})U
- UV(Fs_1). For every i € [k], let V! := V; \ (X \ {zs}), and let G’ := G[V] U---UV]].
Since |X| < m + m?|F|, we have |V; \ V/| < &2|V;| for all i € [k], and thus V/,...,V/ is
an («/2,3e, k)-partition of G'. We now view (F,{v}) as a model. Let J be a graph of
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order one, say, with vertex j;, and let f map v to j,. Label v with {zs} and observe that
this is an («/2, 3¢, k)-admissible G’-labelling. Since (F,{v}) is (x — 1)-compressible and
0(G) > (1-1/(x—1)+p/2)|G'|, Lemma 8.4 implies that there exists a copy Fy of F' in G’
with zs playing the role of v. Then (i) and (ii) hold with ¢ replaced by s.

Let Hyyy := HU Uje[t} F;. So Hgy is isomorphic to HOHED) Tt [ .= L(e(H); F,uv).
Let pF be the vertex-disjoint union of p copies of F', where p := e(H)/e(F), and let pFpy =
(pF )att(pF #0) where pF is some orientation of pF'. By Lemma 12.2, there exist r-regular
graphs Hy and pFy of order at most 2m2e(F) such that Hy ~ Hys, Ho ~ L, pFy ~ pFuy
and pFy ~» L. Recall that x(L) < max{x,3}. Since Hy ~» L, we have x(Hp) < x(L).
Similarly, x(pFo) < x(pFatt) = x. Since 6 > 1/2, we have that 6 > 1 —1/(x(H*) — 1) for
all H* € {Hy, L,pF,pFo}. Therefore, we can find copies of these graphs in G, and we
may assume that these copies, which we call again Hy, L, pFa, pFy, are vertex-disjoint and
vertex-disjoint from H .

Since F' is d-transforming, G' contains subgraphs T1,...,7y of order at most b/4 such
that T is an (Hy, Hqy) p-transformer, Tb is an (Hy, L) p-transformer, T3 is a (pFoy, pFatt) r-
transformer and T is a (pFy, L)p-transformer, and we may assume that 77,...,7Ty are

vertex-disjoint and vertex-disjoint from Hg¢, Ho, L, pFui, pFoy except for the obviously ne-
cessary intersections required by the definition of transformers, that is, e.g., V(T1)NV (13) =
V(Hp) and V(T4) NV (L) = V(L). In particular, Hyy — H, Hy, L, pFa, pFo, T1, ..., Ty are
edge-disjoint and contain no edge of G|V (H)|. Let

A:=(Hy —H)UTy UHyUTo ULUTyUpFyUTs5UpEyy.

We claim that A is an F-absorber for H. Indeed, A has an F-decomposition since each of
Hyw— H, Ty UHy, To UL, Ty UpFy, T35 UpFys: have F-decompositions. Secondly, AU H has
an F-decomposition as Hy UTY, HyUTs, LUTy, pFyUTs and pF,s are all F-decomposable.
Moreover, |A] < b since V(A) CV(ThU---UTy). O

Corollary 12.3. Let F be any graph and x := x(F'). Then the following are true:
(i) Fis (1 —1/(x + 1))-absorbing;
(ii) if op <1—1/(x+1) and x >4, then F is (1 — 1/x)-absorbing;

(iii) if dp <1 —1/x and x > 5, then F is (1 —1/(x — 1))-absorbing.

Proof. Let r := gcd(F). (i) By Lemma 12.1, it is enough to show that F'is (1 —1/(x+1))-
transforming. By Lemmas 10.3 and 10.5, there exists a (x + 1)-compressible (Cg) p-switcher.
By Lemma 10.7, there exists a (x +1)-compressible (K3 ;) p-switcher. Therefore, Lemma 9.1
implies that F'is (1 — 1/(x + 1))-transforming.

(ii) By Lemma 10.1, there exist a y-compressible (Cj4)p-switcher with augmentation
{c1¢3,c2c4} and a y-compressible (K3, )p-switcher with augmentation {p;p3}. Since x > 4,
Lemmas 10.2, 10.3 and 10.4 imply that there exist a y-compressible (Cg)p-switcher and
a x-compressible (K3 ,)p-switcher without augmentations. Therefore, Lemma 9.1 implies
that F'is (1 —1/x)-transforming. Lemma 12.1 finally implies that F' is (1 — 1/x)-absorbing.

(iii) follows in the same way since x — 1 > 4. O

We are now able to deduce the following theorem, which is already close to Theorem 1.1.

Theorem 12.4. Let F' be a graph with x := x(F).
(i) Then §p < max{0%,0% 1 —1/(x+1)}.
(i) If x > 5, then 0p € {max{d%, 0%}, 1 —1/x,1—1/(x + 1)}.
Proof. Firstly, (i) follows from Theorem 7.1 and Corollary 12.3(i).
To prove (ii), suppose that y > 5. By Corollary 11.4, p > max{é?;r, 03"}, Hence, since
6% >1—1/(x — 1), Theorem 7.1 and Corollary 12.3 imply that 67 € {max{d%", 5%}, 1 —
1/x1=1/(x+ 1)} B
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13. THE DECOMPOSITION THRESHOLD OF BIPARTITE GRAPHS

In this section, we will determine dr for every bipartite graph. We first make some
preliminary observations. We then consider the case 7(F') = 1 of coprime component sizes,
where dp € {0,1/2}. The main part of the section is devoted to the case 7(F) = 1. Finally,
we consider extremal examples.

13.1. Preliminary observations. Whilst not much is known about the value of 5%+ in
general, we can use the following observation in the bipartite case.

Fact 13.1. If F' s bipartite, then 5%"“ = 0.

Proof. The Erd6s—Stone theorem tells us that the Turan density of F' is 0. Hence, for all
1 > 0, there exists an ng such that from every graph G with n > ng vertices, we can greedily
remove copies of F until at most nn? edges remain. O

In order to achieve upper bounds on dz using Theorem 7.1, we will investigate the absorb-
ing behaviour of a given bipartite graph F'. To this end, we recall the definitions of 7(F') and
7(F) (see Theorem 1.7). Let F' be a bipartite graph. A set X C V(F) is called C4-supporting
in F if there exist distinct a,b € X and ¢,d € V(F) \ X such that ac,bd,cd € E(F). We
defined

T(F) := ged{e(F[X]) : X CV(F) is not Cy-supporting in F},
T(F) := ged{e(C) : C is a component of F'}.
Fact 13.2. Let F be bipartite. Then 7(F) | gcd(F) and gcd(F) | 7(F).

Proof. For the first assertion, note that for every vertex v € V(F), X := Np(v) U {v} is
not Cy-supporting and e(F[X]) = dp(v). Secondly, for every component C' of F, we have
gcd(C) | e(C), since the edges in C can be counted by summing the degrees of the vertices
in one colour class of C, and clearly ged(F) | ged(C). O

Recall that we defined (Cy)p-switchers and (K3, )p-switchers as special models in Sec-
tion 9.

Proposition 13.3. Let F be a bipartite graph and r € N with gcd(F) | r. There exists a
0-compressible (Ka,) p-switcher.

Proof. By Lemma 10.6, we can assume that r = dp(v) for some v € V(F). Let ¢ be
a {1,2}-colouring of F' with c¢(v) = 1. Let S be the graph obtained from F by deleting
all edges at v and adding a new vertex v’. Since F is bipartite, U := {v,v'} U Np(v) is
independent in S. Let Et := {vu : u € Np(v)} and E~ := {v'u : u € Np(v)}. Clearly, S
is an (ET, E~)p-switcher. Define f(u) := po for all u € Np(v), f(v) :=p; and f(v') := p3.
Moreover, define 1(x) := p(y) for all @ € V(F) and (v') := p3. Then, (P, f, P2,7) is a
0-compression of (S,U). O

Let F be a graph and d > 0. Let (T,{ui,...,ua}) be a model such that T is a
({uqua}, {usus}) p-switcher. Note that a necessary condition for this to exist is that ged(F) =

If (T,{u1,...,us}) is d-compressible with respect to the root-compression (Py, f), where
f(u1) = f(us) = p1 and f(uz) = f(ug) = p2, then we call (T, {u,...,us}) a d-compressible
internal (Py)p-teleporter.

Let 2P; be the graph with V(2P1) = {p1,p2,p},p5} and E(2P1) = {pip2,pips}. If
(T,{u1,...,us}) is d-compressible with respect to the root-compression (2P, f’), where
f(ur) = p1, f'(u2) = pa, f'(ug) = p) and f'(us4) = p), then we call (T, {u1,...,us}) a
d-compressible external (Py)p-teleporter.

Note that by Fact 8.5, every d-compressible external (P;) p-teleporter is also a d-compressible
internal (P;)p-teleporter. Loosely speaking, when considering an («, ¢, k)-partition of a



38 S. GLOCK, D. KUHN, A. LO, R. MONTGOMERY AND D. OSTHUS

graph G, then an internal (P;)p-teleporter allows us to switch between two edges lying in
the same regular pair of clusters, whereas an external (Pj)g-teleporter would allow us to
switch between two edges that may belong to different regular pairs.

The following proposition gives an easy way of constructing an internal (P )-teleporter.
We will use it as a tool in the proof of Lemmas 13.5 and 13.9.

Proposition 13.4. Let F be a bipartite graph with gcd(F) = 1. Then there exists a 0-
compressible internal (Py)p-teleporter (T, {u1,...,us}).

Note that in this case, T itself has a homomorphism onto P; and is thus bipartite.

Proof. Let 7" be the graph with vertex set {u1,...,us, w} and edge set {ugw,wuy}. Con-
sider the model (77, {u, ..., uq4}) with compression (Py, f, Py, ), where ¢ (u;) := f(w;) :=p1
for i € {1,3}, ¥(w;) := f(u;) := pa for i € {2,4}, and (w) := p;. By Proposition 13.3,
there exists a 0-compressible (K3 1)p-switcher. So by Corollary 8.7, we can attach graphs
S1, 52,53 to T" such that

Sy is a ({uqus}, {wug}) p-switcher;
Sy is a ({ugw}, {ugw}) p-switcher;
S3 is a ({wuy}, {usug}) p-switcher;
(T, {u1,...,uq}) is O-compressible with respect to (P, f), where T := T'US;US2US5.
Then, T is clearly a ({ujus}, {ugus})p-switcher. O

13.2. Coprime component sizes. We first analyse the case when 7(F) = 1. In the proof
of the following lemma, we construct an external (P;)p-teleporter, which we will use in the
proof of Lemma 13.6 to show that F' is 0-absorbing.

Lemma 13.5. Let F be a bipartite graph with 7(F) = 1. Then there exists a 0-compressible
external (Py)p-teleporter.

Proof. Let Mj, Ms be disjoint multisets containing components of F' such that 1 +
Ycem, ¢(C) =2 cen, ¢(C). Let U = {u1, ..., us} and define f: U — V(2P1) as f'(u1) :=
p1, f'(uz) :=p2, f'(us) :=py and f'(ua) == pj.

We want to construct a 0-compressible model (7', U) with respect to (2P, f’) such that
T is a ({ujus}, {usus})p-switcher.

Fix some component C* € My and let vw € E(C*). Let ¢ be a {1, 2}-colouring of F' such
that ¢(v) =1 and c(w) = 2.

Let Far* be a copy of C* —vw such that uy,us play the roles of v, w. Likewise, let F. be
a copy of C* — vw such that us,us play the roles of v, w. Let Fg* be a copy of F' — V(C*).
Moreover, for each component C' € My U (M \ {C*}), let F, and F; be two copies of C
and let Fg be a copy of F'—V (C'). We may assume that all these copies are vertex-disjoint.
Let T" := Ueenr,um, Foo U FG U FL.

For all z € V(T”) that belong to some F, or F(J;f, define () := p,(,), where z is the vertex
of F' whose role z is playing. Likewise, for all x € V(1") that belong to some F,, define
P(x) = p’c(z), where z is the vertex of F whose role x is playing. Observe that ¢: T — 2P is
a homomorphism such that ¥ [y = f’. Hence, (2P, f',2Py, ) is a 0-compression of (77, U).

Let BY := E(Ugey, FE) for i € {1,2} and ® € {+,—}. By the definitions of M, My
and C*, we have |E"| = |ES| and |E]| = |E;|. Let ¢*: Ef — E5 and ¢~ : E] — E; be
arbitrary bijections. For every edge e € Ef , we have e = xy and ¢T(e) = 2’y for suitable
distinet x,y, 2,y such that ¢ (z) = ¢(2’) = p1 and ¥(y) = ¥(y') = p2. Similarly, for every
edge e € E, we have e = zy and ¢~ (e) = z'y/ for suitable distinct x,y,2’,y" such that
W(x) = P(2') = p} and P(y) = ¥(y') = p,. By Fact 13.2 and Proposition 13.4, there exists
a 0-compressible internal (Pj)g-teleporter. We can therefore use Corollary 8.7 to attach

graphs (Te)eeEfruEl‘ to T" such that
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e T, is an ({e}, {¢"(e)}) r-switcher for every e € E;";
e T is an ({e}, {¢~ (e)}) p-switcher for every e € E7;
e (T,U) is 0-compressible with respect to (2P, f'), where T :=T" U St US~, ST :=
UeeE;r T, and S~ := UeeE; Te.
It remains to show that T is a ({ujus}, {ugus}) p-switcher. Note that ST is an (B}, ES ) p-
switcher and S~ is an (E] , E; ) p-switcher. Thus,

T U {urug} = (Fe U FL U{uiue}) U (STUES)U(S™ UEy)

ulJ RurmHu | (FUFY),
ceMy CeM\{C*}

T U {ugua} = (FE U FL U{usua}) U (STUES) U(S™ UEY)

v U @wurhu | FuF),
CeMy CeMx\{C*}

are both F-decomposable. O

Lemma 13.6. Let F be bipartite and 7(F) = 1. Then F is 0-absorbing.

Using Lemma 13.5, we will be able to transform any given leftover into a union of copies
of F' resulting in the desired absorber.

Proof. By Lemma 13.5, there exists a O-compressible external (P;) p-teleporter (T, {u1,...,u4}),
say, that is, T"is a ({wjua}, {usus})p-switcher and (T, {u1,...,us}) is O-compressible with
respect to (21%, f'), where f'(u1) = p1, f'(u2) = p2, f'(u3) = pj and f'(us) = p5.

Let t := |T| and assume that 1/n < 1/kj,e < a,1/b < 1/m,p,1/|F|. Since t only
depends on F this implies that o, 1/b < 1/t. Suppose that G is a graph on n vertices with
d(G) > pn that has an (a, e, k)-partition V,. ..,V for some k < k. Suppose also that H
is any F-divisible subgraph of G of order at most m. We are to show that G contains an
F-absorber for H of order at most b. Let p := e(H)/e(F') and let pF be the vertex-disjoint
union of p copies of F. Clearly, we can find a copy H' of pF as a subgraph in G such that
H' is vertex-disjoint from H. Let eq,...,e, be an enumeration of the edges of H and let
el,...,e), be an enumeration of the edges of H'. We now want to find an ({e;},{e}})r-
switcher for all ¢ € [h]. More precisely, we want to find edge-disjoint copies 711, ...,T of T
in G such that

(i) T; is an ({e;}, {€}}) p-switcher;

(ii) T;|V(H)] and T;[V (H')] are empty.
Once again, we find them one by one using Lemma 8.4. Suppose that for some s € [h],
we have already found T7,...,Ts_1. Write e = a2y € E(H) and €, = 'y’ € E(H'). Let
X :=V(H)UV(H")UV(T1)U---UV (Ts_1). Forevery i € [k], let V! := V;\(X\{z,y,2',y'}).
Then, V/,..., V] is an (a/2, 3¢, k)-partition of G := G[V] U---UV/] and §(G’) > u|G'|/2.
Let A: {uy,...,us} = V(G') be defined as A(u1) := {x}, A(uz) := {y}, A(us) := {2’} and
A(uq) :={y'}. We claim that A is («/2, 3¢, k)-admissible. Clearly, A respects (2P, f’). Let
R be the reduced graph of V/,...,V}/ (with respect to G’) and o: V(G') — R the cluster
function. Define j : V(2P;) — V(R) by j(p1) := o(z), j(p2) = o(y), j(p}) := o(2') and
J(ph) :=o(y'). Since xy, 2’y € E(G'), we have o(z)o(y),o(z')o(y’) € E(R), so (D1) holds.
Observe that Wy, = {y}. Since dg/(y, V() > 0, we have dar (W, Vi) = alVipl/2-
The same applies to pa,p), ph, so (D3) holds as well. (D2) and (D4) hold trivially. Thus,
Lemma 8.4 implies that there exists an embedding p of (T, {uq,...,us}) into G’ respecting
A. Take Ts := p(T).

Let A:= HUT,U---UTy. Then |A| < e(H)|F|+ e(H)t < b and A[V(H)] is empty.
Since A = ;e (T3 U {€i}) is F-decomposable and AU H = H' U U (Ti U {e}) is F-
decomposable too, A is an F-absorber for H in G of order at most b. O
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13.3. Coprime non-Cy-supporting sets. Here we show that 7(F) = 1 implies that F is
1/2-absorbing (see Corollary 13.10). The remaining step towards this goal is to show that
there exists a 2-compressible (Cg)p-switcher. In fact, we will construct a 0-compressible
(Ce) p-switcher. For this we need to construct a model (S, {u1,...,ug}) and a homomorph-
ism 1): S — Cg such that 1(u;) = ¢; for all i € [6] and such that both S U{ujuz, usug, usug}
and S U {ugus, ugus, uguy } are F-decomposable.

Fact 13.7. Let F' be bipartite. Then
T(F) = gcd{e(F[X]) : X CV(F) is not Cy-supporting and F[X] is connected}.

Proof. It is sufficient to show that for any X C V(F') that is not Cy-supporting, we
have that ged{e(F[Y]) : Y C V(F) is not Cy-supporting and F[Y] is connected} divides
e(F[X]). Therefore, suppose that X C V(F) is not Cy-supporting. There is a partition
X =Y1U---UY,; such that F[Y1],..., F[Y;] are the components of F[X]. Then, e(F[X]) =
e(F[Y1]) + - - -+ e(F[Y:]) and every Y; itself is not Cy-supporting. O

For graphs H and J, a homomorphism ¢: H — J, and vertices ji,...,jx € V(J), we
slightly abuse notation for the sake of readability and write H[¢)"!(j1...jx)] instead of
HY~ ({536 )]-

The following lemma is the key building block for the construction of the desired Cg-
switcher.

Lemma 13.8. Let F be bipartite and 7(F) = 1. Then there exist F'-decomposable graphs
G.,G_, an edge e® € E(G) and a homomorphism p: G UG_ — Cg such that p(e®) = cico
and G_[p~"(c1e2)] = G [p~ (c1c2)] — {e}.

Note that the condition 7(F) = 1 is crucial here. Indeed, if p': F' — Cg is a homomorph-
ism, then the number of edges mapped to cicq is divisible by 7(F) as p'~1({c1,c2}) is not
Cy-supporting. Hence, 7(F) must divide both e(G [p~!(c1c2)]) and e(G_[p~ (c1c2)]).

Proof. Let
C:={F[X] : X CV(F) is not Cy-supporting and F[X] is connected}.

A graph G is called C-decomposable if G can be decomposed into copies of elements of C. It is
sufficient to show that there exist a graph G°, a homomorphism p°: G° — Cg[{c1, c2}] ~ Py
and an edge € € E(G®) such that both G° and G° — {eg} are C-decomposable. Indeed, if
F[X] € C appears in the decomposition of GO (or G° — {eg}), then one can extend F[X] to
a copy of F and extend p® appropriately without mapping new edges to cjc. Clearly, all
these extensions can be carried out edge-disjointly.

We now construct Gg. By assumption and Fact 13.7, ged({e(C) : C € C}) = 1.
Thus, there exist disjoint sets M., M_ containing copies of elements of C such that 1 +
Ycem_ €(C) =X cem, €(C). We may assume that all the elements of M} UM_ are vertex-
disjoint. Let G' := |J M4 Ul M_. Clearly, G’ is bipartite, i.e. there exists a homomorphism
PG — P Let E® := E(JMgy) for ® € {+,—}. Hence, |[ET| = |[E7|+ 1. Let € be
any edge in ET. Let F be the disjoint union of all elements of C. We want to construct
an (B4 \ {e°}, E_) z-switcher S. To this end, let ¢ be an arbitrary bijection from E_ to
E.\ {e"}, and for every e € E_, let V. be the set of vertices incident to e or ¢(e).

Clearly, %(F) = 1. By Fact 13.2, it follows that gcd(ﬁ) = 1. Thus, Proposition 13.4
implies that there exists a 0-compressible internal (Py)z-teleporter. Therefore, there exist
graphs (T )ecp_ such that

T, is an ({e}, {¢(e)}) z-switcher for each e € E_;

V(GYNV(T,) =V, for each e € E_;

V(T.) NV (T.) = V. NV for all distinct e, e’ € E_;

there exists a homomorphism p.: T, — Py with pe(x) = p/(z) for all z € VL.
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Let S := U,ep Te and G := G'US. Clearly, S is an (E; \ {€"}, E_) z-switcher and
P = p U Uecr_ Pe is a homomorphism G° — Pp.

In particular, both SU (Et\ {¢}) and S U E~ are C-decomposable. Thus, G = (S U
E~)U|J M, is C-decomposable. Similarly, GO — {e°} = (SU (ET\ {°})) ulUM_ is C-
decomposable. O

We will now construct the desired Cg-switcher. We will first translate the structure
obtained from Lemma 13.8 into a ‘pseudo’-({ujua}, {uiug, ugus})p-switcher in the sense
that there are some additional unwanted switchings (see Figure 3). Here ujug plays the role
of the edge € from Lemma 13.8. We will then mirror this structure so that the mirror image
of ujug is usug and usg, ug are fixed points. The original structure together with its mirror
image form a ‘pseudo’-(ui,...,ug)p-switcher. In fact, some of the unwanted switchings
will cancel out (see Figure 4). By the inherent symmetry, we can pair up the unwanted
switchings and decompose them in a number of ‘double-stars’, which we can incorporate by
adding suitable ‘double-star-switchers’.

Lemma 13.9. Let F' be bipartite and 7(F) = 1. Then there exists a 0-compressible (Cg)p-
switcher.

Proof. Let J be a copy of Cg with vertices ¢y, ¢2, €3, a2, a1, ¢g appearing in this order on the
cycle.

Step 1

Let G4+,G_ be F-decomposable graphs, ujus € E(G4) and let p: G UG- — J be a
homomorphism such that p(u;) = ¢; for i € {1,2} and G_[p~(cic2)] = G4 [p  (c1e2)] —
{urug}, which exist by Lemma 13.8. We may assume that G and G_ are otherwise edge-
disjoint.

Let H := (G4+ UG-) — {ujug}. For ® € {+,—}, define Hy := Gglp ' (cgarazcs)],
Hio = Golp~(c1c6)] and Ha e := G[p~!(c2cs)]. Thereby, we have the following:

(H1) {u1,u2} C V(H) is independent in H and p(u;) = ¢; for i € {1,2};

(H2) H=HyWH;UH_U HL_;,_ o HL_ Q] H27+ G HQV_, where

o Hy:= H[p_l(cltz)],
e H O UH_ = H[p_1(66a102C3)],
o H17+ o Hl,_ = H[p_l(C1C6)], and
. H2,+ Q] HQ,, = H[p_l(C2C3)];
(H3) HyU{ujua}UH UH;  UHy ; and HyUH_UH; _UH, _ are both F-decomposable.

We now want to extend H to H and p to j such that the following hold (see Figure 3):

(H1") {u1,ug,us, ug}t C V(H) is independent in H and j(u;) = ¢; for i € {1,2,3,6};
(H2') H = HoW H, W H_\ Hy U Hy, where

° I‘i’+ U ﬁ, = fl[ﬁ_l(cﬁalagc?,)],

° Erl,(] Q] ffl = ﬁ[ﬁil(C1C6)],

° I;[ZU C] I:IQ = E[[ﬁ_l(CQCg)], and

e Hy := H[ﬁjl(cltg)LU HLQ U HQ,O; ~ ~ .

(H3") HoU{ujug} U Hy and HyU {ujug, ugus} U H_ U Hy U Hy are both F-decomposable.

To this end, let u3, ug be new vertices (i.e. vertices not in H). Pick vw € E(F) and let F} be
a copy of F'—wvw such that ui, ug play the roles of v, w, and let F5 be a copy of F'—vw such
that uo, ug play the roles of v, w, and all other vertices are new vertices. Clearly, there exists
a homomorphism p;: Fi — J[{c1, 6} such that p1(u1) = ¢1 and p1(ug) = ¢6. Similarly, let
p2: Fo — J[{c2,c3}] be a homomorphism such that pa(u2) = ¢2 and pa(us) = cs.

For every e € E(Hy 4+ U Hy ), let F. be a copy of F' that contains e and consists of
new vertices apart from the endpoints of e. For e € E(H; 1), let po: Fo — J[{c1,¢6}] be
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FIGURE 3. The structure to be constructed in Step 1.

a homomorphism such that p.(z) = p(z) for z € V(e). For e € E(Ha ), let pe: Fe —
J[{c2,¢3}] be a homomorphism such that p.(z) = p(z) for = € V(e).
Let
H:=HUF UFRU U F.
e€E(H:, 4+ UHz 1)

and define p := pU p; U py U UeeE(H1,+UH2,+)p€' Then, (H1’) holds. Let Hy := Hg for
® € {+,—} and H;o := H; for i € {1,2}. Note that H[p(cic2)] = H[p~"(c1¢2)] = Ho.
Therefore, defining Hy := ﬁ[ﬁ’l(clq)] U ﬁl,o U ﬁg,o vields Hy = Hy U Hy +UH;,_. Finally,
for i € {1,2}, let

EITZ' = Hi7_UF1iU U (Fe—e).

ecE(H; 1)

This way, (H2') holds. Now, Hy U {ujus} U H, is F-decomposable by (H3). Moreover,
ﬁou{ulug, u2u3}uﬁ_uﬁ1 U Hy can be decomposed into HyUH_UH,_UH,_, FiU{ujus},
F>U{ugus} and Hy 4+ U Hy 4 U UeeE(H17+UH2,+)(F€ —e). The former is F-decomposable by
(H3) and the others are all trivially F-decomposable, so (H3') holds.

Step 2

Let J* be the graph obtained from J by mirroring J with fixed points {c¢g, a1, az, c3}, that
is, add new vertices ¢5, ¢4 to J together with the edges cgc5, c5¢q4 and cycs.

Alternatively, J* can be viewed as the graph obtained from Cg (with vertices ¢i,..., ¢
in the usual order) by adding two new vertices aj, as and the edge§ ey, a1a2, azc3.

For every vertex x € p '(cic2), let 2’ be a new vertex. Let ~H’ be the copy of H ob-
tained by replacing every = € p~!(cic2) with 2/, and let H}, H}, H} be the subgraphs of H’
corresponding to Ho, Hy, Hs. So H' = Hy U H, W H_ U H{ U H). Let

S*:=HUH'.

We can extend p to a homomorphism : S* — J* by defining ¢ (2’) := ¢ for every
x € p (1) and Y(a') := ¢4 for every z € 51 (ca).

We let us := u} and ug := ub, thus usuy is the mirror image of ujuy. Note that U :=
{u1,...,up} is independent in S*. Let f be defined as f(u;) := ¢; for all i € [6]. Therefore,
(J*, f,J*, 1) is a 0-compression of (S*,U).

Note that by symmetry and (H3'),

(H4') H)U {uqus} U Hy and HyU {usue, uzus} UH_ U H| U H} are both F-decomposable.
Let
(13.1) S**:= HyUH,UH_UH)=S8*—(H{UH,U H; UHy).
Combining (H3") and (H4’), we conclude that
(H5') S** U{ujusz, ugug, usug} U JEI{ U ﬁé and S*™* U {ugus, uqus, uguy } U H, U Hy are both
F-decomposable (see Figure 4).
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C6@

FIGURE 4. By mirroring the structure obtained in Step 1 (see Figure 3), we obtain the
desired (u1,...,us)r-switching, plus some unwanted (but symmetric) switchings. The
subgraphs H; and H_ are contained in both F-decompositions.

Consider z € 5~ (c;). Note that by (H2'), z is not incident with any edge from H,, H_, Ho, {ugus}.
Let r := ged(F). By (H3'), we have r | diouturusy (@) and 7 | dgo e, (€), implying

that r | dg, (o). Mor?ovef, Ng (z) = N, (z') since Ng (z) C p1(cg). The same applies

to x € pY(c) with Hy, H). Hence, by Corollary 8.7 and Proposition 13.3, we can attach
graphs (Sz)zep1(cic) to S* such that

e S, isan (ﬁi[m,Ngi(x)],f[{[m’,NH{(:U’)])F—switcher for all i € {1,2}, z € p(c;);
e (S,U) is O-compressible with respect to (J*, f), where S := S*US; USy and S; :=
U.Z'Eﬁfl(ci) Sz for ¢ S {1,2}
Clearly, Sy is an (Hy, H})p-switcher and Sy is an (Ha, Hb) p-switcher. Thus, together with
(13.1) and (H5'), it follows that S is a (uy, ..., ug)p-switcher.

By identifying a; with ¢; and ay with co, we can see that (S,U) is O-compressible with
respect to (Cg, f) by Fact 8.5. O

Corollary 13.10. Let F' be bipartite and 7(F') = 1. Then F' is 1/2-absorbing.

Proof. This follows from Lemma 13.9, Proposition 13.3, Lemma 9.1 and Lemma 12.1.
O

13.4. Lower bounds. The remaining steps towards the proof of Theorem 1.7 are extremal
examples giving lower bounds on dz.

Proposition 13.11. Let F' be bipartite. If T(F') > 1, then 0p > 2/3.

Proof. Let r := ged(F). By Fact 13.2, 7(F) | r. We show that there are F-divisible
graphs G of arbitrarily large order which are not F-decomposable, while 6(G) > |2|G|/3] —
2r(e(F) +1). Let m be sufficiently large.

Case 1: 7(F) is odd.

Let Vi, V2, V3 be disjoint sets with |Vi| = 2rm + 7(F) — 1, [Va| = 2rm — 7(F) + 2,
|Va| = 2rm — 7(F) + 1. Let G be the graph on vertex set V3 U Vo U V3 consisting of two
cliques on V; and V3 and a complete bipartite graph with vertex classes V3 U V3 and V5.
Hence, G has 6rm — 7(F') + 2 vertices. Moreover, dg(v) = 4rm for all v € V; U V5 and
dg(v) = 4rm — 27(F) + 2 for all v € V3.

Let G’ be the graph obtained from G by removing the edges of r +1 — 7(F') edge-disjoint
Hamilton cycles in G[V3]. Hence, G’ is r-divisible and thus r | 2¢(G"). Apply Proposition 11.2
to G'[V3] with e(G’) playing the role of e to obtain an r-divisible subgraph H of G'[V3] such
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that e(G') = e(H) mod e(F) and A(H) < 2e(F)r. Let G” := G’ — H. Hence, G is
F-divisible and

S(G") > drm —27(F)+2—-2(r+1—7(F)) —2e(F)r > |2|G"]/3] — 2r(e(F) +1).

We will now see that G” is not F-decomposable. Let F’ be any copy of F in G”. Note that
V(F") V1 is not Cy-supporting in F’, hence 7(F) | e(F'[V1]). So a necessary condition for
G" having an F-decomposition is that e(G”[V1]) is divisible by 7(F'). However, e(G"[V1]) =
(rm+ (7(F) —1)/2)(2rm + 7(F) — 2). Recall that 7(F') | r. Hence, the first factor is not
divisible by 7(F’) since 7(F') > 1 and the second factor is coprime to 7(F') as 7(F) is odd.

Case 2: 7(F) is even.

Define G as before, but this time the sizes of Vi, Va, V3 satisfy |Vi| = 2rm + 7(F), |Va| =
2rm — 7(F) + 1, |V3| = 2rm — 7(F). Hence, G has 6rm — 7(F) + 1 vertices. Moreover,
dg(v) = 4rm for all v € V1 U V3 and dg(v) = 4rm — 27(F) for all v € V3.

Let G’ be the graph obtained from G by removing the edges of r — 7(F) edge-disjoint
Hamilton cycles in G[V3]. Hence, G’ is r-divisible and thus r | 2¢(G"). Apply Proposition 11.2
to G'[V3] with e(G’) playing the role of e to obtain an r-divisible subgraph H of G'[V3] such
that e(G') = e(H) mod e(F) and A(H) < 2e(F)r. Let G” := G’ — H. Hence, G is
F-divisible and

S(G") > drm — 27(F) — 2(r — 7(F)) — 2e(F)r > |2|G"|/3] — 2r(e(F) + 1).

As before, a necessary condition for G” having an F-decomposition is that e(G”[V1]) is
divisible by 7(F). However, e(G"[V1]) = (rm + 7(F)/2)(2rm + 7(F) — 1), where the first
factor is not divisible by 7(F) and the second factor is coprime to 7(F'), so e(G”[V1]) is not
divisible by 7(F). O

Proposition 13.12. Let F' be bipartite. If 7(F) > 1 or every edge of F' is contained in a
cycle, then dp > 1/2.

Proof. Let r := gcd(F'). Suppose that 7(F) = 1. By Fact 13.2, r = 1. Moreover, our
assumption implies that every edge of F' is contained in a cycle. For any m € N, the graph
G obtained from two disjoint cliques of order me(F') each by deleting one edge and adding
a bridge between the two components is F-divisible and satisfies §(G) > |G|/2 — 2, but is
not F-decomposable.

We can therefore assume that 7(F') > 1.

Case 1: r is even or 7(F) > r.

Let a := r if r is odd and a := r/2 if r is even. Note that a < 7(F') since r | 7(F).
For any m € N, let V1, V5 be disjoint sets of size 2me(F)7(F) + 1 each and let G be the
graph consisting of two cliques on V4 and V5. Clearly, G is F-divisible. Let G’ be the graph
obtained from G by removing the edges of a edge-disjoint Hamilton cycles from G[V;] and
(e(F) — 1)a edge-disjoint Hamilton cycles from G[Vz]. Observe that G’ is still F-divisible
and 0(G") > 2me(F)7(F) — 2e(F)r =|G'|/2 =1 —2e(F)r.

However, e(G'[V1]) = —|Vila mod 7(F). Since a < 7(F) and ged{|V1],7(F)} = 1, we
deduce that e(G’[V1]) is not divisible by 7(F), implying that G’ cannot be F-decomposable.
Case 2: r is odd and 7(F) = r.

Since 7(F') > 1, we have r > 1. We first claim that every edge of F' is contained in a cycle.
Suppose that xy is not contained in a cycle. Then there exists a partition of V(F) into sets
A1, As, By, By such that z € A, y € By and E(F) = E(F[Al,Bl]) U E(F[AQ,BQ]) U {Qj‘y}
Hence,

e(F) = e(F[A1, B1]) + e(F[A2, Bo]) +1 = Z dr(v) + Z dp(v) +1=1 mod r,
vEB] vEA2
which contradicts r | e(F') and r > 1.
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Let @ be a graph with one vertex ¢ of degree 1 and all other vertices of degree r. (To
construct such a @, start with K, and remove the edges of a matching of size (r —1)/2.
Add a new vertex ¢’ and join ¢’ to all vertices that were incident with an edge from the
matching. Add ¢ and join ¢ to ¢'.)

Now, for any sufficiently large m € N, let V1, V5 be disjoint sets of size rm + 1 each and
let G be the graph consisting of two cliques on V; and Va. Clearly, G is r-divisible. Fix
vy € Vj and vy € Vi. For i € {1,2}, let Q; be a copy of Q in G[V;] such that v; plays the role
of g. Let G' := (GU{v1v2}) — Q1 — Q2. Clearly, G’ is r-divisible. In particular, r | 2e(G’).
Apply Proposition 11.2 to G'[V4] with e(G’) playing the role of e in order to obtain an r-
divisible subgraph H of G'[V4] such that e(H) = e(G’) mod e(F) and A(H) < 2e(F)r. Let
G" .= G'—H. Thus, G" is F-divisible and §(G") > rm—r—2¢(F)r = |G"|/2—1—r—2¢(F)r.
However, G” is not F-decomposable because v1vy cannot be covered. O

Let F' be a bipartite graph. In Section 14 we will see that ¢3° = 0 if F' contains a
bridge and 63 = 1/2 otherwise (see Corollary 14.13(ii)). Using this, we can now prove
Theorem 1.7.

Proof of Theorem 1.7. Note that §%¢ < 1/2 by Corollary 14.13(ii) and 6% = 0 by
Fact 13.1. By Corollary 12.3, F' is 2/3-absorbing. Hence, by Theorem 7.1, 0p < 2/3. Now,
if 7(F') > 1, then Proposition 13.11 implies that §7 = 2/3. On the other hand, if 7(F') = 1,
then we can deduce from Corollary 13.10 and Theorem 7.1 that dp < 1/2. If 7(F) > 1 or
every edge is contained in a cycle, we deduce §r = 1/2 with Proposition 13.12. So assume
that 7(F) = 1 and that F' contains a bridge. Then ¢}3* = 0 by Corollary 14.13(ii) and F' is
0-absorbing by Lemma 13.6. Hence, Theorem 7.1 implies that §r = 0. g

14. COVERING THE EDGES AT A VERTEX

In this section, we investigate d%", i.e. the threshold at which we can cover all edges at a
vertex. In particular, we will determine ¢%° for all bipartite graphs. In the general case, we
determine 6% as a function of 0%, that is, we reduce the problem of covering all edges at
one vertex to the problem of covering one edge. We will use an iterative absorbing approach
which has many parallels to the main proof.

In Section 14.1, we will show how to obtain an approximate cover at some vertex x. In
Section 14.2, we will show how to turn an approximate cover into a near-optimal cover.
Roughly speaking, the neighbourhood of x will be partitioned into sets Ni, ..., Ny of suc-
cessively smaller size, where Ny has constant size. Using the result of Section 14.1, we can
cover all but a small fraction of the edges from z to N;. By assuming that the minimum
degree is above 0%, we can cover the leftover edges one by one by using some edges from
x to No. We then cover all but a small fraction of the remaining edges from x to N2 and
continue as above until all edges at x are covered except some from x to N;. In Section 14.3,
we will see how these remaining edges can be absorbed.

14.1. Approximate cover. In order to determine the threshold which guarantees an ap-
proximate cover with copies of F' at a vertex, we will use a result of Komlés [15]. He showed
that the minimum degree threshold that guarantees the existence of vertex-disjoint copies
of a given graph F' covering almost all vertices of the host graph is governed by the so-called
critical chromatic number of F. We will apply his result to a reduced graph.

For a graph F, let Col(F') denote the set of all [x(F')]-colourings of F' and let o(F) :=
minceco(ry [¢H(1)]. The eritical chromatic number of F is defined as

|F|

Xer(F) := (X(F) — 1)m,

where we set x.r(F') := 0 if x(F) = 1.
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Theorem 14.1 (Komlés [15]). For every graph H and p > 0 there exists an ng = no(p, H)
such that every graph G on n > ngy vertices with 6(G) > (1 — 1/x-(H))n contains vertex-
disjoint copies of H covering all but at most un vertices of G.

(Theorem 14.1 was further improved by Shokoufandeh and Zhao [19] who replaced the
un term with a constant depending only on H. However, the result of Komlés is sufficient
for our purposes.) We will apply Theorem 14.1 to an appropriate subgraph of the reduced
graph.

We now define the graph parameter x"* that governs the existence of an approximate
cover at one vertex, which turns out to be closely related to x..

For a graph F with x := x(F') and a vertex v € V(F), let Col(F,v) := {c € Col(F) :
c(v) = x} and define

- ; -1
o(F,v):= cecnolll(rllV,v) INp(v) N e (1)].
So if F' can be coloured in a way such that Np(v) requires fewer than x — 1 colours, then
o(F,v) = 0. Note that if F' is bipartite, then o(F,v) = dp(v) for all v € V(F'). But if x > 3,
then o(F,v) < dp(v) for all v € V(F). Thus, if x > 3, then

vz - 1 dF(U)
X"(F) = (x—2) v.én\}{;:) dp(v) — o(F,v)

is well-defined. Note that for all v € V(F),

(14.1) o(F,v) = dp(v)(1—(x —2)/x"(F)).
Moreover, we set x"*(F') := 0 if F' is bipartite. Clearly,
(14.2) X—2<X"(F)<x—1L

Proposition 14.2. For all graphs F, min{§%, 6%} > 1 —1/(x"*(F) +1).

We will see that §}* can be strictly larger than 1 —1/(x"*(F') + 1). Roughly speaking,
1—-1/(x""(F)+1) represents only a ‘space’ barrier, whereas 03" is also subject to other kinds
of barriers. The reason why we also show that 6% > 1 — 1/(x"*(F) + 1) is that because
of this inequality, we can omit the term 1 — 1/(x"*(F') + 1) in the discretisation given in
Theorem 1.1.

Proof. Let x := x(F), x** := x"*(F) and ¢ := min{6%",6%"}. Clearly, § > 1—1/(x — 1).
We may therefore assume that x** > x —2. In particular, x > 3. Let p:=1-1/(x""+1)—¢
and suppose, for a contradiction, that u > 0. We will construct graphs G of arbitrarily large
order with §(G) > (6 + u1/2)|G| such that any F-collection in G fails to cover Q(|G|?) edges
and that there is a vertex = € V(G) with gcd(F) | dg(x) such that the edges at x cannot
be covered with edge-disjoint copies of F', contradicting the definition of §.

More precisely, choose v > 0 small enough such that 1 —1/(x**+1—-v) >1—-1/(x"* +
1) — p/2 and a:= x"* — (x — 2) — v > 0. Let m € N be sufficiently large. We may assume
that (x —2)m + am is an integer and divisible by gcd(F'). Let G be the complete y-partite
graph with vertex classes Vi, ..., V, such that |V;| = m for i € [x —1] and |V} | = am. Thus,
|G| = (x — 1+ a)m and dg(z) > (x —2 + a)m for all x € V(G) since ae < 1. By our choice
of v, it follows that 6(G) > (6 + 1/2)|G]|.

Observe that
«

n:=1-— 5 > 0.

o+ Vi

Let  be any vertex in V(G) \ Vy. By our assumption, gcd(F) | dg(x). We will now
see that any F-collection in G fails to cover at least ndg(z) edges at z. Let F,..., F; be
edge-disjoint copies of F in G, all containing z, and let d := 22:1 dF;(z) denote the number
of edges covered at x. For j € [t], let v; be the vertex of ' whose role x is playing in Fj.
Thus, for all j € [t], dr;(x, V) > o(F,v;). Hence, o(F,v1)+---+0(F,v;) < am, and (14.1)
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thus implies that d - (1 — (x — 2)/x"%) < am. Since dg(z) = (x — 2 + a)m = (x** — v)m,
we deduce that
d am o

S = :1_77,

da(r) = (1 - ’;Zf)(x”‘” —v)m o+ V@‘(Zf

proving the claim.

In particular, there exists a vertex x € V(G) with gcd(F') | dg(x) such that the edges at
x cannot be covered with edge-disjoint copies of F', implying that §** > 4.

Moreover, let F be any F-collection in G and let H be the subgraph of G consisting
of the edges that are not covered by F. By the above, we have dy(x) > ndg(z) for all
z € V(G)\ Vy. Thus, 2e(H) > n(x — 2+ a)m - (x — 1)m > n(x — 2)?m?. Since |G| < xm,
we deduce that e(H) > n(1—2/x)?|G|?/2 > n|G|?/18. Thus, 6% > 52/18 > ¢, contradicting
the definition of 4. U

We will now show how to obtain an approximate cover of the edges at a specified vertex x.
The following lemma is an easy application of the key lemma. It describes a structure within
which we can cover almost all edges at = with copies of F.

Lemma 14.3. Let F' be a x-chromatic graph and w € V(F'). Let ¢ € Col(F,u) be such that
aty.. . as > 1 and asyi, ..., ay—1 =0 for some s € [x — 1], where a; :== |Np(u) N c™1(3)| for
ielx—1].
Let 1/n < ¢ € a,1/|F| and suppose that G is a graph with
(1) V(G) ={z}uViu.--uV,;
(i) No(x) =Viu---UVy;
(1it) G[V;,V;] is e-reqular with density at least o for all 1 <i < j < x;
() |Vi| = a;n for all i € [s];
(v) |Vi| =n forall s <i <.
Then there exists an F-collection covering all but at most \/edg(x) edges at x.

Proof. Let t := [(1—+/e)dg(z)/dr(u)]. Note that dg(x) = (a1 + -+ -+ as)n = dp(u)n. We
will greedily find injective homomorphisms ¢1, . .., ¢; from F'into G such that ¢1(F), ..., ¢(F)
are edge-disjoint, ¢;(u) = = for all j € [t] and ¢;(v) € V() for all j € [t] and v € V(F)\ {u}.
Suppose that for some j € [t], we have already found ¢1,. .., ¢;—1. We now want to find ¢;.
Let H:=G — ¢1(F) —--- — ¢j—1(F). Note that for every i € [s]|, we have

du (2, Vi) = Vil = (j = Dai > [Vi| = (1 = Ve)aidg(x)/dp(u) = VE[Vi| > Ven.
Hence, for every i € [s], we can pick a set V;/ C Ny (x,V;) of size /en. Furthermore, for every
s < 1 < x, we can pick aset V/ C V; of size \/en. By Fact 6.2 and since e(G—H) < ne(F'), we
know that H[V], V/] is e!/3_regular with density at least a/2 for all 1 < i < j < x. Therefore,
the key lemma (Lemma 6.5) implies that there exists an embedding ¢: (F' —u) — H such
that ¢’(v) € VC’(U) for all v € V/(F)\ {u}. Defining ¢;(u) := x and ¢;(v) := ¢}(v) for all
v e V(F)\ {u} yields the desired embedding ¢;. O

Lemma 14.4. Let F be a graph and 1/n < p,1/|F|. Let G be a graph on n vertices with
0(G)>(1-1/(Xx""(F)4+1)+u)n and x € V(G). Then there exists an F-collection covering
all but at most un edges at x.

To prove Lemma 14.4, we will apply the regularity lemma and consider the corresponding
reduced graph to find the structures described in Lemma 14.3. Applying Lemma 14.3 will
then give the desired F-collection.

Proof. Let u be a vertex of F' such that x"* := x"*(F) = (x — 2)dpr(u)/(dr(u) — o(F,u)).
By definition, there exists ¢ € Col(F,u) such that o(F,u) = ay—1 and ai,...,as, > 0 and
U541y -+ ay—1 = 0 for some s € [x — 1], where a; := |Np(u) N ¢ 1(i)| for i € [x — 1].
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Let H be the complete s-partite graph with class sizes a1, ...,as and observe that

(143) XCT(H) < va

Let A:=[[,cpq ai-

Choose new constants ko, k, € N and e, > 0 such that 1/n < 1/k{ < ¢ < o, 1/ky <
w, 1/|F|. (Then also «a, 1/ky < 1/A.) Suppose that G,n,z are as in the hypothesis. Apply
the regularity lemma (Lemma 6.3) to obtain a partition Vp, Vi,...,V; of V(G) — z and a
spanning subgraph G’ of G — x satisfying the following:

(R1) ko < k < k{;

2) Vo) < em

3) Vi =« = [Vil = L

4) dG/( ) > dg(z) —(a+e)nforall z € V(G)\ {z};

5) G'[V,] is empty for all y € [k];

6) forall 1 <y <y <k, G'[Vy, V] is either e-regular with density at least o or empty;
(R7) for all y € [k], V}, C Ng( ) or V N Ng(z) = 0.

By adding some vertices of V(G’) \ Vj to Vj if necessary, we can assume that L is divisible
by A. Let X C [k] be the set of indices y for which V,, C Ng(x). Let R be the reduced
graph of Vq,...,V} with respect to G', and let R, := R[X]. By Proposition 6.4, §(R) >
(1-1/(x"*+1)+ pn/2)k. Firstly, this implies 6(R) > (1 —1/(x — 1)+ p/2)k. Secondly, since
|X|L > dg(x)—en and thus | X| > (1—1/(x"*+1))k, we have that §(R;) > (1—-1/x"")|X| >
(1 = 1/xer(H))|Rg| by (14.3). Hence, by Theorem 14.1, there exist vertex-disjoint copies
Hy,...,H; of H in R, covering all but at most pu|R,|/2 vertices.

Ideally we would now like to extend each H; to a copy of F' —w in R so that these copies
are edge-disjoint, and then try to apply the key lemma to the corresponding subgraphs of
G. However, the number of vertices in H is too large for this to work in general. Instead,
we will extend every s-clique in H; into a x-clique and then construct (in G) structures
appropriate for Lemma 14.3.

For each j € [t], let Hj1,..., Hjs be the vertex classes of H; with |H;;| = a; for all i € [s].
Let

(R
(R
R
(R
(R

A:={{=(y1,...,ys) : 3j € [t] so that y; € H;; for all i € [s]}.

If £ = (y1,...,ys), we write £* for {y1,...,ys}. So for every £ € A, R[¢*] is a clique. We
want to extend each such clique to a clique on Y vertices by attaching additional vertices.
Moreover, we want that all attachments are edge-disjoint. More precisely, for every & € A,
we want to find a set att(€) of y — s vertices in R such that

(A1) R[E* Uatt(§)] is a clique on y vertices;
(A2) the graphs R[att(ﬁ)] U Rlatt(§),£*] are all pairwise edge-disjoint and edge-disjoint
from U]E[t

We will achieve this using Lemma 8.1. First, let R* := R —J;¢[y H; and note that 6(R*) >
(1-1/(x — 1)+ p/4)k. Moreover, let K* := K, — K, [S], where S C V(K,) is of size s.
Clearly, (K*,S) is a model and K* has degeneracy at most x — 1 rooted at S. For every
€ € A, let A¢ be any bijection from S to {{y} : y € £*}. Hence, A¢ is an R*-labelling of S.
Now, since |A| < At < Ak and for every y € V(R), {{ € A : y € £} < A, we can apply
Lemma 8.1 in order to obtain edge-disjoint embeddings (¢¢)ec 4 of K* into R* such that ¢
respects A¢. Thus, we can take att(§) := ¢¢(V(Ky) \ S). This satisfies (A1) and (A2).

We note that we will only need some of the sets att(£). For reasons that will become clear
later, we partition V; for every y € V(R) arbitrarily into A equal-sized parts V. 1,...,V 4.

Fix j € [t]. For each i € [s] and y € H;;, we can cut V, into A/a; equal-sized parts in
order to obtain a partition of UyeHj,i Vy into A parts Wj;1,..., W, a of size La;/A each.
Fix £ € [A]. For i € [s], let y;;¢ be the vertex of H;; such that Wj;, is contained in V.
We have & ¢ := (yj1,0,---,Yjse) € A Let yjsris,...,Yje be the elements of att({;,) and
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then define Wj;, := V, , with y = y;;, for each s < i < x. Observe that by (A2), for all
0,0 e 4],
(A3) R[;,Uatt(§e)] and R[S o U att(&y )] are edge-disjoint if j # j'.

(But it may happen that &7, U att(§¢) = & o U att(&je) even if £ £ (')

Now, for every (j,€) € [t] x [A], let G;; be the graph obtained from G'[U;cp,; W) by
adding « and all edges from z to Uie[s] Wie. As we shall see, the graph G is the desired
structure to which we can apply Lemma 14.3.

We claim the following:

(1) (Gje)jeln,eea) 1s a family of edge-disjoint subgraphs of G;
(ii) the graphs G, cover all but at most (¢ + p1/2)n edges at = in G;

(ili) Gje[Wjie, Wi e) is 2Ae-regular with density at least a/2 for all (j,¢) € [t] x [A] and

1<i<i <y

(iv) |Wjie| = La;/A for all (j,1,€) € [t] x [s] x [A];

(v) [Wjie = L/A for all (5,£) € [t] x [A] and s <1 < x.

Firstly, whenever (j,1,¢), (j',7,¢") € [t] x [s] x [A] are distinct, then Wj; N Wy i p = 0.
Hence, every edge at x is contained in at most one of the G,. Moreover, xz is covered
whenever z € V, with y € ;¢ V(H;), implying (ii).

We continue with proving (i). If j # j/, then G;¢ and G p are edge-disjoint by (A3). It
remains to check that G, and G; ¢ are edge-disjoint for fixed j € [t] and distinct ¢, ¢' € [A].
In fact, they are vertex-disjoint (except for = of course). Clearly, W;; ¢\OW; ;» ¢ = () whenever
i,7" € [s]. Moreover, y;;¢ ¢ V(H;) for i > s since Ratt(§;.),€;,] is complete bipartite but
also edge-disjoint from H;. Hence, Wj; ;N Wy ¢ = () whenever i ¢ [s] and 7’ € [s] (and vice
versa). Finally, for 4,7 ¢ [s], Wj; N Wj ¢ =0 by our partition of each V} into A parts.

The size conditions (iv) and (v) follow directly from the definitions. Moreover, (iii) holds
by (Al) and by Fact 6.2.

Hence, we can apply Lemma 14.3 to each G;/ in order to find edge-disjoint copies of F
covering all but at most v2Aedg, ,(v) edges at x in Gj,. Thus, by (ii), all but at most

(e 4 /2 + V2Ae)n < un edges at x are covered, as desired. O

14.2. Covering all edges. The following lemma is an analogue to Lemma 5.1. It guaran-
tees a ‘near-optimal’ cover of the edges at x.

Lemma 14.5. Let F be a graph and 6 = max{l — 1/(x"*(F) + 1),6%}. Assume that
1/m < pu,1/|F|. Let G be a graph with 6(G) > (6 + 2u)|G| and let Uy C V(G) be such that
|Uir| = |G| and dg(y,Ur) > (6 +3wp)|Ui| for ally € V(G). Suppose that Uy D U D --- D
U is a (0 4+ 4p, pu,m)-vortex in G[U1] and x € Up. Then there exist edge-disjoint copies of
F' covering all edges at x except possibly some edges from x to Uy.

Proof. Let v > 0 be such that 1/m <« v < u,1/|F|. We proceed by induction on ¢. For
¢ = 0, there is nothing to prove. So assume that £ > 0 and that the statement is true for
(—1.

Let R :=U; \{z}, L := (V(G)\U1)U{z} and G’ := G[L]. Note that §(G") > (6 +~)|G"|.
By Lemma 14.4, there exists an F-collection Fj in G’ covering all but at most v|G’| edges
at x.

Let H be the subgraph of G consisting of all those edges from x to V(G) \ U; which are
not covered by Fi. Let G” := G — G[Us] if £ > 2 and G” := G otherwise. So A(H) =
di(z) < v|G'| < 4|G"|. Since dgr(y,R) > (6 + p/2)|R] for every y € V(G"), we can
apply Proposition 5.10 in order to obtain a subgraph A of G” such that A[L] is empty,
H U A has an F-decomposition F» and A(A[R]) < u?|R|/4. By deleting copies of F from
F2 which do not contain any edge of H, we can assume that da(z) < |F|vy|G|. Hence,
A(A[T7]) < max{|F7|GJ, g2|RI/A + 1} < 12[T7]/2.
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Note that | J F1 and | F2 are edge-disjoint and together cover all edges from x to V(G)\U;.
If £ =1, this completes the proof.

If £ > 2, then let G" .= G[Ul] — Ufl - Uf"g = G[Ul] — A[Ul] Clearly, G/”[UQ] = G[UQ],
and so Us D U3 D --- D Upisa (6 +4pu, u, m)-vortex in G"”'[Us]. Let y € Uy. Then dgm (y) >
de(y,Ur) — 12|U1]/2 > (6 + 2u)|Un| and dgm(y, Us) > da(y, Uz) — p?|Ui|/2 > (8 + 3p)|Us|.

By induction, there exists an F-collection F3 covering all edges at x in G except possibly
some edges from z to Up. Finally, F; U Fo U F3 covers all edges at x in G except possibly
some edges from z to Uy. U

We will now prove an analogue of Theorem 7.1, that is, assuming that we are able to
absorb a small number of leftover edges, we can cover all edges at one vertex. We use the
concept of absorption in the following form.

Given a graph F, a vertex x and a vertex set W, an F-neighbourhood-absorber for (x, W)
is a graph A such that

e W U {x} is an independent set in A;

e A contains an F-collection covering all edges at x;

e A+ W contains an F-collection covering all edges at =, where A + W is obtained
from A by adding all edges between z and W.

Call F §-neighbourhood-absorbing if the following is true:

Let 1/n < 1/b < p,1/|F| and suppose that G is a graph on n vertices with §(G) >
(0 +p)n. Let x € V(G) and W C V(G) \ {z} with [W| = ged(F). Then G contains
an F-neighbourhood-absorber for (x, W) of order at most b.

The following result states that if the minimum degree is sufficiently large to ensure an
approximate cover of the edges at x, a copy of F' covering any edge, and the existence of an
F-neighbourhood-absorber, then we can cover all edges at x by edge-disjoint copies of F'.

Lemma 14.6. Let F be a 6-neighbourhood-absorbing graph and suppose that 6 > max{1l —
1/(X"*(F)+1),0%}. Then 0" <34.

Proof. Let r := ged(F) and let 1/n < 1/b < 1/m' < p,1/|F|. Suppose that G is a
graph on n vertices with §(G) > (6 + 5u)n and x € V(G) with r | dg(z). We have to
show that there exists an F'-collection covering all edges at x. By Lemma 4.3, there exists
a (6 + 4p, p,m)-vortex Uy D Uy D -+ D Uy in G such that z € Uy and [pum/] < m < m/.

Let W1,...,Ws be an enumeration of all r-subsets of U \ {z}. We aim to find an F-
neighbourhood-absorber for each (z, Wj).

For this, let G’ := G[(Up \ U1) U U] — G[Uy] and observe that 6(G') > (§ + 4u)|G’|. We
want to find edge-disjoint subgraphs Aq, ..., As in G’ such that A; is an F-neighbourhood-
absorber for (x,W;) of order at most b. Suppose that for some j € [s], we have already
found Ay,...,Aj_1. Let G; :=G' — (A1 U---UAj_1). Clearly, §(G;) > (6 + 3u)|G;|. Since
F' is é-neighbourhood-absorbing, G contains an F-neighbourhood-absorber for (z, W;) of
order at most b.

Let Gapp = G — (A1 U --- U Ay). Hence, §(Gapp) > (0 + 2p)n. Moreover, GopplUi] =
GlUi| and so Uy D Uz D --- D Uy is a (§ + 4u, 1, m)-vortex in Ggpp[Ui]. Finally, since
A(Ay U ---UAg) < p|Uip|, we have dg,,, (y,Ur) > (0 + 3u)|Uy| for all y € V(Gapp). Thus,
by Lemma 14.5, there exists an F-collection F covering all edges  in G4y, except possibly
some going to Up. Let W C Uy be the set of neighbours of = in Gypp — |J F. Since r | dg(z)
and 7 | da,(x) for all ¢ € [s], we have r | [W|. Hence, there exists a set I C [s] such that
{W; : i € I} is a partition of W. For all i € I, let F; be an F-collection covering all edges
at  in A; + xW;. For all i € [s]\ I, let F; be an F-collection covering all edges at x in A;.
Then, F U FL U---UFg is an F-collection in G covering all edges at x. O
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14.3. Absorbing. It remains to investigate the absorbing properties of a given graph F'.
In addition to the space barrier for 63 given by 1 —1/(x"*(F') + 1), the following definition
gives rise to a divisibility-type barrier.

For a graph F' with x(F') > 3, we define

(14.4) O(F) := ged{dp(v,c (1)) — dp(v,c1(2)) : v € V(F),c € Col(F,v)},
where we set ged{0} := 2 for technical reasons only.
Proposition 14.7. If 0(F) > 1 and x := x(F) > 4, then 03* > 1 —1/x.

Proof. Let r := gcd(F), m € N and let G be the complete x-partite graph with vertex
classes Vi,...,V, such that |Vi| = rm + 1, |[Va| = rm — 1 and |V;| = rm for all 3 < i < .
Let = be a vertex in V,. Hence, r | dg(x). Clearly, 6(G) = (1 —1/x)|G| — 1.

Suppose that Fi,..., F; are edge-disjoint copies of F' covering all edges at z. Let a; :=
dp;(x,V1) and let bj := dp, (@, V3). So 3 .cya; = [Vi| and 32,0105 = [Va| and therefore
> jep(a; — bj) = 1. However, 6(F) | (a; — b;) for all j € [t], which gives a contradiction.

O

In Corollary 14.13, we will see that 3" < 1—1/x(F) for all graphs F'. Hence, if 6(F) > 1,
then this settles the problem of determining 03" for all graphs F' that are at least 4-chromatic.
The next proposition will exploit the structural information of graphs F' for which 6(F') = 1.

Let s € N and let F' be a graph. Define CNg(F') to be the set of all (s — 1)-tuples
(a1,...,as—1) such that there exists an [s]-colouring c of F' and a vertex v € V(F') such that
c(v) = s and dp(v,c (i) = a; for all i € [s — 1].

Suppose we are given some graph F' with v € V(F) and an [s]-colouring ¢ of F' with
c(v) = s. We say that F' v, are obtained from F by rotating ¢ around v if F' is obtained
from s — 1 vertex-disjoint copies F1, ..., Fs_1 of F' by identifying the copies of v into a new
vertex v, and ¢ is defined as follows: Let ¢/(v') := s. For every w’ € V/(F')\ {v'}, there is a
unique i € [s — 1] with w’ € V(F;). Let w € V(F) be the vertex whose role v’ is playing in
F;. Define ¢ (w') := ((1,2,...,5s—1)"oc)(w). In other words, we permute the colours of the
colour classes ¢~ 1(1),...,c¢ (s — 1) cyclically amongst the F;’s such that ultimately every
w € V(F) \ ¢ !(s) has exactly one copy in each of the colours 1,...,s — 1.

Clearly, ¢ is an [s]-colouring of F’. Moreover, for each i € [s — 1], we have

(14.5) dp (v, 7)) = dp(v, Y1) + -+ dp(v,c (s — 1)) = dp(v).

Proposition 14.8. Let F' be a graph and let x := x(F'). Then there exists an F-decomposable
graph F' and m € N such that (m — 1,m + 1,m,...,m),(m,...,m) € CNg(F'), with
s =x+ 1. Moreover, if x > 3 and 0(F) = 1, then we can assume that s = x.

Proof. First, suppose that s = x + 1. Fix some v € V(F') and let ¢ be an [s]-colouring of
F with c(v) = s, with ¢71(1) N Np(v) # 0 and ¢~ (2) = 0. Let m = dp(v) and let F',v', ¢
be obtained from F by rotating ¢ around v. Hence, dp/(v',¢;* (7)) = m for all i € [s — 1] by
(14.5). Note that there is a component of F’ — v" in which colour 2 does not appear and at
least one neighbour of v’ is coloured 1. Changing the colour of one of those neighbours to 2
thus gives an [s]-colouring ¢y such that dp/(v/,c5 ' (1)) = m — 1, dpr(v/,¢5 1(2)) = m+ 1 and
dp (v, et (i) =m for all i € {3,...,5 — 1}.

Now, assume that s = y > 3 and 6(F) = 1. By the definition of 6(F'), there exist (not
necessarily distinct) vy,...,v; € V(F) and ¢; € Col(F,v;) for i € [t] such that

t

S (dr(vi, ¢ (1)) = dp(vi e 1 (2)) = 1.

i=1
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This implies that there are vertex-disjoint copies Fi,...,F; of F, v; € V(F;) and ¢; €
Col(F;,v;) for i € [t] such that

Y dr (i (D) =14 dr(vi, ¢ (2)).
=1 =1

Let F” be obtained by identifying vy,...,v; into a new vertex v”. Clearly, F” is F-

decomposable. Moreover, c1, .. ., ¢; induce a colouring ¢” € Col(F”,v") with dy := dpn(v", "~1(1))

dpr(v","71(2)) + 1. Let m := dpv(v") and let F',v’, c; be obtained from F” by rotating
¢’ around v". Hence, dp/(v',c; (7)) = m for all i € [s — 1] by (14.5). Note that there is
a collection of components of F’ — v/ such that d; neighbours of v’ are coloured 1 in the
union of these components and d; — 1 neighbours of v" are coloured 2 in the union of these
components. Hence, exchanging the colours 1 and 2 among all the vertices in those com-
ponents gives an [s]-colouring ¢y such that dp (v/,c5 (1)) = m — 1, dp/(v', ;1 (2)) =m + 1
and dps (v, c; (i) = m for all i € {3,...,5 — 1}. O

The following proposition gives a construction of a neighbourhood-absorber for (z, W)
where W is a subset of a single class in an s-partite graph.

Proposition 14.9. Let F be a graph with v := ged(F') and assume that there exists an F-

decomposable graph F' andm, s € N with s > 3 such that (m—1,m+1,m,...,m),(m,...,m) €

CNs(F"). Then, for every b € N, there exists a graph T and an [s]-colouring ¢ of T such
that T is an F-neighbourhood-absorber for (z,W), where W C ¢~ (1) is of size br and
x € cI(s).

Proof. Let Fy, ..., F; be vertex-disjoint copies of F and v; € V' (F;) such that 3¢_, dr, (v;) =
br mod (s — 1)m. Let F” be obtained by identifying vy, ...,v; into a new vertex x. Let ¢’
be an [s]-colouring of F” such that ¢(x) = s. We may assume that dpr(z,c"~1(1)) > br.
Let W C Npn(z,c"71(1)) be of size br and let F"” be obtained from F” by deleting the
edges from x to W. So F" = F" + azW.

For i € [s — 1], let a; := dpm(x,c""2(i)). Hence, (s — 1)m | Y5} a;. Let a :=
Ol a)/(s—1),let IT:={ic[s—1]: a;>a}and [~ :={j € [s—1] : a; < a}. Define
pi= (ai—a)=) (i—aj).

ielt jer—
It is easy to see that there exist non-negative integers (b;;);cr+ jes- such that
(i) for each i € I, 37,/ bij = a; — @
(ii) for each j € I7, > ,cr+ bij = a — aj.

Note that
(14.6) > bij=p
(i,5)el+x 1~
Since (m — 1,m + 1,m,...,m) € CN(F'), there exists an [s]-colouring ¢* of F’ and

u € V(F') such that c*(u) = s, dp/(u,c* (1)) = m — 1, dpr(u,c*1(2)) = m + 1 and
dp(u,c*=(i)) =m for alli € {3,...,s — 1}. For every (i,j) € IT x I~ let Ff’j,...,Flfi’i_
be disjoint copies of F’ with new vertices. Let 7" be the graph obtained from F" and
(Fé’j)i€[+’j€]77k€[biyj] by identifying the copy of u in each F,zj with z € V(F").

We now define a colouring ¢’ of T". For every v € V(F"), let ¢(v) := ¢’ (v). For every
v e V(T')\ V(F"), there are unique i € I",j € I,k € [b; ;] such that v € V(F,zj) Let
w be the vertex of F’ whose role v is playing in F,i] . Let ¢ be a permutation on [s] such
that ¢(1) = i, ¢(2) = j and ¢(s) = s. Define ¢/(v) := (¢ o ¢*)(w). So ¢ colours V(F,ﬁj)
such that m — 1 neighbours of x are coloured 7, m 4+ 1 neighbours of x are coloured j, and
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m neighbours of z are coloured ¢ for each ¢ € [s — 1]\ {7,j}. Clearly, ¢ is an [s]-colouring
of T" with ¢/(x) = s. Moreover, for every i € I'", we have

.\ (14.6 i
dro(, @) "= gt pm+ Y by pm ot a
jeIl—
by the choice of b; ;. Similarly, for all j € I,
~\ (14.6 i
dp(z,d71(H)) (125) aj +pm + Z bi @ pm + a.
el t

Finally, if i ¢ IT U I~ then a; = @ and thus dz(x,¢"1(7)) = pm + a as well.

Note that m | @ and let ¢ := p + a/m. For every i € [s — 1], let V;1,...,V;, be a
partition of Ny (z,¢~1(i)) into parts of size m. For j € [g], let U; := Vi ;U---UV,s_1; and
let Ej be a copy of F” and ¢; an [s]-colouring of F} such that V(E;) N V(T') = {z} U Uj,
such that N pj(fv) = Uj; and such that ¢; agrees with ¢ on {z} UU;. This is possible since

(m,...,m) € CNy(F’"). We may assume that the F}j’s only intersect in .
Let T:=T'UF,U---UF,. Hence, ¢ := ' Uc;U---Ug, is an [s]-colouring of T'. Moreover,
F1,...,F, cover all edges at x in T, and F”, (Fy? )ier+ jer- ke, ;) cover all edges at = in

T+ xzW. O

Lemma 14.10. Let F be a graph and assume that there exists an F-decomposable graph F’
and m,s € N such that (m—1,m+1,m,...,m),(m,...,m) € CNs(F"), where s > 4. Then
F is max{6%,1 — 1/(s — 1)}-neighbourhood-absorbing.

The idea to prove Lemma 14.10 is as follows. If §(G) > (1—1/(s—1)+ u)|G|, then we can
find a complete s-partite graph H? with vertex classes By, ..., Bs such that € B,. Now,
if we had W C Bj, then Proposition 14.9 would allow us to find the desired neighbourhood-
absorber as a subgraph of HZ. Suppose now that W is not contained in HZ. So our aim is
to ‘move’ W to By. To achieve this, we will use the colouring properties of F’. (We have seen
in Proposition 14.8 that such graphs F’ exist.) Suppose for example that A, B, Ds, ..., D;
are disjoint sets of vertices and w € W, b,, € B such that G[AU {w}, B, Ds,...,Ds_1, D;]
is a complete s-partite graph and x has m neighbours in each of A, B, Ds,...,Ds_1. We
can then ‘move’ w to b, as follows: If we do not need to cover zw, we can embed a copy
of F’ such that all edges from = to A, B, Ds,...,Ds_1 are covered, thereby covering b,,.
If we intend to cover zw, then we can embed a copy F), of F’ containing x such that
drr (z, AU{w}) = m+1 and dp; (z, B) = m — 1, leaving the edge xb,, uncovered. In order
to find these ‘movers’, we will use the regularity lemma. However, for this to work, we
would need that w is a ‘typical’ vertex, which we cannot assume. We will therefore use the
definition of 6% to ‘move’ each w € W to some ‘typical’ vertex first.

Proof of Lemma 14.10. Let 0 := max{6%,1 —1/(s — 1)} and r := gcd(F). By
Proposition 14.9, there exist graphs 71, ..., Tjp| such that T; admits an [s]-colouring ¢; and

is an F-neighbourhood-absorber for (z;, W;), where Wy C ¢; (1) is of size tr and z; € ¢;*(s).
Let M :=r|F'|> + max{|T1|,.. ., |T|F|}.

Let 1/n < 1/k) < ¢ < «a,1/ko,1/b < p,1/|F|. Since M only depends on F we
may also assume that a,1/ko,1/b < 1/M. Suppose that G is a graph on n vertices with
(G) > (6 + p)n. Let z € V(G) and W = {wy,...,w.} C V(G)\ {x}. We will find an
F-neighbourhood-absorber for (z, W) in G of order at most b.

Apply the regularity lemma (Lemma 6.3) to obtain a partition Vg, Vi,..., Vy of V(G) and
a spanning subgraph G’ of G satisfying the following:

(R1) ko < k < k{;

(R2) |Vo| < em;

(R3) [Vi| =+ =|Vi| = L;
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(R4) de(2) > dg(z) — (a4 €)n for all z € V(G);

(R5) G'[V,] is empty for all y € [k]

(R6) forall 1 <y <y <k, G'[V,, V] is either e-regular with density at least o or empty.
(R7) for all y € [k], V}, C Ng( ) or V N Ng(z) = 0.

Let R be the reduced graph of Vi,...,V; and let ¢ be the corresponding cluster function.
By Proposition 6.4, 6(R) > (6 + p/4)k > (1 —1/(s — 1) + p/4)k.

Let X C [k] be the set of indices y for which V,, C Ng(x) and let R, := R[X]. Since
|X|L > dg(z) — en and thus | X| > (1 —1/(s — 1))k, we have that §(R;) > (1 —1/(s —
2) + u/4)|Rz|. Therefore, there exist yi,...,yf ; € X and yi € [k] such that Y* :=
R[{y7,...,y%}] is a copy of K.

Let G” be obtained from G’ by removing, for every i € [r], all edges from w; to all clusters
V; with der(w;, Vj) < aL. Then we still have 6(G”) > (6 + p/2)n. Using the definition of
0%, it is straightforward to find copies Fi,. .., F, of F' with the following properties:

(F1) V(F;) \{z,w;} CV(G)\ Vy and zw; € E(F;) and E(F;) \ {zw;} C E(G");

(F2) Fi,..., F, intersect only in z.

Let U := (V(F1)U---UV(F))\ {2z} UW) and N, := (Np,(z)U---UNpg,(z)) \ W. Let
t := |N.|/r and note that t < |F|. Clearly, o(u) is defined for every u € U, and if u € N,
then o(u) € X. Consider any u € N,. In R,, every s — 2 vertices have a common neighbour.
Since s > 4, there exists a common neighbour uc of o(u) and yj in R,. Moreover, there exist

uy,uz,...,ul ,u; € X and ul,u; € [k] such that Y, := R[{o(u),uc,uj, ..., uf}] and
Y, = R[{uc,y;,us,...,u; }] are s-cliques. By the definition of G”, if u € Ng, (w;) \ {z},
then

(14.7) da(wi, Vo)) = darn(wi, Vo)) > al/2.

Hence, by applying the key lemma (Lemma 6.5) with suitable candidate sets, we can
find a subgraph H in G” whose vertex set can be partitioned into sets (Ay)ucr, Bi,-- -, Bs,
(Cw)uen, (D;:j)ueNzJe{g’m’S} and (D;j)ueNz’je{gw,s} which satisfy the following (see Fig-
ure 5):

(H1) for all uw € U, Ay C V), for all j € [s], B; C Vys, for allu € N and j € {3,...,s},

Cu € Vue, Dy C Virs Dy S Vs

(H2) all those sets are independent in H and V(H) N ({z} UW) = (;
(H3) H[A,, Ay] is complete bipartite whenever u,u’ € U with wu’ € E(F;) for some

ielr];
(H4) Hf == [AU,CU,DU?),..
s-partite for every u € Ng;
) HB := H[By,..., By] is complete s-partite;
) Ay € Ng(w;) if u € Np,(w;) \ {z};
)
)

., D

u,s]

and H, := H[B;,C,, D,

w3

., D>

w.s) are complete

|A,| =1 for all u € U\Ngﬂ7
HS8) all sets (Ay)uen,, Cu Duj, D, ; have cardinality |F";
H9) |Bj| = M for j € [s].
So H; arises from the clique Y,", H, arises from Y, , and H? arises from Y*. Note that
to ensure (H6) we use (14.7). Also, we do not require that u € A,.

We now describe how to construct a neighbourhood-absorber A from H by attaching z
and W in a suitable way. Note that (H1) implies that

contained in Ng(z).

For every u € N, and j € {3,...,s — 1}, let Al, C A,, C!, C C,, D*' C D;r], Du’] CD,;
be such that |A]| = |D+’| = \D il = m and |Cy| = 2m. Moreover let a, be some

element of A!,. For every u € U\ Nm, let a, be the unique element of A,. Let (B)uen,
be disjoint subsets of Bj of size m + 1 and fix some b, € B, for each u € N,. Define
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22 e

FIGURE 5. An example illustrating the construction of H for F' = C5, r = 2, s = 4. Note
that N, = {u1,u2}. The four singleton sets A, for u € U\ N, are not shown in the figure.

W' :={b, : u€ N,}. So |W'| =|N,| =tr. Let T" be a subgraph of H? and z € B, such
that 7" is an F-neighbourhood-absorber for (z, W) and Np»(z) N B, = 0 for all u € N,.
(So we might choose T" to be a copy of the graph T; defined at the beginning of the proof.)

Let A be the graph obtained from H by adding z and W and the following edges: For
every i € [r], add the edge from w; to a, for all u € Np, (w;) \ {z}. For every u € N, and
j€{3,...,s—1}, add all edges from z to A;,C&,DI},D;&,B{L. Moreover, add all edges
from = to Npv(z). By (H10) and (H6), A is a subgraph of G. Moreover, A has order at
most b and {z} UW is independent in A. Let 7" be obtained from 7" by replacing z with
z. So T" is an F-neighbourhood-absorber for (z, W’).

We claim that A is an F-neighbourhood-absorber for (z, W). Let C,, |, C;, 5 be a partition
of Cy, into two sets of size m and let C}, ,C,, _ be a partition of C;, into two sets of sizes
m-+1,m—1.

The edges at  in A can be covered by edge-disjoint copies of F' as follows: Let u € N,.
Since (m,...,m) € CNg(F"'), there exists a copy Fy, , of F’ in H,f such that Np  (v) =
A,UuCy U D;f% U---uU Dq‘:;_l for some v € D, Exchanging v with 2 yields a copy of F’
that covers all edges from x to N P, (v) and otherwise uses only edges inside H,". Similarly,

there exists a copy F, _ of F’ that covers all edges from z to (B, \ {bu}) UC} U D 35U

---U D,’ | and otherwise uses only edges inside H, . This can be done for all u € N,
without interference. This way, all edges at x in A are covered except the ones that have
an endpoint in N7+ (2) UJ,en, {bu} = N7v(z) U W’ Finally, these edges can be covered by
edge-disjoint copies of F since T” is an F-neighbourhood-absorber for (x, W’).

The edges at x in A+xW can be covered by edge-disjoint copies of F' as follows: Let U; :=

V(Fi)\{z,w;}. Then F} := A[{z, w;}UU,cp, {au}]+2w; is a copy of F. Moreover, F, ..., F]
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are edge-disjoint subgraphs of A+ xW and cover the edges from x to WU, ¢y, {au}. Let
u € Ny. Since (m —1,m + 1,m,...,m) € CN4(F'), there exists a copy of F’ that covers
all edges from z to (A, \ {a.}) UC;, U D:{g U---u ng_l and otherwise uses only edges

inside H,f, and a copy of F” that covers all edges from z to C;, _ U B, UD,3U---UD,”

u,s—1
and otherwise uses only edges inside H, . Finally, by definition of 7", the edges at = in T”
can be covered by edge-disjoint copies of F. O

The next lemma analyses the bipartite case. We want to establish that 63" = 0 if F
contains a bridge, and 03" = 1/2 otherwise. The results leading to the near-optimal cover
include the bipartite case. It only remains to determine the absorbing properties of a given
bipartite graph F'.

Lemma 14.11. Let F be bipartite and r := ged(F'). Then F is 1/2-neighbourhood-absorbing.
Moreover, if F' contains a bridge, then F' is 0-neighbourhood-absorbing.

Proof. Let uz € E(F) and assume that this edge is a bridge if one exists. Let d* :=
dp(u). There exist (not necessarily distinct) vertices vq,...,v; € V(F) such that D :=
St dp(v;) = —r mod d*. We may assume that D > r(d* — 1). Moreover, let § := 1/2 if
F' contains no bridge and 0 := 0 otherwise.

Let 1/n <« 1/b < p,1/|F|. Since D only depends on F, this means that 1/b < 1/D.
Suppose that G is a graph on n vertices with §(G) > (§ + p)n. Let z € V(G) and W =
{wi,...,w.} CV(G)\ {z}. We will find an F-neighbourhood-absorber for (z, W) in G of
order at most b.

Suppose that 6 = 1/2. We can use the regularity lemma to find disjoint sets By, ..., By, By
of size (D+7)|F| each in V(G)\ ({z} UW) such that B, C Ng(x) and G[B;, B,]| is complete
bipartite and B; C Ng(w;) for all ¢ € [r].

Let A be the graph obtained from (J;_, G[B;, B3| by adding {z} U W, all edges from w;
to B; for all ¢ € [r], and exactly D edges from x to B,. Clearly, {z} UW is independent in
A and A has order at most r + 1+ (r + 1)(D +r)|F| <b.

Moreover, the edges at x in A can be covered by edge-disjoint copies of F'. Indeed, since
da(xr) =D =3Yt_, dr(v;), we can let = play the roles of vy, . .., v; and use edges of A[B,, B]
otherwise.

In order to see that all edges at x in A + W can be covered, partition N4(x) into sets
Ni,...,Nyq1, where |N;| = d* — 1 for all ¢ € [r]. It follows that d* | |[Ny4+1|. Now, for every
i € [r], we can cover the edge zw; with a copy F; of F' such that z,w; play the roles of u, z
and Np,(z) = N; U{w;}. The edges from x to N,y can also be covered by letting z play
the role of u in every copy, and using edges of A[B,, B;] otherwise.

The case 6 = 0 is very similar. Using the Erdds-Stone theorem, we can find disjoint
sets By,...,B,, B, and BY,...,B., B, of size (D + r)|F| each in V(G) \ ({z} UW) such
that B; C Ng(w;) and G[B;, B}] is complete bipartite for each ¢ € [r], and B, C Ng(z) and
G|B;, B] is complete bipartite. Let A be the graph obtained from G[B,, B,JUJ;_, G[B;, B}
by adding {z} UW, all edges from w; to B; for all i € [r], and exactly D edges from = to B,.
That A is the desired neighbourhood-absorber follows analogously to the above case. O

We can now combine our previous results. We make use of the following simple bounds
on 0%.
Fact 14.12. Let F be a graph. Then
(i) 6% <1 —1/x(F);
(i1) 6% = 0 if F' is bipartite and contains a bridge.

Indeed (i) and (ii) follow easily using the regularity lemma and the key lemma. In general,
it seems very difficult to give an explicit formula for §%. This also seems an interesting
problem in its own right. Recall that 0(F') was defined in (14.4).
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Corollary 14.13. Let F be a graph with x := x(F) and x** := x"*(F).

0 if F contains a bridge;
(ii) if F is bipartite, then 64 = { if F' contains a bridge;

1/2  otherwise;
1-1/y ifO(F) > 1;
max{l —1/(x"* +1),0%} if6(F)=1.

Proof. By Proposition 14.8 and Lemmas 14.10 and 14.11, F'is max{d%, 1—1/x }-neighbourhood-
absorbing. Then, Lemma 14.6 implies that 67¥ < max{1 —1/x,1 —1/(x"* +1),4%}. By
Fact 14.12(i) and (14.2), the general upper bound for ¢} stated in (i) follows.

Moreover, if every edge of F' is contained in a cycle, it is easy to see that 037 > 6% > 1/2,
where an extremal example consists of two disjoint cliques with one edge joining the cliques.
Hence, if F' is bipartite, then 03 = 1/2 if F' contains no bridge. Otherwise, by Lemma 14.11,
Lemma 14.6 and Fact 14.12(ii), 03" = 0.

Now, if x > 4 and 0(F) > 1, then 63* =1 — 1/x by Proposition 14.7 and (i), so suppose
that O(F) = 1. Then, by Proposition 14.8 and Lemma 14.10, F' is max{d%,1 —1/(x — 1)}-
neighbourhood-absorbing. Lemma 14.6 thus implies that

(1) if x > 4, then §3F = {

14.2
5 < max{85,1 - 1/(x — 1,1 - 1/ + 1)} "= max{85, 1 - 1/(¢** + 1)}
Hence, by Proposition 14.2, we have 6% = max{d%,1 —1/(x"* +1)}. O

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1.  Firstly, note that (i) follows from Theorem 12.4 and Corol-
lary 14.13(i).

To prove (ii), suppose that x > 5. By Theorem 12.4, we have dp € {max{dgf,é%x}, 1-—
1/x,1—=1/(x+1)}. By Corollary 14.13(iii), we have 63 € {1—1/(x"*(F)+1),0%,1—1/x}.
Since 6% > 1 — 1/(x"*(F) + 1) by Proposition 14.2 and since % > §%, it follows that
max{6%", 6%} € {max{0%", 6%}, 1 — 1/x}, implying (ii).

Finally, (iii) follows from (ii) Corollary 11.4. O

15. CONCLUDING REMARKS

We conclude this paper with some final remarks. In the light of Theorem 1.1, for all
graphs F' with x(F') > 3 the limiting factor in giving good explicit bounds on §r are now
the bounds available in the literature for 67. The original aim of this project was to be
able to determine from the value of ¢} the value of dr. This we come close to achieving
when x(F') > 5, showing that dp is either 07 or one of only two other values. We note
that, in order to determine which of these values dp takes, it is left only to determine
the minimum d for which there exists an augmented d-compressible (Cy)p-switcher and an
augmented d-compressible (K 4cq(r)) p-switcher (see Section 10). Furthermore, in the light
of the proof of Lemma 10.1, it is sufficient to ask what the minimum d is such that the
following holds: There exists some ng such that any F-divisible balanced d-partite graph
with at least dng vertices and which is missing at most e(F)? edges (say) between vertex
classes is F-decomposable. In other words, if dp is not equal to &%, then there will exist
extremal graphs which are extremely close to large complete y(F')-partite or (x(F') + 1)-
partite graphs.

Finally, we briefly consider the case when x := x(F) € {3,4}. When x > 5, we re-
duced finding an F-decomposition to constructing two different augmented switchers, be-
fore showing that the smallest minimum degree ratio above which we can construct these
switchers takes one of three values: 1 —1/(x — 1), 1 —1/x or 1 —1/(x + 1) (see Sec-
tion 10). This result concerning augmented switchers also holds when x € {3,4}, but
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dr may not be large enough to perform the reductions from augmented switchers to un-
augmented switchers. We have no version of the ‘discretisation lemma’ (Lemma 10.1) for
unaugmented switchers, and therefore get no ‘discretisation result’ for dp here, only an
upper bound (Theorem 1.1(i)). Furthermore, it seems likely that the smallest minimum de-
gree ratio above which these unaugmented switchers appear can take many different values
outside of {1 —1/(x —1),1—-1/x,1—1/(x + 1)}, and therefore we do not expect a simple
‘discretisation lemma’ to hold in this case. Due to this, we suspect that there exist graphs
F with x(F) = 3 and graphs F' with x(F') = 4 for which Theorem 1.1(ii) and (iii) do not
hold, but to show this there remains much work to do in giving good bounds on d7.

(1]

[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]

[19]

[20]

21]
22]

23]
24]

REFERENCES

B. Barber, D. Kiihn, A. Lo, R. Montgomery and D. Osthus, Fractional clique decompositions of dense
graphs and hypergraphs, arXiv:1507.04985, 2015.

B. Barber, D. Kiihn, A. Lo and D. Osthus, Edge-decompositions of graphs with high minimum degree,
Adv. Math. 288 (2016), 337-385.

B. Barber, D. Kiithn, A. Lo, D. Osthus and A. Taylor, Clique decompositions of multipartite graphs and
completion of Latin squares, arXiv:1603.01043, 2016.

D. Bryant and N.J. Cavenagh, Decomposing graphs of high minimum degree into 4-cycles, J. Graph
Theory 79 (2015), 167-177.

D. Dor and M. Tarsi, Graph decomposition is NPC - a complete proof of Holyer’s conjecture, In STOC
’92 Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, pages 252-263,
1992.

F. Dross, Fractional triangle decompositions in graphs with large minimum degree, SIAM J. Discrete
Maih. 30 (2016), 36-42.

P. Dukes, Rational decomposition of dense hypergraphs and some related eigenvalue estimates, Linear
Algebra Appl. 436 (2012) 3736-3746. [Corrigendum: Linear Algebra Appl. 467 (2015) 267-269.]

P. Dukes, Fractional triangle decompositions of dense 3-partite graphs, arXiv:1510.08998, 2015.

T. Gustavsson. Decompositions of large graphs and digraphs with high minimum degree, PhD thesis,
Univ. of Stockholm, 1991.

P.E. Haxell and V. Rodl, Integer and fractional packings in dense graphs, Combinatorica 21 (2001),
13-38.

S. Janson, T. Luczak, and A. Rucinski, Random graphs, Wiley-Interscience Series in Discrete Mathem-
atics and Optimization. Wiley-Interscience, New York, 2000.

P. Keevash, The existence of designs, arXiv:1401.3665, 2014.

T.P. Kirkman, On a problem in combinatorics, Cambridge Dublin Math. J. 2 (1847), 191-204.

F. Knox, D. Kithn and D. Osthus, Edge-disjoint Hamilton cycles in random graphs, Random Structures
Algorithms 46 (2015), 397-445.

J. Komlés, Tiling Turdn problems, Combinatorica 20 (2000), 203—-218.

R. Montgomery, Fractional clique decompositions of dense partite graphs, arXiv:1603.01039, 2016.
C.St.J.A. Nash-Williams, An unsolved problem concerning decomposition of graphs into triangles, In
Combinatorial Theory and its Applications I1I, pages 1179-183, North Holland, 1970.

R. Raman. The power of collision: randomized parallel algorithms for chaining and integer sorting, In
Foundations of software technology and theoretical computer science (Bangalore, 1990), volume 472 of
Lecture Notes in Comput. Sci., pages 161-175. Springer, Berlin, 1990.

A. Shokoufandeh and Y. Zhao, Proof of a tiling conjecture of Komlés, Random Structures Algorithms 23
(2003), 180-205.

R.M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, In Pro-
ceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), pages 647-659,
Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man., 1976.

R. Yuster, The decomposition threshold for bipartite graphs with minimum degree one, Random Struc-
tures Algorithms 21 (2002), 121-134.

R. Yuster, Asymptotically optimal Kj-packings of dense graphs via fractional Kjx-decompositions, J.
Combin. Theory Ser. B 95 (2005), 1-11.

R. Yuster, H-packing of k-chromatic graphs, Mosc. J. Comb. Number Theory 2 (2012), 73-88.

R. Yuster, Edge-disjoint cliques in graphs with high minimum degree, SIAM J. Discrete Math. 28 (2014),
893-910.



Stefan Glock', Daniela Kiihn', Allan Lo', Richard Montgomery™, Deryk Osthus’

fSchool of Mathematics
University of Birmingham
Edgbaston

Birmingham

B15 2TT

UK

*Trinity College
Cambridge

CB2 1TQ

UK

E-mail addresses: [sxg426,d.kuhn,s.a.lo,d.osthus]@bham.ac.uk,
r.h.montgomery@dpmms.cam.ac.uk

59



	1. Introduction
	1.1. Bounding the decomposition threshold for arbitrary graphs
	1.2. Explicit bounds
	1.3. Decompositions into bipartite graphs
	1.4. Near-optimal decompositions

	2. Overview of the proofs and organisation of the paper
	3. Notation and tools
	4. Vortices
	5. Near-optimal decomposition
	5.1. Bounded covering of edges around a vertex
	5.2. Bounded approximate decompositions
	5.3. Covering a pseudorandom remainder
	5.4. Proof of Lemma 5.1

	6. Regularity
	7. The general decomposition theorem
	8. Models and compressions
	8.1. Models and labellings
	8.2. Compressions
	8.3. Attaching models

	9. Transformers
	10. Constructing switchers
	11. Divisibility and threshold relations
	12. Absorbers
	13. The decomposition threshold of bipartite graphs
	13.1. Preliminary observations
	13.2. Coprime component sizes
	13.3. Coprime non-C4-supporting sets
	13.4. Lower bounds

	14. Covering the edges at a vertex
	14.1. Approximate cover
	14.2. Covering all edges
	14.3. Absorbing

	15. Concluding remarks
	References

