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Abstract

Let {GM}M≥0 be the random graph process, where G0 is the empty graph on n vertices and
subsequent graphs in the sequence are obtained by adding a new edge uniformly at random. For
each ε > 0, we show that, almost surely, any graph GM with minimum degree at least 2 is not
only Hamiltonian (as shown by Bollobás), but remains Hamiltonian despite the removal of any set
of edges, as long as at most (1/2− ε) of the edges incident to each vertex are removed. We say that
such a graph is (1/2− ε)-resiliently Hamiltonian. Furthermore, for each ε > 0, we show that, almost
surely, each graph GM is not (1/2 + ε)-resiliently Hamiltonian. These results strengthen those by
Lee and Sudakov on the likely resilience of Hamiltonicity in the binomial random graph.

For each k, we denote by G(k) the (possibly empty) maximal subgraph with minimum degree
at least k of a graph G. That is, the k-core of G. Krivelevich, Lubetzky and Sudakov have shown
that, for each k ≥ 15, in almost every random graph process {GM}M≥0, every non-empty k-core is
Hamiltonian. We show that, for each ε > 0 and k ≥ k0(ε), in almost every random graph process
{GM}M≥0, every non-empty k-core is (1/2− ε)-resiliently Hamiltonian, but not (1/2 + ε)-resiliently
Hamiltonian.

1 Introduction

The appearance of Hamilton cycles in random graphs has been studied since the pioneering work by
Erdős and Rényi in 1959 [10]. As Hamilton cycles, by definition, contain every vertex in their parent
graph, any graph containing a Hamilton cycle has minimum degree at least 2. As is well-known, if
p = (log n + log log n − ω(1))/n, then the binomial random graph G(n, p) almost surely has a vertex
with degree at most 1, and hence is not Hamiltonian. Conversely, improving on breakthrough results by
Pósa [20] and Korshunov [14], in 1983 Bollobás [5] and Komlós and Szemerédi [13] independently showed
that, if p = (log n+ log log n+ ω(1))/n, then G(n, p) is almost surely Hamiltonian.

Suppose instead we consider the n-vertex random graph process {GM}M≥0, where G0 is the graph
with n vertices and no edges, and each subsequent graph GM is formed from GM−1 by the addition of
an edge uniformly at random, until the complete graph G(n

2)
is formed. In 1984, Bollobás [6] showed

that, in almost every random graph process, the very edge which is added to raise the minimum degree
to 2 will also create a Hamilton cycle. The random graph process is strongly linked to binomial random
graphs (see, for example, Section 2.1), and thus we can infer from this beautiful result the previous
known results on the likely Hamiltonicity of G(n, p). The result by Bollobás demonstrates that the likely
obstacle to the existence of a Hamilton cycle in a random graph is the existence of some vertex of degree
less than 2. In this paper, we will show that, once this obstacle is overcome, it is very likely that the
graph is not only Hamiltonian, but resiliently Hamiltonian.

The general study of the resilience of different graph properties in the random graph was initiated
by Sudakov and Vu [22], and has since seen the consideration of a variety of different properties (see, for
example, [1, 2, 9]). Given a graph G satisfying a property P, the local resilience of G with respect to P
is the largest integer r such that, given any graph H ⊂ G with maximum degree at most r, the graph
G−H has the property P. Sudakov and Vu [22] showed that, if p > log4 n/n, then the local resilience of
Hamiltonicity in G(n, p) is almost surely (1/2 + o(1))pn, and conjectured that this remains true as long
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as p = ω(log n/n). When p = ω(log n/n), Frieze and Krivelevich [11] and Ben-Shimon, Krivelevich and
Sudakov [3, 4] gave increasingly strong bounds for such likely local resilience of Hamiltonicity in G(n, p),
before Lee and Sudakov [16] confirmed this conjecture. More precisely, Lee and Sudakov showed that,
for every ε > 0, there exists some constant C, such that, if p ≥ C log n/n, then the local resilience of
G(n, p) is almost surely between (1/2− ε)pn and (1/2 + ε)pn.

What hope have we of improving the known range of probability p for which G(n, p) is likely to be
resiliently Hamiltonian? As we decrease p within the range of likely Hamiltonicity, the degree sequence
of G(n, p) typically becomes increasingly irregular. In particular, the likely minimum degree of G(n, p)
will drift proportionally away from the expected average degree (n − 1)p. For example, when p =
(log n + 2 log log n)/n, the minimum degree of G(n, p) is almost surely 2 or 3; the likely local resilience
of Hamiltonicity cannot then be more than 1. The definition of local resilience here is rather weak,
considering few edge sets for removal. In order to better study the resilience of Hamiltonicity in G(n, p)
for such values of p, the following definition is thus preferable (see also [4]).

Definition 1.1. We say a graph G is α-resilient with respect to the property P if, given any subgraph
H ⊂ G, with dH(v) ≤ αdG(v) for each v ∈ V (G), the graph G−H has property P.

If p = ω(log n/n), then it is very likely that each vertex in G(n, p) has degree (1+o(1))pn. Therefore,
the result by Lee and Sudakov [16] quoted above implies that, if p = ω(log n/n), then G(n, p) is almost
surely (1/2−o(1))-resiliently Hamiltonian. In this paper, we extend this by proving that, in almost every
random graph process, every Hamiltonian graph is (1/2− o(1))-resiliently Hamiltonian.

Theorem 1.2. Let ε > 0. In almost every n-vertex random graph process {GM}M≥0, the following
is true for each 0 ≤ M ≤

(
n
2

)
. If δ(GM ) ≥ 2, then GM is (1/2 − ε)-resiliently Hamiltonian, but not

(1/2 + ε)-resiliently Hamiltonian.

Ben-Shimon, Krivelevich and Sudakov [4] used a further, more general, definition of resilience when
studying the Hamiltonicity of random graphs. Let k be a sequence of n integers. A graph G with the
vertex set [n] is said to be k-resilient with respect to the property P if, for any subgraph H ⊂ G with
dH(i) ≤ k(i), for each i, the graph G −H has the property P. Ben-Shimon, Krivelevich and Sudakov
showed that, for every ε > 0 and p = (log n + log log n + ω(1))/n, the random graph G = G(n, p) is
almost surely k-resiliently Hamiltonian with

k(i) =

{
dG(i)− 2 if dG(i) ≤ pn/100,
(1/3− ε)dG(i) otherwise.

The methods of this paper could be used to extend this result to use k(i) = dG(i)− 2 if dG(i) ≤ pn/100,
and k(i) = (1/2−ε)dG(i) otherwise; the constant 1/2 would then be tight. We will concentrate, however,
on proving the cleaner statement of Theorem 1.2.

For large k, we will also use our methods to demonstrate that, in almost every random graph process,
the k-core is born resiliently Hamiltonian. From the results mentioned above, we know that the possible
obstruction to Hamiltonicity in any random graph G(n, p) is almost surely vertices of degree 0 or 1.
If we iteratively remove vertices of degree 0 or 1, are we likely to find a Hamiltonian subgraph? This
process would find the largest subgraph with minimum degree at least 2, a structure known as the
2-core. For more general k, the k-core of a graph G, denoted G(k), is the (possibly empty) maximal
subgraph with minimum degree at least k. This concept was introduced by Bollobás [6], who showed
that, for each k ≥ 3, there exists a constant C(k) such that, if p ≥ C(k)/n, then the k-core of G(n, p) is
almost surely non-empty and k-connected. Among results for more general k,  Luczak [17] showed that,
if p = (log n + 6 log log n + ω(1))/3n, then the 2-core of G(n, p) is almost surely Hamiltonian. In other
words, well before the random graph is reliably Hamiltonian, it is likely that, if we iteratively remove
vertices with degree 0 or 1, then the remaining graph is Hamiltonian.

For each k ≥ 3, Bollobás, Cooper, Fenner and Frieze [8] showed that there is some C(k) for which, if
p ≥ C(k)/n, then the k-core of G(n, p) is almost surely Hamiltonian, where C(k) = (2 + ok(1))k3. For
each k ≥ 15, Krivelevich, Lubetzky and Sudakov [15] subsequently showed that, in almost every random
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graph process, every non-empty k-core is Hamiltonian. We will show that, in almost every random graph
process, every non-empty k-core is furthermore (1/2− ok(1))-resiliently Hamiltonian, as follows.

Theorem 1.3. For each ε > 0, there exists some k0 such that, for each k ≥ k0, in almost every n-vertex

random graph process {GM}M≥0, the following holds for each 0 ≤ M ≤
(
n
2

)
. If G

(k)
M 6= ∅, then G

(k)
M is

(1/2− ε)-resiliently Hamiltonian, but not (1/2 + ε)-resiliently Hamiltonian.

Our methods to prove Theorem 1.3 are quite different from those used by Krivelevich, Lubetzky and
Sudakov in [15], and owe more to the work by Lee and Sudakov [16] on the resilience of Hamiltonicity
in G(n, p). The techniques we use offer an alternative proof of the result by Krivelevich, Lubetzky and
Sudakov [15] that, for large k, in almost every random graph process, when the k-core is non-empty it is
Hamiltonian. This alternative proof would be simpler than that found in [15], but would hold only for
larger k than used there.

The heart of our paper is in the proof of a more general result, Theorem 1.6, which provides an
(almost-sure) rule that determines certain induced large subgraphs of G(n, p) are resiliently Hamiltonian.
It is then relatively simple to confirm that the subgraphs in Theorem 1.2 and 1.3 almost surely satisfy
this rule. In order to state Theorem 1.6, we require the following two definitions.

Definition 1.4. We say H is an α-residual subgraph of a graph G if, for each v ∈ V (H), we have
dH(v) ≥ αdG[V (H)](v).

Definition 1.5. A graph H is a 2-expander if it is connected and, for every subset U ⊂ V (H) with
|U | ≤ |H|/8, we have |N(U)| ≥ 2|U |.
Theorem 1.6. For each ε > 0, there exists δ, C > 0 such that, if p ≥ C/n, then G = G(n, p) has the
following property with probability 1− o(n−3). If H is a (1/2 + ε)-residual subgraph of G, with |H| ≥ εn,
which contains a spanning 2-expander with at most δpn2 edges, then H is Hamiltonian.

The constant 1/2 appearing in Theorem 1.6 cannot be reduced. We confirm this with the following
lemma.

Lemma 1.7. For each ε > 0, there exists C such that, if p ≥ C/n, then, with probability 1 − o(n−3),
G(n, p) contains no subset U ⊂ V (G), with |U | ≥ εn, for which G[U ] is (1/2+ε)-resiliently Hamiltonian.

We prove Theorem 1.6 in Section 2, where, after giving some simple properties of random graphs, we
include a sketch of the proof. Lemma 1.7 is proved in Section 3. For Theorems 1.2 and 1.3, we demonstrate
that large sets resiliently expand in the same manner, proving Theorem 4.2 from Theorem 1.6 in Section 4.
Using Theorem 4.2 and Lemma 1.7, Theorems 1.2 and 1.3 are proved in Sections 5 and 6, respectively.
In the rest of this section, we will cover our basic notation.

1.1 Notation

A graph G has vertex set V (G), edge set E(G), minimum degree δ(G) and maximum degree ∆(G), and
|G| = |V (G)|. When A ⊂ V (G), N(A) is the set of neighbours of vertices in A in V (G) \ A. When
x ∈ V (G), d(x) is the degree of x in G. Where multiple graphs are considered, we refer to the relevant
graph in the subscript, using, for example, dG(x).

For a graph G and a vertex set U ⊂ V (G), G[U ] and G − U are the induced subgraphs of G with
vertex sets U and V (G) \ U , respectively. For any graphs G and H, G−H is the graph with vertex set
V (G) and edge set E(G) \ E(H), and G ∪ H is the graph with vertex set V (G) ∪ V (H) and edge set
E(G) ∪ E(H). For a graph G and a set E ⊂ V (G)(2), G+ E and G− E are the graphs with vertex set
V (G) and edge sets E(G)∪E and E(G)\E, respectively. For any graph G and vertex sets A,B ⊂ V (G),
eG(A,B) is the number of pairs (x, y) with xy ∈ E(G), x ∈ A and y ∈ B.

If f(n)/g(n) → 0 as n → ∞, then we say g(n) = ω(f(n)) and f(n) = o(g(n)). If there exists a
constant C for which f(n) ≤ Cg(n) for all n, then we say f(n) = O(g(n)) and g(n) = Ω(f(n)). If
f = O(g(n)) and f(n) = Ω(g(n)), then we say that f(n) = Θ(g(n)). The binomial random graph G(n, p)
has vertex set [n] = {1, . . . , n} and edges chosen independently at random with probability p. We denote
the complete graph on [n] by Kn.
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2 Proof of Theorem 1.6

In this section, we first cover how we move between the binomial random graph and the random graph
process, and cover a few simple properties of the binomial random graph. Then, in Section 2.3, we
reintroduce Pósa rotation and give a sketch of our proof of Theorem 1.6. In Sections 2.4 and 2.5 we
prove two results, Corollary 2.11 and Lemma 2.12, which allow us to prove Theorem 1.6 in Section 2.6.

2.1 Model switching

We will often find it convenient to show properties hold in G(n, p), before moving to the random graph
process using the following standard lemma (see, for example, Bollobás [7]), where Gn,M is chosen
uniformly at random from the graphs with vertex set [n] and M edges.

Lemma 2.1. Let n ∈ N, 1 ≤M ≤
(
n
2

)
and p = M/

(
n
2

)
, and let P be a graph property. Then

P(Gn,M has property P) ≤ 2n·P(G(n, p) has property P).

Typically then, we will show, for any p, that a property holds in G(n, p) with probability 1− o(n−3).
By Lemma 2.1 then, it holds in Gn,pN with probability 1 − o(n−2). As, in the n-vertex random graph
process {GM}M≥0, GM is distributed as Gn,M , the property therefore holds throughout almost every
random graph process.

2.2 Properties of the binomial random graph

The probabilistic results we need for Theorem 1.6 follow simply from Chernoff’s inequality (see, for
example, Janson,  Luczak and Ruciński [12, Corollary 2.3]).

Lemma 2.2. If X is a binomial variable with standard parameters n and p, denoted X = Bin(n, p), and
ε satisfies 0 < ε ≤ 3/2, then

P(|X −EX| ≥ εEX) ≤ 2 exp
(
−ε2EX/3

)
.

When A and B are vertex sets, the parameter eG(A,B) is close to being binomially distributed, and
its typical value can be bounded using the following simple proposition.

Proposition 2.3. Let n ∈ N and 0 ≤ p ≤ 1. Suppose X1, . . . , Xn are independent random variables,
each equal to 1 with probability p, and 0 otherwise. Suppose δi ∈ {1, 2}, i ∈ [n], and X =

∑
i δiXi. Then,

for each 0 < ε < 1, we have

P(|X − EX| ≥ εEX) ≤ 4 exp(−ε2EX/9). (1)

Proof. Note that, if EX ≤ 9p, then the right hand side of (1) is larger than 1 and the result is trivial.
Assume that EX ≥ 9p. For each i ∈ [n], pick δi,1, δi,2 ∈ {0, 1} so that δi = δi,1+δi,2 and, if Y1 =

∑
i δi,1Xi

and Y2 =
∑
i δi,2Xi, then |EY1 − EY2| ≤ p. As EX ≥ 9p, we have EY1,EY2 ≥ EX/3. By Lemma 2.2,

P(|Y1 − EY1| ≥ εEY1) ≤ 2 exp(−ε2EY1/3) ≤ 2 exp(−ε2EX/9). A similar result holds for Y2, so that

P(|X − EX| ≥ εEX) ≤ P(|Y1 − EY1| ≥ εEY1) + P(|Y2 − EY2| ≥ εEY2) ≤ 4 exp(−ε2EX/9).

Using Proposition 2.3, we can give a simple bound on the number of edges we can expect between
any two large sets in G(n, p), as follows.

Lemma 2.4. Let ε > 0 and G = G(n, p). With probability 1 − o(n−3), if A,B ⊂ V (G) and p|A||B| ≥
100n/ε2, then (1− ε)p|A||B| ≤ e(A,B) ≤ (1 + ε)p|A||B|.

Proof. By Proposition 2.3, the property in the lemma does not hold with probability at most∑
A,B⊂V (G), p|A||B|≥100n/ε2

4 exp(−ε2p|A||B|/9) ≤ 22n · 4 exp(−10n) = o(n−3).
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It will be useful to have a bound on the expected number of subgraphs of G(n, p) with at most δpn2

edges, for any small fixed δ. For this, we will use the following proposition.

Proposition 2.5. For each 0 < δ < 1, there exists n0 such that, for each n ≥ n0 and p ≥ 1/n,∑
H⊂Kn,e(H)≤δpn2

P(H ⊂ G(n, p)) ≤ exp(2δ log(e/δ)pn2).

Proof. We have

∑
H⊂Kn,e(H)≤δpn2

P(H ⊂ G(n, p)) ≤
δpn2∑
i=0

(
n2

i

)
pi ≤

δpn2∑
i=0

(
epn2

i

)i
≤ n2 · (e/δ)δpn

2

≤ exp(2δ log(e/δ)pn2),

where the last inequalities hold for sufficiently large n ≥ n0.

2.3 Pósa rotation and proof sketch

The rotation-extension technique was first introduced by Pósa [20] to study the threshold for Hamil-
tonicity in the random graph, and has since been used in the proofs of many results concerning Hamilton
cycles. Given a path x1x2 . . . xk and an edge xkxj , for some j < k − 1, a rotation with x1 fixed is made
by breaking the edge xjxj+1 and considering the new path x1 . . . xjxkxk−1 . . . xj+1. Thus, we find a new
path with the same vertex set but which starts at x1 and ends at xj+1 6= xk. If we are able to rotate
both ends of the path multiple times, then we can find many pairs of vertices, such that, if any one of
the pairs is an edge, then there is a cycle with the same vertex set as the path.

As shown by Pósa [20], if a graph H is a 2-expander, then we can rotate a maximal length path in H
many times to find other maximal length paths with a different endvertex, to get the following lemma.

Lemma 2.6. If H is a 2-expander and U ⊂ V (H) supports a maximal length path in H with endvertex
v ∈ U , then there are at least |H|/8 vertices u ∈ U for which there is a u, v-Hamilton path in H[U ].

If any of the vertex pairs u, v ∈ U in Lemma 2.6 are added to E(H) then H contains a cycle with
length |U |. Furthermore, if H is connected and |U | < |H|, by considering a neighbour of this cycle we
can find a path with |U |+ 1 vertices. We will start with a sparse 2-expander in our random graph and
add edges which increase the maximum length of a path in the subgraph, or make it Hamiltonian. To
describe this, we use the following definition.

Definition 2.7. In a graph H, we say E ⊂ V (H)(2) is a booster for H if H + E contains a longer path
than H does, or H +E is Hamiltonian. If e ∈ V (H)(2), and {e} is a booster for H, then we also say that
e is a booster for H.

Note that, if we iteratively add |H| boosters to H, then, as the length of the maximum path is at
most |H| − 1, the resulting graph must be Hamiltonian.

A standard method to find a Hamilton cycle in G(n, (log n + log log n + ω(1))/n) runs as follows.
Letting G0 = G(n, (log n+log log n+ω(1))/n), we can easily show that G0 is almost surely a 2-expander.
Therefore, from Lemma 2.6 applied twice to a maximal length path in G0, V (G0)(2) contains at least
n2/128 boosters for G0. Revealing more edges with probability 103/n2 (say) to get G1, with probability
at least 1/2, G0 has some booster in G1. Repeating this k = ω(n) times to get G0 ⊃ G1 ⊃ . . . ⊃ Gk, we
almost surely have at least n values for i for which Gi−Gi−1 contains a booster for Gi−1, and hence Gk is
Hamiltonian. Note that in total each edge has been revealed with probability (log n+log log n+ω(1))/n.
This method is known as sprinkling, but cannot withstand the later removal of edges. We need therefore
new methods to show that random graphs are resiliently Hamiltonian.

From the work by Lee and Sudakov [16] on the resilience of Hamiltonicity in G(n, ω(log n/n)), we
can learn the following principle: almost surely, if we have any sparse subgraph H0 ⊂ G = G(n, ω(1/n))
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and desire one of Ω(n2) possible edges to exist in G−H0, then some such edge does exist in G−H0. In
this, the desired edges in G − H0 can be determined by H0. The principle comes, as for each possible
sparse subgraph H0, it is far more likely that at least one of the Ω(n2) desired edges exists in G −H0

than that H0 ⊂ G, so much so that this can overpower the possible number of sparse subgraphs H0. A
calculation along this line appears after Claim 2.9 in the proof of Lemma 2.8.

From the work by Lee and Sudakov [16], with only slight modification we have the following method
to find a Hamilton cycle in G(n, ω(log n/n)). It is easy to show that G(n, 2 log n/n) is almost surely a
2-expander, and therefore G = G(n, ω(log n/n)) almost surely contains a sparse 2-expander H0. From
the principle above and Lemma 2.6, we can show that, almost surely, for any sparse 2-expander H ⊂ G,
G−H contains a booster edge for H. Starting then, with H0, we can iteratively add booster edges to H0

until it is Hamiltonian, where the graph remains relatively sparse as at most n booster edges are added.
Importantly, this basic technique can be made to withstand the later removal of edges. As Lee and
Sudakov showed, a careful analysis reveals that, for sparse 2-expanders H0, the possibilities for booster
edges in G−H0 are so numerous that almost surely some must lie in H −H0 for any (1/2 + ε)-residual
subgraph H ⊂ G. Furthermore, almost surely, any such subgraph H ⊂ G can be shown to contain a
spanning sparse 2-expander, so that this argument can be used to show that G(n, ω(log n/n)) is almost
surely (1/2− ε)-resiliently Hamiltonian.

We have already made a small conceptual change to Lee and Sudakov’s argument to allow us to use a
lower edge probability. The main novelty, however, in our methods is to use the principle outlined above
twice. Essentially, we use it to show that the number of potential booster sets with at most two edges
for any sparse 2-expander H0 ⊂ G is almost surely very large, before using it again to show that some
of these potential booster sets almost surely lie in any (1/2 + ε)-residual subgraph H of G. These two
steps are carried out in Sections 2.4 and 2.5, respectively, before Theorem 1.6 is proved in Section 2.6.

2.4 Resilient rotation

We will work within a random graph G = G(n, p) with a sparse 2-expander H0 ⊂ G and a (1/2 + ε)-
residual subgraph H ⊂ G with V (H) = V (H0). We will show that there are a linear number of vertices v
in H0 for which there are (1/2 + ε)|H| vertices u ∈ V (H0) for which we can find a set Ev,u such that, for
each e ∈ Ev,u, uv is a booster for H0+e (see Lemma 2.8). Taking a random sparse subgraph H1 ⊂ G−H
typically retains some edge in enough of the sets Ev,u that we may show there is some sparse subgraph
H1 ⊂ G−H for which we have many pairs v, u such that there is some edge e ∈ E(H1) for which uv is
a booster for H0 + e (thus proving Corollary 2.11).

We cannot simply add H1 to H0 when it is found, as on iterative application this would increase the
size of H0 too much. It is important that at each application we add two edges (one from H1 and one
from H −H0 −H1) to get a longer path or Hamilton cycle in H0, so that H0 is kept relatively sparse in
comparison to G.

Lemma 2.8. For each 0 < ε ≤ 1 there exists δ, C > 0 such that, if p ≥ C/n, then G = G(n, p) has the
following property with probability 1− o(n−3). Let H0 ⊂ G be a 2-expander with at least εn vertices and
at most 2δpn2 edges and let H be a (1/2 + ε)-residual subgraph of G with V (H) = V (H0). Then, for
at least |H|/8 vertices v ∈ V (H) there is some set Uv ⊂ V (H) with |Uv| ≥ (1/2 + ε/8)|H| and disjoint
subsets Ev,u ⊂ E(H −H0), u ∈ Uv, so that |Ev,u| ≥ 50/εδ and, for each u ∈ Uv and e ∈ Ev,u, {uv, e} is
a booster for H0.

Proof. Let δ, C > 0 be determined later. Let H be the set of all 2-expander graphs H0 with V (H0) ⊂ [n],
e(H0) ≤ 2δpn2 and |H0| ≥ εn. Let H0 ∈ H. By Lemma 2.6, there are at least |H0|/8 vertices v, say
those in VH0

, which appear at the end of a longest path in H0.
For each v ∈ VH0

, let f(H0, v) be the event that, for each (1/2+ε)-residual subgraph H of G = G(n, p)
with V (H) = V (H0), there is some set U ⊂ V (H) with |U | ≥ (1/2 + ε/8)|H| and disjoint subsets
Eu ⊂ E(H −H0), u ∈ U , so that |Eu| ≥ 50/εδ and, for each u ∈ U and e ∈ Eu, {uv, e} is a booster for
H0.
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Claim 2.9. For each H0 ∈ H and v ∈ VH0
, P(f(H0, v)) ≤ exp(−ε5pn2/106).

From this claim, we can show, as follows, that, with probability 1 − o(n−3), f(H0, v) holds for each
H0 ∈ H and v ∈ VH0

with H0 ⊂ G. Note that the events f(H0, v) and H0 ⊂ G are independent. The
probability that f(H0, v) does not hold and H0 ⊂ G for some H0 ∈ H and v ∈ VH0 is then at most∑

H0∈H

∑
v∈VH0

P(f(H0, v)) · P(H0 ⊂ G) ≤ n · exp(−ε5pn2/106) ·
∑

H0⊂Kn,e(H0)≤2δpn2

P(H0 ⊂ G)

≤ n · exp(−(ε5/106 − 2δ log(e/2δ))pn2),

where we have used Proposition 2.5. Therefore, we can choose δ to be sufficiently small, depending only
on ε, for this to hold with probability o(n−3). Thus, we need only prove Claim 2.9.

Proof of Claim 2.9. Let H0 ∈ H and v ∈ VH0
. Let k be the length of a longest path in H0. Pick some

path P ⊂ H0 with length k and v as an end-vertex. By Lemma 2.6, as H0 is a 2-expander, we can find
a set A ⊂ V (P ) with |A| = ε|H0|/30 so that, for each a ∈ A, there is a v, a-path, Pa say, in H0[V (P )]
with length k.

Let B = V (H0) \ A. For each u ∈ B ∩ V (P ), let Xu be the set of pairs {a, b} with a ∈ A and
b ∈ V (P ) \ A so that Pa could be rotated in H0 + ab with v fixed, using the edge ab, to get u as a new
endpoint. Note that, here, {uv, ab} is a booster for H0, and the sets Xu, u ∈ B ∩ V (P ) are disjoint and
satisfy |Xu| ≤ |A|.

For each u ∈ B \ V (P ), let Xu be the set of pairs {u, a} with a ∈ A. Note that, here, {ua}, and
hence {uv, ua}, is a booster for H0. For each u ∈ B and e ∈ Xu, we have that {uv, e} is a booster for
H0. Note further that the sets Xu, u ∈ B, are disjoint and contain vertex pairs with exactly one vertex
in A, and, for each u ∈ B, |Xu| ≤ |A|.

For each a ∈ A and each b ∈ V (P ) \ A, Pa can be rotated using ab to get a new endvertex, at most
|A| of which can be in A. Therefore, | ∪u∈B∩V (P ) Xu| ≥ |A|(|P | − 2|A|). Note that | ∪u∈B\V (P ) Xu| =
|A|(|H0| − |P |). For each u ∈ B, let Yu = Xu \ E(H0). Then,

| ∪u∈B Yu| ≥ |A|(|P | − 2|A|) + |A|(|H0| − |P |)− 2δpn2 = |A||H0| − 2|A|2 − 2δpn2 ≥ (1− ε/8)|A||H0|,

for sufficiently small δ. For each u ∈ B, we have, furthermore, that |Yu| ≤ |Xu| ≤ |A|. For each a ∈ A,
let Za be the pairs in ∪u∈BYu which contain a, so that ∪a∈AZa = ∪u∈BYu, and, hence, | ∪a∈A Za| =
| ∪u∈B Yu| ≥ (1− ε/8)|A||H0|.

Define the events F1, F2, and F3, as follows.

F1: | ∪a∈A (Za ∩ E(G))| ≥ (1− ε/4)p|A||H0|.

F2:
∑
a∈A dG[V (H0)]−H0

(a) ≤ (1 + ε/8)p|A||H0|.

F3: If U ⊂ B with |U | ≤ (1/2 + ε/8)|H0|, then | ∪u∈U (Yu ∩ E(G))| < (1/2 + ε/4)p|A||H0|.

As |A||H0| ≥ ε3n2/30, and E| ∪a∈A (Za ∩ E(G))| ≥ (1 − ε/8)p|A||H0|, by Lemma 2.2, we have
P(F1) ≤ exp(−ε5pn2/105).

Furthermore, using Proposition 2.3, and as |A||H0| ≥ ε3n2/30, we have

P(F2) ≤ P
(∑
a∈A

dG[V (H0)]−H0
(a) > (1 + ε/8)p|A||H0|

)
≤ 4 exp(−ε5pn2/105).

Finally, for each U ⊂ B with |U | ≤ (1/2+ε/8)|H0|, we have E|∪u∈U (Yu∩E(G))| ≤ (1/2+ε/8)p|A||H0|.
Therefore, using Proposition 2.3, as |A||H0| ≥ ε3n2/30, we have

P(F3) ≤ 2n · 4 exp(−ε5pn2/105) ≤ exp(−ε5pn2/(2 · 105)),

for sufficiently large C as pn2 ≥ Cn. Therefore, P(F1 ∧ F2 ∧ F3) ≥ 1− exp(−ε5pn2/106). We will show
that, if F1, F2, and F3 hold, then f(H0, v) holds, completing the proof of the claim.
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Suppose then that F1, F2, and F3 hold, and let H be a (1/2 + ε)-residual subgraph of G with
V (H) = V (H0). For each u ∈ B, let Eu = Yu∩E(H), so that, for each e ∈ Eu, {uv, e} is a booster for H0.
Let U be the set of vertices in B for which |Eu| ≥ 50/εδ. We need only show that |U | ≥ (1/2 + ε/8)|H0|.

Now, taking δ to be small, and then, depending on δ, C to be large,

| ∪u∈U (Yu ∩ E(G))| ≥ | ∪u∈B (Yu ∩ E(G))| − | ∪u∈B\U (Yu ∩ E(G−H))| −
∑

u∈B\U

|Eu|

≥ | ∪a∈A (Za ∩ E(G))| − | ∪a∈A (Za ∩ E(G−H))| − (50/εδ)|B \ U |
F1

≥ (1− ε/4)p|A||H0| −
∑
a∈A

(1/2− ε)dG[V (H0)](a)− 50|H0|/εδ

F2

≥ (1− ε/4)p|A||H0| − (1/2− ε)(1 + ε/8)p|A||H0| − 2e(H0)− 104p|A||H0|/ε3δC
≥ (1/2− ε/4 + ε− ε/8− 120δ/ε3 − 104/ε3δC)p|A||H0|
≥ (1/2 + ε/4)p|A||H0|.

Therefore, as F3 holds, we have |U | ≥ (1/2 + ε/8)|H0|. This completes the proof of the claim, and hence
the lemma.

Lemma 2.8 implies that there are likely to be enough boosters in H that there is a sparse subgraph
of H which still contains many boosters. This is shown for Corollary 2.11, for which we use the following
definition.

Definition 2.10. Given two graphs H0 and H1 which are edge disjoint but have the same vertex set,
we say H0 has ε-many boosters with help from H1 if there are at least ε|H0| vertices v ∈ V (H0) for which
there are at least (1/2+ε)|H0| many vertices u ∈ V (H0)\{v} for which there exists an e ∈ E(H0)∪E(H1)
so that {uv, e} is a booster for H0.

Corollary 2.11. For each 0 < ε ≤ 1 there exists δ, C > 0 such that, if p ≥ C/n, then G = G(n, p) has
the following property with probability 1− o(n−3). Let H0 ⊂ G be a 2-expander with at least εn vertices
and at most 2δpn2 edges and let H be a (1/2 + ε)-residual subgraph of G with V (H) = V (H0). Then,
there is some subgraph H1 ⊂ H −H0 with e(H1) ≤ 2δpn2 so that H0 has (ε/16)-many boosters with help
from H1.

Proof. Let δ, C > 0 be constants for which Lemma 2.8 holds with ε. With probability 1− o(n−3), G has
the property from Lemma 2.8 and, using Lemma 2.2, at most pn2 edges. Suppose that H0 is a 2-expander
with at least εn vertices and at most 2δpn2 edges and that H is a (1/2 + ε)-residual subgraph of G with
V (H) = V (H0). By the property from Lemma 2.8, we can find a set V of |H|/8 vertices v ∈ V (H) for
which there is some set Uv ⊂ V (H) with |Uv| ≥ (1/2 + ε/8)|H| and disjoint subsets Euv ⊂ E(H −H0),
u ∈ Uv, so that |Euv| ≥ 50/εδ and, for each u ∈ Uv and e ∈ Euv, {uv, e} is a booster for H0.

Let H1 be a random subgraph of H−H0 with edges chosen independently at random with probability
δ. By Lemma 2.2, almost surely, e(H1) ≤ 2δpn2. For each v ∈ V , let U ′v ⊂ Uv be the set of vertices u
for which Euv ∩ E(H1) 6= ∅, so that P(u /∈ U ′v) ≤ (1 − δ)50/εδ ≤ exp(−50/ε) ≤ ε/32. Therefore, as the
sets Euv, u ∈ Uv, are disjoint, we have, by Lemma 2.2,

P(|U ′v| ≥ (1/2 + ε/16)|H0|) ≥ P(|U ′v| ≥ (1− ε/32)|Uv|) = o(n−1).

Therefore, some such graph H1 ⊂ H with e(H1) ≤ 2δpn2 exists with |U ′v| ≥ (1/2 + ε/16)|H0| for each
v ∈ V .

2.5 Finding many boosters in H

Corollary 2.11 demonstrates that there are likely to be many boosters for a sparse expander H0 ⊂ G
with help from some other sparse subgraph H1. We now show that many of these boosters are likely to
exist in G, sufficiently many that some exist in any (1/2 + ε)-residual subgraph H of G.
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Lemma 2.12. Let 0 < ε ≤ 1. There exists δ, C > 0 such that the random graph G = G(n, p), with
p ≥ C/n, has the following property with probability 1 − o(n−3). Suppose H0 and H1 are edge-disjoint
subgraphs of G with V (H0) = V (H1), e(H0), e(H1) ≤ 2δpn2 and |H0| ≥ εn, and where H0 has ε-many
boosters with help from H1. Then, for any 1/2-residual subgraph H ⊂ G with V (H) = V (H0) there is
some e1, e2 ∈ E(H) ∪ E(H1) such that {e1, e2} is a booster for H0.

Proof. Let δ, C > 0 be determined later, where δ will be taken to be small depending on ε and C to be
large depending on δ. Let H be the set of pairs (H0, H1) where H0 and H1 are edge-disjoint subgraphs
with V (H0) = V (H1) ⊂ [n], e(H0), e(H1) ≤ 2δpn2, and |H0| ≥ εn, and where H0 has ε-many boosters
with help from H1.

Fix (H0, H1) ∈ H, and, for each x ∈ V (H0), let Vx be the set of vertices v ∈ V (H0) \ {x} for which
there is some edge e ∈ H1 so that {xv, e} is a booster for H0. Let X = {x ∈ V (H0) : |Vx| ≥ (1/2+ε)|H0|},
so that, by Definition 2.10, |X| ≥ ε|H0| ≥ ε2n. Let p ≥ C/n and G = G(n, p), and let f(H0, H1) be the
event that

∑
x∈X dG−H0−H1(x, Vx) ≥ (1/2 + ε/4)p|X||H0|. Note that

E
(∑
x∈X

dG−H0−H1
(x, Vx)

)
≥ (1/2 + ε)p|X||H0| − 2e(H0)− 2e(H1)

≥ (1/2 + ε/2)p|X||H0| ≥ ε3pn2/2.

Therefore, for C sufficiently large, by Proposition 2.3, we have

P(f(H0, H1)) ≤ 4 exp(−(ε/4)2 · ε3pn2/18) ≤ exp(−ε5pn2/103). (2)

Note that the events f(H0, H1), H0 ⊂ G and H1 ⊂ G are independent. Therefore, the probability that
f(H0, H1) does not hold and H0, H1 ⊂ G for some (H0, H1) ∈ H is at most∑

(H0,H1)∈H

P(f(H0, H1) ∧H0, H1 ⊂ G) =
∑

(H0,H1)∈H

P(f(H0, H1))P(H0 ⊂ G)P(H1 ⊂ G)

(2)

≤ exp(−ε5pn2/103) ·

 ∑
H0⊂Kn,e(H0)≤2δpn2

P(H0 ⊂ G)

2

≤ exp(−(ε5/103 − 4δ log(e/2δ))pn2),

using Proposition 2.5. Therefore, choosing δ sufficiently small, and C sufficiently large, as p ≥ C/n, with
probability 1− o(n−3), f(H0, H1) holds for every (H0, H1) ∈ H with H0, H1 ⊂ G.

By this, and Lemma 2.4, with probability 1− o(n−3) we can assume that f(H0, H1) holds for every
(H0, H1) ∈ H with H0, H1 ⊂ G, and, if X,U ⊂ V (G), |X| ≥ ε2n, and |U | ≥ εn, then eG(X,U) ≤
(1 + ε/6)p|X||U |.

Now, take any (H0, H1) ∈ H with H0, H1 ⊂ G. Using the notation for a fixed (H0, H1) ∈ H above,
as f(H0, H1) holds,∑

x∈X
(dG−H0−H1

(x, Vx)− dG[V (H0)](x)/2) ≥ (1/2 + ε/4)p|X||H0| − eG(X,V (H0))/2 > 0.

Thus, there is some x ∈ V (H0) with dG(x, Vx) > dG[H0](x)/2. For any 1/2-residual subgraph H ⊂ G
with V (H) = V (H0), then, we have dH(x, Vx) ≥ dG(x, Vx) − dG[V (H0)](x)/2 > 0. That is, there must
be some v ∈ NH(x) ∩ Vx. By the definition of Vx at the start of the proof, there is some e ∈ E(H1)
such that {e, xv} is a booster for H0. As this holds for each (H0, H1) ∈ H with H0, H1 ⊂ G and each
1/2-residual subgraph H ⊂ G with V (H) = V (H0), this completes the proof.

2.6 Proof of Theorem 1.6

Armed with Corollary 2.11 and Lemma 2.12, we can now prove Theorem 1.6.
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Proof of Theorem 1.6. Let δ, C > 0 be such that Corollary 2.11 holds for ε, Lemma 2.12 holds for ε/16,
and, furthermore, let C be sufficiently large that Cδ ≥ 2. Letting p ≥ C/n, then, with probability
1− o(n−3), G = G(n, p) has the property in Corollary 2.11 with ε and the property in Lemma 2.12 with
ε/16. Let H be a (1/2 + ε)-residual subgraph of G with |H| ≥ εn which contains a spanning 2-expander,
H0 say, with at most δpn2 edges.

For each 1 ≤ i ≤ n, find ei,1, ei,2 ∈ E(H) such that {ei,1, ei,2} is a booster for Hi−1, and let Hi =
Hi−1+ei,1+ei,2. This is possible, for each 1 ≤ i ≤ n, as follows. Noting that e(Hi−1) ≤ δpn2+2n ≤ 2δpn2,
by the property from Corollary 2.11, there is some subgraph H ′ ⊂ H − Hi−1 with e(H ′) ≤ 2δpn2 so
that Hi−1 has (ε/16)-many boosters with help from H ′. Therefore, from the property from Lemma 2.12
there is some ei,1, ei,2 ∈ E(H) such that {ei,1, ei,2} is a booster for Hi−1, as required.

We have added n boosters to H0 to get Hn ⊂ H, and therefore Hn, and hence H, is Hamiltonian.

3 Proof of Lemma 1.7

We will prove Lemma 1.7, for each ε > 0, by showing that, in a typical linear vertex subset U of a
binomial random graph G = G(n, p), G[U ] can be made into an unbalanced bipartite graph without
deleting any more than (1/2 + ε) of the edges around any vertex.

Proof of Lemma 1.7. Note that we may assume 0 < ε < 1/8, and let C = 103/ε7. By Lemma 2.4, if
p ≥ C/n, then with probability 1− o(n−3), G = G(n, p) has the following property.

P If A,B ⊂ V (G) and |A||B| ≥ ε5n2, then (1− ε/3)p|A||B| ≤ eG(A,B) ≤ (1 + ε/3)p|A||B|.

Now, let U ⊂ V (G) satisfy |U | ≥ εn. We will show that G[U ] is not (1/2 + ε)-resiliently Hamiltonian.
Pick a vertex partition A∪B = U , so that eG(A,B) is maximised. For each v ∈ A, dG(v,A) ≤ dG(v,B),
otherwise, moving v from A into B would increase eG(A,B). Similarly, for each v ∈ B, dG(v,B) ≤
dG(v,A). Therefore, if H = G[A] ∪ G[B], then, for each v ∈ V (G), dH(v) ≤ dG[U ](v)/2. If |A| 6= |B|,
then, as G[U ]−H is an unbalanced bipartite graph, G[U ]−H is not Hamiltonian, and thus, if |A| 6= |B|,
G[U ] is not (1/2)-resiliently Hamiltonian.

Suppose then that |A| = |B|. Let U0 ⊂ U be the set of vertices with degree at most 1/ε in G[U ].

Claim 3.1. |U0| < ε3n.

Proof of Claim 3.1. Suppose, for contradiction, that we may take a set U ′ ⊂ U0 with |U ′| = ε3n. There
are at most |U ′|/ε = ε2n edges between |U ′| and |U \U ′|. However, as |U ′||U \U ′| ≥ ε3n · |U |/2 ≥ ε5n2,
by P, there are at least ε5pn2/2 > ε2n edges between |U ′| and |U \ U ′|, a contradiction.

From Claim 3.1, we have that |U0∪NG[U ](U0)| ≤ 2ε2n. Let A0 = A\ (U0∪NG[U ](U0)). As |A| = |B|,
we have |A|, |B| ≥ εn/2, and hence |A0| ≥ εn/4. Using P, and as |A| = |B|,∑

x∈A0

d(x,B)− (1 + ε)
∑
x∈A0

d(x,A) = e(A0, B)− (1 + ε) e(A0, A)

≤ (1 + ε/3) |A0||B| − (1 + ε) (1− ε/3) |A0||A| ≤ 0.

Therefore, there exists x ∈ A0 with d(x,B) ≤ (1 + ε)d(x,A), so that d(x,B) ≤ (1 + ε)dG[U ](x)/2. Let
A′ = A \ {x} and B′ = B ∪{x} be a new partition of U . Take H ′ = G[A′]∪G[B′], so that, by the choice
of x, dH′(x) ≤ (1 + ε)dG[U ](x)/2. For each vertex v ∈ U \NG[U ](x), with v 6= x, we did not change where
its neighbours lie in the partition, so dH′(v) ≤ dG[U ](v)/2. For each vertex v ∈ NG[U ](x), we have v /∈ U0

by the choice of A0, so that dG[U ](v) ≥ 1/ε, and we moved one of its neighbours, x, across the partition.
Thus, dH′(v) ≤ dG[U ](v)/2 + 1 ≤ (1/2 + ε)dG[U ](v). As |A′| 6= |B′|, G[U ]−H ′ is an unbalanced bipartite
graph, and hence not Hamiltonian. Thus, G[U ] is not (1/2 + ε)-resilently Hamiltonian.
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4 Resilient large set expansion

Set against small set expansion, it is comparatively straightforward to show that our random graphs
resiliently contain a sparse subgraph in which large sets expand. We show this for both Theorem 1.2 and
Theorem 1.3, through the following definition and theorem.

Definition 4.1. A graph H is a (2, k)-expander if, for every subset U ⊂ V (H), with |U | ≤ k, we have
|N(U)| ≥ 2|U |.

Theorem 4.2. For each ε > 0, there exists δ, C > 0 such that, if p ≥ C/n, then G = G(n, p) has the
following property with probability 1− o(n−3). Any (1/2 + ε)-residual subgraph H of G, with |H| ≥ εn,
which contains a spanning (2, C/p)-expander with at most δpn2 edges is Hamiltonian.

Proof. By Theorem 1.6, we may take δ > 0 and C ≥ 200/ε3δ such that, if p ≥ C/n then we have the
following property with probability 1− o(n−3).

Q1 Any (1/2 + ε)-residual subgraph H ⊂ G, with |H| ≥ εn, which contains a spanning 2-expander
with at most 2δpn2 edges is Hamiltonian.

Let p ≥ C/n and G = G(n, p), so that with probability 1 − o(n−3) we have both Q1 and, by
Lemma 2.4, the following property.

Q2 If A,B ⊂ V (G) satisfy |A| ≥ C/p and |B| ≥ εn/2, then

(1− ε/3)p|A||B| ≤ e(A,B) ≤ (1 + ε/3)p|A||B|.

We will show that, for sufficiently large n, G satisfies the property in the theorem. Let H be a
(1/2 + ε)-residual subgraph of G, with |H| ≥ εn, which contains a spanning (2, C/p)-expander H1 with
e(H1) ≤ δpn2. By Q2, for all subsets A ⊂ V (H), B ⊂ V (H) \ A with |A| ≥ C/p and |B| ≥ |H|/2, we
have

eH(A,B) ≥ eG(A,B)− (1/2− ε)eG(A, V (H)) ≥ (1− ε/3)p|A||B| − (1/2− ε)(1 + ε/3)|A||H|
≥ (1− ε/3)p|A||B| − (1− ε)p|A||B| = 2εp|A||B|/3 ≥ Cε2n/3. (3)

Let H2 ⊂ H be a random subgraph of H where each edge is included with probability δ/2. Therefore,
the probability there exists some disjointA,B ⊂ V (H) for which |A| ≥ C/p, |B| ≥ |H|/2 and eH2

(A,B) =
0 is, by (3), at most

2n · 2n · (1− δ/2)Cε
2n/3 ≤ 4ne−Cε

2δn/6 = o(1).

By Q2, e(G) ≤ pn2, and thus, by Lemma 2.2, H2 almost surely has at most δpn2 edges. Therefore, we
may take some H2 ⊂ H such that e(H2) ≤ δpn2 and, for each disjoint A,B ⊂ V (H) with |A| ≥ C/p and
|B| ≥ |H|/2, we have eH2

(A,B) > 0. Let H0 = H1 ∪H2 ⊂ H, noting that e(H0) ≤ 2δpn2. We will show
that H0 is a 2-expander, so that, by Q1, H is Hamiltonian, as required.

Firstly, for each A ⊂ V (H) with C/p ≤ |A| ≤ |H|/8, there are no edges between A and V (H) \ (A ∪
NH2

(A)) in H2, and, therefore, |A ∪NH2
(A)| ≥ |H|/2. Thus, |NH2

(A)| ≥ |H|/2− |A| ≥ 3|H|/8 ≥ 2|A|.
Secondly, the graph H0 is connected. Indeed, suppose to the contrary that H0 has a component with

vertex set A for which |A| ≤ |H|/2. Then, as H1 is a (2, C/p)-expander, from NH0
(A) = ∅ we have

|A| > C/p. As there are no edges between A and V (H) \A in H2, this gives a contradiction.
As H1, and thus H0, is a (2, C/p)-expander, H0 is a 2-expander, as required.

5 Born resilience of Hamiltonicity

By Lemma 2.1 (with p = M/
(
n
2

)
) and Theorem 4.2, to prove Theorem 1.2 it is sufficient to show the

following lemma.
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Lemma 5.1. For each δ, C > 0, in almost every random graph process {GM}≥0 with n vertices, for
each M and ε > 0, if δ(GM ) ≥ 2, then any spanning (1/2 + ε)-resilient subgraph H ⊂ GM contains a
spanning (2, C

(
n
2

)
/M)-expander with at most δM edges.

Typically, in graphs in {GM}M≥0, sets of vertices with small degree (here, ≤M/103n) will resiliently
expand as these vertices form an independent set (see Section 5.1). Typically, sets with vertices with
larger degree must resiliently expand to prevent overly dense subgraphs (see Section 5.2). Combining
this, we prove Lemma 5.1 in Section 5.3.

5.1 Small degree vertices in the random graph process

As is well-known, in almost every random graph process {GM}M≥0 with n vertices, the first graph
with minimum degree at least 2 has around n(log n + log log n)/2 edges, as follows (see, for example,
Bollobás [7, Theorems 2.2(ii) and 3.5]).

Lemma 5.2. If M = n(log n+ log log n− ω(1))/2, then, almost surely, δ(Gn,M ) ≤ 1. If k ∈ N is fixed,
and M = n(log n+ (k − 1) log log n+ ω(1))/2, then, almost surely, δ(Gn,M ) ≥ k.

Furthermore, in almost every n-vertex random graph process {GM}M≥0, if M ≥ 25n log n, then there
are no vertices with small degree in GM .

Lemma 5.3. In almost every random graph process {GM}M≥0 with n vertices, if M ≥ 25n log n, then
δ(GM ) ≥M/n.

Proof. For each M ≥ 25 log n, let pM = M/
(
n
2

)
and G = G(n, p). For each v ∈ V (G), E(dG(v)) =

(n− 1)pM = 2M/n ≥ 50 log n, so that, by Lemma 2.2,

P(dG(v) ≤M/n) ≤ 2 exp(−50 log n/12) = o(n−4).

Therefore, by Lemma 2.1, in almost every n-vertex random graph process {GM}M≥0, in every GM with
M ≥ 25n log n, we have δ(GM ) ≥M/n.

As shown by Bollobás [6], in almost every random graph process, when the graph first has minimum
degree 2 there are no vertices with low degree which are close together (see Lemma 5.4). We wish to
show that, in almost every random graph process, such a property holds for every graph with minimum
degree at least 2. Therefore, we repeat the argument in [6] to record some more detail.

Lemma 5.4. Fix an integer k > 1, and let n,M ∈ N. If 19n log n/40 ≤ M ≤ 27n log n, then, with
probability 1− o(n−1/4), no two vertices with degree at most log n/36 are within distance k of each other
in the random graph G = Gn,M .

Proof. Let N =
(
n
2

)
and d = log n/36. For each a, b ∈ N with a ≤ b, use (b)a for the falling factorial

b(b− 1) · · · (b− a+ 1), and recall the simple result that, if 0 ≤ a ≤ b ≤ c, then (b)a/(c)a ≤ (b/c)a. Note
also that, for sufficiently large n,

Mn

N − 2n
=

2M

n− 5
≤ 60 log n and (2n− 3d)M/N ≥ 1.8 log n. (4)

The expected number of paths in G = Gn,M with some length 1 ≤ i ≤ k whose endpoints together
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have degree at most some j ≤ 2d is at most

k∑
i=1

ni+1
2d∑
j=1

(
2n

j

)(
N − 2n+ 3

M − j − i

)/(N
M

)
=

k∑
i=1

ni+1
2d∑
j=1

(
2n

j

)
· (N −M)2n−3−i−j

(N)2n−3−i−j
· (M)j+i

(N − 2n+ 3 + j + i)j+i

≤
k∑
i=1

ni+1
2d∑
j=1

(
2n

j

)
·
(

1− M

N

)2n−3−j−i

·
(

M

N − 2n

)j+i

≤ 2dk · nk+1 ·
(en
d

)2d
· e−(2n−3d)M/N ·

(
M

N − 2n

)2d+k

≤ 2dkn ·
(

Mn

N − 2n

)k
·
(

eMn

d(N − 2n)

)2d

· e−(2n−3d)M/N

(4)

≤ 2dkn · (60 log n)k ·
(

60e log n

d

)2d

· e−1.8 logn

≤ 2dk · (60 log n)k · e18d · n−0.8

≤ 2dk · (60 log n)k · elogn/2 · n−0.8 = o(n−1/4).

Thus, with probability 1− o(n−1/4), no two vertices with degree at most d are within distance k of each
other in G.

The property in Lemma 5.4 is non-monotone, so we need slightly more work to show that it holds
throughout almost every random graph process.

Lemma 5.5. Let k > 1 be fixed. In almost every random graph process {GM}M≥0 with n vertices, if
19n log n/40 ≤M ≤ 25n log n, then there are no two vertices of degree at most log n/40 within a distance
k of each other in GM .

Proof. Let N =
(
n
2

)
, d = log n/36 and M0 = n7/8. Letting p = M0/N ≤ 3n−9/8, the probability the

random graph G(n, p) has a vertex with degree at least d/10 is at most

n

(
n

d/10

)
pd/10 ≤ n

(
10enp

d

)d/10
≤ n

(
30e

dn1/8

)d/10
= o(n1−d/100) = o(n−3).

From this, and Lemma 2.1, we have that, in almost every graph process {GM}M≥0 with n vertices, for
each j, 0 ≤ j ≤ N −M0, ∆(Gj+M0

−Gj) ≤ d/10.
There are at most 25n1/8 log n values of j ∈ N for which 19n log n/40 ≤ jM0 ≤ 25n log n + M0. By

Lemma 5.4 and a union bound, almost surely, for each such j, GjM0 contains no two vertices with degree
at most d within a distance k of each other. Now, suppose for some M , 19n log n/40 ≤ M ≤ 25n log n,
GM has two vertices x and y with degree at most log n/40 which are at most distance k apart in GM .
Find the smallest j for which jM0 ≥ M . Then 19n log n/40 ≤ jM0 ≤ 25n log n + M0, but in GjM0

both x and y have degree at most log n/40 + d/10 = d and are still within a distance k of each other
in GjM0

, a contradiction. Therefore, the property in the lemma almost surely holds for all M with
19n log n/40 ≤M ≤ 25n log n.

Corollary 5.6. In almost every random graph process {GM}M≥0 with n vertices, in each GM with
M ≥ 19n log n/40 there are no two vertices with degree at most M/103n within a distance 5 of each
other.

Proof. Almost surely, by Lemma 5.5, in each GM with 19n log n/40 ≤ M ≤ 25n log n there are no two
vertices with degree less than log n/40 ≥ M/103n within a distance 5 of each other. Almost surely, by
Lemma 5.3, for each GM with M ≥ 25n log n, we have δ(GM ) > M/103n, so no vertices with degree at
most M/103n exist.
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5.2 Expansion from minimum degree conditions

Minimum degree conditions occur naturally in our (1/2 + ε)-residual subgraphs in Lemma 5.1. The
following lemma will allow us to convert these conditions into expansion properties.

Lemma 5.7. For each δ > 0, there exists C > 0 such that the following holds for p ≥ C/n. With
probability 1 − o(n−3), in the random graph G = G(n, p) there are no two sets A,B ⊂ V (G) with
|A| ≤ 1/δp, |B| ≤ 10|A| and e(A,B) ≥ δpn|A|.

Proof. For each value of t, with 1 ≤ t ≤ 1/δp, if pt is the probability that there are two sets A,B ⊂ V (G)
with |A| = t, |B| = 10t and e(A,B) ≥ δpnt, then, for sufficiently large C,

pt ≤
(
n

t

)(
n

10t

)(
10t2

δpnt/2

)
pδpnt/2 ≤

(en
t

)11t(20et

δn

)δpnt/2
≤
(

20e2

δ

)11t(
20et

δn

)δCt/2−11t
≤
(

400e3t

δ2n

)11t

.

Therefore, if 1 ≤ t < log n, then, pt = o((1/
√
n)11) = o(n−4). If log n ≤ t ≤ 1/δp, then pt ≤

(400e3/δ3pn)11 logn ≤ (400e3/δ3C)11 logn = o(n−4), for sufficiently large C. Therefore, no two such
sets exist for any t ≤ 1/δp with probability 1− o(n−3).

5.3 Resilient small set expansion

We can now combine the work in Sections 5.1 and 5.2 to prove Lemma 5.1.

Proof of Lemma 5.1. Note that we can assume that δ ≤ 10−4 and C ≥ 16/δ. Almost surely, by
Lemma 5.2, for each GM with M ≤ 19n log n/40 we have δ(GM ) < 2, so we need only consider the
range M ≥ 19 log n/40. By Corollary 5.6, for each M ≥ 19 log n/40, there are no vertices with degree at
most M/103n within distance 5 of each other.

By Lemmas 2.1 and 5.7, we almost surely get the following property for each graph GM , M ≥
19n log n/40, with p = M/

(
n
2

)
.

R There are no two sets A,B ⊂ V (GM ) with |A| ≤ C/p, |B| ≤ 10|A| and e(A,B) ≥ δpn|A|/8.

The random graph process then has the property in the lemma, as follows.
Fixing M ≥ 19 log n/40, p = M/

(
n
2

)
and ε > 0, suppose δ(GM ) ≥ 2 and let H be a (1/2 + ε)-

residual spanning subgraph of GM . Note that δ(H) ≥ 2. For each v ∈ V (H), take min{dH(v), δpn/4}
edges incident to v, and use these edges to create a new graph H0 with e(H0) ≤ δpn2/4 ≤ δM and
dH0

(v) ≥ min{dH(v), δpn/4} ≥ 2 for each v ∈ V (H).
Let A ⊂ V (H) with |A| ≤ C/p. Let A1 ⊂ A be the set of vertices not within distance 2 of another

vertex in A in H0, and let A2 = A \A1. As δ(H0) ≥ 2, |NH0(A)| ≥ 2|A1|+ |NH0(A2)|. Now, two vertices
in A with degree at most M/103n in GM cannot be within distance 2 of the same vertex in A in H0

or each other. Therefore, at least |A2|/2 vertices in A2 must have degree at least M/103n in GM , and
hence degree δpn/4 in H0. Thus, e(A2, A2 ∪NH0

(A2)) ≥ δpn|A2|/8, so that, by R, |NH0
(A2)| ≥ 2|A2|.

Therefore, |NH0
(A)| ≥ 2|A1| + |NH0

(A2)| ≥ 2|A|. Hence, as required, H0 ⊂ H is a (2, C/p)-expander
with e(H0) ≤ δM which spans H.
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6 Born resilience of Hamiltonicity in the k-core

Our key result in this section is the following lemma, showing that the k-core of G(n, p) almost always
resiliently contains a sparse spanning (2,Θ(1/p))-expander.

Lemma 6.1. For each δ, C > 0, there exists k0 such that, for each k ≥ k0, n ∈ N and p > 0 with
k/n ≤ p ≤ 2 log n/n, the following holds. With probability 1− o(n−3), G = G(n, p) has the property that
any spanning 1/2-residual subgraph of G(k) contains a spanning (2, C/p)-expander with at most δpn2

edges.

Following Krivelevich, Lubetzky and Sudakov [15], we will consider two cases: the critical case
where p ≤ 4k/n (in Section 6.2) and the supercritical case where p ≥ 4k/n (in Section 6.3). We use a
lemma from [15], but note that its proof relies on a relatively simple calculation and that our methods for
demonstrating Hamiltonicity in the k-core (for large k) are quite different from those used by Krivelevich,
Lubetzky and Sudakov in [15].

We will show first, in Section 6.1, that Theorem 1.3 follows from Lemma 6.1, Theorem 4.2 and some
standard results on the likely size and appearance of the k-core.

6.1 Typical properties of the k-core

 Luczak [17] showed that, when the k-core first appears in the random graph process it is likely to be
linear in size, as follows.

Theorem 6.2 ([17]). For each k ≥ 3, in almost every n-vertex random graph process {GM}M≥0, for
each M , either G(k) = ∅ or |G(k)| ≥ n/5000.

The threshold of appearance for the k-core has been well-studied (see [18, 19, 21]), showing that, as
the first kn/2 edges are added in the n-vertex random graph process, the k-core is likely to be empty, as
follows (see also [15]).

Theorem 6.3. For each k ≥ 20, in almost every n-vertex random graph process {GM}M≥0, if M ≤ kn/2,

then G
(k)
M = ∅.

Theorem 1.3 is implied by Lemma 6.1 and Theorems 4.2, 6.2, and 6.3, as follows.

Proof of Theorem 1.3. Using Theorem 4.2, let δ, C > 0 be such that, if p ≥ C/n, then G = G(n, p) has
the following property with probability 1− o(n−3).

S1 If H is a (1/2 + ε)-residual subgraph of G with |H| ≥ n/5000 which contains a spanning (2, C/p)-
expander with at most δpn2 edges, then H is Hamiltonian.

Using Lemma 6.1, let k0 ≥ C be such that, for each k ≥ k0 and k/n ≤ p ≤ 2 log n/n, G = G(n, p) has
the following property with probability 1− o(n−3).

S2 If G(k) 6= ∅, then any spanning 1/2-residual subgraph of G(k) contains a spanning (2, C/p)-expander
with at most δpn2 edges.

Increase k0 if necessary, so that, using Lemmas 2.1 and 1.7, we have the following property for almost
every n-vertex random graph process {GM}M≥0.

S3 For each M ≥ k0n/2, there is no U ⊂ V (GM ) with |U | ≥ n/5000 which is (1/2 + ε)-resiliently
Hamiltonian.

Now, let k ≥ k0, and consider the random graph process {GM}M≥0 with n vertices. By Lemma 5.2,

δ(GM ) is almost surely at least k for each M ≥ (n − 1) log n, in which case G
(k)
M = GM . Thus, almost

surely, by Theorem 1.2, for each M ≥ (n − 1) log n, GM is (1/2 − ε)-resiliently Hamiltonian but not
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(1/2+ε)-resiliently Hamiltonian. Furthermore, by Lemma 6.3, almost surely, if M ≤ kn/2, then G
(k)
M = ∅.

Therefore, we can assume that kn/2 ≤M ≤ (n− 1) log n.
Almost surely, S3 holds and, for each kn/2 ≤ M ≤ (n − 1) log n, GM satisfies S1 and S2 with

p = M/
(
n
2

)
, so that k ≤ pn ≤ 2 log n. Almost surely, by Theorem 6.2, for each kn/2 ≤M ≤ (n−1) log n,

G
(k)
M = ∅ or |G(k)

M | ≥ n/5000. Then, if G
(k)
M 6= ∅, by S1 and S2, G

(k)
M is (1/2− ε)-resiliently Hamiltonian,

but, by S3, not (1/2 + ε)-resiliently Hamiltonian.

6.2 Critical k-core expansion

We can now prove Lemma 6.1 in the critical case.

Proof of Lemma 6.1 when p ≤ 4k/n. Note that we can assume that δ ≤ 1/8. Let k0 be sufficiently large
that, by Lemma 5.7, the following holds in G(n, p) with p ≥ k0/n with probability 1− o(n−3).

T There are no two sets A,B ⊂ V (G) with |A| ≤ C/p, |B| ≤ 10|A| and e(A,B) ≥ δpn|A|/2.

Let k ≥ k0 and k/n ≤ p ≤ 4k/n. Let G = G(n, p), so that, with probability 1− o(n−3), G satisfies T.
Let H be a spanning 1/2-residual subgraph of G(k). Note that δpn ≤ δ(4k) ≤ k/2, so that δ(H) ≥

k/2 ≥ δpn/2. For each vertex v ∈ V (H) take δpn/2 edges incident to v, and use these edges to
form a subgraph H0 ⊂ H with e(H0) ≤ δpn2. By T, for each A ⊂ V (H0) with |A| ≤ C/p, we have
|NH0(A) ∪A| ≥ 10|A|, and hence H0 is a (2, C/p)-expander.

6.3 Supercritical k-core expansion

For the resilient expansion of small sets in the k-core, we will use the following lemma taken from a result
of Krivelevich, Lubetzky and Sudakov [15, Claim 3.1].

Lemma 6.4. Let p = c/n with 1 < c < log2 n and let G = G(n, p). With probability 1 − o(n−3), any
subgraph H ⊂ G with δ(H) ≥ 15 is a (2, n/2c2)-expander.

To show that medium-sized sets resiliently expand in the k-core of a typical random graph G(n, p)
with p ≥ 4k/n, we wish to use Lemma 5.7. To do so, we will show that it is very likely that most of the
vertices in the k-core here have at least pn/4 neighbours in the k-core, as follows.

Lemma 6.5. There exists k0 ≥ 0 such that the following holds for any k ≥ k0 and p = c/n with
4k ≤ c ≤ 2 log n. With probability 1−o(n−3), in G = G(n, p) there are at most n/4c2 vertices with degree
at most pn/4 in G(k).

Proof. For each A ⊂ V (G) with |A| = n/4c2, the expected number of edges between A and V (G) \A is

p|A||V (G) \A| ≥ 3p|A|n/4 = 3n/16c.

Therefore, the probability there is some set A ⊂ V (G) with |A| = n/4c2 and eG(A, V (G)\A) < |A| ·pn/4
is, using Proposition 2.3, at most(

n

n/4c2

)
exp(−3n/(9 · 4 · 16c)) ≤

(
4ec2

)n/4c2
exp(−n/200c) ≤ exp((3 + 2 log c− c/50)n/4c2) = o(n−3),

where c ≥ 4k0 is sufficiently large.
Suppose then that G has no such set A. Remove vertices with degree at most pn/4 iteratively from

G until no such vertices exist, or we have removed n/4c2 vertices. Let A be the set of removed vertices.
Then, eG(A, V (G) \ A) < |A| · pn/4, so that |A| < n/4c2. Furthermore, δ(G − A) > pn/4 ≥ k. Thus,
G − A ⊂ G(k) and V (G) \ A is a set of at least (1 − 1/4c2)n vertices with degree more than pn/4 in
G(k).

We can now prove Lemma 6.1 in the supercritical case.
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Proof of Lemma 6.1 when p ≥ 4k/n. Note that we can assume that δ < 1/8. Using Lemmas 5.7 and 6.5,
let k0 ≥ 30/δ be sufficiently large that, if p ≥ 4k0/n, then the following hold in G = G(n, p) with
probability 1− o(n−3).

U1 There are no two sets A,B ⊂ V (G) with |A| ≤ C/p, |B| ≤ 10|A| and e(A,B) ≥ δpn|A|/4.

U2 There are at most n/2c2 vertices in G(k) with degree at most pn/4.

Assume that G = G(n, p) has these properties. By Lemma 6.4, with probability 1 − o(n−3), G has the
following property.

U2 If H0 ⊂ G has minimum degree 15, then it is a (2, n/c2)-expander.

Let H be a spanning 1/2-residual subgraph of G(k). Note that δ(H) ≥ k/2 ≥ 15. For each vertex
v ∈ V (H), take min{dH(v), δpn/2} ≥ 15 edges incident to v, and use these edges to form a subgraph
H0 ⊂ H with e(H0) ≤ δpn2.

Let A ⊂ V (H0) with n/2c2 ≤ |A| ≤ C/p. By U2, there are at least |A|/2 vertices in A with degree
at least δpn/2 in H0. Thus, by U1, we have |NH0

(A) ∪A| ≥ 10|A|, so that |NH0
(A)| ≥ 2|A|. Therefore,

as δ(H0) ≥ 15, by U2, H0 is a (2, C/p)-expander.

This completes the proof of Lemma 6.1, and thus Theorem 1.3 is proved.
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graphs. In Soviet Math. Dokl, volume 17, pages 760–764, 1976.

[15] M. Krivelevich, E. Lubetzky, and B. Sudakov. Cores of random graphs are born Hamiltonian.
Proceedings of the London Mathematical Society, 2014.

[16] C. Lee and B. Sudakov. Dirac’s theorem for random graphs. Random Structures & Algorithms,
41(3):293–305, 2012.

[17] T.  Luczak. On matchings and Hamiltonian cycles in subgraphs of random graphs. Random graphs
85, North-Holland Math. Stud., pages 171–185, 1987.

[18] T.  Luczak. Size and connectivity of the k-core of a random graph. Discrete Mathematics, 91(1):61–
68, 1991.

[19] B. Pittel, J. Spencer, and N. Wormald. Sudden emergence of a giant k-core in a random graph.
Journal of Combin. Theory, Series B, 67(1):111–151, 1996.
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